JP4186626B2 - Manufacturing method of rolling sliding member - Google Patents

Manufacturing method of rolling sliding member Download PDF

Info

Publication number
JP4186626B2
JP4186626B2 JP2003010161A JP2003010161A JP4186626B2 JP 4186626 B2 JP4186626 B2 JP 4186626B2 JP 2003010161 A JP2003010161 A JP 2003010161A JP 2003010161 A JP2003010161 A JP 2003010161A JP 4186626 B2 JP4186626 B2 JP 4186626B2
Authority
JP
Japan
Prior art keywords
compressive stress
residual compressive
cooling
processed surface
sliding member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003010161A
Other languages
Japanese (ja)
Other versions
JP2004218815A (en
Inventor
久 原田
一寿 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2003010161A priority Critical patent/JP4186626B2/en
Publication of JP2004218815A publication Critical patent/JP2004218815A/en
Application granted granted Critical
Publication of JP4186626B2 publication Critical patent/JP4186626B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/64Special methods of manufacture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、転がり軸受、滑り軸受、一方向クラッチ等の構成部材のように相手部材との間で転がり接触若しくは滑り接触または両接触を含む接触をする転がり摺動部材の製造方法に関する。
【0002】
【従来の技術】
従来より、例えば、転がり軸受の軌道面は、繰り返し荷重がかかるために寿命が短いという問題がある。この問題の対応策として、軌道面に対しショットピーニング加工を施して残留圧縮応力を付与し、転がり疲れ寿命を向上させる方策が知られている(特許文献1参照)。また、ショットピーニング加工よりも深い部分に高い残留圧縮応力を付与できるローラバニシング加工を施す方策も知られている(特許文献2参照)。
【0003】
【特許文献1】
特開2001−65576号公報(第2頁)
【特許文献2】
特開2002−168256号公報(第3頁)
【0004】
【発明が解決しようとする課題】
しかしながら、ショットピーニング加工やローラバニシング加工により残留圧縮応力を付与すると、加工面が200℃を超えるような温度となり、付与された残留圧縮応力が解放されるので、軌道面における残留圧縮応力が、深くなっていくにつれて、徐々に減少し、極小値を経て増大し、極大値を経てさらに減少していくような分布となってしまう(図2、流量2リットル/min参照)。そして、残留圧縮応力の極小値が発生する部分と最大剪断応力が作用する部分とが一致してしまうと、残留圧縮応力付与による内部起点剥離防止効果が充分に得られず、短寿命なものになってしまうという問題がある。この問題を解消するため、残留圧縮応力の極小値が発生する部分を研磨により除去する方策が考えられるが、工程数が増加する等のため製造コストがかかり、また残留圧縮応力の極小値が発生する部分にばらつきがあるため均質な製品供給が難しいという新たな問題が生じる。
【0005】
本発明はこのような事情に鑑みなされたものであり、残留圧縮応力の小さくなる部分の発生を抑制することにより長寿命化を実現した転がり摺動部材およびその製造方法、並びにそれを用いた転がり軸受の提供をその目的とする。
【0006】
【課題を解決するための手段】
本発明の第1の転がり摺動部材の製造方法は、残留圧縮応力付与加工が施されたSUJ2製の転がり摺動部材を製造する方法であって、
所定形状に形成されたSUJ2製の中間素材を作製し、この中間素材に対し、圧縮応力の解放を抑制する冷却を行いながらボールを強圧で押し付けて転がり接触させる残留圧縮応力付与加工を施すことにより、
残留圧縮応力付与加工面から、残留圧縮応力付与加工面の残留圧縮応力より大きく、かつ残留圧縮応力が最大となる部分までの深さにおいて、当該加工面における残留圧縮応力と残留圧縮応力付与加工面の残留圧縮応力より小さい残留圧縮応力の最小値との差を150MPa以下に設定する工程を含み、
前記圧縮応力の解放を抑制する冷却が、前記中間素材の残留圧縮応力付与加工面の温度が100℃を超え200℃以下となる冷却であることを特徴としている(請求項1)。
上記の第1の製造方法によれば、SUJ2製の転がり摺動部材を製造に際して、圧縮応力の解放を抑制する前記冷却を行いながらボールを強圧で押し付けて転がり接触させる残留圧縮応力付与加工を施すので、残留圧縮応力が小さくなる部分(極小値)の発生を抑制できる。そのため、最大剪断応力が作用する部分の残留圧縮応力が小さいために短寿命になるということがなくなるので、従来以上に長寿命な転がり摺動部材が得られる。また、残留圧縮応力の小さい部分を研磨により除去する場合、研磨量が少なくてよいので、製造コストを低く抑えることができるという利点がある。
ここで、本発明において、残留圧縮応力付与加工とは、加工面に対し強制的に大きな残留圧縮応力を付与できる全ての機械加工を含むが、切削や研削など外形形成過程で必然的にある程度の残留圧縮応力が付与される加工を除く概念であり、ローラバニシング加工を含む。
【0007】
上記の製造方法において、前記圧縮応力の解放を抑制する冷却は、前記中間素材の残留圧縮応力付与加工面の温度が100℃を超え200℃以下となる冷却である。このような冷却であれば、確実に加工面における残留圧縮応力と残留圧縮応力の最小値との差が150MPa以下となるので、従来よりも長寿命な転がり摺動部材が得られる。
ここで、本発明において、前記中間素材の残留圧縮応力付与加工面における温度の測定は、加工時に加工面を直接測定することができないので、加工面の近傍を測定することにより行う。そして、このようにして測定した温度が上記した特定の温度範囲であれば上記した効果が得られる。
また、本発明において、残留圧縮応力の各数値は、後記の図2以外は、絶対値で表している。
【0008】
本発明の第2の転がり摺動部材の製造方法は、残留圧縮応力付与加工が施されたSUJ2製の転がり摺動部材を製造する方法であって、
所定形状に形成されたSUJ2製の中間素材を作製し、この中間素材に対し、圧縮応力の解放を抑制する冷却を行いながらボールを強圧で押し付けて転がり接触させる残留圧縮応力付与加工を施すことにより、
残留圧縮応力付与加工面から、残留圧縮応力付与加工面の残留圧縮応力より大きく、かつ残留圧縮応力が最大となる部分までの深さにおける残留圧縮応力を常に増大するように設定する工程を含み、
前記圧縮応力の解放を抑制する冷却が、前記中間素材の残留圧縮応力付与加工面の温度が100℃以下となる冷却であることを特徴としている(請求項2)。
上記の第2の製造方法によれば、SUJ2製の転がり摺動部材を製造に際して、圧縮応力の解放を抑制する前記冷却を行いながらボールを強圧で押し付けて転がり接触させる残留圧縮応力付与加工を施して、残留圧縮応力が常に増大するようにするので、残留圧縮応力の極小値がなくなる。そのため、残留圧縮応力の極小値と最大剪断応力が作用する部分とが一致して短寿命になるということがなくなるので、従来以上に長寿命な転がり摺動部材が得られる。また、残留圧縮応力の小さい部分を研磨により除去する場合、研磨量が少なくてよいので、製造コストを低く抑えることができるという利点がある。
上記の第2の製造方法では、前記圧縮応力の解放を抑制する冷却が、前記中間素材の残留圧縮応力付与加工面の温度が50℃以下となる冷却であるのが好ましい。
【0009】
上記の第2の製造方法において、前記圧縮応力の解放を抑制する冷却は、前記中間素材の残留圧縮応力付与加工面の温度が100℃以下となる冷却であるのが好ましい(請求項4)。このような冷却であれば、確実に残留圧縮応力が常に増大するようになるので、従来よりも長寿命な転がり摺動部材が得られる。
また、上記の第2の製造方法において、前記加工面における残留圧縮応力を600MPa以上に設定することが好ましい。この場合には、加工面から残留圧縮応力が最大となる部分までの深さにおける残留圧縮応力が確実に600MPa以上となるので、非常に長寿命な転がり摺動部材が得られる。そして、上記の製造方法において、前記加工面における残留圧縮応力と残留圧縮応力が最大となる部分の残留圧縮応力との差を300MPa以下に設定することが好ましい。この場合には、残留圧縮応力がより平均化されているので、適用範囲の広い長寿命な転がり摺動部材が得られる。上記の製造方法において、前記圧縮応力の解放を抑制する冷却は、前記中間素材の残留圧縮応力付与加工面の温度が50℃以下となる冷却であるのが好ましい。このような冷却であれば、従来よりも長寿命で適用範囲の広い転がり摺動部材が得られる。
【0010】
上記した第1、第2の製造方法において、前記残留圧縮応力付与加工が、残留圧縮応力の最大値が800MPa以上となる加工であることが好ましい。このような加工の場合に改善効果が顕著に現れるからである。また、残留圧縮応力付与加工としてボールを強圧で押し付けて転がり接触させるローラバニシング加工を用いており、より深い位置に高い残留圧縮応力を付与できるので、得られる転がり摺動部材をより広い用途に用いることができるという利点がある。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照しながら説明する。
図1は、この発明の一実施形態にかかる転がり摺動部材の製造方法を示す工程図である。この製造方法は、玉軸受の内輪の製造に適用されるものであり、まず、軸受鋼(SUJ2)からなる環状素材1(図1(a)参照)に旋削加工を施して、端面2a、外周2b、軌道2cおよび内周2d等を所定形状に加工する(図1(b)参照)。ついで、この旋削加工されたブランク2に浸炭焼入を含む熱処理を施して、その表面硬さが例えばロックウェルC硬さ60以上となるように硬化させる(図1(c)参照)。その後、熱処理が完了したブランク2の端面2a、軌道2cおよび内周2dを、研削によって所定精度に仕上げ、中間素材3を得る(図1(d)参照)。
【0016】
研削による仕上げ加工が完了すると、前記軌道2cの表面にローラバニシング加工を施す(図1(e)参照)。このローラバニシング加工は、油圧で保持されたセラミックス製の鏡面ボール4を、軌道2cの表面に強圧で押し付けて転がり接触させながら、軌道2cの軸方向断面に沿って移動させるものである。そして、転がり接触は、冷却液供給装置のノズル5から冷却液を一定の流量となるよう吐出させながら行う。これにより、加工面の温度が低くなり、ローラバニシング加工用の鏡面ボール4と軌道2cとの接触による摩擦熱によって圧縮応力が解放されることが抑えられる。冷却液の流量は、加工面の温度が200℃以下となるようにするのが好ましく、より好ましくは100℃以下、さらに好ましくは50℃以下となるように設定する。すなわち、100℃を超え200℃以下であると、残留圧縮応力の解放が抑制されて残留圧縮応力が小さくなる度合いが減り、また100℃以下であると、残留圧縮応力の極小値がなくなり、さらに50℃以下であると加工面における残留圧縮応力が600MPa以上となるからである。なお、このローラバニシング加工においては、軌道2c表面に対し、残留圧縮応力の最大値が800MPa以上、より好ましくは900MPa以上となるように、そのバニシング量や加圧力等の加工条件を選択する。
【0017】
このようにして得られた内輪は、軌道における残留圧縮応力が小さくなる部分(極小値)の発生が抑制または消失するようになっているので、より長寿命なものになっている。
【0018】
図2は前記ローラバニシング加工後における加工面からの各深さにおける残留圧縮応力を測定した結果を示すグラフ図である。この図には、冷却液の流量が2リットル/minの場合(1.0倍の流量の場合、比較例)、1.5倍の流量の場合、2.0倍の流量の場合、3.0倍の流量の場合について記載している。なお、冷却液の流量以外の実験条件は、840℃で45分間、油焼入れ、180℃で2時間の焼戻し処理を行ったSUJ2製のスラスト円板を用い、冷却液を用いながら、ワーク回転数100rpm/min、ツール送り0.1mm/rev、使用加工液:エマルカットDC64(協同油脂社製)、直径6.3mmのセラミックス鏡面ボールを用いたローラバニシング加工を施す、とした。
【0019】
図2から明らかなように、1.5倍の流量の場合は、加工面からの深さ0.01mmにおいて残留圧縮応力の極小値が存在するが、1.0倍の流量の場合に比べて、圧縮応力の解放が抑制されてより大きな残留圧縮応力が付与されていることがわかる。すなわち、1.0倍のときは152MPaで、1.5倍の流量の場合は320MPaであり、2倍以上付与されていることがわかる。よって、1.5倍の流量にした方が、より長寿命なものになることがわかる。
また、2.0倍の流量の場合は、加工面における残留圧縮応力が424MPaで、深さ0.09mm(残留圧縮応力が最大となる深さ)における残留圧縮応力が913MPaであり、加工面から残留圧縮応力が最大となる深さまでにおいて、常に残留圧縮応力が増大するようになっているので、最大剪断応力が作用する部分が残留圧縮応力の極小値と一致することがないことがわかる。よって、2.0倍の流量にした場合には、より長寿命なものになることがわかる。
さらに、3.0倍の流量の場合は、加工面における残留圧縮応力が630MPaで、深さ0.09mm(残留圧縮応力が最大となる深さ)における残留圧縮応力が896MPaで、その差が266MPaとなっており、流量が1.0倍、1.5倍、2.0倍の場合に比べて、より最大値と最小値との差が小さくなっていることがわかる。よって、3.0倍の流量にした場合には、より適用範囲の広い長寿命なものになることがわかる。
なお、流量が1.0倍の場合は加工面の温度が210℃であり、流量が1.5倍の場合は加工面の温度が132℃であり、流量が2.0倍の場合は加工面の温度が85℃であり、流量が3.0倍の場合は加工面の温度が43℃であった。
【0020】
(その他の事項)
上記では、冷却液を用いたが、これに限定するものではなく、可能であれば、冷却液に代えて冷却気体を用いてもよい。
さらに、ボールの材質として、セラミックスに限定するものではなく、加工する素材の表面よりも硬いものであればよく、例えば、高硬度の鋼であってもよい
なお、上記では、加工面を研磨しない場合について説明したが、必要に応じて研磨してもよい。残留圧縮応力の解放を抑制しているので、従来よりも研磨量を少なく済ますことができるという利点がある。
さらに、上記では、玉軸受用の内輪について説明したが、外輪であっても同様に適用することができる。また、転動体も同様にして製造することができる。さらに、玉軸受だけでなく、その他の各種のころ軸受、滑り軸受、一方向クラッチ等の転がり接触若しくは滑り接触または両接触を含む接触をする構成部材についても、同様に適用することが可能である。
【0021】
【発明の効果】
以上のように、請求項1の転がり摺動部材の製造方法によれば、残留圧縮応力が小さい部分の発生を抑制できるので、その部分と最大剪断応力が作用する部分とが一致したとしても従来よりも長寿命な転がり摺動部材が得られる。上記の製造方法において、圧縮応力を解放する冷却として中間素材の残留圧縮応力付与加工面の温度が100℃を超え200℃以下となる冷却を行う場合には、確実に残留圧縮応力が小さい部分の発生が抑制されて従来よりも長寿命な転がり摺動部材が得られる。
【0022】
請求項の転がり摺動部材の製造方法によれば、残留圧縮応力の極小値がなくなるので、残留圧縮応力の極小値と最大剪断応力が作用する部分とが一致して短寿命になるということがなく、従来以上に長寿命な転がり摺動部材が得られる。上記の製造方法において、圧縮応力の解放を抑制する冷却として中間素材の残留圧縮応力付与加工面の温度が100℃以下となる冷却を行うことにより、確実に残留圧縮応力が常に増大するようになるので、従来よりも長寿命な転がり摺動部材が得られる。また、上記の製造方法において、加工面における残留圧縮応力を600MPa以上に設定するようにした場合には、非常に長寿命な転がり摺動部材が得られる。さらに、加工面における残留圧縮応力と残留圧縮応力が最大となる部分の残留圧縮応力との差を300MPa以下に設定するようにした場合には、適用範囲の広い長寿命な転がり摺動部材が得られる。そして、圧縮応力の解放を抑制する冷却として中間素材の残留圧縮応力付与加工面の温度が50℃以下となる冷却を行う場合には、従来よりも長寿命で適用範囲の広い転がり摺動部材が得られる。
【0023】
上記した製造方法において、前記残留圧縮応力付与加工が、残留圧縮応力の最大値が800MPa以上となる加工である場合には、顕著に寿命の改善効果が現れる。また、残留圧縮応力付与加工としてボールを強圧で押し付けて転がり接触させるローラバニシング加工を用いており、より適用範囲の広いものが得られるという利点がある。
【図面の簡単な説明】
【図1】本発明の転がり摺動部材の製造方法の一例を示す模式的な工程図である。
【図2】ローラバニシング加工後における加工面からの各深さにおける残留圧縮応力を測定した結果を示すグラフ図である。
【符号の説明】
1 環状素材
2 ブランク
2a 端面
2b 外周
2c 軌道
2d 内周
3 中間素材
4 鏡面ボール
5 ノズル
[0001]
BACKGROUND OF THE INVENTION
The present invention is a rolling bearing, a sliding bearing, relates to the production how the rolling sliding member to contact comprising rolling contact or sliding contact or both contact with the mating member as components, such as one-way clutch .
[0002]
[Prior art]
Conventionally, for example, a raceway surface of a rolling bearing has a problem that its life is short due to repeated load. As a countermeasure against this problem, there is known a method of applying a shot peening process to the raceway surface to give a residual compressive stress to improve a rolling fatigue life (see Patent Document 1). Also known is a method of performing roller burnishing that can apply a high residual compressive stress to a deeper portion than shot peening (see Patent Document 2).
[0003]
[Patent Document 1]
JP 2001-65576 A (2nd page)
[Patent Document 2]
JP 2002-168256 A (page 3)
[0004]
[Problems to be solved by the invention]
However, if the residual compressive stress is applied by shot peening or roller burnishing, the processed surface becomes a temperature exceeding 200 ° C., and the applied residual compressive stress is released. The distribution gradually decreases, increases through the minimum value, and further decreases through the maximum value (see FIG. 2, flow rate 2 liter / min). If the portion where the minimum value of the residual compressive stress occurs and the portion where the maximum shear stress acts coincide with each other, the effect of preventing the internal origin peeling due to the residual compressive stress cannot be sufficiently obtained, and the life is shortened. There is a problem of becoming. In order to solve this problem, it is conceivable to remove the portion where the minimum value of residual compressive stress occurs by polishing. However, the manufacturing cost increases due to the increase in the number of processes and the minimum value of residual compressive stress is generated. There is a new problem that it is difficult to supply a homogeneous product due to variations in the parts to be processed.
[0005]
The present invention has been made in view of such circumstances, a rolling sliding member that realizes a long life by suppressing the occurrence of a portion where residual compressive stress is reduced, a manufacturing method thereof, and a rolling using the same. The purpose is to provide a bearing.
[0006]
[Means for Solving the Problems]
The manufacturing method of the 1st rolling sliding member of this invention is a method of manufacturing the rolling sliding member made from SUJ2 by which the residual compressive stress provision process was performed,
By producing an intermediate material made of SUJ2 formed in a predetermined shape, and applying a residual compressive stress application process that presses the ball with high pressure and makes rolling contact with this intermediate material while cooling to suppress the release of compressive stress ,
In the depth from the residual compressive stress imparted processed surface to the portion where the residual compressive stress is greater than that of the residual compressive stress imparted processed surface and the residual compressive stress is maximized, the residual compressive stress and the residual compressive stress imparted processed surface on the processed surface Including a step of setting a difference from the minimum value of the residual compressive stress smaller than the residual compressive stress of 150 MPa or less,
The cooling that suppresses the release of the compressive stress is a cooling in which the temperature of the residual compressive stress applying processed surface of the intermediate material exceeds 100 ° C. and becomes 200 ° C. or less (Claim 1).
According to the first manufacturing method, when a rolling sliding member made of SUJ2 is manufactured, a residual compressive stress imparting process is performed in which the ball is pressed and brought into rolling contact with the strong pressure while performing the cooling to suppress the release of the compressive stress. Therefore, generation | occurrence | production of the part (minimum value) where residual compressive stress becomes small can be suppressed. For this reason, since the residual compressive stress at the portion where the maximum shear stress acts is small, there is no longer a short life, so that a rolling sliding member having a longer life than the conventional one can be obtained. Further, when the portion having a small residual compressive stress is removed by polishing, there is an advantage that the manufacturing cost can be reduced because the polishing amount may be small.
Here, in the present invention, the residual compressive stress applying process includes all machining that can forcibly apply a large residual compressive stress to the processed surface, but is inevitably to some extent in the outer shape forming process such as cutting and grinding. It is a concept that excludes processing to which residual compressive stress is applied, and includes roller burnishing.
[0007]
In the above manufacturing method, inhibiting the release of the compressive stress cooling, Ru cooling der the temperature of the residual compressive stress imparted processing surface of the intermediate material is equal to or less than 200 ° C. exceed 100 ° C.. With such cooling, the difference between the residual compressive stress on the processed surface and the minimum value of the residual compressive stress is 150 MPa or less, so that a rolling sliding member having a longer life than the conventional one can be obtained.
Here, in the present invention, the measurement of the temperature of the intermediate material on the processing surface to which the residual compressive stress is applied is performed by measuring the vicinity of the processing surface because the processing surface cannot be directly measured during processing. And if the temperature measured in this way is the above-mentioned specific temperature range, the above-mentioned effect will be acquired.
In the present invention, each numerical value of the residual compressive stress is expressed as an absolute value except for FIG.
[0008]
The second method for producing a rolling sliding member of the present invention is a method for producing a rolling sliding member made of SUJ2 that has been subjected to residual compressive stress application processing,
By producing an intermediate material made of SUJ2 formed in a predetermined shape, and applying a residual compressive stress application process that presses the ball with high pressure and makes rolling contact with this intermediate material while cooling to suppress the release of compressive stress ,
Including a step of constantly increasing the residual compressive stress at a depth from the residual compressive stress imparted processed surface to a portion where the residual compressive stress is greater than the residual compressive stress of the residual compressive stress imparted processed surface and has the maximum residual compressive stress,
The cooling that suppresses the release of the compressive stress is a cooling that causes the temperature of the residual compressive stress applying processed surface of the intermediate material to be 100 ° C. or lower (claim 2).
According to the second manufacturing method described above, when a rolling sliding member made of SUJ2 is manufactured, a residual compressive stress applying process is performed in which the ball is pressed and brought into rolling contact with strong pressure while performing the cooling to suppress the release of the compressive stress. Thus, since the residual compressive stress is always increased, there is no minimum value of the residual compressive stress. For this reason, the minimum value of the residual compressive stress and the portion where the maximum shearing stress is applied are not shortened, so that a rolling sliding member having a longer life than before can be obtained. Further, when the portion having a small residual compressive stress is removed by polishing, there is an advantage that the manufacturing cost can be reduced because the polishing amount may be small.
In said 2nd manufacturing method, it is preferable that the cooling which suppresses release | extrication of the said compressive stress is cooling from which the temperature of the residual compression stress provision surface of the said intermediate material will be 50 degrees C or less.
[0009]
In the second manufacturing method, the cooling that suppresses the release of the compressive stress is preferably a cooling at which the temperature of the residual compressive stress applying surface of the intermediate material becomes 100 ° C. or lower (claim 4). Such cooling ensures that the residual compressive stress always increases, so that a rolling sliding member having a longer life than the conventional one can be obtained.
Moreover, in said 2nd manufacturing method, it is preferable to set the residual compressive stress in the said processed surface to 600 Mpa or more. In this case, since the residual compressive stress at the depth from the processed surface to the portion where the residual compressive stress is maximum is surely 600 MPa or more, a rolling sliding member having a very long life can be obtained. And in said manufacturing method, it is preferable to set the difference of the residual compressive stress in the said process surface and the residual compressive stress of the part where a residual compressive stress becomes the maximum to 300 Mpa or less. In this case, since the residual compressive stress is further averaged, a long-life rolling sliding member with a wide application range can be obtained. In the manufacturing method described above, the cooling that suppresses the release of the compressive stress is preferably a cooling at which the temperature of the residual compressive stress applying processed surface of the intermediate material is 50 ° C. or less. With such cooling, it is possible to obtain a rolling sliding member that has a longer life and a wider application range than before.
[0010]
In the first and second manufacturing methods described above, it is preferable that the residual compressive stress applying process is a process in which the maximum value of the residual compressive stress is 800 MPa or more. This is because the improvement effect appears remarkably in such processing. Moreover, by using a roller burnishing pressurized Engineering for rolling contact against at strong pressure ball as a residual compressive stress imparted processing, it is possible to impart a high residual compressive stresses in the deeper position, the sliding member rolling obtained wider applications There is an advantage that it can be used.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a process diagram showing a method for manufacturing a rolling sliding member according to an embodiment of the present invention. This manufacturing method is applied to the manufacture of an inner ring of a ball bearing. First, an annular material 1 (see FIG. 1 (a)) made of bearing steel (SUJ2) is turned to provide an end face 2a and an outer periphery. 2b, the track 2c, the inner periphery 2d, and the like are processed into a predetermined shape (see FIG. 1B). Next, the turned blank 2 is subjected to a heat treatment including carburizing and quenching so that the surface hardness thereof becomes, for example, a Rockwell C hardness of 60 or more (see FIG. 1 (c)). Thereafter, the end face 2a, the track 2c, and the inner periphery 2d of the blank 2 that has been heat-treated are finished to a predetermined accuracy by grinding to obtain an intermediate material 3 (see FIG. 1 (d)).
[0016]
When finishing by grinding is completed, roller burnishing is performed on the surface of the track 2c (see FIG. 1 (e)). In this roller burnishing process, the mirror surface ball 4 made of ceramics held by hydraulic pressure is moved along the axial cross section of the track 2c while being pressed against the surface of the track 2c with a strong pressure and brought into rolling contact. Then, the rolling contact is performed while discharging the coolant from the nozzle 5 of the coolant supply device so as to have a constant flow rate. As a result, the temperature of the processed surface is lowered, and the release of compressive stress due to frictional heat caused by contact between the mirror-finished ball 4 for roller burnishing and the track 2c is suppressed. The flow rate of the cooling liquid is preferably set so that the temperature of the processed surface is 200 ° C. or less, more preferably 100 ° C. or less, and further preferably 50 ° C. or less. That is, when the temperature exceeds 100 ° C. and is 200 ° C. or less, the release of the residual compressive stress is suppressed and the degree of reduction of the residual compressive stress is reduced, and when the temperature is 100 ° C. or less, the minimum value of the residual compressive stress disappears. It is because the residual compressive stress in a processed surface will be 600 Mpa or more when it is 50 degrees C or less. In this roller burnishing process, the processing conditions such as the burnishing amount and the applied pressure are selected so that the maximum value of the residual compressive stress is 800 MPa or more, more preferably 900 MPa or more with respect to the surface of the track 2c.
[0017]
The inner ring thus obtained has a longer life because generation of a portion (minimum value) in which the residual compressive stress in the track becomes small is suppressed or eliminated.
[0018]
FIG. 2 is a graph showing the results of measuring the residual compressive stress at each depth from the processed surface after the roller burnishing. This figure shows that when the flow rate of the coolant is 2 liters / min (comparative example when the flow rate is 1.0 times), when the flow rate is 1.5 times, and when the flow rate is 2.0 times, The case of 0 times flow rate is described. The experimental conditions other than the flow rate of the coolant were SUJ2 thrust discs that had been tempered at 840 ° C. for 45 minutes, oil-quenched, and 180 ° C. for 2 hours. 100 rpm / min, tool feed 0.1 mm / rev, working fluid: Emulcut DC64 (manufactured by Kyodo Yushi Co., Ltd.), and roller burnishing using a ceramic mirror ball with a diameter of 6.3 mm.
[0019]
As is clear from FIG. 2, when the flow rate is 1.5 times, there is a minimum value of residual compressive stress at a depth of 0.01 mm from the processed surface, but compared with the case where the flow rate is 1.0 times. It can be seen that release of the compressive stress is suppressed and a larger residual compressive stress is applied. That is, when it is 1.0 times, it is 152 MPa, and when it is 1.5 times the flow rate, it is 320 MPa. Therefore, it can be seen that the flow rate is 1.5 times longer.
When the flow rate is 2.0 times, the residual compressive stress on the processed surface is 424 MPa, and the residual compressive stress at a depth of 0.09 mm (depth at which the residual compressive stress is maximized) is 913 MPa. Since the residual compressive stress always increases up to the depth at which the residual compressive stress becomes maximum, it can be seen that the portion where the maximum shear stress acts does not coincide with the minimum value of the residual compressive stress. Therefore, it can be seen that when the flow rate is 2.0 times, the service life is longer.
Furthermore, in the case of a 3.0 times flow rate, the residual compressive stress on the processed surface is 630 MPa, the residual compressive stress at a depth of 0.09 mm (depth at which the residual compressive stress is maximized) is 896 MPa, and the difference is 266 MPa. It can be seen that the difference between the maximum value and the minimum value is smaller than in the case where the flow rates are 1.0 times, 1.5 times, and 2.0 times. Therefore, it can be seen that when the flow rate is 3.0 times, the service life is longer and the application range is wider.
When the flow rate is 1.0 times, the processing surface temperature is 210 ° C., when the flow rate is 1.5 times, the processing surface temperature is 132 ° C., and when the flow rate is 2.0 times, the processing surface is processed. When the surface temperature was 85 ° C. and the flow rate was 3.0 times, the processed surface temperature was 43 ° C.
[0020]
(Other matters)
In the above description, the cooling liquid is used. However, the present invention is not limited to this. If possible, a cooling gas may be used instead of the cooling liquid.
Furthermore, the material of the ball is not limited to ceramics, but may be any material that is harder than the surface of the material to be processed. For example, high hardness steel may be used .
In the above description, the case where the processed surface is not polished has been described. However, the processed surface may be polished as necessary. Since the release of the residual compressive stress is suppressed, there is an advantage that the amount of polishing can be reduced as compared with the prior art.
Furthermore, in the above description, the inner ring for the ball bearing has been described. However, the present invention can be similarly applied to the outer ring. Moreover, a rolling element can be manufactured similarly. Further, not only ball bearings but also various other roller bearings, sliding bearings, one-way clutches, and other components that make rolling contact or sliding contact or contact including both contacts can be similarly applied. .
[0021]
【The invention's effect】
As described above, according to the manufacturing method of the rolling sliding member of claim 1, since the generation of a portion having a small residual compressive stress can be suppressed, even if the portion and the portion on which the maximum shear stress acts coincide with each other, Thus, a rolling sliding member having a longer life can be obtained. In the above manufacturing method, when the cooling of the processed surface of the intermediate material where the residual compressive stress is applied is over 100 ° C. and below 200 ° C. as the cooling for releasing the compressive stress, Occurrence is suppressed and a rolling sliding member having a longer life than the conventional one can be obtained.
[0022]
According to the method for manufacturing a rolling sliding member of claim 2 , since the minimum value of the residual compressive stress is eliminated, the minimum value of the residual compressive stress coincides with the portion where the maximum shear stress acts, and the life is shortened. Thus, a rolling sliding member having a longer life than the conventional one can be obtained. In the above manufacturing method, the residual compressive stress is always increased reliably by performing the cooling so that the temperature of the residual compressive stress imparted processed surface of the intermediate material becomes 100 ° C. or less as the cooling for suppressing the release of the compressive stress. Therefore, a rolling sliding member having a longer life than the conventional one can be obtained. In the above manufacturing method, when the residual compressive stress on the processed surface is set to 600 MPa or more, a rolling sliding member having a very long life can be obtained. Furthermore, when the difference between the residual compressive stress on the processed surface and the residual compressive stress at the portion where the residual compressive stress is maximum is set to 300 MPa or less, a long-life rolling sliding member with a wide application range is obtained. It is done. When cooling is performed so that the temperature of the residual compressive stress imparting processed surface of the intermediate material is 50 ° C. or less as cooling for suppressing the release of compressive stress, a rolling sliding member having a longer life and wider application range than before is provided. can get.
[0023]
In the manufacturing method described above, when the residual compressive stress imparting process is a process in which the maximum value of the residual compressive stress is 800 MPa or more, the effect of improving the life remarkably appears. Further, there is an advantage that uses a roller burnishing pressurized Engineering for rolling contact against at strong pressure ball as a residual compressive stress imparted processing, those wide more coverage is obtained.
[Brief description of the drawings]
FIG. 1 is a schematic process chart showing an example of a method for producing a rolling sliding member of the present invention.
FIG. 2 is a graph showing the results of measurement of residual compressive stress at each depth from the processed surface after roller burnishing.
[Explanation of symbols]
1 annular material 2 blank 2a end surface 2b outer periphery 2c track 2d inner periphery 3 intermediate material 4 mirror surface ball 5 nozzle

Claims (3)

残留圧縮応力付与加工が施されたSUJ2製の転がり摺動部材を製造する方法であって、
所定形状に形成されたSUJ2製の中間素材を作製し、この中間素材に対し、圧縮応力の解放を抑制する冷却を行いながらボールを強圧で押し付けて転がり接触させる残留圧縮応力付与加工を施すことにより、
残留圧縮応力付与加工面から、残留圧縮応力付与加工面の残留圧縮応力より大きく、かつ残留圧縮応力が最大となる部分までの深さにおいて、当該加工面における残留圧縮応力と残留圧縮応力付与加工面の残留圧縮応力より小さい残留圧縮応力の最小値との差を150MPa以下に設定する工程を含み、
前記圧縮応力の解放を抑制する冷却が、前記中間素材の残留圧縮応力付与加工面の温度が100℃を超え200℃以下となる冷却であることを特徴とする転がり摺動部材の製造方法。
A method of manufacturing a rolling sliding member made of SUJ2 subjected to a residual compressive stress applying process,
By producing an intermediate material made of SUJ2 formed in a predetermined shape, and applying a residual compressive stress application process that presses the ball with high pressure and makes rolling contact with this intermediate material while cooling to suppress the release of compressive stress ,
In the depth from the residual compressive stress imparted processed surface to the portion where the residual compressive stress is greater than that of the residual compressive stress imparted processed surface and the residual compressive stress is maximized, the residual compressive stress and the residual compressive stress imparted processed surface on the processed surface Including a step of setting a difference from the minimum value of the residual compressive stress smaller than the residual compressive stress of 150 MPa or less,
The method for manufacturing a rolling sliding member, wherein the cooling for suppressing the release of the compressive stress is a cooling in which the temperature of the residual compressive stress applying processed surface of the intermediate material exceeds 100 ° C. and becomes 200 ° C. or less.
残留圧縮応力付与加工が施されたSUJ2製の転がり摺動部材を製造する方法であって、
所定形状に形成されたSUJ2製の中間素材を作製し、この中間素材に対し、圧縮応力の解放を抑制する冷却を行いながらボールを強圧で押し付けて転がり接触させる残留圧縮応力付与加工を施すことにより、
残留圧縮応力付与加工面から、残留圧縮応力付与加工面の残留圧縮応力より大きく、かつ残留圧縮応力が最大となる部分までの深さにおける残留圧縮応力を常に増大するように設定する工程を含み、
前記圧縮応力の解放を抑制する冷却が、前記中間素材の残留圧縮応力付与加工面の温度が100℃以下となる冷却であることを特徴とする転がり摺動部材の製造方法。
A method of manufacturing a rolling sliding member made of SUJ2 subjected to a residual compressive stress applying process,
By producing an intermediate material made of SUJ2 formed in a predetermined shape, and applying a residual compressive stress application process that presses the ball with high pressure and makes rolling contact with this intermediate material while cooling to suppress the release of compressive stress ,
Including a step of constantly increasing the residual compressive stress at a depth from the residual compressive stress imparted processed surface to a portion where the residual compressive stress is greater than the residual compressive stress of the residual compressive stress imparted processed surface and has the maximum residual compressive stress,
The method for manufacturing a rolling sliding member, wherein the cooling for suppressing the release of the compressive stress is a cooling at which the temperature of the residual compressive stress applying processed surface of the intermediate material becomes 100 ° C. or less.
前記圧縮応力の解放を抑制する冷却が、前記中間素材の残留圧縮応力付与加工面の温度が50℃以下となる冷却である請求項2に記載の転がり摺動部材の製造方法。  The method for manufacturing a rolling sliding member according to claim 2, wherein the cooling that suppresses the release of the compressive stress is a cooling at which the temperature of the residual compressive stress applying processed surface of the intermediate material becomes 50 ° C. or less.
JP2003010161A 2003-01-17 2003-01-17 Manufacturing method of rolling sliding member Expired - Fee Related JP4186626B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003010161A JP4186626B2 (en) 2003-01-17 2003-01-17 Manufacturing method of rolling sliding member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003010161A JP4186626B2 (en) 2003-01-17 2003-01-17 Manufacturing method of rolling sliding member

Publications (2)

Publication Number Publication Date
JP2004218815A JP2004218815A (en) 2004-08-05
JP4186626B2 true JP4186626B2 (en) 2008-11-26

Family

ID=32899451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003010161A Expired - Fee Related JP4186626B2 (en) 2003-01-17 2003-01-17 Manufacturing method of rolling sliding member

Country Status (1)

Country Link
JP (1) JP4186626B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4929582B2 (en) * 2004-11-02 2012-05-09 日本精工株式会社 Rolling bearing
JP4929583B2 (en) * 2004-11-04 2012-05-09 日本精工株式会社 Rolling bearing

Also Published As

Publication number Publication date
JP2004218815A (en) 2004-08-05

Similar Documents

Publication Publication Date Title
US7685717B2 (en) Method for manufacturing a bearing raceway member
US9138837B2 (en) Method of manufacturing bearing ring of rolling bearing
US9273727B2 (en) Method for producing a track element of a bearing assembly
JPH06246546A (en) Manufacture of bearing ring for rolling bearing
JP2005504879A (en) Rolling bearings using nitrided steel cylindrical roller parts
JP4186626B2 (en) Manufacturing method of rolling sliding member
JP2001065576A (en) Bearing part material
JP4186568B2 (en) Rolling bearing and method for manufacturing inner ring of rolling bearing
JP2007239837A (en) Tripod type constant velocity universal joint and its manufacturing method
JP2003329048A (en) Manufacturing method for bearing raceway member
JP4284951B2 (en) Method of manufacturing bearing ring for ball bearing
WO2019103039A1 (en) Rolling part, bearing, and production method therefor
JP7176646B2 (en) Rolling bearing and its manufacturing method
JP4026514B2 (en) Rolling bearing member and method for manufacturing rolling bearing member
JP7363663B2 (en) Rolling bearing and its manufacturing method
JP2004116766A (en) Method of manufacturing rolling sliding member, rolling sliding member obtained by the method and anti-friction bearing using the same
JP2000234658A (en) Power roller for toroidal continuously variable transmission and manufacture therefor
JP7240815B2 (en) Rolling component manufacturing method and bearing manufacturing method
JP7073193B2 (en) Rolling parts, bearings and their manufacturing methods
JP4284956B2 (en) Manufacturing method of rolling sliding member
JP2022169996A (en) thrust ball bearing
JP2018040482A (en) Raceway surface manufacturing method of thrust type ball bearing
JP2005271197A (en) Metallic semi-finished work finishing method
JP2024044971A (en) bearing
JP2023142725A (en) Method for manufacturing bearing component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070808

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080425

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080901

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees