JP4187479B2 - Electrocatalyst - Google Patents

Electrocatalyst Download PDF

Info

Publication number
JP4187479B2
JP4187479B2 JP2002236862A JP2002236862A JP4187479B2 JP 4187479 B2 JP4187479 B2 JP 4187479B2 JP 2002236862 A JP2002236862 A JP 2002236862A JP 2002236862 A JP2002236862 A JP 2002236862A JP 4187479 B2 JP4187479 B2 JP 4187479B2
Authority
JP
Japan
Prior art keywords
electrode
silver
gas diffusion
oxygen
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002236862A
Other languages
Japanese (ja)
Other versions
JP2004076084A (en
Inventor
岳昭 佐々木
敏徳 蜂谷
勲 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2002236862A priority Critical patent/JP4187479B2/en
Publication of JP2004076084A publication Critical patent/JP2004076084A/en
Application granted granted Critical
Publication of JP4187479B2 publication Critical patent/JP4187479B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • Y02E60/128
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【0001】
【発明が属する技術分野】
本発明は、電極触媒、特に、ガス拡散電極に好適な電極触媒、及び、その電極触媒の製造方法に関するものであり、中でも、食塩電解用の酸素陰極、金属−空気電池などに適用される、酸素還元ガス拡散電極に好適な電極触媒に関するものである。
【0002】
【従来の技術】
ガス拡散電極は、水素、酸素、空気などの気体を多孔性の電極に供給して電極上で反応させるもので、気体の有する化学エネルギーを電気エネルギーに変換して取り出す燃料電池、金属―空気電池などに用いられている。
食塩電解の分野では、陰極の反応を現行の水素発生反応から酸素還元反応に転換することにより電解電圧を大幅に低減でき、省エネルギー化が実現可能な陰極として、ガス拡散電極の実用化開発が進められている。
【0003】
ガス拡散電極は、用途に応じて各種のものが知られている。水溶液を電解液として用いるものとして、ガス拡散電極は、ガス拡散層と反応層との積層構造体であり、内部には電気的接続をとるための集電体が埋め込まれている。酸素の供給はガス拡散層側から行われ、反応層は電解液と接している。酸素はガス拡散層内部を透過拡散した後、反応層に固定化された酸素還元触媒上で還元反応を受ける。
従来、酸素還元活性が高い触媒としては、白金、銀、有機金属錯体、ペロブスカイト型酸化物などが知られており(特開2000−212788、F.C. Anson, et. al.,J. Am. Chem. Soc., 1980, 102, 6027、特開平2−257577、特開平7−289903)、主にカーボン粒子を担体とし、その上に高分散担持させて用いられる。
【0004】
食塩電解用ガス拡散電極は、使用される雰囲気が30重量%以上の苛性ソーダ水溶液であるため、白金などの貴金属でも腐食を受ける過酷な環境であるため、電極触媒の種類は限定され、現状で長期連続運転時の安定性が確認されているのは銀のみである。(N. Furuya and H. Aikawa, Electrochim. Acta, 45, 4251(2000).)しかしながら、銀の触媒活性は十分なものではなく、陰極として用いた場合の過電圧が高くなる。結果として、酸素コストまで含めた経済優位性で、現行の水素陰極方式を上回ることができていない。そこで、より高い酸素還元活性をもつ触媒が求められている。
【0005】
【発明が解決しようとする課題】
本発明は、従来の銀触媒よりも、酸素還元活性が高い電極触媒を提供することを目的とするものである。
【0006】
【課題を解決するための手段】
本発明者らは、前記課題について鋭意研究を重ねた結果、銀の微粒子と、酸化セリウム、酸化ホルミウム、及び酸化ガドリニウムからなる化合物群から選ばれる少なくとも1種類以上の希土類酸化物の微粒子を組み合わせた電極触媒により、銀微粒子のみの電極触媒よりも酸素還元活性が向上することを見出し、本発明をなすに至った。
すなわち、本発明は、以下のとおりである。
(1)導電性担体に触媒を担持する酸素還元ガス拡散電極触媒であって、該導電性担体が炭素微粒子であり、かつ該触媒が銀の微粒子と、酸化セリウム、酸化ホルミウム、及び酸化ガドリニウムからなる化合物群から選ばれる少なくとも1種類以上の希土類酸化物の微粒子との混合物であることを特徴とする酸素還元ガス拡散電極触媒。
(2)銀と希土類酸化物のモル比が1:0.5〜1:2.0である(1)記載の酸素還元ガス拡散電極触媒。
(3)(1)又は(2)に記載の酸素還元ガス拡散電極触媒を使用することを特徴とする食塩電解用ガス拡散電極。
【0007】
以下、本発明を詳細に説明する。
本発明の電極触媒は、導電性担体に触媒を担持する電極触媒であって、その触媒が銀の微粒子と少なくとも1種類以上の希土類酸化物の微粒子との混合物であることを特徴とする。本発明は、銀の微粒子と少なくとも1種類以上の希土類酸化物の微粒子との組み合わせが、銀の微粒子のみを担持した場合よりも、高い酸素還元活性が得られる。すなわち、本発明の電極触媒は、銀の微粒子と希土類酸化物の微粒子との界面が反応活性点になり、希土類酸化物の助触媒作用により、酸素還元活性が向上する。
【0008】
本発明において、主触媒の銀の微粒子は、担体に固定されている範囲で小さければ小さいほど、主触媒である銀の表面積が増すので好ましい。具体的には、200nm以下が好ましく、さらに、100nm以下の粒径がより好ましい。200nmよりも粒径が大きくなりすぎると、主触媒である銀の表面積が減少して、十分な酸素還元活性が得られなくなる。また、希土類酸化物の微粒子は、担体に固定されている範囲で小さければ小さいほど、活性点が増すので好ましい。具体的には、500nm以下が好ましい。500nmよりも粒径が大きくなりすぎると、活性点となる界面が形成されにくく、十分な酸素還元活性が得られなくなる。
【0009】
本発明の電極触媒は、触媒の表面積を大きくする目的で、通常は表面積の大きな導電性担体に担持する。
導電性担体としては、通常、微粒子状の炭素微粒子が用いられる。例えば、BET比表面積が30〜2000m2/gのカーボンブラックを挙げることができ、ファーネスブラック、ランプブラック、アセチレンブラック、チャンネルブラック、およびサーマルブラックなどと称されるものを使用することができる。炭素粒子の粒径は0.01μm〜1μmが好ましい。
【0010】
本発明の希土類酸化物とはスカンジウム、イットリウム、ランタン、セリウム、プラセオジム、ネオジム、プロメチウム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテチウムの酸化物のことである。好ましくは酸化セリウム、酸化ホルミウム、酸化ガドリニウムである。
本発明の電極触媒に含まれる銀の微粒子と少なくとも1種類以上の希土類酸化物の微粒子との組成比は、銀の微粒子の存在量をA、少なくとも1種類以上の希土類酸化物の微粒子の存在量をBとすると、モル比で、Aに対するBのモル比(B/A)が0.5〜2.0であることが好ましい。モル比が0.5より小さいと希土類酸化物の微粒子の量が少なすぎて、活性点となる界面の形成が不十分となり、逆にモル比が2.0より大きいと、希土類酸化物の量が多くなりすぎ、銀の微粒子を希土類酸化物が覆ってしまう構造となり、やはり界面が減少してしまうため、どちらも酸素還元活性を向上することができない。
【0011】
炭素粒子に対する電極触媒物質の重量は10〜90重量%が好ましい。電極触媒物質が少なすぎると、電極触媒物質の総反応表面積が小さくなるため、十分な酸素還元活性が得られない。一方、電極触媒物質が多すぎると、電極触媒物質が凝集しやすくなり、電極触媒物質の総反応表面積が小さくなるため、十分な酸素還元活性が得られない。
【0012】
以下、本発明の電極触媒の調製方法について説明する。
(1)銀の担持方法
まず、銀の微粒子を担持させる方法について説明する。導電性担体としては通常炭素微粒子粉末を用いるため、以下、導電性担体として炭素微粒子粉末を用いた場合について説明する。
分散工程では、銀の塩を溶解させた溶液中に炭素微粒子粉末を分散させる。銀の塩は溶解するものであればよく、種類としては銀の硝酸塩、塩化塩、硫酸塩、炭酸塩、酢酸塩などが挙げられる。熱分解時に塩素や硫黄などが残りにくいため、硝酸銀が好ましい。
【0013】
溶媒としては、通常水を用いる。必要に応じて少量のアルコール類、有機溶媒、酸、アルカリなどを使用することもできる。上記、銀の塩が溶解する溶媒であれば、何を用いても構わない。
この溶液中に炭素微粒子粉末を分散させるために、攪拌子や攪拌棒を用いて攪拌する方法、混練機を用いる方法、超音波分散する方法、ホモジナイザーを用いる方法、超音波ホモジナイザーを用いる方法など、様々な方法を用いることが可能であるが、一般的に攪拌子を用いて攪拌する方法が簡便であるため使用される。
乾燥工程では、この懸濁液を蒸発乾固する。乾燥方法は、溶媒を除去できればどのような方法でもよい。乾燥機やオーブン中において、100℃程度で12時間以上保持する方法、真空乾燥機、エバポレーターを用いる方法などが挙げられる。
【0014】
焼成工程では、乾燥工程で得られた硝酸銀と炭素微粒子の分散体である触媒前駆体を熱分解反応により、銀微粒子が高分散した銀担持カーボン粉末を得る工程である。導電性担体の炭素粒子の酸化が進行しないように、窒素などの非酸化雰囲気において加熱焼成することが好ましいが、炭素粒子が酸化を受けないような低温で銀微粒子ができれば、空気中や酸素を含んだ雰囲気にあっても加熱焼成は可能である。加熱焼成温度は熱分解により銀が形成できる温度で、出来るだけ低温で焼成する方が好ましい。好ましくは200〜700℃である。あまり高い温度で焼成すると銀微粒子が凝集し、銀の粒径が大きくなってしまう。また、低い温度で焼成すると、銀塩が完全に熱分解されずに銀微粒子が得られない。焼成熱分解時間は1〜10時間が好ましい。
加熱処理後に、必要に応じて、銀担持カーボン粉末を粉砕する。粉砕した銀担持カーボン粉末は、その後、ガス拡散電極の作製に用いたり、さらに金属酸化物を担持させることができる。粉砕には、乳鉢、各種ミルなど様々な方法で粉砕することができる。
【0015】
(2)希土類酸化物の担持方法
次に、希土類酸化物の微粒子を担持させる方法について説明する。
分散工程では、希土類の塩を溶解させた溶液中にカーボン粉末を分散させる。希土類の塩は硝酸塩が好ましい。硝酸塩は焼成工程における不活性ガス雰囲気での焼成により希土類酸化物となるためである。
この溶液中に銀担持カーボン粉末を分散させるために、攪拌子や攪拌棒を用いて攪拌する方法、混練機を用いる方法、超音波分散する方法、ホモジナイザーを用いる方法、超音波ホモジナイザーを用いる方法など、様々な方法を用いることが可能であるが、一般的に攪拌子を用いて攪拌する方法が簡便であるため使用される。
【0016】
この溶液を引き続き、乾燥工程で乾燥させてもよいが、水酸化ナトリウムやアンモニア等のアルカリを添加することにより、水酸化物を形成させてから、蒸発乾固することもできる。
乾燥工程では、この懸濁液を乾燥する。乾燥方法は、溶媒を除去されればどのような方法でもよい。乾燥機やオーブン中において、100℃程度で12時間以上保持する方法、真空乾燥機、エバポレーターを用いる方法などが挙げられる。
【0017】
焼成工程では、乾燥工程で得られた電極物質を熱分解反応により希土類酸化物をカーボン上に担持する工程である。導電性担体の炭素微粒子の酸化が進行しないように、窒素などの非酸化雰囲気において加熱焼成することが好ましいが、炭素粒子が酸化を受けないような低温で、希土類酸化物の微粒子ができれば、空気中や酸素を含んだ雰囲気にあっても加熱焼成は可能である。また、加熱焼成温度は熱分解により希土類酸化物が形成できる温度で、出来るだけ低温で焼成する方が好ましい。好ましくは200〜1000℃である。また、保持時間は1〜10時間が好ましい。あまり高い温度で焼成すると希土類酸化物の微粒子が凝集し、粒径が大きくなってしまう。また、低い温度で焼成すると、希土類の硝酸塩が完全に熱分解されずに残るためよくない。
【0018】
加熱処理後に、必要に応じて、作製した粉末を粉砕する。粉砕した粉末は、その後、ガス拡散電極の作製に用いたり、さらに金属や金属酸化物を担持させることができる。粉砕には、乳鉢、各種ミルなど様々な方法で粉砕することができる。
本発明の電極触媒を作製する方法としては、炭素微粒子粉末に(1)銀の微粒子を担持、(2)希土類酸化物の微粒子を担持する順番はどのような順番でもよく、最初に銀の微粒子を形成させた後に、希土類酸化物の微粒子を担持してもよいし、希土類酸化物の微粒子を形成させた後に、銀の微粒子を担持してもよい。さらに、銀の塩と希土類の塩の混合溶液を使用し、銀の微粒子と希土類酸化物の微粒子を同時に担持しても構わない。また、複数の希土類酸化物と銀を担持しても構わない。
【0019】
上記の方法以外に、銀や希土類酸化物のコロイド溶液や、溶媒に粉体を分散させた懸濁液を用いて、導電性担体に担持することもできる。
以上の工程を通して得られた電極触媒は、粉末X線回折法により結晶構造が決定でき、電子顕微鏡による観察からその粒径を確認することが可能である。
以上の方法で得られた電極触媒を、チャンネルフロー電極法(以下、CFDE法と略す)により評価を行った。CFDE法による測定には、図1に示す測定セルを用いた。図1の測定セルは、酸素飽和した電解液を電解液導入口5から導入し、厚みは0.05mmの電解液流路6を通り、電解液排出口7から排出する構造になっている。このとき、作用極1、検出極2と接する電解液の流れが層流になっていればよい。アクリル樹脂の板の一部に2×5mm、深さ2mmの空へきがあり、このキャビティに電極触媒を充填して作用極1とする。作用極1から0.25mmのギャップをあけて、表面が平滑な1×5mmの白金からなる検出極2がある。電気的接続をするために作用極1、検出極2にそれぞれ、作用極配線3、検出極配線4がある。また、参照極との液絡部分8を設置してある。電解液の流速を変化させることで、電解液中の溶存酸素の拡散速度を制御することが出来る。ある一定の流速で電解液を流し、作用極1で酸素還元反応を行う。検出極2は、HO2 -を酸化できる電位に固定し、作用極1で生成した中間体であるHO2 -を検出極2で酸化し、酸化電流として検出する。電解液の流速を一定にし、作用極1の電位―電流曲線の測定を行う。この測定において、より貴な電位で、酸素還元電流が流れる電極触媒ほど、より高い酸素還元活性をもつといえる。さらに、作用極と検出極の電流値から2電子反応と4電子反応の比率を求めることが出来る。
【0020】
さらに、上記電極触媒のガス拡散電極としての性能を調べるために、ガス拡散電極を作製し、電極特性を評価した。
ガス拡散電極は、ガス拡散層、反応層の積層構造体であり、内部には電気的接続をとるための集電体が埋め込まれている。酸素の供給はガス拡散層側から行われ、反応層は電解液と接している。酸素はガス拡散層内部を透過拡散した後、反応層に固定化された酸素還元触媒上で還元反応を受ける。
【0021】
ガス拡散層は、酸素がその内部を速やかに透過し、反応層全体に均一に拡散できることが必要であり、かつ、反応層側からの電解液の浸透を抑制する役割も要求される。これらの2つの機能が満たされるものであれば、どのようなものでもよいが、ここでは、炭素粒子を撥水性の大きなポリテトラフルオロエチレンなどのフッ素樹脂の懸濁液を混合して分散させて、濾過、乾燥して得られた粒子を用いることができる。ガス拡散層には、撥水性が高く、粒子径の大きい炭素粒子を用いることが好ましい。
【0022】
反応層は、酸素還元触媒が高分散されて固定され、酸素、酸素還元触媒および電解液からなる三相界面の面積を十分大きく形成させることが必要である。反応層用の粒子としては、本発明の製造方法によって電極触媒を担持した炭素粒子をポリテトラフルオロエチレンなどのフッ素樹脂の懸濁液を混合して、アルコールなどの分散剤を用いて分散した後に、濾過、乾燥した後に微粉化した粒子を用いることができる。
集電体としては、電気的接続をとるために十分な電気伝導度を有し、かつ、酸化還元反応が起こる電位において溶解および腐食などが起きない材料であればどのようなものでもよいが、ニッケルや銀などの金網、発泡体などを用いることができる。
【0023】
ガス拡散電極は、所定の形状の金型内に集電体用のニッケル金網などを設け、集電体上にガス拡散層用の粉末粒子を充填して冷間プレスを行った後に、反応層用の粉末粒子を充填して冷間プレスを行い、最終的にホットプレスによってポリテトラフルオロエチレンを溶融させて一体化することによって、製造することができる。
以上の方法で得られたガス拡散電極を、電気化学特性評価用のセルに装着し、ガス拡散層側から酸素または空気を供給して酸素還元反応を行わせ、各電流密度における電極電位を測定することによって、電極性能を評価することができる。
【0024】
【発明の実施の形態】
本発明を実施例に基づいて、さらに詳細に説明するが、本発明は、実施例に限定されるものではない。
【0025】
【実施例1】
(銀担持カーボンの調整)
50重量%の銀担持カーボンを以下のように作製した。
ミル(Janke&Kunkel製A10)を用いて粉砕したカーボンブラック(三菱化学製 ケッチェンブラックEC−600JD)2gと硝酸銀(和光純薬製)3.15gを200mlの水溶液中に分散させた。さらに、攪拌子を用いて、15分攪拌後、100℃のオーブン中で水分を蒸発し、乾燥させ、粉末を得た。さらに、この粉末を窒素気流中で250℃、1時間の焼成を行い、硝酸銀を熱分解した後、ミルを用いて粉砕し、50重量%の銀担持カーボンを得た。
【0026】
次に、モル比で銀とセリウムが1:1になるように、この銀担持カーボン粉末0.216gに、硝酸セリウム(Ce(NO33・6H2O、和光純薬製)0.434g添加し、水に分散させ、超音波分散を5分間行った。さらに、100℃のオーブン中で水分を蒸発し、乾燥させ、試料粉末を得た。この粉末を窒素気流中で800℃、1時間の焼成を行い、ミルを用いて粉砕し、電極触媒粉末を得た。この電極触媒粉末を粉末X線回折を行った。具体的には、RINT−2500(理学電機(株)製)を用い、線源が銅Kα線(λ=1.54184Å)で測定を行った。ピークを同定したところAgとCeO2が検出された。
【0027】
さらに、高分解能分析透過型電子顕微鏡(日本電子(株)製 JEM4000FX)にて、微細構造観察を行った。その結果、50〜100nmのAg、及び、CeO2がの粒子が確認された。
この作製した電極触媒粉末に少量の流動パラフィン(キシダ化学(株)製)を添加し、乳鉢で混合しペースト状にした。このペーストをCFDEの作用極部分に充填して作製した。白金線を対極、銀/塩化銀電極を参照極とした。0.1Mの水酸化ナトリウム水溶液中で純酸素で1時間バブリングし、この水酸化ナトリウム水溶液を酸素飽和にした。さらに、溶液の流速を83.2cm/secに固定し、−0.6Vにおいて10分間保持した後、作用極を+0.1Vから−0.6Vの電位まで10mV/secで掃引し、電位−電流曲線を測定した。得られた評価結果を図2に示す。高い酸素還元活性をしめした。
【0028】
さらに、作用極を−0.6V、検出極を0.5Vに固定し、流速を41.6、83.2、124.8、166.4に変化させ、そのときの作用極と検出極の電流値を測定した。作用極と検出極の電流の比率から反応電子数を次式から算出した。反応電子数は、作用極で、酸素1個当たり、何個の電子が流れたかを表す量である。この値が4に近いほど、中間体(HO2 -)を経由しない酸素還元反応であり、高活性が期待できる。
【0029】
反応電子数=(I(2電子)+I(4電子))/(I(2電子)/2+I(4電子)/4)
ただし、I(2電子)=―検出極電流/捕捉率、I(4電子)=作用極電流―I(2電子)。ここで、捕捉率は作用極での出来た反応中間体を検出極でどのくらい捕捉できるかを表す値である。作用極と検出極の電流の比率から反応電子数を算出した結果、反応電子数は3.90であった。
【0030】
【実施例2】
硝酸セリウムの変わりに、硝酸ガドリニウム(Gd(NO33・6H2O、和光純薬製)0.452gを使用したこと以外、実施例1と同様に作製、評価を行った。作製した電極触媒粉末を粉末X線回折を行った結果、AgとGd23が検出された。CFDE評価による電位―電流曲線の測定結果を図2に示す。さらに、反応電子数は3.87であった。実施例1よりも、酸素還元電流の立ち上がりがより貴な電位にあり、酸素還元活性が優れていた。
【0031】
【実施例3】
硝酸セリウムの変わりに、硝酸ホルミウム(Ho(NO33、和光純薬製)0.440gを使用したこと以外、実施例1と同様に作製、評価を行った。
作製した電極触媒粉末を粉末X線回折を行った結果、AgとHo23が検出された。CFDE評価による電位―電流曲線の測定結果を図2に示す。さらに、反応電子数は3.91であった。実施例2よりも、酸素還元電流の立ち上がりがより貴な電位にあり、酸素還元活性が優れていた。
【0032】
【比較例1】
実施例1と同様にして50重量%の銀担持カーボンを作製し、評価を行った。
作製した電極触媒粉末を粉末X線回折を行った結果、Agが検出された。さらに、高分解能分析透過型電子顕微鏡にて、微細構造観察を行った。その結果、10〜50nmの銀微粒子が確認された。
CFDE評価による電位―電流曲線の測定結果を図1に示す。実施例1〜3とくらべて、酸素還元電流の立ち上がりが悪く、反応電子数も3.69と小さかった。
【0033】
【実施例4】
(反応層用粉末の調製)
実施例1と同様に銀微粒子と酸化セリウム微粒子がカーボン担体上に担持された電極触媒を作製した。得られた電極触媒を担持した炭素粒子の0.18gを、エタノール:水=1:60(重量比)の15mlに加え、ポリテトラフルオロエチレンディスパージン[(ダイキン工業社製のPOLYFLON(登録商標)TFE D−1(固形分60重量%))を0.04g加えて1時間攪拌して濾過し、100℃において24時間乾燥させた。次いで、超音波分散機(株式会社日本精機製作所製US−600T)で10分間分散させた後、エタノールを30ml加えて、30分攪拌した。これをろ過したのち、100℃において24時間乾燥した。次いで、ミルで微粉化して、反応層内粉末を得た。
【0034】
(ガス拡散層用粉末の調製)
カーボンブラック(電気化学工業製のデンカブラックAB−7(登録商標)):界面活性剤(ロームアンドハース社製のトライトンX−100):水=1:1:20(重量比)の混合物に、ポリテトラフルオロエチレンディスパージョン(ダイキン工業製のPOLYFLON(登録商標)TFE D−1(固形分60重量%))を、カーボンブラック:ポリテトラフルオロエチレン=7:3(重量比)となるように加えて、超音波分散機で10分間分散させた。その後、エタノールを加えて分散液中の粒子を凝集させた。続いて、吸引濾過を行い、得られた固形分を100℃において24時間乾燥した後に、ミルで粉砕して微粉化した。次いで、エタノール中でこの粉末を1時間攪拌し、界面活性剤の洗浄除去を行った。その後、さらにミルを用いて微粉化することによってガス拡散層用粉末を得た。
【0035】
(ガス拡散電極の作製)
内径20mmのホットプレス用金型の底部にアセトンで脱脂したアルミニウム箔を載置し、アルミニウム箔上に、線径0.1mm、100メッシュのニッケル網を置き、ガス拡散層用粉末を0.1g充填した後、反応層用粉末を0.05g充填して、冷間プレスを行った。
その後、金型を370℃に保ってホットプレス機(テスター産業株式会社製SA−303)に保持し、60kg/cm2で1分間のホットプレスを行って、ガス拡散電極を得た。
【0036】
(ガス拡散電極の電気化学特性の評価)
得られたガス拡散電極を電気化学特性評価用のセルに取り付け、80℃の33重量%水酸化ナトリウム水溶液中で、ガス拡散層側から純酸素50ml/minで供給して、酸素還元反応の電気化学特性の評価を行った。
電気化学評価用のセルは、内部に酸素供給用および排出用の流路が形成されており、Oリングを介してガス拡散電極を取り付けることにより、セル内部の気密を保つ構造になっている。これを電解槽に取り付け、反応層側のみが80℃の33重量%水酸化ナトリウム水溶液に露出した状態で、ガス拡散層側から酸素を供給して、電気化学特性の評価を実施した。ガス拡散電極の有効表面積は、3.14cm2である。カレントパルスジェネレータは、北斗電工社製のHC−113を用い、対極には、白金金網、参照電極には、水銀/酸化水銀電極を用いた。
【0037】
電気化学特性評価を行った結果を図3に示す。横軸に電流密度、縦軸に水銀/酸化水銀電極に対する電位を示す。図3に示すとおり、銀微粒子のみを炭素微粒子担体に担持した電極触媒よりも、優れた酸素還元活性を示した。
【0038】
【比較例2】
実施例1と同様に50重量%の銀担持カーボンを作製した。この電極触媒を使用したこと以外、実施例4と同様にガス拡散電極を作製、評価した。得られた評価結果を図3に示す。
【0039】
【発明の効果】
本発明の電極触媒は、従来の銀微粒子のみを担持したカーボン電極触媒よりも、酸素還元用電極触媒として高い酸素還元活性を示すものである。本発明の電極触媒をガス拡散電極に使用すれば、イオン交換膜を用いた食塩水などのアルカリ金属ハロゲン化物水溶液の電解における酸素還元過電圧を、従来よりも低減することが出来るものである。その結果、電解に使用する電力を削減でき、塩素、苛性ソーダなどの製品を低コストで生産することが可能になる。
【図面の簡単な説明】
【図1】CFDE評価装置の説明図
【図2】実施例および比較例の電極触媒のCFDE評価の説明図
【図3】実施例および比較例のガス拡散電極の電気化学的特性の説明図。
【符号の説明】
1 作用極
2 検出極
3 作用極配線
4 検出極配線
5 電解液流路
6 電解液導入口
7 電解液排出口
8 導電流路
[0001]
[Technical field to which the invention belongs]
The present invention relates to an electrode catalyst, in particular, an electrode catalyst suitable for a gas diffusion electrode, and a method for producing the electrode catalyst, and among others, is applied to an oxygen cathode for salt electrolysis, a metal-air battery, and the like. The present invention relates to an electrode catalyst suitable for an oxygen reducing gas diffusion electrode.
[0002]
[Prior art]
A gas diffusion electrode is a fuel cell or metal-air battery that supplies gas such as hydrogen, oxygen, and air to a porous electrode and causes it to react on the electrode, converting the chemical energy of the gas into electrical energy and taking it out. It is used for etc.
In the field of salt electrolysis, the development of a gas diffusion electrode has been promoted as a cathode that can greatly reduce the electrolysis voltage by converting the cathode reaction from the current hydrogen generation reaction to the oxygen reduction reaction, and can save energy. It has been.
[0003]
Various types of gas diffusion electrodes are known depending on applications. The gas diffusion electrode is a laminated structure of a gas diffusion layer and a reaction layer using an aqueous solution as an electrolytic solution, and a current collector for electrical connection is embedded therein. Oxygen is supplied from the gas diffusion layer side, and the reaction layer is in contact with the electrolytic solution. Oxygen permeates and diffuses inside the gas diffusion layer, and then undergoes a reduction reaction on an oxygen reduction catalyst fixed in the reaction layer.
Conventionally, platinum, silver, organometallic complexes, perovskite oxides, and the like are known as catalysts having high oxygen reduction activity (Japanese Patent Laid-Open No. 2000-212788, FC Anson, et. Al., J. Am. Chem. Soc., 1980, 102, 6027, JP-A-2-257575, JP-A-7-289903), mainly using carbon particles as a carrier and carrying them in a highly dispersed state.
[0004]
Since the gas diffusion electrode for salt electrolysis is a caustic soda solution with an atmosphere of 30% by weight or more, it is a harsh environment that is corroded even by noble metals such as platinum. Only silver is confirmed to be stable during continuous operation. (N. Furuya and H. Aikawa, Electrochim. Acta, 45 , 4251 (2000).) However, the catalytic activity of silver is not sufficient, and the overvoltage when used as a cathode increases. As a result, it has not been able to surpass the current hydrogen cathode system with economic advantages including oxygen cost. Therefore, a catalyst having higher oxygen reduction activity is demanded.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide an electrode catalyst having higher oxygen reduction activity than a conventional silver catalyst.
[0006]
[Means for Solving the Problems]
As a result of intensive research on the above problems, the present inventors combined silver fine particles with at least one kind of rare earth oxide fine particles selected from the group consisting of cerium oxide, holmium oxide, and gadolinium oxide. It has been found that the oxygen reduction activity is improved by the electrode catalyst as compared with the electrode catalyst having only silver fine particles, and the present invention has been made.
That is, the present invention is as follows.
(1) An oxygen-reducing gas diffusion electrode catalyst carrying a catalyst on a conductive carrier, wherein the conductive carrier is carbon fine particles, and the catalyst is made of silver fine particles, cerium oxide, holmium oxide, and gadolinium oxide. An oxygen-reducing gas diffusion electrode catalyst, which is a mixture with at least one kind of rare earth oxide fine particles selected from the compound group.
(2) The oxygen-reducing gas diffusion electrode catalyst according to (1), wherein the molar ratio of silver to rare earth oxide is 1: 0.5 to 1: 2.0.
(3) A gas diffusion electrode for salt electrolysis using the oxygen reducing gas diffusion electrode catalyst according to (1) or (2).
[0007]
Hereinafter, the present invention will be described in detail.
The electrode catalyst of the present invention is an electrode catalyst that supports a catalyst on a conductive carrier, and the catalyst is a mixture of silver fine particles and at least one kind of rare earth oxide fine particles. In the present invention, a combination of silver fine particles and at least one kind of rare earth oxide fine particles provides higher oxygen reduction activity than when only silver fine particles are supported. That is, in the electrode catalyst of the present invention, the interface between the silver fine particles and the rare earth oxide fine particles becomes a reaction active point, and the oxygen reduction activity is improved by the promoter action of the rare earth oxide.
[0008]
In the present invention, it is preferable that the silver fine particles of the main catalyst are smaller as long as they are fixed to the support because the surface area of silver as the main catalyst increases. Specifically, it is preferably 200 nm or less, and more preferably 100 nm or less. If the particle diameter is larger than 200 nm, the surface area of silver as the main catalyst is reduced, and sufficient oxygen reduction activity cannot be obtained. In addition, it is preferable that the fine particles of the rare earth oxide are smaller as long as they are fixed to the support because the active points increase. Specifically, 500 nm or less is preferable. If the particle diameter is too large than 500 nm, an interface serving as an active point is hardly formed, and sufficient oxygen reduction activity cannot be obtained.
[0009]
The electrode catalyst of the present invention is usually carried on a conductive carrier having a large surface area for the purpose of increasing the surface area of the catalyst.
As the conductive carrier, usually fine carbon particles are used. For example, carbon black having a BET specific surface area of 30 to 2000 m 2 / g can be mentioned, and those called furnace black, lamp black, acetylene black, channel black, thermal black, and the like can be used. The particle size of the carbon particles is preferably 0.01 μm to 1 μm.
[0010]
The rare earth oxide of the present invention is an oxide of scandium, yttrium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium. Preferred are cerium oxide, holmium oxide, and gadolinium oxide.
The composition ratio between the silver fine particles and the at least one kind of rare earth oxide fine particles contained in the electrode catalyst of the present invention is such that the abundance of silver fine particles is A and the abundance of at least one kind of rare earth oxide fine particles. Is B, the molar ratio of B to A (B / A) is preferably 0.5 to 2.0. If the molar ratio is less than 0.5, the amount of rare earth oxide fine particles is too small, and the formation of an interface serving as an active site becomes insufficient. Conversely, if the molar ratio is larger than 2.0, the amount of rare earth oxide is small. However, neither of them can improve the oxygen reduction activity because the interface is reduced because the rare earth oxide covers the silver fine particles.
[0011]
The weight of the electrocatalyst material with respect to the carbon particles is preferably 10 to 90% by weight. If the amount of the electrode catalyst material is too small, the total reaction surface area of the electrode catalyst material becomes small, so that sufficient oxygen reduction activity cannot be obtained. On the other hand, when the amount of the electrode catalyst material is too large, the electrode catalyst material tends to aggregate and the total reaction surface area of the electrode catalyst material becomes small, so that sufficient oxygen reduction activity cannot be obtained.
[0012]
Hereafter, the preparation method of the electrode catalyst of this invention is demonstrated.
(1) Method for supporting silver First, a method for supporting silver fine particles will be described. Since carbon fine particle powder is usually used as the conductive carrier, the case where carbon fine particle powder is used as the conductive carrier will be described below.
In the dispersing step, the carbon fine particle powder is dispersed in a solution in which a silver salt is dissolved. Any silver salt may be used as long as it dissolves. Examples of the silver salt include silver nitrate, chloride, sulfate, carbonate, and acetate. Silver nitrate is preferred because chlorine, sulfur, and the like are unlikely to remain during pyrolysis.
[0013]
As the solvent, water is usually used. If necessary, a small amount of alcohol, organic solvent, acid, alkali or the like can be used. Any solvent may be used as long as it is a solvent in which the silver salt is dissolved.
In order to disperse the carbon fine particle powder in this solution, a method of stirring using a stirrer or a stirring bar, a method of using a kneader, a method of ultrasonic dispersion, a method of using a homogenizer, a method of using an ultrasonic homogenizer, etc. Various methods can be used, but generally a method of stirring using a stirrer is used because it is simple.
In the drying step, the suspension is evaporated to dryness. Any drying method can be used as long as the solvent can be removed. Examples thereof include a method of holding at about 100 ° C. for 12 hours or longer in a dryer or oven, a method using a vacuum dryer, an evaporator, or the like.
[0014]
The firing step is a step of obtaining a silver-supported carbon powder in which silver fine particles are highly dispersed by a thermal decomposition reaction of a catalyst precursor which is a dispersion of silver nitrate and carbon fine particles obtained in the drying step. It is preferable to heat and calcinate in a non-oxidizing atmosphere such as nitrogen so that the oxidation of the carbon particles of the conductive carrier does not proceed. However, if silver fine particles can be formed at a low temperature so that the carbon particles are not oxidized, oxygen or oxygen can be used. Heating and baking can be performed even in an atmosphere containing the same. The baking temperature is a temperature at which silver can be formed by thermal decomposition, and it is preferable to bake at a low temperature as possible. Preferably it is 200-700 degreeC. When fired at a too high temperature, the silver fine particles are aggregated, and the silver particle size is increased. Further, when firing at a low temperature, the silver salt is not completely pyrolyzed and silver fine particles cannot be obtained. The firing pyrolysis time is preferably 1 to 10 hours.
After the heat treatment, the silver-supported carbon powder is pulverized as necessary. The pulverized silver-carrying carbon powder can then be used to produce a gas diffusion electrode or further carry a metal oxide. The pulverization can be performed by various methods such as a mortar and various mills.
[0015]
(2) Rare Earth Oxide Support Method Next, a method for supporting rare earth oxide fine particles will be described.
In the dispersion step, carbon powder is dispersed in a solution in which a rare earth salt is dissolved. The rare earth salt is preferably nitrate. This is because nitrate becomes a rare earth oxide by firing in an inert gas atmosphere in the firing step.
In order to disperse the silver-supported carbon powder in this solution, a method of stirring using a stirrer or a stirring bar, a method of using a kneader, a method of ultrasonic dispersion, a method of using a homogenizer, a method of using an ultrasonic homogenizer, etc. Various methods can be used, but generally a method of stirring using a stirrer is used because it is simple.
[0016]
This solution may be subsequently dried in a drying step, but it can also be evaporated to dryness after forming a hydroxide by adding an alkali such as sodium hydroxide or ammonia.
In the drying step, this suspension is dried. The drying method may be any method as long as the solvent is removed. Examples thereof include a method of holding at about 100 ° C. for 12 hours or longer in a dryer or oven, a method using a vacuum dryer, an evaporator, or the like.
[0017]
In the firing step, the electrode material obtained in the drying step is a step of supporting a rare earth oxide on carbon by a thermal decomposition reaction. It is preferable to heat and calcinate in a non-oxidizing atmosphere such as nitrogen so that the oxidation of the carbon fine particles of the conductive carrier does not proceed. However, if the rare earth oxide fine particles can be formed at a low temperature at which the carbon particles are not oxidized, the air Heating and firing is possible even in an atmosphere containing oxygen or oxygen. Further, the heating and firing temperature is a temperature at which a rare earth oxide can be formed by thermal decomposition, and it is preferable to perform firing at as low a temperature as possible. Preferably it is 200-1000 degreeC. The holding time is preferably 1 to 10 hours. When fired at a too high temperature, the rare earth oxide fine particles aggregate and the particle size becomes large. Further, firing at a low temperature is not good because the rare earth nitrate remains without being completely thermally decomposed.
[0018]
After the heat treatment, the produced powder is pulverized as necessary. The pulverized powder can then be used for the production of a gas diffusion electrode or can further carry a metal or metal oxide. The pulverization can be performed by various methods such as a mortar and various mills.
The electrode catalyst of the present invention can be prepared by any order in which (1) silver fine particles are supported on carbon fine particle powder and (2) rare earth oxide fine particles are supported in any order. After forming, the rare earth oxide fine particles may be supported, or after the rare earth oxide fine particles are formed, silver fine particles may be supported. Further, a mixed solution of silver salt and rare earth salt may be used to simultaneously carry silver fine particles and rare earth oxide fine particles. A plurality of rare earth oxides and silver may be supported.
[0019]
In addition to the above method, a colloidal solution of silver or a rare earth oxide, or a suspension in which powder is dispersed in a solvent can be used to support the conductive carrier.
The electrode catalyst obtained through the above steps can have a crystal structure determined by a powder X-ray diffraction method, and its particle size can be confirmed by observation with an electron microscope.
The electrode catalyst obtained by the above method was evaluated by the channel flow electrode method (hereinafter abbreviated as CFDE method). The measurement cell shown in FIG. 1 was used for the measurement by the CFDE method. The measurement cell of FIG. 1 has a structure in which an oxygen-saturated electrolyte is introduced from an electrolyte introduction port 5 and discharged through an electrolyte solution flow path 6 having a thickness of 0.05 mm. At this time, the flow of the electrolyte solution in contact with the working electrode 1 and the detection electrode 2 only needs to be a laminar flow. A part of the acrylic resin plate has a 2 × 5 mm, 2 mm deep void, and this cavity is filled with an electrode catalyst to form a working electrode 1. There is a detection electrode 2 made of platinum having a smooth surface with a gap of 0.25 mm from the working electrode 1. In order to make an electrical connection, the working electrode 1 and the detection electrode 2 have a working electrode wiring 3 and a detection electrode wiring 4, respectively. Moreover, the liquid junction part 8 with the reference electrode is installed. By changing the flow rate of the electrolytic solution, the diffusion rate of dissolved oxygen in the electrolytic solution can be controlled. An electrolyte solution is flowed at a constant flow rate, and an oxygen reduction reaction is performed at the working electrode 1. Detection electrode 2, HO 2 - and fixed to a potential capable of oxidizing, HO 2 is a intermediate produced in the working electrode 1 - oxidized with the detection electrode 2 is detected as an oxidation current. Measure the potential-current curve of the working electrode 1 with the electrolyte flow rate constant. In this measurement, it can be said that an electrode catalyst in which an oxygen reduction current flows at a more noble potential has a higher oxygen reduction activity. Furthermore, the ratio between the two-electron reaction and the four-electron reaction can be obtained from the current values of the working electrode and the detection electrode.
[0020]
Furthermore, in order to investigate the performance of the electrode catalyst as a gas diffusion electrode, a gas diffusion electrode was prepared and the electrode characteristics were evaluated.
The gas diffusion electrode is a laminated structure of a gas diffusion layer and a reaction layer, and a current collector for electrical connection is embedded inside. Oxygen is supplied from the gas diffusion layer side, and the reaction layer is in contact with the electrolytic solution. Oxygen permeates and diffuses inside the gas diffusion layer, and then undergoes a reduction reaction on an oxygen reduction catalyst fixed in the reaction layer.
[0021]
The gas diffusion layer is required to allow oxygen to permeate through the inside of the reaction layer quickly and uniformly diffuse throughout the reaction layer, and to play a role of suppressing permeation of the electrolyte from the reaction layer side. Any material may be used as long as these two functions are satisfied. Here, carbon particles are mixed and dispersed in a suspension of a fluororesin such as polytetrafluoroethylene having a large water repellency. The particles obtained by filtration, drying can be used. It is preferable to use carbon particles having a high water repellency and a large particle size for the gas diffusion layer.
[0022]
In the reaction layer, the oxygen reduction catalyst is highly dispersed and fixed, and it is necessary to form a sufficiently large area of the three-phase interface composed of oxygen, the oxygen reduction catalyst, and the electrolytic solution. As particles for the reaction layer, carbon particles carrying an electrode catalyst by the production method of the present invention are mixed with a suspension of a fluororesin such as polytetrafluoroethylene and dispersed using a dispersant such as alcohol. Finely pulverized particles after filtration, drying can be used.
The current collector may be any material as long as it has sufficient electrical conductivity for electrical connection and does not dissolve or corrode at the potential at which the oxidation-reduction reaction occurs. A wire mesh such as nickel or silver, a foam, or the like can be used.
[0023]
The gas diffusion electrode is provided with a nickel metal mesh for a current collector in a mold having a predetermined shape, filled with powder particles for the gas diffusion layer on the current collector and cold-pressed, and then the reaction layer It is possible to manufacture by filling the powder particles for use and performing cold pressing, and finally melting and integrating polytetrafluoroethylene by hot pressing.
The gas diffusion electrode obtained by the above method is attached to a cell for electrochemical property evaluation, oxygen or air is supplied from the gas diffusion layer side to perform an oxygen reduction reaction, and the electrode potential at each current density is measured. By doing so, the electrode performance can be evaluated.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in more detail based on examples, but the present invention is not limited to the examples.
[0025]
[Example 1]
(Adjustment of silver-supporting carbon)
A 50% by weight silver-carrying carbon was prepared as follows.
2 g of carbon black (Ketjen Black EC-600JD manufactured by Mitsubishi Chemical) and 3.15 g of silver nitrate (manufactured by Wako Pure Chemical Industries, Ltd.) pulverized using a mill (A10 manufactured by Janke & Kunkel) were dispersed in 200 ml of an aqueous solution. Furthermore, after stirring for 15 minutes using a stirrer, water was evaporated in an oven at 100 ° C. and dried to obtain a powder. Further, this powder was fired in a nitrogen stream at 250 ° C. for 1 hour to thermally decompose silver nitrate, and then pulverized using a mill to obtain 50% by weight of silver-supported carbon.
[0026]
Next, cerium nitrate (Ce (NO 3 ) 3 .6H 2 O, manufactured by Wako Pure Chemical Industries, Ltd.) 0.434 g was added to 0.216 g of this silver-supported carbon powder so that the molar ratio of silver and cerium was 1: 1. The mixture was added, dispersed in water, and ultrasonic dispersion was performed for 5 minutes. Furthermore, moisture was evaporated in an oven at 100 ° C. and dried to obtain a sample powder. This powder was baked in a nitrogen stream at 800 ° C. for 1 hour and pulverized using a mill to obtain an electrode catalyst powder. The electrode catalyst powder was subjected to powder X-ray diffraction. Specifically, RINT-2500 (manufactured by Rigaku Denki Co., Ltd.) was used, and the radiation source was measured with a copper Kα ray (λ = 1.54184 mm). When the peak was identified, Ag and CeO 2 were detected.
[0027]
Furthermore, the microstructure was observed with a high-resolution analytical transmission electron microscope (JEM4000FX, manufactured by JEOL Ltd.). As a result, particles of 50 to 100 nm of Ag and CeO 2 were confirmed.
A small amount of liquid paraffin (manufactured by Kishida Chemical Co., Ltd.) was added to the produced electrode catalyst powder and mixed in a mortar to make a paste. This paste was prepared by filling the working electrode portion of CFDE. A platinum wire was used as a counter electrode, and a silver / silver chloride electrode as a reference electrode. Bubbling was carried out with pure oxygen for 1 hour in a 0.1 M aqueous sodium hydroxide solution, and this aqueous sodium hydroxide solution was saturated with oxygen. Furthermore, after fixing the flow rate of the solution at 83.2 cm / sec and holding at −0.6 V for 10 minutes, the working electrode was swept from +0.1 V to −0.6 V at 10 mV / sec, and the potential-current The curve was measured. The obtained evaluation results are shown in FIG. High oxygen reduction activity.
[0028]
Furthermore, the working electrode is fixed at −0.6 V, the detection electrode is fixed at 0.5 V, and the flow velocity is changed to 41.6, 83.2, 124.8, 166.4. The current value was measured. The number of reaction electrons was calculated from the following equation from the ratio of the current between the working electrode and the detection electrode. The number of reaction electrons is an amount representing how many electrons have flowed per one oxygen at the working electrode. As this value is closer to 4, the oxygen reduction reaction does not pass through the intermediate (HO 2 ), and a higher activity can be expected.
[0029]
Number of reaction electrons = (I (2 electrons) + I (4 electrons)) / (I (2 electrons) / 2 + I (4 electrons) / 4)
However, I (2 electrons) =-detection pole current / capture rate, I (4 electrons) = working pole current-I (2 electrons). Here, the capture rate is a value representing how much the reaction intermediate produced at the working electrode can be captured at the detection electrode. As a result of calculating the number of reaction electrons from the ratio of the current between the working electrode and the detection electrode, the number of reaction electrons was 3.90.
[0030]
[Example 2]
Production and evaluation were performed in the same manner as in Example 1 except that 0.452 g of gadolinium nitrate (Gd (NO 3 ) 3 .6H 2 O, manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of cerium nitrate. As a result of powder X-ray diffraction of the produced electrode catalyst powder, Ag and Gd 2 O 3 were detected. The measurement result of the potential-current curve by CFDE evaluation is shown in FIG. Furthermore, the number of reaction electrons was 3.87. Compared with Example 1, the rise of the oxygen reduction current was at a more noble potential, and the oxygen reduction activity was excellent.
[0031]
[Example 3]
Instead of cerium nitrate, holmium nitrate (Ho (NO 3) 3, manufactured by Wako Pure Chemical) except for using 0.440 g, prepared as in Example 1 and evaluated.
As a result of powder X-ray diffraction of the produced electrode catalyst powder, Ag and Ho 2 O 3 were detected. The measurement result of the potential-current curve by CFDE evaluation is shown in FIG. Furthermore, the number of reaction electrons was 3.91. Compared to Example 2, the rise of the oxygen reduction current was at a more noble potential, and the oxygen reduction activity was superior.
[0032]
[Comparative Example 1]
In the same manner as in Example 1, 50% by weight of silver-supported carbon was produced and evaluated.
As a result of performing powder X-ray diffraction on the produced electrode catalyst powder, Ag was detected. Furthermore, the microstructure was observed with a high-resolution analytical transmission electron microscope. As a result, silver fine particles of 10 to 50 nm were confirmed.
The measurement result of the potential-current curve by CFDE evaluation is shown in FIG. Compared to Examples 1 to 3, the rise of the oxygen reduction current was poor, and the number of reaction electrons was also small, 3.69.
[0033]
[Example 4]
(Preparation of powder for reaction layer)
In the same manner as in Example 1, an electrode catalyst having silver fine particles and cerium oxide fine particles supported on a carbon support was produced. 0.18 g of the obtained carbon particles supporting the electrode catalyst was added to 15 ml of ethanol: water = 1: 60 (weight ratio), and polytetrafluoroethylene dispersin [(POLYFLON (registered trademark) manufactured by Daikin Industries, Ltd.) 0.04 g of TFE D-1 (solid content 60% by weight)) was added, stirred for 1 hour, filtered, and dried at 100 ° C. for 24 hours. Subsequently, after dispersing for 10 minutes with an ultrasonic disperser (US-600T manufactured by Nippon Seiki Seisakusho Co., Ltd.), 30 ml of ethanol was added and stirred for 30 minutes. After filtering this, it dried at 100 degreeC for 24 hours. Subsequently, it was pulverized with a mill to obtain a powder in the reaction layer.
[0034]
(Preparation of powder for gas diffusion layer)
Carbon black (Denka Black AB-7 (registered trademark) manufactured by Denki Kagaku Kogyo): Surfactant (Triton X-100 manufactured by Rohm and Haas): Water = 1: 1: 20 (weight ratio) Polytetrafluoroethylene dispersion (POLYFLON (registered trademark) TFE D-1 (solid content: 60% by weight) manufactured by Daikin Industries) was added so that carbon black: polytetrafluoroethylene = 7: 3 (weight ratio). Then, it was dispersed for 10 minutes with an ultrasonic disperser. Thereafter, ethanol was added to aggregate the particles in the dispersion. Subsequently, suction filtration was performed, and the obtained solid content was dried at 100 ° C. for 24 hours, and then pulverized with a mill to make fine powder. Subsequently, this powder was stirred in ethanol for 1 hour, and the surfactant was removed by washing. Then, the powder for gas diffusion layers was obtained by further pulverizing using a mill.
[0035]
(Production of gas diffusion electrode)
An aluminum foil degreased with acetone is placed on the bottom of a hot press mold having an inner diameter of 20 mm, a nickel mesh with a wire diameter of 0.1 mm and 100 mesh is placed on the aluminum foil, and 0.1 g of powder for the gas diffusion layer is placed. After filling, 0.05 g of the reaction layer powder was filled and cold pressing was performed.
Thereafter, the mold was kept at 370 ° C. and held in a hot press machine (SA-303 manufactured by Tester Sangyo Co., Ltd.), and hot pressing was performed at 60 kg / cm 2 for 1 minute to obtain a gas diffusion electrode.
[0036]
(Evaluation of electrochemical characteristics of gas diffusion electrode)
The obtained gas diffusion electrode was attached to a cell for electrochemical property evaluation, and was supplied at a rate of 50 ml / min pure oxygen from the gas diffusion layer in a 33 wt% sodium hydroxide aqueous solution at 80 ° C. Chemical properties were evaluated.
The cell for electrochemical evaluation has oxygen supply and discharge channels formed therein, and has a structure that keeps the gas tight inside the cell by attaching a gas diffusion electrode through an O-ring. This was attached to an electrolytic cell, and oxygen was supplied from the gas diffusion layer side with only the reaction layer side exposed to a 33 wt% sodium hydroxide aqueous solution at 80 ° C. to evaluate the electrochemical characteristics. The effective surface area of the gas diffusion electrode is 3.14 cm 2 . As the current pulse generator, HC-113 manufactured by Hokuto Denko Co., Ltd. was used, a platinum wire mesh was used for the counter electrode, and a mercury / mercury oxide electrode was used for the reference electrode.
[0037]
The results of the electrochemical property evaluation are shown in FIG. The horizontal axis represents the current density, and the vertical axis represents the potential with respect to the mercury / mercury oxide electrode. As shown in FIG. 3, the oxygen reduction activity was superior to an electrode catalyst in which only silver fine particles were supported on a carbon fine particle support.
[0038]
[Comparative Example 2]
As in Example 1, 50% by weight of silver-supported carbon was produced. A gas diffusion electrode was prepared and evaluated in the same manner as in Example 4 except that this electrode catalyst was used. The obtained evaluation results are shown in FIG.
[0039]
【The invention's effect】
The electrode catalyst of the present invention exhibits higher oxygen reduction activity as an oxygen reduction electrode catalyst than the conventional carbon electrode catalyst supporting only silver fine particles. If the electrode catalyst of the present invention is used for a gas diffusion electrode, the oxygen reduction overvoltage in electrolysis of an aqueous solution of an alkali metal halide such as saline using an ion exchange membrane can be reduced as compared with the prior art. As a result, electric power used for electrolysis can be reduced, and products such as chlorine and caustic soda can be produced at low cost.
[Brief description of the drawings]
FIG. 1 is an explanatory view of a CFDE evaluation apparatus. FIG. 2 is an explanatory view of CFDE evaluation of electrode catalysts of Examples and Comparative Examples. FIG. 3 is an explanatory view of electrochemical characteristics of gas diffusion electrodes of Examples and Comparative Examples.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Working electrode 2 Detection electrode 3 Working electrode wiring 4 Detection electrode wiring 5 Electrolyte flow path 6 Electrolyte introduction port 7 Electrolyte discharge port 8 Conductive flow path

Claims (3)

導電性担体に触媒を担持する酸素還元ガス拡散電極触媒であって、該導電性担体が炭素微粒子であり、かつ該触媒が銀の微粒子と、酸化セリウム、酸化ホルミウム、及び酸化ガドリニウムからなる化合物群から選ばれる少なくとも1種以上の希土類酸化物の微粒子との混合物であることを特徴とする酸素還元ガス拡散電極触媒。An oxygen-reducing gas diffusion electrode catalyst carrying a catalyst on a conductive carrier, wherein the conductive carrier is carbon fine particles, and the catalyst is a silver fine particle, cerium oxide, holmium oxide, and gadolinium oxide. An oxygen reducing gas diffusion electrode catalyst comprising a mixture of at least one rare earth oxide fine particle selected from the group consisting of: 銀と希土類酸化物のモル比が1:0.5〜1:2.0であることを特徴とする請求項記載の酸素還元ガス拡散電極触媒。Silver and the molar ratio of the rare earth oxide is 1: 0.5 to 1: 2.0 oxygen reducing gas diffusion electrode catalyst according to claim 1, characterized in that. 請求項1又は2に記載の酸素還元ガス拡散電極触媒を使用することを特徴とする食塩電解用ガス拡散電極。A gas diffusion electrode for salt electrolysis, wherein the oxygen reducing gas diffusion electrode catalyst according to claim 1 or 2 is used.
JP2002236862A 2002-08-15 2002-08-15 Electrocatalyst Expired - Lifetime JP4187479B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002236862A JP4187479B2 (en) 2002-08-15 2002-08-15 Electrocatalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002236862A JP4187479B2 (en) 2002-08-15 2002-08-15 Electrocatalyst

Publications (2)

Publication Number Publication Date
JP2004076084A JP2004076084A (en) 2004-03-11
JP4187479B2 true JP4187479B2 (en) 2008-11-26

Family

ID=32020865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002236862A Expired - Lifetime JP4187479B2 (en) 2002-08-15 2002-08-15 Electrocatalyst

Country Status (1)

Country Link
JP (1) JP4187479B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5164089B2 (en) * 2004-07-14 2013-03-13 独立行政法人物質・材料研究機構 Pt / CeO2 / conductive carbon nanoheteroanode material and method for producing the same
US20090081511A1 (en) * 2005-03-18 2009-03-26 Kuninori Miyazaki Electrode Catalyst for Fuel Cell
JP2007035289A (en) * 2005-07-22 2007-02-08 Nippon Shokubai Co Ltd Electrode catalyst for fuel cell, electrode composition, and fuel cell
DE102005023615A1 (en) * 2005-05-21 2006-11-23 Bayer Materialscience Ag Process for the preparation of gas diffusion electrodes
JP4716825B2 (en) * 2005-09-02 2011-07-06 旭化成ケミカルズ株式会社 Manufacturing method of gas diffusion electrode
JP5092281B2 (en) * 2006-05-26 2012-12-05 株式会社豊田中央研究所 Exhaust gas purification device
JP2010180440A (en) * 2009-02-04 2010-08-19 Tosoh Corp Gas diffusion electrode, method for producing the same and electrolyzing method using the same
KR101256327B1 (en) 2009-03-18 2013-04-18 쇼와 덴코 가부시키가이샤 Catalyst for air battery, and air battery using same
DE102010031571A1 (en) * 2010-07-20 2012-01-26 Bayer Materialscience Ag Oxygen-consuming electrode
JP5796591B2 (en) * 2013-03-21 2015-10-21 株式会社豊田中央研究所 Electrode for energy conversion device, energy conversion device using the same, and energy conversion method
JP2015076210A (en) * 2013-10-07 2015-04-20 株式会社豊田中央研究所 Electrode, and solid oxide fuel cell and electrolytic device

Also Published As

Publication number Publication date
JP2004076084A (en) 2004-03-11

Similar Documents

Publication Publication Date Title
Chang et al. A self-supported amorphous Ni–P alloy on a CuO nanowire array: an efficient 3D electrode catalyst for water splitting in alkaline media
JP5411123B2 (en) Catalyst for fuel cell, production method thereof and use thereof
KR101249135B1 (en) Catalyst, process for production of the same, and use of the same
US7566388B2 (en) Electrode catalyst for oxygen reduction and gas diffusion electrode
JP5960795B2 (en) Method for producing oxygen gas diffusion electrode
JP2009518795A (en) Bifunctional air electrode
JP2006260844A (en) Catalyst for fuel cell electrode, fuel cell electrode, membrane electrode assembly, and fuel cell
JPWO2010131636A1 (en) Catalyst, method for producing the same and use thereof
JP4187479B2 (en) Electrocatalyst
JP2003288905A (en) Method of manufacturing for electrode catalyst
JP4883884B2 (en) Electrode catalyst for oxygen reduction and gas diffusion electrode
Alegre et al. Enhanced durability of a cost-effective perovskite-carbon catalyst for the oxygen evolution and reduction reactions in alkaline environment
JP2008290062A (en) Catalytic carrier, catalyst, method for manufacturing the catalytic carrier and method for manufacturing the catalyst
JP2004197130A (en) Electrode catalyst for oxygen reduction
WO2010131634A1 (en) Catalyst, process for production thereof, and use thereof
JP2013176717A (en) Metal oxide catalyst and method of manufacturing the same, and fuel cell using the same
US20050031921A1 (en) Hybrid fuel cell
JP4115003B2 (en) Electrocatalyst production method
JP4992185B2 (en) Catalyst for fuel cell, membrane electrode composite, and solid polymer electrolyte fuel cell
JP5019761B2 (en) Fuel cell electrode catalyst and method for producing the same
JP2019137596A (en) Composite material and method for producing the same, catalyst and metal air battery
JP2009158131A (en) Electrocatalyst and method of manufacturing the same
TWI660779B (en) Process for producing an electrocatalyst usable in water oxidation
JP2007070645A (en) Method for producing gas diffusion electrode
Shin et al. Iron-embedded porous carbon nanofibers as Pt electrocatalyst supports for direct methanol fuel cells

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080111

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080909

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080909

R150 Certificate of patent or registration of utility model

Ref document number: 4187479

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term