JP4187098B2 - Tire failure detection method and apparatus - Google Patents

Tire failure detection method and apparatus Download PDF

Info

Publication number
JP4187098B2
JP4187098B2 JP2003028364A JP2003028364A JP4187098B2 JP 4187098 B2 JP4187098 B2 JP 4187098B2 JP 2003028364 A JP2003028364 A JP 2003028364A JP 2003028364 A JP2003028364 A JP 2003028364A JP 4187098 B2 JP4187098 B2 JP 4187098B2
Authority
JP
Japan
Prior art keywords
tire
failure detection
rotating
temperature sensor
surface temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003028364A
Other languages
Japanese (ja)
Other versions
JP2004239724A (en
Inventor
敏男 落合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2003028364A priority Critical patent/JP4187098B2/en
Publication of JP2004239724A publication Critical patent/JP2004239724A/en
Application granted granted Critical
Publication of JP4187098B2 publication Critical patent/JP4187098B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、タイヤ故障検知方法及び装置に関し、更に詳しくは、タイヤの内部故障を高い精度で検知できるようにしたタイヤ故障検知方法及び装置に関する。
【0002】
【従来の技術】
一般に、タイヤ耐久試験では、タイヤの内部故障を検知するため、接触式の故障検知装置を使用し、その検知部を試験ドラム上を回転する空気入りタイヤの表面近傍に配置し、内部故障により膨出したタイヤ表面が検知部に接触することで、タイヤ故障の検知を行うようにしている(例えば、特許文献1参照)。
【0003】
【特許文献1】
特開昭57−93230号公報
【0004】
【発明が解決しようとする課題】
しかしながら、上述した接触式の故障検知装置で検知する方法では、試験ドラム上で空気入りタイヤを長時間連続回転させると、タイヤの温度上昇によりタイヤ内圧が上昇し、空気入りタイヤが径方向外側に膨径するため、また回転速度を上げると、遠心力により空気入りタイヤが径方向外側に膨径するため、更にラジアルタイヤにあっては負荷荷重が増加すると、試験ドラムに接する空気入りタイヤの部分と反対側の部分が膨出するため、その影響を排除するには検知部をある程度タイヤから離間させる必要があり、その結果、膨出量が小さい内は検知できず、あまり精度良く測定することができない。
【0005】
そのため、内部故障により膨出したタイヤ表面が局部的で膨出量が少ない微小な変位である場合には、その膨出したタイヤ表面が検知部に接触する前にタイヤ破壊を招くことがある。このように内部故障を検知する前にタイヤが破壊すると、故障発生箇所の特定並びに故障の成長過程の解析ができず、タイヤの改良を進める上での妨げになっていた。
【0006】
本発明の目的は、タイヤの内部故障を従来より高い精度で検知することが可能なタイヤ故障検知方法及び装置を提供することにある。
【0007】
【課題を解決するための手段】
上記目的を達成する本発明のタイヤ故障検知方法は、回転する空気入りタイヤに発生した内部故障を検知するタイヤ故障検知方法であって、前記回転する空気入りタイヤに対面して設置した非接触式温度センサにより、該回転する空気入りタイヤの表面温度をタイヤ周方向に沿って1周にわたって測定する工程を繰り返し行い、該回転するタイヤのタイヤ周上の各対応する位置における前記測定された表面温度の所定の時間的間隔毎の前後の変化量をそれぞれ算出し、前記算出された各変化量間の差が所定の閾値以上になった場合に内部故障を発生したと判定することを特徴とする。
【0009】
また、本発明のタイヤ故障検知装置は、回転する空気入りタイヤに発生した内部故障を検知するタイヤ故障検知装置であって、前記回転する空気入りタイヤに対面して設置した非接触式温度センサと、該温度センサからの検出信号を処理する処理手段とを有し、前記処理手段は、前記非接触式温度センサにより前記回転する空気入りタイヤのタイヤ周方向に沿って1周にわたって繰り返し測定された表面温度から該回転するタイヤのタイヤ周上の各対応する位置における前記表面温度の所定の時間的間隔毎の前後の変化量をそれぞれ算出し、前記算出された各変化量間の差が所定の閾値以上になった場合に内部故障を発生したと判定することを特徴とする。
【0010】
本発明の他のタイヤ故障検知装置は、回転する空気入りタイヤに内部故障が発生したのを検知するタイヤ故障検知方法であって、前記空気入りタイヤに対面して設置した非接触式温度センサと、該温度センサからの検出信号を処理する処理手段とを有し、前記温度センサが前記回転する空気入りタイヤの表面温度をタイヤ周方向に沿って1周にわたって測定する工程を繰り返し行い、前記処理手段が所定の時間的間隔をおいて測定された前後の表面温度データをタイヤ周上の各対応する位置で比較してその温度変化量を算出し、いずれかの位置における該温度変化量の差が所定の閾値以上になった場合に内部故障が発生したと判定することを特徴とする。
【0011】
上述した本発明によれば、非接触式温度センサを使用し、タイヤ表面温度の時間的間隔毎の変化量の差を用いて内部故障の発生を判定するため、タイヤ表面の膨出に左右されずに内部故障を検知することができる。そのため、従来より高い精度でのタイヤ故障の検知が可能になる。
【0012】
【発明の実施の形態】
以下、本発明の構成について添付の図面を参照しながら詳細に説明する。
【0013】
図1は、タイヤ耐久試験において本発明のタイヤ故障検知方法を実施する一例を示し、1は試験ドラム、2は空気入りタイヤ、3は回転する試験ドラム1により試験ドラム1上で回転する空気入りタイヤ3の表面温度を測定する非接触式温度センサ、4は非接触式温度センサ3からの検出信号を処理する処理手段であり、タイヤ故障検知装置は、非接触式温度センサ3及び処理手段4を備えている。
【0014】
試験ドラム1は回転可能に設置され、回転速度を任意の速度に変更できるようになっている。
【0015】
ホイール5に組み付けられ、所定の空気圧を充填した空気入りタイヤ2は、タイヤ支持軸6に回転自在に支持され、回転する試験ドラム1の外周面に当接することで、試験ドラム1上を回転走行する。空気入りタイヤ2には、タイヤ支持軸6を介して所定の負荷荷重を加えることができるようになっている。
【0016】
非接触式温度センサ3は好ましくは赤外線を検出して表面温度を測定する赤外線画像読取温度計(例えば、日本アビオニクス(株)製の赤外線画像装置TVS−8100MKll )から構成され、複数枚の画像を連続的に読み取ることで回転する空気入りタイヤ2の表面温度をタイヤ周方向に沿って1周にわたって測定し、その工程を所定の時間的間隔をおいて繰り返し行うようになっている。
【0017】
この時間的間隔は、タイヤ耐久試験の条件が次第に厳しくなるにつれて、あるいは表面温度のレベルが高くなるにつれて次第に短く設定するのがよい。例えば、試験の開始直後においては1時間程度の間隔で、故障発生間近では10秒位の間隔にすることができる。タイヤ耐久試験では、この非接触式温度センサ3は、空気入りタイヤ2の両ショルダー部斜め方向に対面して設置するのがよい。
【0018】
処理手段4は、温度センサ3からタイヤ全周にわたって取り込まれた赤外線画像データから表面温度データを算出する。また、所定の時間的間隔をおいて測定された前後の表面温度データをタイヤ周上の各対応する位置で1周にわたって比較してその温度変化量をそれぞれ算出し、その値が1つでも所定の閾値以上になった場合には内部故障が発生したと判定して、不図示の制御手段を介して試験ドラム1の回転を停止させ、タイヤ耐久試験を終了するようになっている。
【0019】
なお、タイヤ周上の各対応する位置を同定する手段には、タイヤ支持軸6に取り付けた周知のロータリーエンコーダー(不図示)が使用されるが、回転するタイヤのサイドウォール部や、リム部に取り付けた反射シートに光を照射し、その反射光を検知した位置を基準位置にしてタイヤ周上の各対応する位置を得るようにしてもよい。
【0020】
以下、図2のフローを参照しながらタイヤ耐久試験における本発明のタイヤ故障検知方法を説明する。
【0021】
先ず、試験ドラム1を回転させ、空気入りタイヤ2を試験ドラム1上で回転走行させる。所定の耐久試験開始速度に達すると、温度センサ3により空気入りタイヤ2の表面の赤外線画像をタイヤ1周にわたって連続的に複数枚取り込み、空気入りタイヤ2の表面温度をタイヤ周方向に沿って全周にわたって測定する。この工程を所定の時間的間隔をおいて繰り返し行う(ステップa)。
【0022】
処理手段4では、温度センサ3からタイヤ1周分の入力がある毎に、その入力された赤外線画像に基づいてタイヤ1周にわたる表面温度を算出する。そして、所定の時間的間隔をおいて測定された前後の表面温度データをタイヤ周上の各対応する位置で1周にわたって比較し、各対応する位置での温度変化量をそれぞれ算出する(ステップb)。更に、算出した各温度変化量を比較し、その変化量の差(最大変化量と最小変化量の差、あるいは隣り合う変化量の差)を算出する(ステップb’)。好ましくは、算出した各温度変化の量が所定量(例えば、5℃)を超えた際に変化量の差を算出するようにするのがよい。
【0023】
続いて、得られた各温度変化量の差を予め設定した所定の閾値と比較し、各温度変化量の差のいずれか1つでも所定の閾値以上であると(ステップc)、内部故障が発生したと判定して、不図示の制御手段を介して試験ドラム1の回転を停止させ(ステップd)、タイヤ耐久試験を終了する。ステップcにおいて、各温度変化量の差がいずれも所定の閾値より小さいと、空気入りタイヤ2の表面温度測定を続行するため、ステップaに戻り、それ以降の工程を繰り返す。
【0024】
本発明者は、タイヤの内部故障について鋭意検討した結果、タイヤ表面の温度変化に着目した。回転ドラム1上を回転する空気入りタイヤ2は、時間の経過と共にタイヤが発熱して温度が次第に上昇する。タイヤ表面温度分布を測定した時、一般的に、比較的温度が高いのは、例えばトレッド表面で言えば溝底の部分であり、温度の高いタイヤ内部と表面との距離がより近い部分程、高い表面温度となる。つまり、単に表面温度が高い程、その部分の内部温度が高い訳ではないが、故障箇所では他の箇所より温度上昇が大きく、その故障箇所に対応したタイヤ表面の温度が他の箇所より温度変化が大きくなることがわかった。
【0025】
そこで、上記のように非接触式温度センサ3を使用し、間隔をおいて測定したタイヤ表面の温度の時間的変位を利用して内部故障の発生を判定するようにしたのである。これによりタイヤ表面の膨出状態に関わらず内部故障を検知することができるため、従来より高い精度でタイヤ内部故障の検知が可能になる。
【0026】
また、内部故障が発生した初期段階での検知が可能になり、しかも測定する部位に対面して温度センサ3を設置することで、タイヤ表面に設けられた溝やカーフなどの影響を受けることなく、タイヤ表面のあらゆる部位での故障を検知することができる。
【0029】
本発明において、上記実施形態では、空気入りタイヤ2のトレッド部2Aからサイドウォール部2Bにわたってタイヤ故障を測定する例を示したが、サイドウォール部2Bからビード部2C、あるいはビード部2Cにおけるタイヤ故障を測定する場合には、上記のように連続して複数枚の赤外線画像を取り込まずに、非接触式温度センサ3によりタイヤ軸方向から全体を撮影した1枚の赤外線画像を取り込み、それを用いて処理手段4で処理するようにしてもよい。
【0030】
赤外線画像を取り込むようにした非接触式温度センサ3は、処理手段4での画像処理に膨大なメモリ等を要するため、上述したように空気入りタイヤの表面温度を測定する工程を所定の時間的間隔をおいて繰り返し行うようにするのが、市販の機器を用いて低コストにできるので好ましいが、それに限定されず、高性能な処理手段を使用して、温度センサ3により回転する空気入りタイヤ2の表面温度を連続して常時測定し、所定の時間的間隔をおいて測定された前後の表面温度データを用いてタイヤ周上の各対応する位置での温度変化量を求めるようにしてもよい。
【0031】
非接触式温度センサ3は、上述した赤外線を検出する赤外線画像読取温度計を好ましく用いることができるが、当然のことながらこれに限定されず、タイヤ表面温度が測定できる非接触式のものであれば他の態様であってもよい。
【0032】
上述した本発明のタイヤ故障検知方法及び装置は、タイヤ耐久試験において好ましく用いることができるが、例えば、車両に装着してタイヤ故障を検知する装置などにも適用することができる。その場合には、処理手段4に警報を発生する警報発生手段を接続し、処理手段4でタイヤの内部故障が発生したと判定した際に警報発生手段により運転手にそれを知らせるようにするのがよい。
【0033】
【発明の効果】
上述したように本発明は、非接触式温度センサを使用し、所定の時間的間隔をおいて測定された前後の表面温度データの周上の温度変化量の差が所定の閾値以上になった場合に内部故障が発生したと判定するようにしたので、タイヤ表面の膨出量に関係なく内部故障を検知でき、従って、従来より高い精度でタイヤ故障の検知が可能になる。
【図面の簡単な説明】
【図1】タイヤ耐久試験において、本発明のタイヤ故障検知方法を実施する一例を示す説明図である。
【図2】本発明のタイヤ故障検知方法を示すフローチャート図である。
【符号の説明】
1 試験ドラム
2 空気入りタイヤ
3 非接触式温度センサ
4 処理手段
5 ホイール
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a tire failure detection method and apparatus, and more particularly to a tire failure detection method and apparatus that can detect an internal failure of a tire with high accuracy.
[0002]
[Prior art]
In general, in a tire durability test, a contact-type failure detection device is used to detect an internal failure of the tire, and the detection portion is arranged near the surface of a pneumatic tire rotating on a test drum, and is inflated due to an internal failure. A tire failure is detected by contacting the detected tire surface with the detection unit (see, for example, Patent Document 1).
[0003]
[Patent Document 1]
JP-A-57-93230 [0004]
[Problems to be solved by the invention]
However, in the method of detecting with the contact-type failure detection device described above, if the pneumatic tire is continuously rotated on the test drum for a long time, the tire internal pressure increases due to the temperature rise of the tire, and the pneumatic tire is moved radially outward. When the rotational speed is increased and the rotational speed is increased, the pneumatic tire expands radially outward due to centrifugal force. In the case of a radial tire, when the load load increases, the portion of the pneumatic tire that contacts the test drum Because the part opposite to the bulge swells, it is necessary to separate the detection part from the tire to some extent in order to eliminate the influence. I can't.
[0005]
For this reason, when the tire surface bulging due to an internal failure is a small displacement that is localized and has a small amount of bulging, the tire surface may be destroyed before it comes into contact with the detection unit. If the tire breaks before detecting an internal failure in this way, it is impossible to identify the location where the failure occurred and analyze the growth process of the failure, which hinders the improvement of the tire.
[0006]
An object of the present invention is to provide a tire failure detection method and apparatus capable of detecting an internal failure of a tire with higher accuracy than before.
[0007]
[Means for Solving the Problems]
To achieve the above object tire failure detection method of the present invention is a tire failure detection method for detecting impaired internal late occurred pneumatic tire rotates, a non-contact which is placed to face the pneumatic tire to the rotating more formula temperature sensor, the surface temperature of a pneumatic tire to the rotating repeats the steps of measuring over one round along the tire circumferential direction, is the measurement at each corresponding position on the tire circumference of the tire to the rotating surface temperature of the predetermined amount of change before and after each time interval is calculated, respectively, that the difference between the change amount the calculated determines that the internal mechanical failure has occurred if it becomes more than a predetermined threshold value Features.
[0009]
Also, tire failure detection device of the present invention is a tire failure detection device for detecting a malfunction internal occurred pneumatic tire rotates, a non-contact temperature sensor disposed to face the pneumatic tire to the rotating When, and a processing means for processing the detection signal from the temperature sensor, said processing means is measured repeatedly over one round along the tire circumferential direction of the pneumatic tire to the rotating by the non-contact type temperature sensor from the surface temperature, the amount of change before and after the predetermined time interval of the surface temperature at each corresponding position on the tire circumference of the tire to the rotating was calculated, the difference between the change amount the calculated is It is characterized in that it is determined that an internal failure has occurred when a predetermined threshold value is exceeded.
[0010]
Another tire failure detection device according to the present invention is a tire failure detection method for detecting that an internal failure has occurred in a rotating pneumatic tire, the non-contact temperature sensor installed facing the pneumatic tire, And processing means for processing a detection signal from the temperature sensor, wherein the temperature sensor repeatedly performs a step of measuring the surface temperature of the rotating pneumatic tire over the circumference in the tire circumferential direction, and the processing The temperature change amount is calculated by comparing the surface temperature data before and after the means measured at a predetermined time interval at each corresponding position on the tire circumference, and the difference in the temperature change amount at any position is calculated. It is characterized in that it is determined that an internal failure has occurred when the value becomes equal to or greater than a predetermined threshold.
[0011]
According to the present invention described above, since a non-contact temperature sensor is used and the occurrence of an internal failure is determined using the difference in the amount of change in the tire surface temperature at each time interval, it depends on the bulging of the tire surface. Internal failure can be detected without Therefore, it is possible to detect a tire failure with higher accuracy than before.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the configuration of the present invention will be described in detail with reference to the accompanying drawings.
[0013]
FIG. 1 shows an example in which the tire failure detection method of the present invention is implemented in a tire durability test, where 1 is a test drum, 2 is a pneumatic tire, and 3 is a pneumatic rotating on the test drum 1 by a rotating test drum 1. A non-contact temperature sensor 4 for measuring the surface temperature of the tire 3 is a processing means for processing a detection signal from the non-contact temperature sensor 3, and the tire failure detection apparatus includes the non-contact temperature sensor 3 and the processing means 4. It has.
[0014]
The test drum 1 is installed so as to be rotatable, and the rotation speed can be changed to an arbitrary speed.
[0015]
A pneumatic tire 2 assembled to a wheel 5 and filled with a predetermined air pressure is rotatably supported on a tire support shaft 6 and rotates on the test drum 1 by contacting the outer peripheral surface of the rotating test drum 1. To do. A predetermined load can be applied to the pneumatic tire 2 via the tire support shaft 6.
[0016]
The non-contact type temperature sensor 3 is preferably composed of an infrared image reading thermometer (for example, an infrared imaging device TVS-8100MKll manufactured by Nippon Avionics Co., Ltd.) that detects the infrared ray and measures the surface temperature, The surface temperature of the rotating pneumatic tire 2 by continuously reading is measured over one turn along the tire circumferential direction, and the process is repeatedly performed at predetermined time intervals.
[0017]
This time interval should be set shorter as the conditions of the tire endurance test become more severe, or as the surface temperature level becomes higher. For example, the interval can be about 1 hour immediately after the start of the test, and about 10 seconds immediately after the occurrence of the failure. In the tire durability test, it is preferable that the non-contact temperature sensor 3 be installed facing both shoulder portions of the pneumatic tire 2 diagonally.
[0018]
The processing means 4 calculates surface temperature data from infrared image data taken from the temperature sensor 3 over the entire circumference of the tire. In addition, the surface temperature data measured before and after a predetermined time interval are compared over one lap at each corresponding position on the tire circumference to calculate the temperature change amount, and even one value is predetermined. If it exceeds the threshold value, it is determined that an internal failure has occurred, the rotation of the test drum 1 is stopped via a control means (not shown), and the tire durability test is terminated.
[0019]
A known rotary encoder (not shown) attached to the tire support shaft 6 is used as a means for identifying each corresponding position on the tire circumference, but it is used for a sidewall portion or a rim portion of the rotating tire. You may make it irradiate light to the attached reflective sheet | seat, and may obtain each corresponding position on a tire periphery by making the position which detected the reflected light into a reference position.
[0020]
Hereinafter, the tire failure detection method of the present invention in the tire durability test will be described with reference to the flow of FIG.
[0021]
First, the test drum 1 is rotated and the pneumatic tire 2 is rotated on the test drum 1. When a predetermined endurance test start speed is reached, a plurality of infrared images of the surface of the pneumatic tire 2 are taken continuously over the circumference of the tire by the temperature sensor 3, and the surface temperature of the pneumatic tire 2 is completely adjusted along the tire circumferential direction. Measure over the lap. This process is repeated at a predetermined time interval (step a).
[0022]
The processing means 4 calculates the surface temperature over the entire circumference of the tire based on the input infrared image every time there is an input for the circumference of the tire from the temperature sensor 3. Then, the front and back surface temperature data measured at predetermined time intervals are compared over one lap at each corresponding position on the tire circumference, and the amount of temperature change at each corresponding position is calculated (step b). ). Further, the calculated temperature change amounts are compared, and the difference between the change amounts (the difference between the maximum change amount and the minimum change amount or the difference between adjacent change amounts) is calculated (step b ′). Preferably, the difference in the amount of change is calculated when the calculated amount of each temperature change exceeds a predetermined amount (for example, 5 ° C.).
[0023]
Subsequently, the difference in the temperature change amount obtained is compared with a predetermined threshold set in advance, to be equal to or larger than the predetermined threshold even one of the differences of each temperature change amount (step c), an internal fault It determines with having generate | occur | produced, the rotation of the test drum 1 is stopped via the control means not shown (step d), and a tire durability test is complete | finished. In step c, if the difference in each temperature change amount is smaller than the predetermined threshold value, the surface temperature measurement of the pneumatic tire 2 is continued, so that the process returns to step a and the subsequent steps are repeated.
[0024]
As a result of intensive studies on the internal failure of the tire, the present inventor has focused on the temperature change on the tire surface. The pneumatic tire 2 rotating on the rotating drum 1 heats up with the passage of time, and the temperature gradually rises. When measuring the tire surface temperature distribution, in general, the relatively high temperature is, for example, the groove bottom portion on the tread surface, and the closer the distance between the tire inner surface and the surface, the higher the temperature, High surface temperature. In other words, the higher the surface temperature is, the higher the internal temperature of that part is, but the temperature rises more at other parts than at other parts, and the temperature of the tire surface corresponding to that part changes more than other parts. Was found to be larger.
[0025]
Therefore, the non-contact temperature sensor 3 is used as described above, and the occurrence of an internal failure is determined using the temporal displacement of the tire surface temperature measured at intervals. As a result, an internal failure can be detected regardless of the bulging state of the tire surface, so that it is possible to detect a tire internal failure with higher accuracy than in the past.
[0026]
In addition, it is possible to detect at the initial stage when an internal failure occurs, and by installing the temperature sensor 3 facing the part to be measured, it is not affected by a groove or a kerf provided on the tire surface. Failure at any part of the tire surface can be detected.
[0029]
In the present invention, in the above embodiment, an example in which the tire failure is measured from the tread portion 2A to the sidewall portion 2B of the pneumatic tire 2 is shown. However, the tire failure in the bead portion 2C from the sidewall portion 2B or the bead portion 2C is shown. In the case of measuring, without capturing a plurality of infrared images continuously as described above, a non-contact temperature sensor 3 captures a single infrared image taken from the tire axial direction and uses it. The processing means 4 may be used for processing.
[0030]
The non-contact temperature sensor 3 configured to capture an infrared image requires a large amount of memory or the like for image processing in the processing unit 4, and therefore the process of measuring the surface temperature of the pneumatic tire as described above is performed for a predetermined time. It is preferable to repeat the operation at intervals because it is possible to reduce the cost by using a commercially available device. However, the present invention is not limited to this, and the pneumatic tire is rotated by the temperature sensor 3 using a high-performance processing means. The surface temperature of 2 is continuously measured continuously, and the amount of temperature change at each corresponding position on the tire circumference is obtained using the front and back surface temperature data measured at a predetermined time interval. Good.
[0031]
As the non-contact type temperature sensor 3, the above-described infrared image reading thermometer that detects infrared rays can be preferably used. However, the non-contact type temperature sensor 3 is naturally not limited to this, and may be a non-contact type that can measure the tire surface temperature. Other embodiments may be used.
[0032]
The tire failure detection method and apparatus of the present invention described above can be preferably used in a tire durability test, but can also be applied to, for example, an apparatus that is mounted on a vehicle and detects a tire failure. In that case, an alarm generating means for generating an alarm is connected to the processing means 4 so that when the processing means 4 determines that an internal failure of the tire has occurred, the alarm generating means notifies the driver of it. Is good.
[0033]
【The invention's effect】
The present invention as described above, using a non-contact type temperature sensor, the difference in temperature variation on the circumference of the surface temperature data before and after the measured at a predetermined time interval is equal to or greater than a predetermined threshold value In this case, it is determined that an internal failure has occurred. Therefore, the internal failure can be detected regardless of the amount of bulging of the tire surface, and therefore, the tire failure can be detected with higher accuracy than in the past.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing an example of implementing a tire failure detection method of the present invention in a tire durability test.
FIG. 2 is a flowchart showing a tire failure detection method according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Test drum 2 Pneumatic tire 3 Non-contact-type temperature sensor 4 Processing means 5 Wheel

Claims (9)

回転する空気入りタイヤに発生した内部故障を検知するタイヤ故障検知方法であって、
前記回転する空気入りタイヤに対面して設置した非接触式温度センサにより、該回転する空気入りタイヤの表面温度をタイヤ周方向に沿って1周にわたって測定する工程を繰り返し行い、該回転するタイヤのタイヤ周上の各対応する位置における前記測定された表面温度の所定の時間的間隔毎の前後の変化量をそれぞれ算出し、前記算出された各変化量間の差が所定の閾値以上になった場合に内部故障を発生したと判定するタイヤ故障検知方法。
A tire failure detection method for detecting impaired internal late occurred pneumatic tire rotates,
More non-contact temperature sensor which is installed to face the pneumatic tire to the rotating, the surface temperature of a pneumatic tire to the rotating repeats the steps of measuring over one round along the tire circumferential direction, and the rotating the amount of change before and after the predetermined time interval of the measured surface temperature at each corresponding position on the tire circumference of the tire was calculated, the difference between the change amount the calculated is equal to or larger than a predetermined threshold value tire failure detection method determines that the internal mechanical failure has occurred when it becomes.
前記回転するタイヤの表面温度をタイヤ周方向に沿って1周にわたって測定する工程を前記所定の時間的間隔毎に行う請求項1に記載のタイヤ故障検知方法。The tire failure detection method according to claim 1 , wherein the step of measuring the surface temperature of the rotating tire over the entire circumference in the tire circumferential direction is performed at each predetermined time interval. 前記非接触式温度センサが赤外線画像読取温度計である請求項1又は2に記載のタイヤ故障検知方法。The tire failure detection method according to claim 1 or 2 non-contact type temperature sensor is infrared image reading thermometer. 前記回転するタイヤのタイヤ周上の各対応する位置を、該回転するタイヤのサイドウォール部又はリム部に取り付けられた反射シートに照射した光の反射光を検知することにより同定する請求項1〜3のいずれかに記載のタイヤ故障検知方法。Each corresponding position on the tire circumference of the rotating tire is identified by detecting reflected light of light applied to a reflection sheet attached to a sidewall portion or a rim portion of the rotating tire. 4. The tire failure detection method according to any one of 3. 回転する空気入りタイヤに発生した内部故障を検知するタイヤ故障検知装置であって、
前記回転する空気入りタイヤに対面して設置した非接触式温度センサと、該温度センサからの検出信号を処理する処理手段とを有し、前記処理手段は、前記非接触式温度センサにより前記回転する空気入りタイヤのタイヤ周方向に沿って1周にわたって繰り返し測定された表面温度から該回転するタイヤのタイヤ周上の各対応する位置における前記表面温度の所定の時間的間隔毎の前後の変化量をそれぞれ算出し、前記算出された各変化量間の差が所定の閾値以上になった場合に内部故障を発生したと判定するタイヤ故障検知装置。
A tire failure detection device for detecting an internal fault occurs in the pneumatic tire rotates,
A non-contact temperature sensor installed facing the rotating pneumatic tire; and processing means for processing a detection signal from the temperature sensor, wherein the processing means is rotated by the non-contact temperature sensor. Change of the surface temperature before and after each predetermined time interval at each corresponding position on the tire circumference of the rotating tire from the surface temperature repeatedly measured over one circumference along the tire circumferential direction of the pneumatic tire the amount was calculated, the difference is a tire failure detection device determines that generates an internal fault if it becomes more than a predetermined threshold value between the variation of the calculated.
前記非接触式温度センサにより前記回転するタイヤの表面温度をタイヤ周方向に沿って1周にわたって繰り返し測定する工程を前記所定の時間的間隔毎に行う請求項5に記載のタイヤ故障検知装置。The tire failure detection device according to claim 5 , wherein the step of repeatedly measuring the surface temperature of the rotating tire by the non-contact temperature sensor over the entire circumference along the tire circumferential direction is performed at each predetermined time interval. 前記非接触式温度センサが赤外線画像読取温度計である請求項5又は6に記載のタイヤ故障検知装置。The tire failure detection device according to claim 5 or 6 non-contact type temperature sensor is infrared image reading thermometer. 前記処理手段に警報発生手段を接続し、該処理手段が前記内部故障を検知したと判定した場合に該警報発生手段に警報を発生させるようにした請求項5〜7のいずれかに記載のタイヤ故障検知装置。The tire according to any one of claims 5 to 7 , wherein an alarm generating means is connected to the processing means, and the alarm generating means generates an alarm when it is determined that the processing means has detected the internal failure. Failure detection device. 前記回転するタイヤのサイドウォール部又はリム部に反射シートを取り付け、該反射シートに照射した光の反射光を検知することにより、前記回転するタイヤのタイヤ周上の各対応する位置を同定するようにした請求項5〜8のいずれかに記載のタイヤ故障検知装置 A reflective sheet is attached to the sidewall or rim of the rotating tire, and the corresponding position on the tire circumference of the rotating tire is identified by detecting the reflected light of the light irradiated on the reflective sheet. The tire failure detection device according to any one of claims 5 to 8 .
JP2003028364A 2003-02-05 2003-02-05 Tire failure detection method and apparatus Expired - Fee Related JP4187098B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003028364A JP4187098B2 (en) 2003-02-05 2003-02-05 Tire failure detection method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003028364A JP4187098B2 (en) 2003-02-05 2003-02-05 Tire failure detection method and apparatus

Publications (2)

Publication Number Publication Date
JP2004239724A JP2004239724A (en) 2004-08-26
JP4187098B2 true JP4187098B2 (en) 2008-11-26

Family

ID=32955855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003028364A Expired - Fee Related JP4187098B2 (en) 2003-02-05 2003-02-05 Tire failure detection method and apparatus

Country Status (1)

Country Link
JP (1) JP4187098B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4561455B2 (en) * 2005-04-20 2010-10-13 横浜ゴム株式会社 Tire failure detection method and apparatus
JP5114997B2 (en) * 2007-03-28 2013-01-09 横浜ゴム株式会社 Tire testing apparatus and tire testing method
JP5886608B2 (en) * 2011-11-22 2016-03-16 住友ゴム工業株式会社 Wheel rotation angle detection device
JP6357903B2 (en) * 2014-06-17 2018-07-18 横浜ゴム株式会社 Tire condition evaluation system and tire condition evaluation method

Also Published As

Publication number Publication date
JP2004239724A (en) 2004-08-26

Similar Documents

Publication Publication Date Title
JP5746578B2 (en) Method and apparatus for inspecting winding state of sheet-like member
EP2328746B1 (en) Apparatus and method for determining a distance measure on woun-up materials
EP2876423B1 (en) Method and apparatus for measuring tire ground contact properties
JP5562278B2 (en) Tire shape inspection device and tire shape inspection method
CN109677214B (en) Method for determining duration of contact footprint event of rolling tyre and TPMS component
US6963273B2 (en) Thermal monitoring system for a tire
JP2602863B2 (en) Non-destructive inspection method for pneumatic tires
CN101109668A (en) Roller brake testing dynamometer
JP4187098B2 (en) Tire failure detection method and apparatus
US8280604B2 (en) Method and device for detecting acceleration peaks in tires
JP2004354258A (en) Method for inspecting sheet member junction section for manufacturing pneumatic tire
JP4030414B2 (en) Tire failure detection method
US10549587B2 (en) Method, component, tire-mounted TPMS module, TPMS system, and machine readable storage or computer program for determining time information of at least one contact patch event of a rolling tire, method for locating a tire
JP4840261B2 (en) Rim displacement measuring apparatus and rim displacement measuring method
KR20150004969A (en) System for checking tire status using a internet connection device and method of the same
JP2009162512A (en) Cylindrical body rotation device
JP2007003379A (en) Detecting technique of tire internal failure and detecting device of tire internal failure
JP4335740B2 (en) Tire running test method and tire running test apparatus
JP7036592B2 (en) Detection of normal or malfunction of display panel
JP4169680B2 (en) Tire failure detection method
EP1902869B1 (en) Method for checking the operating of a transponder of a vehicle wheel
CN114502392B (en) System for measuring the slip of a tyre relative to a rim on which said tyre is mounted, and method thereof
JP4561455B2 (en) Tire failure detection method and apparatus
JP2005212696A (en) Tire abnormal condition detecting device
JP4600132B2 (en) Tire failure detection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080903

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees