JP4187194B2 - Liquid crystal display element - Google Patents

Liquid crystal display element Download PDF

Info

Publication number
JP4187194B2
JP4187194B2 JP2002304417A JP2002304417A JP4187194B2 JP 4187194 B2 JP4187194 B2 JP 4187194B2 JP 2002304417 A JP2002304417 A JP 2002304417A JP 2002304417 A JP2002304417 A JP 2002304417A JP 4187194 B2 JP4187194 B2 JP 4187194B2
Authority
JP
Japan
Prior art keywords
film
liquid crystal
refractive index
insulating film
ito
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002304417A
Other languages
Japanese (ja)
Other versions
JP2003202552A (en
Inventor
正雄 尾関
ハインツ ハーバーツェトル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Display Corp
Original Assignee
Kyocera Display Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Display Corp filed Critical Kyocera Display Corp
Priority to JP2002304417A priority Critical patent/JP4187194B2/en
Publication of JP2003202552A publication Critical patent/JP2003202552A/en
Application granted granted Critical
Publication of JP4187194B2 publication Critical patent/JP4187194B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は液晶表示素子に関し、さらに詳しく言えば、ITOよりなる透明電極が反射状態で観察される現象を回避する技術に関するものである。
【0002】
【従来の技術】
液晶表示素子に利用される透明電極には、一般的にITO(インジウム・錫酸化物)が用いられており、その電極パターンはITO導電膜をパターニングすることにより作成される。ITOの屈折率は約1.9程度であり、支持基板であるガラス基板の屈折率1.5程度と比べると大きい。
【0003】
したがって、ITOが有るところと無いところとでは、外光による反射強度が異なるため、ITOのパターンが見えてしまい、表示品位を著しく劣化させることになる。この現象が、いわゆる「ITO骨見え」というものである。
【0004】
このITO骨見えを回避する手段の一つとして、ITOの屈折率や膜厚、ITO上に形成される絶縁膜や配向膜の屈折率や膜厚を最適に調整することが知られており、その最適条件は理論計算によって導出することができる。ITO骨見え現象は理論上、屈折率の異なる多層膜の反射として扱うことが可能であるため、一般的な多層膜の反射の計算により特性を理解することができ、計算結果と実験結果は相対的にほぼ一致することが確認されている。
【0005】
ところで、多くの場合、液晶表示として液晶分子を90゜ツイストさせるTN型液晶が使用されている。このTN型液晶おいて、白黒の無彩色性の向上のためにMTN(modulated twisted nematic)と言う液晶表示タイプがある。これは、液晶層のギャップに分布を持たせる方法である。
【0006】
液晶層にギャップ分布を持たせる方法としては、ガラス基板に凹凸フロスト処理を施す方法が知られている。例えば、HF(フッ化水素)によるエッチング処理で、山谷のピッチが約100μm程度,山谷の深さが約5.5μm程度の凹凸レベルを得ることができる。なお、山谷のピッチとは、凹凸形状の隣り合う山と山との距離を言う。
【0007】
このガラス基板の凹凸上に成膜する方法は、ドライプロセスであるスパッター法と、溶剤塗布タイプのフレキソ印刷法やスピンコート法とに大別される。前者のスパッター法によれば、成膜された膜にほとんど膜厚分布が生じないが、装置が高価であること、成膜に時間がかかること、また、成膜物が無機材に限られることなどから、あまり実用的ではない。
【0008】
これに対して、後者のフレキソ印刷法やスピンコート法によると、装置が比較的安価で、短時間での成膜が可能であり、しかも有機材も成膜可能であるため、多くの生産工程で使用されているが、凹凸に沿って膜厚分布ができることが知られている。
【0009】
上記したように、ITOの骨見えを回避するため、各構成要素の最適膜厚を理論計算によって導出することは可能である。しかしながら実際のところ、上記MTNなる液晶表示タイプの凹凸基板上に、例えば絶縁膜などを溶剤塗布方法にて成膜しようとすると、その凹凸に沿って膜厚分布が生ずるため、理論計算どおりの最適膜厚が得られず、ITOの骨見えを低減することが困難であった。
なお、スパッター法によれば、所望とする均一膜厚が得られるが、上記した理由によりスパッター法を採用することは好ましくない。
【0010】
【発明が解決しようとする課題】
したがって、本発明の課題は、コストアップや生産性の低下を招くことなく、ITO骨見え現象を回避するとともに、上記のようなMTNなる液晶表示タイプの液晶表示素子にあっては、白黒の無彩色性の向上とITO骨見え現象の回避とを両立させることにある。
【0011】
【課題を解決するための手段】
上記した課題を解決するため、本発明の液晶表示素子は、所定の形状にパターニングされた透明電極を有する一対の支持基板を含み、上記一対の支持基板のうち少なくとも表示観察面側の支持基板の透明電極を含む面に絶縁膜が形成されており、反射状態で観察される上記透明電極のパターン見えを回避するために、上記表示観察面側の支持基板の透明電極形成面側に上記絶縁膜に膜厚分布を与えるための山と谷の深さが3μm以上である凹凸が形成されており、上記表示観察面側の上記絶縁膜が、上記透明電極の屈折率に対して差が0.15以内の屈折率であり、かつ、半径500μmの面積内における膜厚分布が±500Å以上の分布を有している膜であることを特徴としている。
【0012】
お、絶縁膜を必要としない機種の液晶表示素子においては、配向膜に上記屈折率および上記膜厚分布を持たせればよい。
【0013】
【発明の実施の形態】
まず、ITO骨見え現象がどのようにして生ずるかについてより詳しく説明し、その次に本発明の実施形態について説明する。図3に、一般的な液晶表示素子の各構成要素を分離して示す。
【0014】
液晶表示素子1は一対の支持基板として、表示観察面側の透明基板10と、その裏面側の透明基板20とを備えている。透明基板10,20ともに例えばガラス基板(合成樹脂基板であってもよい)からなり、その対向する内面側にITOよりなる透明電極11,21が所定の電極パターンで形成されている。
【0015】
各透明電極11,21上に、絶縁膜12,22を介して配向膜13,23が形成され、配向膜13,23間にTNなどの液晶30が封入されている。なお、図示されていないが、透明基板10,20の透明電極形成面には、アンダーコート層としてのシリカ膜(SiO)が形成されている。
【0016】
ここに例示する液晶表示素子1は透過型であり、表示観察面側と裏面側の透明基板10,20の各々に偏光膜14,24が設けられ、また、裏面側の透明基板20の背面側にバックライト40が配置されている。
【0017】
この構成において、表示観察面側から外光が液晶セル内に入ってきた場合、その光は上側の偏光膜14から進入するが、層間で屈折率に差がある場合、光はその界面で反射する。表示部全体が同じ状態であるならば、全体で反射するので部分的な違いが起こらないため問題は生じない。
【0018】
しかしながら、所望の表示をするために、ITOはパターニングされており、透明電極は部分的にしか存在しない。よって、ITOの有るところと無いところで外光の反射が異なる。この差が大きいとITO(透明電極)のパターンが見えるという「ITO骨見え」が発生し、表示品位を著しく低下させることになる。
【0019】
例えば、液晶の屈折率が1.628,配向膜の屈折率が1.700で厚み300Å,ITOの屈折率が1.900で厚み450Å,アンダーコート層(SiO)の屈折率が1.460で厚み300Å,ガラスの屈折率が1.520,絶縁膜の屈折率が1.900で厚み700Åとし、外光をC光源と考えた場合、ITOの有るところと無いところの反射光の色差は約7程度となる。この条件では多少ITO骨見えが発生することになる。なお、上記の計算は光が垂直入射で垂直出射の場合である。
【0020】
ここで、絶縁膜の屈折率が1.900の場合、膜厚を変化させたときの色差を図4に示す。膜厚が500Å近傍での色差は小さいが、それ以外の膜厚では大きいことが分かる。
【0021】
次に、絶縁膜の屈折率が1.900のままで、絶縁膜に膜厚分布がある場合、ITO骨見えレベルがどのようになるかを図5に示す。この図5は、膜厚分布が中心に対して±0Å,±300Å,±400Å,±500Å,±600Åとなる場合の色差を示している。ここで、膜厚分布が例えば±300Åであるとは、半径500μmの面積内で、最大膜厚と最小膜厚との差が600Åであることを意味している。
【0022】
これによると、膜厚分布が大きくなるにしたがい、ITO骨見えレベルが小さくなることが理解できる。色差が9以下になるためには、膜厚分布が±450Å以上あればよいことが理解できる。また、色差が6以下になるためには、膜厚分布が±600Å以上あればよいことが理解できる。
【0023】
図6に絶縁膜の屈折率が1.800の場合、図7に絶縁膜の屈折率が1.700の場合について、絶縁膜に膜厚分布がある場合のITO骨見えレベルがどのようになるかを示す。図4〜図7をまとめると、色差を小さくするための良好なポイントはそれぞれ存在するが、絶縁膜の中心膜厚が変わったり、膜厚分布が変化すると、色差が大きくなる。すなわち、ITO骨見えレベルが悪化する。
【0024】
したがって、中心膜厚などの変化があったとしても、良好なレベルに保つためには、膜厚分布を大きくすることが必要であることが分かる。また、図8に絶縁膜の屈折率を1.9〜1.7にまで変化させ、かつ、膜厚分布を100〜1000Åまでの範囲で変化させたときの色差の最大値をまとめて示す。
【0025】
これによると、色差9以下の条件は、絶縁膜の膜厚分布が±500Å以上、かつ、絶縁膜の屈折率と透明電極の屈折率との差が0.15以内であればよいことが理解できる。人間の目で識別できない色差は3以下と言われているが、実際には6程度でも気にならない。したがって、ITO骨見えが許容できる範囲としては、色差6以下とすることが好ましい。色差6以下を達成するには、絶縁膜の屈折率が透明電極の屈折率にほぼ等しく、かつ、膜厚分布が±600Å〜±700Åの範囲である。
【0026】
このことにより、絶縁膜の膜厚分布が±500Å以上で、かつ、絶縁膜の屈折率と透明電極の屈折率との差が0.15以内であれば、どの膜厚に中心があってもITO骨見えレベルが小さい。なお、絶縁膜を備えない機種の場合には、配向膜の屈折率がITOの屈折率に対して0.15以内の差であり、かつ、その膜厚分布を±500Åとすればよい。
【0027】
次に、絶縁膜に膜厚分布を持たせる方法であるが、一例として図1に示すように、ガラス基板10に凹凸を付けて、フレキソ印刷にて絶縁膜12を塗布し焼成することにより、山の部分は薄く、谷の部分は厚くすることができる。凹凸面上に絶縁膜の液を塗布すると、凹凸の山と谷とで平坦化するように流動し、これをそのまま焼成すれば、膜厚分布がついた絶縁膜12が成膜される。
【0028】
ガラス基板に凹凸を作る方法には、HFエッチング,サンドブラストなどが適用可能である。また、ガラス基板に樹脂層を形成し、その表面に凹凸を付けてもよい。いずれにしても、その凹凸が人間の目で識別できないようにするためには、山谷のピッチを小さくする必要がある。
【0029】
そのためには、山谷のピッチは500μm以下であることが好ましい。より好ましくは300μm以下で、100μm以下であればほとんど認識不能とすることができる。また、規則的な繰り返しパターンで凹凸を配置すると、干渉やモアレが発生することがあるため、ランダム配置とすることが好ましい。なお、山谷のピッチとは、図1にpで示すように、隣り合う山と山との間の距離である。
【0030】
【実施例】
次に、図2を参照しながら、本発明による液晶表示素子1Aの具体的な実施例について説明する。なお、図2において、先に説明した図3の構成要素と同一もしくは同一と見なされる部分には、それと同じ参照符号を用いている。
【0031】
表示観察面側の透明基板10および裏面側の透明基板20として、ともに1.1mm厚のガラス基板を用いた。表示観察面側のガラス基板10の内面をHFエッチングによりフロスト処理して、山谷のピッチが約100μm程度,山谷の深さが約5.5μm程度の凹凸を形成した。
【0032】
この凹凸面上に、アンダーコート層としてSiOを300Å厚に成膜し、その上にITO導電膜をスパッタ法により約300Å厚に成膜した後、パターニングして所定形状の透明電極11を形成した。
【0033】
そして、透明電極11を含む面に絶縁膜の液をフレキソ法により塗布し、仮乾燥後に300℃で焼成して絶縁膜12を形成した。絶縁膜12の膜厚は、ガラス基板10の凹凸を反映し、山部は約200Å厚程度で、谷部は約3000Å厚程度となり、きわめて大きな膜厚分布が得られた。なお、山と谷の間は中間の膜厚となった。
【0034】
絶縁膜12の上に配向膜13をフレキソ法により印刷して成膜した。配向膜13の膜厚は、ガラス基板10の凹凸による影響は少なく、山部で約200Å厚,谷部で約400Å厚の膜厚分布となった。配向膜13にはラビングして配向機能を持たせた。
【0035】
裏面側のガラス基板20には、フロスト処理せずにアンダーコート層としてSiOを300Å厚に成膜し、その上にITO導電膜をスパッタ法により約300Å厚に成膜した後、パターニングして対向電極21を形成した。そして、対向電極21を含む面に絶縁膜22を約700Å厚に成膜し、続いて配向膜23を約300Å厚に成膜した。配向膜23にもラビングして配向機能を持たせた。
【0036】
各構成要素の屈折率は、590nmの波長に対して、ITO約1.941,絶縁膜約1.945,配向膜約1.746,ガラス基板約1.520,SiO約1.460である。液晶30には、長軸の屈折率が約1.628で,短軸の屈折率が約1.498のものを用いた。
【0037】
これら2枚のガラス基板10,20を9.5μmの面内スペーサを挟んで、ラビング方向が直交する配置にて重ね合わせ、周辺シール材を介して圧着して液晶セルを作製した。そして、注入孔より液晶を真空注入法にて注入した後、注入孔を封止材で封止した。液晶層は90゜ツイストのTNで、Δndは約1.6μmとした。
【0038】
ガラス基板10,20の外側に、それぞれ偏光膜14,24を配置した。その際、相近接する液晶の長軸方向(屈折率が高い方向)と偏光膜の吸収軸が同じとなるように配置した。表示モードは、電圧が印加されていない場合に黒となるネガモード(ノーマリーブラックモード)とした。また、裏面側ガラス基板20の背面にバックライト40を配置した。
【0039】
外光を入射して表示を観察したところ、ITO骨見えはほとんど視認できなかった。比較例として、絶縁膜の屈折率を約1.754としたほかは、上記実施例と同様にして液晶セルを作製したところ、ITO骨見えが観察された。また、絶縁膜の屈折率を約1.945とした場合でも、その膜厚分布が±100Å程度の場合には、ITO骨見えが観察された。
【0040】
なお、本発明は、前述した実施の形態に限定されるものでなく、必要に応じて種々の変更が可能である。例えば、前述の実施形態においては、凹凸形成基板を表示観察面側としたが、裏面側に凹凸形成基板を配設してもよい。また、液晶材料中に2色性色素を含有させてもよい。
【0041】
【発明の効果】
以上説明したように、本発明によれば、所定の形状にパターニングされた透明電極を有する一対の支持基板を含み、少なくとも一方の上記透明電極の液晶側に絶縁膜が形成されている液晶表示素子において、上記絶縁膜として、上記透明電極の屈折率に対して差が0.15以内の屈折率であり、かつ、半径500μmの面積内における膜厚分布が±500Å以上の分布を有している膜を用いたことにより、コストアップや生産性の低下を招くことなく、ITO骨見え現象を回避することができ、また、白黒の無彩色性の向上とITO骨見え現象の回避とを両立させることができる。
【0042】
本発明の液晶表示素子は、特に車載用,クロック,インジケータなどに用いた場合に、その良好な視認性,表現力と合わせて高い機能性を発揮する。
【図面の簡単な説明】
【図1】本発明の液晶表示素子に用いられる一方の支持基板を示す一部拡大断面図。
【図2】本発明の液晶表示素子の実施形態を示す模式的断面図。
【図3】従来の一般的な液晶表示素子の構成を示す模式的断面図。
【図4】絶縁膜の屈折率が1.900の場合で膜厚を変更したときの色差を示すグラフ。
【図5】絶縁膜の屈折率が1.900の場合で膜厚分布を変更したときの色差を示すグラフ。
【図6】絶縁膜の屈折率が1.800の場合で膜厚分布を変更したときの色差を示すグラフ。
【図7】絶縁膜の屈折率が1.700の場合で膜厚分布を変更したときの色差を示すグラフ。
【図8】絶縁膜の屈折率を1.900〜1.700に変化させ、かつ、膜厚分布を変更したときの色差を示すグラフ。
【符号の説明】
10 表示観察面側透明基板(一方の支持基板)
20 裏面側透明基板(他方の支持基板)
11,21 透明電極
12,22 絶縁膜
13,23 配向膜
14,24 偏光膜
30 液晶
40 バックライト
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a liquid crystal display element, and more particularly to a technique for avoiding a phenomenon in which a transparent electrode made of ITO is observed in a reflective state.
[0002]
[Prior art]
In general, ITO (indium tin oxide) is used for the transparent electrode used in the liquid crystal display element, and the electrode pattern is formed by patterning the ITO conductive film. The refractive index of ITO is about 1.9, which is larger than the refractive index of about 1.5 of the glass substrate that is the support substrate.
[0003]
Therefore, since the reflection intensity due to external light is different between the place where ITO is present and the place where ITO is not present, the ITO pattern can be seen and display quality is remarkably deteriorated. This phenomenon is so-called “ITO bone appearance”.
[0004]
As one of the means for avoiding this ITO bone appearance, it is known to optimally adjust the refractive index and film thickness of ITO, the refractive index and film thickness of the insulating film and alignment film formed on the ITO, The optimum condition can be derived by theoretical calculation. Since the ITO bone appearance phenomenon can theoretically be treated as reflection of a multilayer film with different refractive index, the characteristics can be understood by calculating the reflection of a general multilayer film. Are almost identical.
[0005]
By the way, in many cases, a TN liquid crystal in which liquid crystal molecules are twisted by 90 ° is used as a liquid crystal display. In this TN liquid crystal, there is a liquid crystal display type called MTN (modulated twisted nematic) in order to improve black and white achromaticity. This is a method of providing a distribution in the gap of the liquid crystal layer.
[0006]
As a method for providing a gap distribution in a liquid crystal layer, a method of performing an uneven frost treatment on a glass substrate is known. For example, an etching process using HF (hydrogen fluoride) can provide an unevenness level where the pitch of the peaks and valleys is about 100 μm and the depth of the peaks and valleys is about 5.5 μm. The pitch between the peaks and valleys refers to the distance between the adjacent peaks of the concavo-convex shape.
[0007]
The method of forming a film on the unevenness of the glass substrate is roughly classified into a sputtering method which is a dry process, a solvent-coated type flexographic printing method and a spin coating method. According to the former sputtering method, almost no film thickness distribution occurs in the formed film, but the apparatus is expensive, the film formation takes time, and the film formation is limited to inorganic materials. For example, it is not very practical.
[0008]
On the other hand, according to the latter flexographic printing method and spin coating method, since the apparatus is relatively inexpensive, film formation in a short time is possible, and organic materials can also be formed. However, it is known that the film thickness can be distributed along the unevenness.
[0009]
As described above, it is possible to derive the optimum film thickness of each component by theoretical calculation in order to avoid the bone appearance of ITO. However, in fact, when an insulating film or the like is formed on the liquid crystal display type concavo-convex substrate of MTN by a solvent coating method, a film thickness distribution is generated along the concavo-convex. The film thickness was not obtained, and it was difficult to reduce the bone appearance of ITO.
In addition, although the desired uniform film thickness can be obtained by the sputtering method, it is not preferable to employ the sputtering method for the reasons described above.
[0010]
[Problems to be solved by the invention]
Therefore, an object of the present invention is to avoid the phenomenon of ITO bone appearance without incurring an increase in cost and a decrease in productivity, and in the liquid crystal display type liquid crystal display element such as MTN described above, there is no black and white. The purpose is to achieve both improvement in coloring and avoidance of the phenomenon of ITO bone appearance.
[0011]
[Means for Solving the Problems]
In order to solve the above problems, the liquid crystal display element of the present invention includes a pair of support substrates having transparent electrodes patterned in a predetermined shape, and at least the support substrate on the display observation surface side of the pair of support substrates. An insulating film is formed on the surface including the transparent electrode, and the insulating film is formed on the transparent electrode forming surface side of the support substrate on the display observation surface side in order to avoid the pattern appearance of the transparent electrode observed in a reflective state. Concavities and convexities having a depth of 3 μm or more for providing a film thickness distribution are formed on the display observation surface side , and the difference in the refractive index of the transparent electrode is 0. The film has a refractive index of 15 or less and a film thickness distribution within an area of a radius of 500 μm having a distribution of ± 500 mm or more.
[0012]
Na us, in the liquid crystal display device of the type that do not require insulation film, it is sufficient to have the refractive index and the film thickness distribution in the alignment film.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
First, the ITO bone appearance phenomenon will be described in more detail, and then embodiments of the present invention will be described. FIG. 3 shows the components of a general liquid crystal display element separately.
[0014]
The liquid crystal display element 1 includes a transparent substrate 10 on the display observation surface side and a transparent substrate 20 on the back surface side as a pair of support substrates. Both the transparent substrates 10 and 20 are made of, for example, a glass substrate (may be a synthetic resin substrate), and transparent electrodes 11 and 21 made of ITO are formed in a predetermined electrode pattern on the inner surfaces facing each other.
[0015]
Alignment films 13 and 23 are formed on the transparent electrodes 11 and 21 via insulating films 12 and 22, and a liquid crystal 30 such as TN is sealed between the alignment films 13 and 23. Although not shown, a silica film (SiO 2 ) as an undercoat layer is formed on the transparent electrode forming surfaces of the transparent substrates 10 and 20.
[0016]
The liquid crystal display element 1 illustrated here is a transmissive type, and polarizing films 14 and 24 are provided on the transparent substrate 10 and 20 on the display observation surface side and the back surface side, respectively, and the back surface side of the transparent substrate 20 on the back surface side. The backlight 40 is disposed in the front.
[0017]
In this configuration, when external light enters the liquid crystal cell from the display observation surface side, the light enters from the upper polarizing film 14, but when there is a difference in refractive index between the layers, the light is reflected at the interface. To do. If the entire display unit is in the same state, the entire display unit is reflected, so that no partial difference occurs and no problem occurs.
[0018]
However, in order to achieve a desired display, the ITO is patterned and the transparent electrode is only partially present. Therefore, reflection of external light is different where ITO is present and absent. When this difference is large, an “ITO bone appearance” in which an ITO (transparent electrode) pattern can be seen occurs, and the display quality is remarkably lowered.
[0019]
For example, the refractive index of the liquid crystal is 1.628, the refractive index of the alignment film is 1.700 and the thickness is 300 mm, the refractive index of ITO is 1.900 and the thickness is 450 mm, and the refractive index of the undercoat layer (SiO 2 ) is 1.460. When the external light is a C light source when the thickness is 300 mm, the refractive index of the glass is 1.520, the refractive index of the insulating film is 1.900 and the thickness is 700 mm, the color difference between the reflected light where ITO is present and where it is absent is About 7 Under this condition, some ITO bone appearance occurs. The above calculation is for the case where light is vertically incident and vertically emitted.
[0020]
Here, when the refractive index of the insulating film is 1.900, FIG. 4 shows the color difference when the film thickness is changed. It can be seen that the color difference in the vicinity of 500 mm is small, but large in other film thicknesses.
[0021]
Next, FIG. 5 shows what the ITO bone appearance level is when the refractive index of the insulating film remains 1.900 and the insulating film has a film thickness distribution. FIG. 5 shows color differences when the film thickness distribution is ± 0 mm, ± 300 mm, ± 400 mm, ± 500 mm, ± 600 mm with respect to the center. Here, the film thickness distribution of, for example, ± 300 mm means that the difference between the maximum film thickness and the minimum film thickness is 600 mm within an area having a radius of 500 μm.
[0022]
According to this, it can be understood that the level of ITO bone appearance decreases as the film thickness distribution increases. In order for the color difference to be 9 or less, it can be understood that the film thickness distribution should be ± 450 mm or more. In addition, it can be understood that the film thickness distribution should be ± 600 mm or more in order for the color difference to be 6 or less.
[0023]
When the refractive index of the insulating film is 1.800 in FIG. 6 and when the refractive index of the insulating film is 1.700 in FIG. Indicate. 4 to 7, there are good points for reducing the color difference, but the color difference increases when the central film thickness of the insulating film changes or the film thickness distribution changes. That is, the ITO bone appearance level deteriorates.
[0024]
Therefore, it can be seen that it is necessary to increase the film thickness distribution in order to maintain a good level even if there is a change in the center film thickness. FIG. 8 collectively shows the maximum color difference when the refractive index of the insulating film is changed from 1.9 to 1.7 and the film thickness distribution is changed in a range from 100 to 1000 mm.
[0025]
According to this, it is understood that the condition that the color difference is 9 or less is sufficient if the thickness distribution of the insulating film is ± 500 mm or more and the difference between the refractive index of the insulating film and the refractive index of the transparent electrode is within 0.15. it can. It is said that the color difference that cannot be discerned by the human eye is 3 or less. Therefore, it is preferable that the color difference is 6 or less as a range in which the ITO bone appearance is acceptable. In order to achieve a color difference of 6 or less, the refractive index of the insulating film is substantially equal to the refractive index of the transparent electrode, and the film thickness distribution is in the range of ± 600 mm to ± 700 mm.
[0026]
As a result, if the thickness distribution of the insulating film is ± 500 mm or more and the difference between the refractive index of the insulating film and the refractive index of the transparent electrode is within 0.15, any film thickness is centered. ITO bone appearance level is small. In the case of a model that does not include an insulating film, the refractive index of the alignment film is within 0.15 of the refractive index of ITO, and the film thickness distribution may be ± 500 mm.
[0027]
Next, as shown in FIG. 1 as an example, the insulating film has a film thickness distribution. As an example, the glass substrate 10 is provided with irregularities, and the insulating film 12 is applied and baked by flexographic printing. The peaks can be thin and the valleys can be thick. When the liquid of the insulating film is applied on the uneven surface, it flows so as to be flattened between the uneven peaks and valleys, and if this is baked as it is, the insulating film 12 having a film thickness distribution is formed.
[0028]
HF etching, sand blasting, etc. can be applied to the method of making the glass substrate uneven. Alternatively, a resin layer may be formed on the glass substrate and the surface thereof may be uneven. In any case, in order to prevent the unevenness from being identified by the human eye, it is necessary to reduce the pitch of the peaks and valleys.
[0029]
For this purpose, the pitch of the valleys is preferably 500 μm or less. More preferably, it is 300 μm or less, and if it is 100 μm or less, it can be hardly recognized. In addition, when irregularities are arranged in a regular repetitive pattern, interference and moire may occur. Therefore, random arrangement is preferable. The pitch between the peaks and valleys is a distance between adjacent peaks as indicated by p in FIG.
[0030]
【Example】
Next, a specific embodiment of the liquid crystal display element 1A according to the present invention will be described with reference to FIG. In FIG. 2, the same reference numerals are used for portions that are considered to be the same as or the same as the components of FIG. 3 described above.
[0031]
As the transparent substrate 10 on the display observation surface side and the transparent substrate 20 on the back surface side, 1.1 mm thick glass substrates were used. The inner surface of the glass substrate 10 on the display observation surface side was frosted by HF etching to form irregularities having a pitch between the peaks and valleys of about 100 μm and a depth of the valleys of about 5.5 μm.
[0032]
On this uneven surface, SiO 2 is formed to a thickness of 300 と し て as an undercoat layer, and an ITO conductive film is formed to a thickness of about 300 に よ り by sputtering, followed by patterning to form a transparent electrode 11 having a predetermined shape. did.
[0033]
And the liquid of the insulating film was apply | coated to the surface containing the transparent electrode 11 by the flexo method, and after baking, it baked at 300 degreeC and formed the insulating film 12. FIG. The film thickness of the insulating film 12 reflects the unevenness of the glass substrate 10, and the peak part is about 200 mm thick and the valley part is about 3000 mm thick, and a very large film thickness distribution was obtained. In addition, it became an intermediate | middle film thickness between a peak and a valley.
[0034]
An alignment film 13 was printed on the insulating film 12 by a flexographic method. The film thickness of the alignment film 13 is less affected by the unevenness of the glass substrate 10, and the film thickness distribution is about 200 mm thick at the peak and about 400 mm thick at the valley. The alignment film 13 was rubbed to have an alignment function.
[0035]
On the glass substrate 20 on the back side, an SiO 2 film having a thickness of 300 mm is formed as an undercoat layer without frosting, and an ITO conductive film is formed on the glass film 20 by sputtering to a thickness of about 300 mm, followed by patterning. A counter electrode 21 was formed. Then, an insulating film 22 was formed on the surface including the counter electrode 21 to a thickness of about 700 mm, and subsequently an alignment film 23 was formed to a thickness of about 300 mm. The alignment film 23 was also rubbed to have an alignment function.
[0036]
The refractive index of each component is about 1.941 ITO, about 1.945 insulating film, about 1.746 alignment film, about 1.520 glass substrate, and about 1.460 SiO 2 with respect to a wavelength of 590 nm. . As the liquid crystal 30, a liquid crystal having a major axis refractive index of about 1.628 and a minor axis refractive index of about 1.498 was used.
[0037]
These two glass substrates 10 and 20 were overlapped in an arrangement in which the rubbing directions were orthogonal to each other with an in-plane spacer of 9.5 μm interposed therebetween, and a liquid crystal cell was produced by pressure bonding through a peripheral sealing material. And after injecting the liquid crystal from the injection hole by a vacuum injection method, the injection hole was sealed with a sealing material. The liquid crystal layer was 90 ° twisted TN and Δnd was about 1.6 μm.
[0038]
Polarizing films 14 and 24 were disposed outside the glass substrates 10 and 20, respectively. At that time, the liquid crystal was arranged so that the major axis direction (direction in which the refractive index is high) of the adjacent liquid crystals and the absorption axis of the polarizing film were the same. The display mode was a negative mode (normally black mode) that turned black when no voltage was applied. In addition, a backlight 40 is disposed on the back surface of the back glass substrate 20.
[0039]
When the display was observed with external light incident, the ITO bone appearance was hardly visible. As a comparative example, a liquid crystal cell was fabricated in the same manner as in the above example except that the refractive index of the insulating film was about 1.754, and the appearance of ITO bone was observed. Even when the refractive index of the insulating film was about 1.945, the appearance of ITO bone was observed when the film thickness distribution was about ± 100 mm.
[0040]
In addition, this invention is not limited to embodiment mentioned above, A various change is possible as needed. For example, in the above-described embodiment, the concavo-convex substrate is the display observation surface side, but the concavo-convex substrate may be disposed on the back surface side. Further, a dichroic dye may be contained in the liquid crystal material.
[0041]
【The invention's effect】
As described above, according to the present invention, a liquid crystal display element including a pair of support substrates having transparent electrodes patterned into a predetermined shape, and having an insulating film formed on the liquid crystal side of at least one of the transparent electrodes In this case, the insulating film has a refractive index within 0.15 with respect to the refractive index of the transparent electrode, and a film thickness distribution within an area having a radius of 500 μm has a distribution of ± 500 mm or more. By using a film, it is possible to avoid the phenomenon of ITO bone appearance without incurring an increase in cost or a decrease in productivity, and at the same time, both improvement of black and white achromaticity and avoidance of the phenomenon of ITO bone appearance are achieved. be able to.
[0042]
The liquid crystal display element of the present invention exhibits high functionality in combination with its good visibility and expressive power, particularly when used in a vehicle, a clock, an indicator, and the like.
[Brief description of the drawings]
FIG. 1 is a partially enlarged cross-sectional view showing one support substrate used in a liquid crystal display element of the present invention.
FIG. 2 is a schematic cross-sectional view showing an embodiment of a liquid crystal display element of the present invention.
FIG. 3 is a schematic cross-sectional view showing a configuration of a conventional general liquid crystal display element.
FIG. 4 is a graph showing the color difference when the film thickness is changed when the refractive index of the insulating film is 1.900.
FIG. 5 is a graph showing the color difference when the thickness distribution is changed when the refractive index of the insulating film is 1.900.
FIG. 6 is a graph showing a color difference when the film thickness distribution is changed when the refractive index of the insulating film is 1.800.
FIG. 7 is a graph showing a color difference when the film thickness distribution is changed when the refractive index of the insulating film is 1.700.
FIG. 8 is a graph showing the color difference when the refractive index of the insulating film is changed from 1.900 to 1.700 and the film thickness distribution is changed.
[Explanation of symbols]
10 Display observation side transparent substrate (one support substrate)
20 Back side transparent substrate (other support substrate)
11, 21 Transparent electrodes 12, 22 Insulating films 13, 23 Alignment films 14, 24 Polarizing film 30 Liquid crystal 40 Backlight

Claims (2)

所定の形状にパターニングされた透明電極を有する一対の支持基板を含み、上記一対の支持基板のうち少なくとも表示観察面側の支持基板の透明電極を含む面に絶縁膜が形成されており、反射状態で観察される上記透明電極のパターン見えを回避するために、
上記表示観察面側の支持基板の透明電極形成面側に上記絶縁膜に膜厚分布を与えるための山と谷の深さが3μm以上である凹凸が形成されており、上記表示観察面側の上記絶縁膜が、上記透明電極の屈折率に対して差が0.15以内の屈折率であり、かつ、半径500μmの面積内における膜厚分布が±500Å以上の分布を有している膜であることを特徴とする液晶表示素子。
Including a pair of support substrates having transparent electrodes patterned into a predetermined shape, and an insulating film is formed on a surface of the pair of support substrates including the transparent electrodes of at least the support substrate on the display observation surface side ; In order to avoid the pattern appearance of the transparent electrode observed in
Concavities and convexities having depths of 3 μm or more for giving a film thickness distribution to the insulating film are formed on the transparent electrode forming surface side of the support substrate on the display observation surface side, The insulating film is a film having a refractive index within a difference of 0.15 with respect to the refractive index of the transparent electrode, and a film thickness distribution within an area of a radius of 500 μm of ± 500 mm or more. There is a liquid crystal display element.
上記絶縁膜に代わりとして配向膜が用いられる請求項1に記載の液晶表示素子。The liquid crystal display element according to claim 1, wherein an alignment film is used instead of the insulating film.
JP2002304417A 2001-10-31 2002-10-18 Liquid crystal display element Expired - Fee Related JP4187194B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002304417A JP4187194B2 (en) 2001-10-31 2002-10-18 Liquid crystal display element

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001334981 2001-10-31
JP2001-334981 2001-10-31
JP2002304417A JP4187194B2 (en) 2001-10-31 2002-10-18 Liquid crystal display element

Publications (2)

Publication Number Publication Date
JP2003202552A JP2003202552A (en) 2003-07-18
JP4187194B2 true JP4187194B2 (en) 2008-11-26

Family

ID=27666734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002304417A Expired - Fee Related JP4187194B2 (en) 2001-10-31 2002-10-18 Liquid crystal display element

Country Status (1)

Country Link
JP (1) JP4187194B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006058651A (en) * 2004-08-20 2006-03-02 Optrex Corp Liquid crystal display panel
TWI447192B (en) * 2010-11-24 2014-08-01 Lg Hausys Ltd Pressure-sensitive adhesive composition for touch panel, pressure-sensitive adhesive film and touch panel
JP5912713B2 (en) * 2012-03-21 2016-04-27 スタンレー電気株式会社 Liquid crystal display element
JP5835051B2 (en) * 2012-03-27 2015-12-24 Jsr株式会社 Array substrate, liquid crystal display element, and method of manufacturing array substrate
JP5958091B2 (en) * 2012-05-31 2016-07-27 日本精機株式会社 Liquid crystal display element
JP6777469B2 (en) * 2015-09-04 2020-10-28 積水化学工業株式会社 Light-transmitting conductive film

Also Published As

Publication number Publication date
JP2003202552A (en) 2003-07-18

Similar Documents

Publication Publication Date Title
JP5898492B2 (en) Liquid crystal display element and manufacturing method thereof
JP5647875B2 (en) Liquid crystal element, liquid crystal display device
KR100748047B1 (en) Liquid crystal display element
JP4187194B2 (en) Liquid crystal display element
JPH06175126A (en) Reflection type liquid crystal display device and its production
JP2740401B2 (en) Reflective liquid crystal display device and method of manufacturing the same
JP3858755B2 (en) LIQUID CRYSTAL DISPLAY DEVICE, ITS MANUFACTURING METHOD, AND ELECTRONIC DEVICE
US7718329B2 (en) Method of fabricating liquid crystal display device
JP3983870B2 (en) Liquid crystal display
JP5658527B2 (en) Liquid crystal display element
JP2002162632A (en) Liquid crystal display device
KR100705618B1 (en) Liquid crystal display and method for fabricating the same
JP5913860B2 (en) Liquid crystal display
JP3268735B2 (en) Liquid crystal display device
JP2545877B2 (en) Liquid crystal display
JP2003005171A (en) Liquid crystal display device and method for manufacturing the same
JP2508298Y2 (en) Liquid crystal display
JP2002341339A (en) Liquid crystal display device and manufacturing method therefor
JPH112809A (en) Liquid crystal display device and its manufacture
JPH02110431A (en) Liquid crystal display device
JP3314780B2 (en) Liquid crystal display
JP3890826B2 (en) Liquid crystal device and electronic device
JPH02126227A (en) Liquid crystal display device
JP2001183618A (en) Reflection type liquid crystal display device and image display application instrument using the same
JPS6381323A (en) Production of liquid crystal display element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071031

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20071102

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080903

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080905

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140919

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140919

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140919

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees