JP4188613B2 - Non-aqueous electrolyte battery and manufacturing method thereof - Google Patents

Non-aqueous electrolyte battery and manufacturing method thereof Download PDF

Info

Publication number
JP4188613B2
JP4188613B2 JP2002068154A JP2002068154A JP4188613B2 JP 4188613 B2 JP4188613 B2 JP 4188613B2 JP 2002068154 A JP2002068154 A JP 2002068154A JP 2002068154 A JP2002068154 A JP 2002068154A JP 4188613 B2 JP4188613 B2 JP 4188613B2
Authority
JP
Japan
Prior art keywords
protective tape
insulating protective
negative electrode
current collecting
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002068154A
Other languages
Japanese (ja)
Other versions
JP2003272598A (en
Inventor
昭夫 斉藤
敏之 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002068154A priority Critical patent/JP4188613B2/en
Publication of JP2003272598A publication Critical patent/JP2003272598A/en
Application granted granted Critical
Publication of JP4188613B2 publication Critical patent/JP4188613B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、小型でありながらも大容量を有する密閉型電池であるリチウムイオン二次電池に代表される非水電解液(有機溶媒系電解液)電池およびその製造方法に関するものである。
【0002】
【従来の技術】
近年では、AV機器あるいはパソコンや携帯型通信機器などの電機機器のポータブル化やコードレス化が急速に促進されている。これらの電機機器の駆動用電源としては、従来においてニッケルカドミウム電池やニッケル水素電池などの水溶液系電池が主に用いられてきたが、近年では、特に、急速充電が可能でエネルギ密度が高く、高い安全性を有するリチウムイオン二次電池に代表される非水電解液二次電池が主流になりつつある。この非水電解液二次電池では、高エネルギ密度や負荷特性に優れた密閉型とし、さらに、機器の薄型化に適し、且つスペース利用効率が高い角形とすることが促進されている。
【0003】
また、近年では、非水電解液二次電池に対し単位体積当たりの電池容量の一層の向上を図る要望が高い。そこで、従来では、単位体積当たりの電池容量の向上を目的として、図6に示す正,負の極板50の芯材(一般に正極板はアルミニウム製で、負極板は銅製である)51を可及的に薄くするとともに、その芯材51の露出部に溶接により取り付けられる正,負極の集電用リード52を覆うことによって隣接する反対極に対する電気絶縁を図り、且つリード52を保護する絶縁保護テープ53の厚みをも薄くすることまで検討されている。
【0004】
上記絶縁保護テープ53は、集電用リード52の加工時に発生するばりや集電用リード52を芯材51に溶接する時に発生するばりを被覆することにより、ばりがセパレータを突き破ることに起因して集電用リード52が反対極の極板に接触する内部短絡の発生を防止し、外部衝撃を受けたときや過放電などに起因する内部短絡の防止、さらには集電用リード52の機械的強度の補強などの役目を担うものである。
【0005】
現在、保護テープ53としては、50μmの厚さを有するものが一般的に使用されている。また、絶縁保護テープ53は、図6(a)のA−A線断面図である(b)に示すように、集電用リード52を被覆するものに加えて、芯材51における集電用リード52の接合面とは反対面にも貼着されている。これは、集電用リード52にはその両面側にばりが発生するので、集電用リード52における内方側に突出して芯材51を突き破ったばりを被覆するためである。
【0006】
【発明が解決しようとする課題】
ところで、非水電解液二次電池の製造工程では、極板50の所定位置に絶縁保護テープ53が貼着されているか否かを反射型光電センサによって非接触に検出している。そのため、絶縁保護テープ53には、光電センサに正確に検出されることを目的として、着色が施されている。しかしながら、絶縁保護テープ53を、単位体積当たりの電池容量の向上を目的として、例えば、現在の50μmの厚みを半分の25μm程度に薄くした場合には、絶縁保護テープ53の着色が透けてしまい、光電センサによって検出することができないという問題が生じる。また、保護テープ53に着色を施す着色顔料は電池に対し悪影響を与えるという欠点もある。
【0007】
そこで、本発明は、上記従来の課題に鑑みてなされたもので、極板の集電用リードを保護する絶縁保護テープを可及的に薄くしながらもセンサで確実に検出することのできる非水電解液電池およびこの非水電解液電池を好適に製造することのできる方法を提供することを目的とするものである。
【0008】
【課題を解決するための手段】
上記目的を達成するために、本発明の非水電解液電池は、有底筒状の電池ケースに、渦巻状電極群が収容され、且つ有機電解液が注入され、前記電池ケースの開口部が封口板で封口されてなる構成を備えたものにおいて、前記渦巻状電極群の正極板および負極板にそれぞれ集電用リードが接合して取り付けられ、前記正極集電用リードおよび/または前記負極集電用リードの前記極板への接合箇所およびその近傍箇所における少なくとも一部分が、蛍光塗料を有する絶縁保護テープによって覆われていることを特徴としている。
【0009】
この非水電解液電池では、集電用リードを覆う絶縁保護テープが蛍光塗料を有しているから、極板の製作完了後に実施される絶縁保護テープの有無の検査において、蛍光塗料を検出することによって絶縁保護テープの有無を判別することが可能となる。したがって、絶縁保護テープは、着色の検出によって有無が判別される従来の絶縁保護テープとは異なり、厚みを可及的に薄くすることが可能となり、その絶縁保護テープの厚みを薄くした分だけ極板の長さまたは活物質層の厚みを大きく設定することができるから、体積エネルギ密度の向上を図ることができる。しかも、絶縁保護テープは、電池としたときに何ら悪影響を及ぼさない蛍光塗料を有しているだけであるから、従来の絶縁保護テープに着色を施していた着色顔料による電池への悪影響の問題を解消することができる。
【0010】
上記発明において、正極集電用リードは、正極芯材の長手方向の一方の側辺を挟んだ両側の近傍部分のみに絶縁保護テープが巻き付け状態に貼着され、前記負極集電用リードは、負極芯材との接合部を覆うように絶縁保護テープが貼着されている構成とすることが好ましい。
【0011】
この構成によれば、正極集電用リードは、電池の組立工程において折り曲げられる時の根元となる部分であってストレスによって切れが発生し易い箇所、つまり正極芯材の長手方向の一方の側辺を挟んだ両側の近傍部分のみが絶縁保護テープで被覆して機械的強度を補強され、一方、負極集電用リードには、電池の落下時などにおいて外れない程度の絶縁保護テープが貼着されているだけであるから、正,負極板での絶縁保護テープの使用量が従来の極板に比較して格段に減少し、その絶縁保護テープの使用量の減少分だけ極板の長さまたは活物質層の厚みを大きくでき、体積エネルギ密度の格段の向上を図ることができる。
【0012】
上記発明において、絶縁保護テープを25μm以下の厚みに設定することができる。すなわち、極板の製作完了後の絶縁保護テープの有無の検査工程では、絶縁保護テープが有している蛍光塗料の検出によって絶縁保護テープの有無の判別を行うことが可能であるから、絶縁保護テープを25μm以下の薄い厚みに設定しても、検査工程において絶縁保護テープを正確に検出することができる。
【0013】
本発明の非水電解圧電池の製造方法は、正極板および負極板に、正極集電用リードおよび負極集電用リードをそれぞれ溶接により接合し、前記正,負極板への接合前または接合後の前記正極集電用リードおよび/または前記負極集電用リードの所定箇所に、蛍光塗料を有する絶縁保護テープを被覆状態で貼着し、前記正極板および/または負極板の絶縁保護テープの有無または位置ずれを、蛍光感知センサによる前記絶縁保護テープの蛍光塗料の検知に基づき判別し、前記正,負極板をこれらの間にセパレータを介在させて積層した状態で渦巻状に巻回することにより、渦巻状電極群を構成し、有底筒状の電池ケースに、前記渦巻状電極群を収容し、且つ有機電解液を注入して、前記電池ケースの開口部を封口板で封口することを特徴としている。
【0014】
この非水電解液電池の製造方法では、製作完了して移送されてくる極板の絶縁保護テープの有無または位置ずれを、絶縁保護テープ自体が有している蛍光塗料を蛍光感知センサで検出することによって判別するので、厚みが極めて薄いことから着色が透けて見える絶縁保護テープであっても、その絶縁保護テープの有無または位置ずれを正確に判別することができる。
【0015】
【発明の実施の形態】
以下、本発明の好ましい実施の形態について図面を参照しながら説明する。図1は、本発明の一実施の形態に係る非水電解液電池を示す縦断面図である。同図には、非水電解液電池の代表的な一つである角形リチウム二次電池を例示してある。この非水電解液電池は、偏平角形の横断面形状を有する有底角筒状のアルミニウム製電池ケース1内に、角形渦巻状電極群2が収納され、その電池ケース1の開口部が封口板3によって封口されている。
【0016】
上記封口板3を支持する枠体4は、電池ケース1の開口部近傍箇所に嵌着され、封口板3は枠体4上に載置して支持された状態で電池ケース1の開口周縁部に溶接されて、電池ケース1の開口部を封止している。封口板3の中央部の凹所7には上部絶縁ガスケット8が嵌め入れられており、ニッケルめっきが施された鉄製のリベットからなる負極ターミナル9は、上部絶縁ガスケット8を介在させて封口板3に対し電気絶縁された状態で上部絶縁ガスケット8および封口板3の各々の挿通孔に挿通されている。
【0017】
上記負極ターミナル9における上部絶縁ガスケット8および封口板3を挿通した下部は、さらに、下部絶縁ガスケット10および負極端子板11の各々の取付孔にそれぞれ挿通されたのち、その下端部がかしめ加工されている。これにより、負極端子板11は、下部絶縁ガスケット10を介して封口板3に対し電気絶縁され、且つ負極ターミナル9のかしめ加工部を介して負極ターミナル9に電気接続状態で取り付けられている。
【0018】
角形渦巻状電極群2から導出された負極集電用リード12および正極集電用リード13は、それぞれ枠体4の挿通孔4a,4bに挿通されて、正極集電用リード13の先端部は封口板3の内面に、負極集電用リード12の先端部は負極端子板11にそれぞれ溶接されている。
【0019】
上記非水電解液電池の組み立てに際しては、、負極ターミナル9によって上部絶縁ガスケット8、下部絶縁ガスケット10および負極端子板11をそれぞれ取り付けたのちに、封口板3を電池ケース1の開口部に嵌入して溶接する。そののち、電池ケース1内には、封口板3の注液孔3aを通じて有機電解液(図示せず)が注入される。注液孔3aは、電解液の注入後に封栓14で閉塞される。
【0020】
また、封口板3には、注液孔3aとは反対側の箇所に安全弁用孔部3bが形成されている。この安全弁用孔部3bは、封口板3の下面にクラッド工法で取り付けられたアルミニウム薄膜17で閉塞されている。このアルミニウム薄膜17における安全弁用孔部3bを塞いでいる部分は、電池内圧の上昇時に破断してガスを外部に放出するための安全弁17aを構成している。電池ケース1の底面には正極ターミナル18が接合されている。
【0021】
図2(a)は、上記角形渦巻状電極群2の構成要素である正,負極板19,20および一対のセパレータ21A,21Bの巻回前の相対位置関係を模式的に示した平面図である。正極板19は帯状の正極芯材22の両面に正極活物質層23が形成されており、負極板20は帯状の負極芯材24の両面に負極活物質層27が形成されている。両極板19,20は、正極板19が矢印で示す巻回方向の内方側に位置する配置で各々の間にセパレータ21A,21Bを介在して積層した状態で、一対の巻芯28A,28Bが両セパレータ21A,21Bの各々の各始端部を両側から挟み込んで上記巻回方向に回転することにより渦巻状に巻回されて、図2(b)に示すような偏平角形の渦巻状電極群2とされる。
【0022】
この電極群2では、負極板20の巻き始め端の1周分相当部分の内方面側には、負極芯材24が露出した活物質層未形成部29が設けられ、正極板19の巻き終わり側の1周相当部分の外方面側には正極芯材22が露出した活物質層未形成部30が設けられている。また、この電極群2では、負極板20の巻き始め端の近傍箇所より幅方向に突出した負極芯材24に負極集電用リード12が取り付けられ、正極板19の巻き終わり端より突出した正極芯材22に正極集電用リード13が取り付けられている。なお、図2(a)に示すR1〜R17は、両巻芯28A,28Bの各外方端側のアール部分での折り返し部分の中心位置とその巻順を示している。
【0023】
図2(b)は、各構成要素を図2(a)の配置で渦巻状に巻回して得られた角形渦巻状電極群2の巻き始め部分および巻き終わり部分のみの構成を容易に理解できるように模式的に図示したものである。この図から明らかなように、上述の活物質層未形成部29,30のセパレータ21A,21Bを介して対向する側には化学反応するための反対極性の活物質層27,23が存在しない。したがって、上記渦巻状電極群2は、充放電に何ら関与しない不要な活物質層23,27を削減して、その削減した分だけ両極板19,20の長さを長く、あるいは活物質層23,27を厚くして容量アップを図ることができ、電池としたときに重量エネルギ密度および体積エネルギ密度が共に向上する。
【0024】
そして、本発明の非水電解液電池の特長は、正,負極集電用リード12,13を保護するための後述の絶縁保護テープ31,33の使用量を、渦巻状電極群2の上述した構成に対応して可及的に低減した構成にあり、これにより、電池としたときの体積エネルギ密度の向上を図ることができる。この点について、以下に詳述する。
【0025】
図3(a)および図4(a)は、上記渦巻状電極群2の正,負極板19,20をそれぞれ示す平面図であって、図2(a)と同一の図示になっている。図3(b)および図4(b)は、それぞれ正,負極板19,20の一部破断した側面図である。先ず、図3の正極板19において、正極集電用リード13には、正極板19に接合するのに先立って、図3(c)の斜視図に示すように、短冊状とした絶縁保護テープ31が所定部位にほぼ1周分巻き付ける配置で予め貼着される。この絶縁保護テープ31の取付箇所は、同図(b)に示すように、正極集電用リード13における正極芯材22の長手方向の一方の側辺を挟んだ両側の近傍部分である。
【0026】
絶縁保護テープ31は、その厚みt1が既存のテープのほぼ半分に設定されている。すなわち、既存のテープとしては50μmの厚みのものが一般に用いられているので、上記絶縁保護テープ31の厚みt1は25μmに設定されている。さらに、絶縁保護テープ31は、蛍光塗料(図示せず)を有していることを特長とてしいる。この蛍光塗料を有するとは、蛍光塗料を予め含有させたテープ形成材料で絶縁保護テープ31を形成する場合と、製作完了後の絶縁保護テープ31の表面に蛍光塗料を付着する場合との両方を含む。また、この実施の形態では、正極集電用リード13として幅w1が3mmのものを用い、この正極集電用リード13に巻き付けて貼着する絶縁保護テープ31は、5mmの幅w2を有する短冊状に形成されている。
【0027】
上述のようにして短冊状の絶縁保護テープ31をほぼ1周分巻き付けて貼着された正極集電用リード13は、正極板19に対し、絶縁保護テープ31の正極板19の側辺からの突出長D1が2mmとなる相対配置に位置決めして、露出状態の正極芯材22に超音波溶接により接合される。このときの正極集電用リード13の正極芯材22への溶接部32は、絶縁保護テープ31の取付箇所から離間した部分に設定される。
【0028】
上記正極板19は、絶縁保護テープ31の厚みが既存の絶縁保護テープに対し半分の25μmの厚みに設定されているのに加えて、正極集電用リード13における正極芯材22の側辺との対向部位の周辺箇所である一部分のみが絶縁保護テープ31で覆われているだけである。したがって、この正極板19に用いられる絶縁保護テープ31は、従来の負極集電用リードにおける絶縁保護テープに比較して、使用量が大幅に減少し、その絶縁保護テープ31の使用量が減少した分だけ正極活物質層23の量を増やすことができるから、この正極板19を用いれば、体積エネルギ密度の向上を図った非水電解液電池を構成することができる。
【0029】
上述のように正極集電用リード13における正極芯材22の長手方向の一方の側辺を挟んだ両側の近傍部分のみを絶縁保護テープ31で覆うだけでよいのは、以下のような理由による。すなわち、この実施の形態の正極板19では、図2(a),(b)に示したように、正極集電用リード13が渦巻状電極群2の最外周に位置していて、この正極集電用リード13の外周側の面を、これと同極を構成するアルミニウム製電池ケース1の内面に接触させて接続させることができるだけでなく、正極集電用リード13の内周側には、正極板19の活物質層未形成部30が隣接して配置され、反対極の負極板20が対向しないことから、正極集電用リード13は、これの正極芯材22との接合部分の全体を覆う必要がないからである。換言すると、正極集電用リード13のばりは被覆して保護する必要がない。
【0030】
しかし、正極集電用リード13は、先端を封口板3に超音波溶接したのちに、正極板19から突出した部分を折り畳み状態に折り曲げて電池ケース1内に収容することにより、封口板3を電池ケース1の開口部に嵌合して組み立てられる。また、正極集電用リード13は、アルミニウム製であって、上述のような折り曲げに対して非常に切れが発生し易く、特に、その正極集電用リード13の正極芯材22の側辺との対向箇所は、折り曲げ時の根元となることから、ストレスによって切れが発生し易い。そこで、上記実施の形態では、正極集電用リード13における正極芯材22の長手方向の一方の側辺を挟んだ両側の近傍部分のみに短冊形状の絶縁保護テープ31を巻き付けて機械的強度を補強している。
【0031】
これに対し、従来の非水電解液電池では鉄製の電池ケースが負極となる構成になっているから、正極板の巻き終わり端部分に溶接されて負極の電池ケースの内面に対向する正極集電用リードは、図6で説明したように、正極芯材の側辺より外方に寄った部分までを含む正極芯材との接合面のほぼ全体近くを被覆して電池ケースとの電気絶縁を施すとともに、正極芯材22における正極集電用リード13とは反対側の部分にも、正極集電用リードのばりによるセパレータの損傷を防止するために、別の絶縁保護テープで覆う必要があ。そのため、従来の非水電解液電池では、正極板での絶縁保護テープの使用量が非常に多くなっている。このように正極板19に使用する絶縁保護テープの使用量が多いのは、上述したように正極集電用リードに発生するばりが特にセパレータを破損して正,負極板の接触による内部短絡が発生するのを防止するためである。
【0032】
一方、上記実施の形態の負極板20は、巻き始め端部分の負極芯材24に負極集電用リード12が抵抗溶接により接合されており、その負極集電用リード12における負極芯材24との接合面に対し反対側の面が絶縁保護テープ33で覆われている。この絶縁保護テープ33は、負極集電用リード12における負極芯材24との接合面のうちの負極芯材24の側辺との対向部分を除く全体を被覆している。
【0033】
また、絶縁保護テープ33は、正極集電用リード13に貼着した絶縁保護テープ31と同様に、その厚みt2が既存のテープの厚みである50μmの半分の25μm程度に設定されているとともに、蛍光塗料(図示せず)を有している。この蛍光塗料を有するとは、蛍光塗料を予め含有させたテープ形成材料で絶縁保護テープ33を形成する場合と、製作完了後の絶縁保護テープ33の表面に蛍光塗料を付着する場合との両方を含む。また、この実施の形態では、負極集電用リード12として幅w3が3mmのものを用い、絶縁保護テープ33として長さLが25mmで幅w4が6mmの短冊状のものを用いている。
【0034】
上記負極板20では、絶縁保護テープ33の厚みが既存の絶縁保護テープに対し半分の25μmの厚みに設定されているのに加えて、負極集電用リード12における負極芯材24との接合部分と反対側の面のみを絶縁保護テープ33で覆うだけであり、しかも、負極集電用リード12における負極芯材24の側辺との対向部位の周辺箇所を絶縁保護テープ33で覆っていない。そのため、この負極板20に用いられる絶縁保護テープ33は、従来の負極板において負極集電用リードの両面側を絶縁保護テープで覆う構成に比較して、使用量が相当に減少しており、その絶縁保護テープ33の使用量が減少した分だけ負極活物質層27の量を増やすことができるから、この負極板20を用いれば、体積エネルギ密度の向上を図った非水電解液電池を構成することができる。
【0035】
なお、上述したように、絶縁保護テープ33は、負極集電用リード12における負極芯材24との接合面の反対面であって、負極芯材24の側辺との対向部位の周辺箇所を除く箇所のみを覆っているが、このような構成とできたのは、つぎのような理由による。すなわち、図2(a),(b)に示したように、負極集電用リード12の隣接する両側には、負極板20の活物質層未形成部29が存在して、反対極である正極が存在しないからである。
【0036】
図5は、本発明の非水電解液電池の製造方法を具現化した絶縁保護テープ31,33の有無または位置ずれを判別するための検査工程を示す側面図であり、同図には、正極板19における絶縁保護テープ31の検査工程を例示してある。正極板19は、正極集電用リード13の上述した所定箇所に絶縁保護テープ31を巻回して貼着し、その正極集電用リード13を正極板19に超音波溶接によって接合する工程を経て製作される。そののち、正極板19は、検査工程において、正極集電用リード13の所定箇所に絶縁保護テープ31が貼着されているか否か、あるいは絶縁保護テープ31が位置ずれした配置で貼着されていないか否かを蛍光感知センサ34によって判別される。
【0037】
すなわち、蛍光感知センサ34は、製作完了して移送されてくる正極板19の絶縁保護テープ31が貼着されているべき箇所に向け紫外線を照射して、絶縁保護テープ31自体に有している蛍光塗料が紫外線に反応して着色したか否かを識別することにより、絶縁保護テープ31の有無を判別する。また、蛍光感知センサ34は、絶縁保護テープ31から反射される複数の波長が混じり合った白色光の受光量を予め設定された基準値と比較することによって絶縁保護テープ31が正規の位置に貼着されているか否かの判別を行う。したがって、この検査工程では、厚みが25μmと極めて薄いことから着色が透けて見える絶縁保護テープ31であっても、その絶縁保護テープ31の有無を正確に判別することができる。しかも、この絶縁保護テープ31は、電池としたときに何ら悪影響を及ぼさない蛍光塗料を有しているだけであるから、従来の絶縁保護テープに着色を施していた着色顔料による電池への悪影響の問題を解消することができる。なお、負極板20における絶縁保護テープ33の検査工程も上述した正極板19の絶縁保護テープ31の場合と同様に行われるのは言うまでもない。
【0038】
【発明の効果】
以上のように本発明の非水電解液電池によれば、集電用リードを覆う絶縁保護テープが蛍光塗料を有している構成としたので、極板の製作完了後に実施される絶縁保護テープの有無の検査において、蛍光塗料を検出することによって絶縁保護テープの有無を判別することが可能となる。したがって、絶縁保護テープは、着色の検出によって有無が判別される従来の絶縁保護テープとは異なり、厚みを可及的に薄くすることが可能となり、その絶縁保護テープの厚みを薄くした分だけ極板の長さまたは活物質層の厚みを大きく設定することができるから、体積エネルギ密度の向上を図ることができる。しかも、絶縁保護テープは、電池としたときに何ら悪影響を及ぼさない蛍光塗料を有しているだけであるから、従来の絶縁保護テープに着色を施していた着色顔料による電池への悪影響の問題を解消することができる。
【0039】
また、本発明の非水電解液電池の製造方法によれば、製作完了して移送されてくる極板の絶縁保護テープの有無を、絶縁保護テープ自体が有している蛍光塗料を蛍光感知センサで検出することによって判別するので、厚みが極めて薄いことから着色が透けて見える絶縁保護テープであっても、その絶縁保護テープの有無を正確に判別することができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態に係る非水電解液電池を示す縦断面図。
【図2】(a)は同上の非水電解液電池の渦巻状電極群における各構成要素の巻回前の相対位置関係を模式的に示した平面図、(b)は各構成要素を巻回して構成した渦巻状電極群を模式的に示した概略平面図。
【図3】(a)は同上の渦巻状電極群の正極板を示す平面図、(b)はその一部破断した側面図、(c)は集電用リードの正極板への取付前の状態の斜視図。
【図4】(a)は同上の渦巻状電極群の負極板を示す平面図、(b)はその一部破断した側面図。
【図5】同上の非水電解液電池の製造方法を具現化した絶縁保護テープの検査工程を示す側面図。
【図6】(a)は従来の非水電解液電池における極板の絶縁保護テープの取付部分の一部破断した側面図、(b)は(a)のA−A線断面図。
【符号の説明】
1 電池ケース
2 渦巻状電極群
3 封口板
12 負極集電用リード
13 正極集電用リード
19 正極板
20 負極板
21A,21B セパレータ
22 正極芯材
24 負極芯材
29 負極側活物質層未形成部
30 正極側活物質層未形成部
31,33 絶縁保護テープ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-aqueous electrolyte (organic solvent electrolyte) battery typified by a lithium ion secondary battery, which is a sealed battery having a small capacity but a large capacity, and a method for producing the same.
[0002]
[Prior art]
In recent years, portable and cordless electronic devices such as AV devices, personal computers, and portable communication devices have been rapidly promoted. Conventionally, aqueous solution batteries such as nickel cadmium batteries and nickel metal hydride batteries have been mainly used as power sources for driving these electric appliances. However, in recent years, in particular, rapid charging is possible and energy density is high and high. Non-aqueous electrolyte secondary batteries represented by safety lithium ion secondary batteries are becoming mainstream. In this non-aqueous electrolyte secondary battery, it is promoted to be a sealed type excellent in high energy density and load characteristics, and to be a square shape suitable for thinning of the device and having high space utilization efficiency.
[0003]
In recent years, there is a high demand for non-aqueous electrolyte secondary batteries to further improve battery capacity per unit volume. Therefore, conventionally, for the purpose of improving the battery capacity per unit volume, the core material of the positive and negative electrode plates 50 (generally, the positive electrode plate is made of aluminum and the negative electrode plate is made of copper) 51 shown in FIG. Insulation protection that protects the lead 52 by making it as thin as possible, and by covering the positive and negative current collecting leads 52 attached to the exposed portion of the core member 51 by welding. It has been studied to reduce the thickness of the tape 53 as well.
[0004]
The insulating protective tape 53 is formed by covering the flash generated when the current collecting lead 52 is processed or the current generated when the current collecting lead 52 is welded to the core material 51, thereby causing the flash to break through the separator. Prevents the occurrence of an internal short circuit in which the current collecting lead 52 contacts the opposite electrode plate, prevents an internal short circuit due to an external impact or overdischarge, and further, the current collecting lead 52 machine. It plays a role such as reinforcement of mechanical strength.
[0005]
Currently, a protective tape 53 having a thickness of 50 μm is generally used. Further, the insulating protective tape 53 is for collecting current in the core material 51 in addition to the one covering the current collecting lead 52 as shown in FIG. The lead 52 is also attached to the surface opposite to the joint surface. This is because the current collecting lead 52 is burred on both sides thereof, so that the burr that protrudes inward in the current collecting lead 52 and breaks through the core member 51 is covered.
[0006]
[Problems to be solved by the invention]
By the way, in the manufacturing process of the non-aqueous electrolyte secondary battery, whether or not the insulating protective tape 53 is adhered to a predetermined position of the electrode plate 50 is detected in a non-contact manner by a reflective photoelectric sensor. Therefore, the insulating protective tape 53 is colored for the purpose of being accurately detected by the photoelectric sensor. However, for the purpose of improving the battery capacity per unit volume of the insulating protective tape 53, for example, when the current thickness of 50 μm is reduced to about 25 μm, which is half, the coloring of the insulating protective tape 53 is transparent. There arises a problem that it cannot be detected by the photoelectric sensor. Further, the coloring pigment that colors the protective tape 53 has a disadvantage that it has an adverse effect on the battery.
[0007]
Therefore, the present invention has been made in view of the above-described conventional problems, and can be reliably detected by a sensor while the insulating protective tape for protecting the current collecting lead of the electrode plate is made as thin as possible. It is an object of the present invention to provide a water electrolyte battery and a method capable of suitably producing this non-aqueous electrolyte battery.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the nonaqueous electrolyte battery of the present invention includes a bottomed cylindrical battery case in which a spiral electrode group is accommodated, an organic electrolyte is injected, and an opening of the battery case is provided. In the structure provided with a sealing plate, a current collecting lead is attached to each of the positive electrode plate and the negative electrode plate of the spiral electrode group, and the positive electrode current collecting lead and / or the negative electrode current collector are attached. It is characterized in that at least a part of the joining portion of the electric lead to the electrode plate and the vicinity thereof is covered with an insulating protective tape having a fluorescent paint.
[0009]
In this non-aqueous electrolyte battery, since the insulating protective tape covering the current collecting lead has a fluorescent paint, the fluorescent paint is detected in the inspection for the presence of the insulating protective tape performed after the electrode plate is manufactured. Thus, it is possible to determine the presence or absence of the insulating protective tape. Therefore, unlike conventional insulation protection tapes, which are identified by the detection of coloring, the insulation protection tape can be made as thin as possible, and the thickness of the insulation protection tape can be reduced as much as possible. Since the length of the plate or the thickness of the active material layer can be set large, the volume energy density can be improved. In addition, since the insulating protective tape only has a fluorescent paint that does not have any adverse effect when used as a battery, there is a problem of adverse effects on the battery due to the colored pigment that has been colored on the conventional insulating protective tape. Can be resolved.
[0010]
In the above invention, the positive electrode current collecting lead is attached in a state where the insulating protective tape is wound only on the vicinity of both sides sandwiching one side in the longitudinal direction of the positive electrode core material, and the negative electrode current collecting lead is It is preferable to have a configuration in which an insulating protective tape is attached so as to cover the joint with the negative electrode core material.
[0011]
According to this configuration, the positive electrode current collecting lead is a portion that is the base when bent in the battery assembly process and is easily cut by stress, that is, one side in the longitudinal direction of the positive electrode core material. Only the vicinity of both sides of the battery is covered with insulating protective tape to reinforce the mechanical strength, while the negative electrode current collector lead is covered with an insulating protective tape that does not come off when the battery is dropped. As a result, the amount of insulation protection tape used on the positive and negative plates is significantly reduced compared to the conventional plate, and the length of the plate or The thickness of the active material layer can be increased, and the volume energy density can be remarkably improved.
[0012]
In the said invention, an insulation masking tape can be set to the thickness of 25 micrometers or less. In other words, in the inspection process for the presence or absence of the insulation protective tape after the production of the electrode plate, it is possible to determine the presence or absence of the insulation protective tape by detecting the fluorescent paint possessed by the insulation protective tape. Even if the tape is set to a thin thickness of 25 μm or less, the insulating protective tape can be accurately detected in the inspection process.
[0013]
In the method for producing a nonaqueous electrolytic battery of the present invention, a positive electrode current collecting lead and a negative electrode current collecting lead are bonded to a positive electrode plate and a negative electrode plate, respectively, by welding, and before or after bonding to the positive and negative electrode plates. An insulating protective tape having a fluorescent paint is attached to a predetermined portion of the positive electrode current collecting lead and / or the negative electrode current collecting lead in a covered state, and the presence or absence of the insulating protective tape on the positive electrode plate and / or the negative electrode plate Alternatively, the positional displacement is determined based on the detection of the fluorescent paint on the insulating protective tape by the fluorescent sensor, and the positive and negative plates are wound in a spiral shape with a separator interposed therebetween. Forming a spiral electrode group, containing the spiral electrode group in a bottomed cylindrical battery case, and injecting an organic electrolyte, and sealing the opening of the battery case with a sealing plate as a feature That.
[0014]
In this method of manufacturing a non-aqueous electrolyte battery, the presence or absence or displacement of the insulating protective tape on the electrode plate that is transferred after completion of manufacture is detected by a fluorescent sensor with the fluorescent paint possessed by the insulating protective tape itself. Therefore, even if the insulating protective tape has a very small thickness, the presence or absence of the insulating protective tape can be accurately determined.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a longitudinal sectional view showing a nonaqueous electrolyte battery according to an embodiment of the present invention. In the figure, a prismatic lithium secondary battery, which is a typical non-aqueous electrolyte battery, is illustrated. In this non-aqueous electrolyte battery, a rectangular spiral electrode group 2 is housed in a bottomed rectangular tube-shaped aluminum battery case 1 having a flat rectangular cross section, and the opening of the battery case 1 is a sealing plate. 3 is sealed.
[0016]
The frame body 4 that supports the sealing plate 3 is fitted in the vicinity of the opening portion of the battery case 1, and the opening peripheral edge portion of the battery case 1 in a state where the sealing plate 3 is placed and supported on the frame body 4. The opening of the battery case 1 is sealed. An upper insulating gasket 8 is fitted into the recess 7 in the center of the sealing plate 3, and the negative electrode terminal 9 made of nickel-plated iron rivets is interposed between the sealing plate 3 and the upper insulating gasket 8. The upper insulating gasket 8 and the sealing plate 3 are inserted through the insertion holes in an electrically insulated state.
[0017]
The lower portion of the negative terminal 9 through which the upper insulating gasket 8 and the sealing plate 3 are inserted is further inserted into the mounting holes of the lower insulating gasket 10 and the negative terminal plate 11, respectively, and then the lower end portion thereof is caulked. Yes. As a result, the negative electrode terminal plate 11 is electrically insulated from the sealing plate 3 via the lower insulating gasket 10 and is attached to the negative electrode terminal 9 in an electrically connected state via the crimped portion of the negative electrode terminal 9.
[0018]
The negative electrode current collecting lead 12 and the positive electrode current collecting lead 13 led out from the rectangular spiral electrode group 2 are inserted into the insertion holes 4a and 4b of the frame body 4, respectively, and the tip of the positive electrode current collecting lead 13 is The tip of the negative electrode current collecting lead 12 is welded to the negative electrode terminal plate 11 on the inner surface of the sealing plate 3.
[0019]
When assembling the non-aqueous electrolyte battery, the upper insulating gasket 8, the lower insulating gasket 10 and the negative electrode terminal plate 11 are respectively attached by the negative electrode terminal 9, and then the sealing plate 3 is inserted into the opening of the battery case 1. And weld. Thereafter, an organic electrolyte (not shown) is injected into the battery case 1 through the liquid injection hole 3 a of the sealing plate 3. The liquid injection hole 3a is closed with a sealing plug 14 after the electrolyte solution is injected.
[0020]
The sealing plate 3 is formed with a safety valve hole 3b at a location opposite to the liquid injection hole 3a. The safety valve hole 3b is closed with an aluminum thin film 17 attached to the lower surface of the sealing plate 3 by a cladding method. The portion of the aluminum thin film 17 blocking the safety valve hole 3b constitutes a safety valve 17a for breaking the gas when the battery internal pressure rises and releasing the gas to the outside. A positive electrode terminal 18 is joined to the bottom surface of the battery case 1.
[0021]
FIG. 2A is a plan view schematically showing the relative positional relationship before winding of the positive and negative electrode plates 19 and 20 and the pair of separators 21A and 21B, which are constituent elements of the rectangular spiral electrode group 2. FIG. is there. The positive electrode plate 19 has a positive electrode active material layer 23 formed on both surfaces of a strip-shaped positive electrode core material 22, and the negative electrode plate 20 has a negative electrode active material layer 27 formed on both surfaces of a strip-shaped negative electrode core material 24. The bipolar plates 19 and 20 are arranged in such a manner that the positive electrode plate 19 is positioned on the inner side in the winding direction indicated by an arrow, and is laminated with separators 21A and 21B interposed therebetween. Is wound in a spiral shape by sandwiching the respective starting end portions of both separators 21A and 21B from both sides and rotating in the winding direction, and a flat rectangular spiral electrode group as shown in FIG. 2 (b). 2.
[0022]
In this electrode group 2, an active material layer non-formed portion 29 where the negative electrode core member 24 is exposed is provided on the inner surface side of a portion corresponding to one turn of the winding start end of the negative electrode plate 20. An active material layer non-formed portion 30 where the positive electrode core material 22 is exposed is provided on the outer surface side of the portion corresponding to one circumference on the side. Further, in this electrode group 2, the negative electrode current collecting lead 12 is attached to the negative electrode core member 24 protruding in the width direction from the vicinity of the winding start end of the negative electrode plate 20, and the positive electrode protruding from the winding end end of the positive electrode plate 19. A positive electrode current collecting lead 13 is attached to the core member 22. In addition, R1-R17 shown to Fig.2 (a) has shown the center position and the winding order of the folding | turning part in the round part of each outer end side of both winding core 28A, 28B.
[0023]
FIG. 2 (b) can easily understand the configuration of only the winding start portion and winding end portion of the rectangular spiral electrode group 2 obtained by winding each component in a spiral shape in the arrangement of FIG. 2 (a). Thus, it is schematically illustrated. As is clear from this figure, there are no active material layers 27 and 23 of opposite polarity for chemical reaction on the side of the above-mentioned active material layer unformed portions 29 and 30 facing each other through the separators 21A and 21B. Therefore, in the spiral electrode group 2, unnecessary active material layers 23 and 27 that are not involved in charge / discharge are reduced, and the length of the bipolar plates 19 and 20 is increased by the reduced amount, or the active material layer 23 is removed. , 27 can be made thicker to increase the capacity, and both the weight energy density and the volume energy density are improved when the battery is used.
[0024]
The feature of the non-aqueous electrolyte battery of the present invention is that the amount of use of insulating protective tapes 31 and 33 to protect the positive and negative current collecting leads 12 and 13 is the same as that of the spiral electrode group 2 described above. The configuration is reduced as much as possible in accordance with the configuration, and as a result, the volume energy density of the battery can be improved. This point will be described in detail below.
[0025]
3A and 4A are plan views showing the positive and negative plates 19 and 20 of the spiral electrode group 2, respectively, and are the same as FIG. 2A. FIG. 3B and FIG. 4B are side views in which the positive and negative electrode plates 19 and 20 are partially broken, respectively. First, in the positive electrode plate 19 of FIG. 3, prior to joining the positive electrode current collecting lead 13 to the positive electrode plate 19, as shown in the perspective view of FIG. 31 is attached in advance so as to be wound around the predetermined portion for approximately one turn. As shown in FIG. 2B, the insulating protective tape 31 is attached in the vicinity of both sides of one side in the longitudinal direction of the positive electrode core member 22 in the positive electrode current collecting lead 13.
[0026]
The thickness t1 of the insulating protective tape 31 is set to almost half that of the existing tape. That is, as the existing tape having a thickness of 50 μm is generally used, the thickness t1 of the insulating protective tape 31 is set to 25 μm. Furthermore, the insulating protective tape 31 is characterized by having a fluorescent paint (not shown). Having this fluorescent paint includes both the case where the insulating protective tape 31 is formed with a tape forming material containing the fluorescent paint in advance and the case where the fluorescent paint is attached to the surface of the insulating protective tape 31 after the production is completed. Including. Further, in this embodiment, the positive electrode current collecting lead 13 having a width w1 of 3 mm is used, and the insulating protective tape 31 wound around and adhered to the positive electrode current collecting lead 13 is a strip having a width w2 of 5 mm. It is formed in a shape.
[0027]
As described above, the positive electrode current collecting lead 13 attached by winding the strip-shaped insulating protective tape 31 by approximately one turn is attached to the positive electrode plate 19 from the side of the positive electrode plate 19 of the insulating protective tape 31. The protrusion length D1 is positioned in a relative arrangement of 2 mm, and is joined to the exposed positive electrode core member 22 by ultrasonic welding. At this time, the welded portion 32 of the positive electrode current collecting lead 13 to the positive electrode core material 22 is set at a portion separated from the attachment location of the insulating protective tape 31.
[0028]
The positive electrode plate 19 has a thickness of 25 μm, which is half that of the existing insulating protective tape 31, and the side of the positive electrode core member 22 in the positive current collecting lead 13. Only a part of the periphery of the opposite part is covered with the insulating protective tape 31. Therefore, the amount of the insulating protective tape 31 used for the positive electrode plate 19 is greatly reduced compared to the conventional insulating protective tape in the negative electrode current collecting lead, and the amount of the insulating protective tape 31 is reduced. Since the amount of the positive electrode active material layer 23 can be increased by this amount, if this positive electrode plate 19 is used, a non-aqueous electrolyte battery with an improved volume energy density can be configured.
[0029]
As described above, it is only necessary to cover the vicinity of both sides of one side of the positive electrode core member 22 in the longitudinal direction of the positive electrode current collecting lead 13 with the insulating protective tape 31 for the following reason. . That is, in the positive electrode plate 19 of this embodiment, as shown in FIGS. 2A and 2B, the positive electrode current collecting lead 13 is located on the outermost periphery of the spiral electrode group 2, and this positive electrode Not only can the outer peripheral surface of the current collecting lead 13 be brought into contact with and connected to the inner surface of the aluminum battery case 1 that constitutes the same polarity as the current collecting lead 13, Since the active material layer non-formed portion 30 of the positive electrode plate 19 is disposed adjacent to the negative electrode plate 20 of the opposite electrode, the positive electrode current collecting lead 13 is connected to the positive electrode core member 22. It is because it is not necessary to cover the whole. In other words, the flash of the positive electrode current collecting lead 13 need not be covered and protected.
[0030]
However, the positive electrode current collecting lead 13 is ultrasonically welded to the sealing plate 3, and then the portion protruding from the positive electrode plate 19 is folded into a folded state and accommodated in the battery case 1. The battery case 1 is assembled by being fitted into the opening. Further, the positive electrode current collecting lead 13 is made of aluminum and is very likely to be cut with respect to the bending as described above. In particular, the positive electrode current collecting lead 13 includes Since the opposite part becomes the base at the time of bending, the cut is likely to occur due to stress. Therefore, in the above embodiment, the strip-shaped insulating protective tape 31 is wound only on the vicinity of both sides of the positive electrode current collecting lead 13 across one side in the longitudinal direction of the positive electrode core member 22 to increase the mechanical strength. It is reinforced.
[0031]
In contrast, in a conventional non-aqueous electrolyte battery, an iron battery case serves as a negative electrode, and therefore, a positive current collector that is welded to the end of winding of the positive electrode plate and faces the inner surface of the negative battery case. As described with reference to FIG. 6, the lead for the battery covers almost the entire joint surface with the positive electrode core material including the portion extending outward from the side of the positive electrode core material to provide electrical insulation from the battery case. In addition, it is necessary to cover the portion of the positive electrode core member 22 opposite to the positive electrode current collecting lead 13 with another insulating protective tape in order to prevent the separator from being damaged by the flash of the positive electrode current collecting lead. . Therefore, in the conventional non-aqueous electrolyte battery, the amount of insulating protective tape used on the positive electrode plate is very large. As described above, the amount of the insulating protective tape used for the positive electrode plate 19 is large because the flash generated on the positive electrode current collecting lead, as described above, damages the separator and causes an internal short circuit due to contact between the positive and negative electrode plates. This is to prevent the occurrence.
[0032]
On the other hand, in the negative electrode plate 20 of the above embodiment, the negative electrode current collecting lead 12 is joined to the negative electrode core material 24 at the winding start end portion by resistance welding, and the negative electrode core material 24 in the negative electrode current collecting lead 12 and The surface opposite to the bonding surface is covered with an insulating protective tape 33. The insulating protective tape 33 covers the entire surface excluding the portion facing the side of the negative electrode core member 24 in the joint surface of the negative electrode current collecting lead 12 with the negative electrode core member 24.
[0033]
In addition, the insulating protective tape 33 is set to about 25 μm, which is half the thickness of the existing tape, 50 μm, similarly to the insulating protective tape 31 adhered to the positive electrode current collecting lead 13. It has a fluorescent paint (not shown). Having this fluorescent paint includes both the case where the insulating protective tape 33 is formed with a tape forming material containing the fluorescent paint in advance and the case where the fluorescent paint is attached to the surface of the insulating protective tape 33 after the production is completed. Including. In this embodiment, the negative electrode current collecting lead 12 has a width w3 of 3 mm, and the insulating protective tape 33 has a strip shape having a length L of 25 mm and a width w4 of 6 mm.
[0034]
In the negative electrode plate 20, the insulating protective tape 33 is set to a thickness of 25 μm, which is half that of the existing insulating protective tape, and the negative electrode current collecting lead 12 is joined to the negative electrode core member 24. Only the opposite surface is covered with the insulating protective tape 33, and the peripheral portion of the negative electrode current collecting lead 12 facing the side of the negative electrode core member 24 is not covered with the insulating protective tape 33. Therefore, the insulating protective tape 33 used for the negative electrode plate 20 has a considerably reduced usage compared to a configuration in which both surfaces of the negative electrode current collecting lead are covered with the insulating protective tape in the conventional negative electrode plate, Since the amount of the negative electrode active material layer 27 can be increased by the amount of use of the insulating protective tape 33, the use of this negative electrode plate 20 constitutes a non-aqueous electrolyte battery with an improved volume energy density. can do.
[0035]
In addition, as described above, the insulating protective tape 33 is a surface opposite to the joint surface with the negative electrode core member 24 in the negative electrode current collecting lead 12, and has a peripheral portion opposite to the side of the negative electrode core member 24. Although only the part except for is covered, the reason for having such a configuration is as follows. That is, as shown in FIGS. 2A and 2B, the active material layer non-formed portions 29 of the negative electrode plate 20 are present on opposite sides of the negative electrode current collecting lead 12 and are opposite to each other. This is because there is no positive electrode.
[0036]
FIG. 5 is a side view showing an inspection process for discriminating the presence or absence or displacement of the insulating protective tapes 31 and 33 embodying the method for manufacturing a nonaqueous electrolyte battery of the present invention. The inspection process of the insulating protective tape 31 on the plate 19 is illustrated. The positive electrode plate 19 is subjected to a process in which the insulating protective tape 31 is wound around and adhered to the predetermined position of the positive electrode current collecting lead 13 and the positive electrode current collecting lead 13 is joined to the positive electrode plate 19 by ultrasonic welding. Produced. After that, the positive electrode plate 19 is attached in the inspection process whether or not the insulating protective tape 31 is attached to a predetermined portion of the positive electrode current collecting lead 13 or in an arrangement in which the insulating protective tape 31 is displaced. Whether or not there is is determined by the fluorescence sensor 34.
[0037]
That is, the fluorescence detection sensor 34 is provided on the insulating protective tape 31 itself by irradiating ultraviolet rays toward the portion where the insulating protective tape 31 of the positive electrode plate 19 to which the positive electrode plate 19 is manufactured and transferred is attached. The presence or absence of the insulating protective tape 31 is determined by identifying whether or not the fluorescent paint is colored in response to ultraviolet rays. In addition, the fluorescence detection sensor 34 compares the received light amount of white light mixed with a plurality of wavelengths reflected from the insulating protective tape 31 with a preset reference value, so that the insulating protective tape 31 is attached to a proper position. It is determined whether or not it is worn. Therefore, in this inspection process, even if the insulating protective tape 31 is very thin and has a thickness of 25 μm, the presence or absence of the insulating protective tape 31 can be accurately determined even if the coloring is transparent. In addition, since this insulating protective tape 31 has only a fluorescent paint that does not adversely affect the battery, there is an adverse effect on the battery due to the colored pigment that has colored the conventional insulating protective tape. The problem can be solved. In addition, it cannot be overemphasized that the test | inspection process of the insulation protection tape 33 in the negative electrode plate 20 is performed similarly to the case of the insulation protection tape 31 of the positive electrode plate 19 mentioned above.
[0038]
【The invention's effect】
As described above, according to the non-aqueous electrolyte battery of the present invention, since the insulating protective tape covering the current collecting leads has the fluorescent paint, the insulating protective tape is implemented after the electrode plate is completed. In the presence / absence inspection, it is possible to determine the presence / absence of the insulating protective tape by detecting the fluorescent paint. Therefore, unlike conventional insulation protection tapes, which are identified by the detection of coloring, the insulation protection tape can be made as thin as possible, and the thickness of the insulation protection tape can be reduced as much as possible. Since the length of the plate or the thickness of the active material layer can be set large, the volume energy density can be improved. In addition, since the insulating protective tape only has a fluorescent paint that does not have any adverse effect when used as a battery, there is a problem of adverse effects on the battery due to the colored pigment that has been colored on the conventional insulating protective tape. Can be resolved.
[0039]
In addition, according to the method for manufacturing a non-aqueous electrolyte battery of the present invention, the fluorescent paint that the insulating protective tape itself has is used to detect the presence or absence of the insulating protective tape on the electrode plate that has been manufactured and transferred. Therefore, the presence or absence of the insulating protective tape can be accurately determined even if the insulating protective tape has a very thin thickness and can be colored.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing a nonaqueous electrolyte battery according to an embodiment of the present invention.
FIG. 2A is a plan view schematically showing a relative positional relationship before winding of each component in the spiral electrode group of the nonaqueous electrolyte battery same as above, and FIG. 2B is a diagram showing the winding of each component. The schematic plan view which showed typically the spiral electrode group comprised by turning.
3A is a plan view showing a positive electrode plate of the spiral electrode group of the above, FIG. 3B is a partially cutaway side view thereof, and FIG. 3C is a view before the current collecting lead is attached to the positive electrode plate; The perspective view of a state.
4A is a plan view showing a negative electrode plate of the spiral electrode group of the above, and FIG. 4B is a partially cutaway side view thereof.
FIG. 5 is a side view showing an inspection process for an insulating protective tape embodying the method for producing a nonaqueous electrolyte battery according to the first embodiment.
6A is a partially cutaway side view of a mounting portion of an insulating protection tape of an electrode plate in a conventional nonaqueous electrolyte battery, and FIG. 6B is a sectional view taken along line AA in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Battery case 2 Spiral electrode group 3 Sealing plate 12 Negative electrode current collection lead 13 Positive electrode current collection lead 19 Positive electrode plate 20 Negative electrode plate 21A, 21B Separator 22 Positive electrode core material 24 Negative electrode core material 29 Negative electrode side active material layer non-formation part 30 Positive electrode side active material layer non-formed part 31, 33 Insulating protective tape

Claims (4)

有底筒状の電池ケースに、渦巻状電極群が収容され、且つ有機電解液が注入され、前記電池ケースの開口部が封口板で封口されてなる非水電解液電池において、
前記渦巻状電極群の正極板および負極板にそれぞれ集電用リードが接合して取り付けられ、
前記正極集電用リードおよび/または前記負極集電用リードの前記極板への接合箇所およびその近傍箇所における少なくとも一部分が、蛍光塗料を有する絶縁保護テープによって覆われていることを特徴とする非水電解液電池。
In a non-aqueous electrolyte battery in which a spiral electrode group is accommodated in a bottomed cylindrical battery case, an organic electrolyte is injected, and an opening of the battery case is sealed with a sealing plate,
A current collecting lead is bonded and attached to each of the positive electrode plate and the negative electrode plate of the spiral electrode group,
At least a part of the positive electrode current collecting lead and / or the negative electrode current collecting lead joined to the electrode plate and the vicinity thereof are covered with an insulating protective tape having a fluorescent paint. Water electrolyte battery.
正極集電用リードは、正極芯材の長手方向の一方の側辺を挟んだ両側の近傍部分のみに絶縁保護テープが巻き付け状態に貼着され、
前記負極集電用リードは、負極芯材との接合部を覆うように絶縁保護テープが貼着されている請求項1に記載の非水電解液電池。
The lead for positive electrode current collector is attached in a state where the insulating protective tape is wound only on the vicinity of both sides sandwiching one side in the longitudinal direction of the positive electrode core material,
The nonaqueous electrolyte battery according to claim 1, wherein the negative electrode current collecting lead is attached with an insulating protective tape so as to cover a joint portion with the negative electrode core material.
絶縁保護テープは25μm以下の厚みに設定されている請求項1または2に記載の非水電解液電池。The nonaqueous electrolyte battery according to claim 1, wherein the insulating protective tape is set to a thickness of 25 μm or less. 正極板および負極板に、正極集電用リードおよび負極集電用リードをそれぞれ溶接により接合し、
前記正,負極板への接合前または接合後の前記正極集電用リードおよび/または前記負極集電用リードの所定箇所に、蛍光塗料を有する絶縁保護テープを被覆状態で貼着し、
前記正極板および/または負極板の絶縁保護テープの有無または位置ずれを、蛍光感知センサによる前記絶縁保護テープの蛍光塗料の検知に基づき判別し、
前記正,負極板をこれらの間にセパレータを介在して積層した状態で渦巻状に巻回することにより、渦巻状電極群を構成し、
有底筒状の電池ケースに、前記渦巻状電極群を収容し、且つ有機電解液を注入して、前記電池ケースの開口部を封口板で封口することを特徴とする非水電解液電池の製造方法。
A positive electrode current collecting lead and a negative electrode current collecting lead are joined to the positive electrode plate and the negative electrode plate by welding,
Affixing an insulating protective tape having a fluorescent paint to a predetermined location of the positive electrode current collecting lead and / or the negative electrode current collecting lead before or after bonding to the positive and negative electrode plates,
The presence or absence or displacement of the insulating protective tape on the positive electrode plate and / or the negative electrode plate is determined based on detection of the fluorescent paint on the insulating protective tape by a fluorescent sensor,
A spiral electrode group is formed by winding the positive and negative electrode plates in a spiral state with a separator interposed therebetween,
A nonaqueous electrolyte battery characterized by containing the spiral electrode group in a bottomed cylindrical battery case, injecting an organic electrolyte, and sealing the opening of the battery case with a sealing plate. Production method.
JP2002068154A 2002-03-13 2002-03-13 Non-aqueous electrolyte battery and manufacturing method thereof Expired - Lifetime JP4188613B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002068154A JP4188613B2 (en) 2002-03-13 2002-03-13 Non-aqueous electrolyte battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002068154A JP4188613B2 (en) 2002-03-13 2002-03-13 Non-aqueous electrolyte battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003272598A JP2003272598A (en) 2003-09-26
JP4188613B2 true JP4188613B2 (en) 2008-11-26

Family

ID=29199320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002068154A Expired - Lifetime JP4188613B2 (en) 2002-03-13 2002-03-13 Non-aqueous electrolyte battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4188613B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005222887A (en) * 2004-02-09 2005-08-18 Sony Corp Electrode winding type battery
JP4736525B2 (en) * 2005-05-02 2011-07-27 ソニー株式会社 Nonaqueous electrolyte secondary battery
JP5363836B2 (en) 2009-03-02 2013-12-11 日東電工株式会社 Battery adhesive tape and battery using this battery adhesive tape
JP5267873B2 (en) * 2009-06-12 2013-08-21 トヨタ自動車株式会社 Secondary battery and manufacturing method thereof
WO2011001639A1 (en) * 2009-06-30 2011-01-06 パナソニック株式会社 Nonaqueous electrolyte secondary battery
EP2306554B1 (en) 2009-10-01 2013-09-11 Samsung SDI Co., Ltd. Secondary battery and method of fabricating secondary battery
JP6058328B2 (en) * 2012-09-18 2017-01-11 シャープ株式会社 battery
EP3723163A4 (en) * 2017-12-05 2021-01-20 Panasonic Intellectual Property Management Co., Ltd. Secondary battery, insulating member and positive electrode lead
KR102643219B1 (en) * 2018-08-08 2024-03-05 주식회사 엘지에너지솔루션 Secondary battery comprising lead film having light emitting material and method for detecting fault of secondary cell
WO2020158255A1 (en) * 2019-01-29 2020-08-06 三洋電機株式会社 Secondary battery and method for manufacturing same
WO2021006171A1 (en) * 2019-07-05 2021-01-14 株式会社村田製作所 Battery

Also Published As

Publication number Publication date
JP2003272598A (en) 2003-09-26

Similar Documents

Publication Publication Date Title
US8734985B2 (en) Jelly-roll type battery unit and winding method thereof and lithium secondary battery comprising the same
CN103227307B (en) Rectangular secondary cell
US7541110B2 (en) Secondary battery
JP4749130B2 (en) Secondary battery and method for forming the same
KR100938896B1 (en) Battery pack
JP2005332820A (en) Secondary battery with electrode assembly
US20040121229A1 (en) Lithium secondary battery and fabrication method thereof
KR20140137180A (en) Rechargeable battery
JP4188613B2 (en) Non-aqueous electrolyte battery and manufacturing method thereof
JP2003178747A (en) Lithium battery
KR100696782B1 (en) Lithium Ion Secondary Battery
KR101696964B1 (en) Cylinder type secondary battery with coating layer
KR20220066600A (en) Secondary battery
US7985499B2 (en) Battery having electrode lead element with fixing member
KR20110114458A (en) Secondary battery
KR101753938B1 (en) Secondary battery with improved electric insulation and manufacture method thereof
JP3403885B2 (en) Non-aqueous electrolyte battery
KR101453782B1 (en) Secondary battery and method for manufacturing the same
KR100889767B1 (en) Lithium secondary battery having protection plate
JP2548464B2 (en) Non-aqueous electrolyte battery
KR100777721B1 (en) Secondary battery
KR100490547B1 (en) Lithium secondary battery having a protective mean
KR100731415B1 (en) Cap assembly and the rectangular rechargeable battery employing the same
KR100490546B1 (en) Secondary battery
KR20050096293A (en) Plastic molding type secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080812

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080911

R150 Certificate of patent or registration of utility model

Ref document number: 4188613

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140919

Year of fee payment: 6

EXPY Cancellation because of completion of term