JP7363663B2 - Rolling bearing and its manufacturing method - Google Patents

Rolling bearing and its manufacturing method Download PDF

Info

Publication number
JP7363663B2
JP7363663B2 JP2020080616A JP2020080616A JP7363663B2 JP 7363663 B2 JP7363663 B2 JP 7363663B2 JP 2020080616 A JP2020080616 A JP 2020080616A JP 2020080616 A JP2020080616 A JP 2020080616A JP 7363663 B2 JP7363663 B2 JP 7363663B2
Authority
JP
Japan
Prior art keywords
region
retained austenite
amount
hardness
outer ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020080616A
Other languages
Japanese (ja)
Other versions
JP2021173402A (en
Inventor
博史 伊藤
ジョシ モヒット
理嗣 名取
秀幸 飛鷹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2020080616A priority Critical patent/JP7363663B2/en
Publication of JP2021173402A publication Critical patent/JP2021173402A/en
Application granted granted Critical
Publication of JP7363663B2 publication Critical patent/JP7363663B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、転がり軸受及びその製造方法に関する。 The present invention relates to a rolling bearing and a manufacturing method thereof.

転がり軸受は、静止中に過大な荷重を受けると、外輪軌道輪及び内輪軌道輪と転動体との間にHertz接触が生じて、永久変形(ブリネル圧痕)が残ることが知られている。このような圧痕が存在すると、転がり軸受の使用時に音響や振動特性に影響を及ぼす。例えば、工作機械のような高速で回転する用途での転がり軸受では、1μm程度の微小な圧痕であっても、異音や振動が生じ、大きな問題となる。このため、転がり軸受を設計する場合には、静的限界荷重(基本静定格荷重)を接触応力で定めており、JIS B 1519(2009年)では、例えば、スラスト玉軸受及び自動調心玉軸受を除くラジアル玉軸受の接触応力を、4.2GPaにすることが定められている。 It is known that when a rolling bearing receives an excessive load while it is stationary, Hertz contact occurs between the outer raceway ring, the inner raceway raceway, and the rolling elements, leaving permanent deformation (Brinell impression). The presence of such impressions affects acoustic and vibration characteristics when the rolling bearing is used. For example, in rolling bearings used in applications that rotate at high speeds such as machine tools, even a minute indentation of about 1 μm causes abnormal noise and vibration, which poses a serious problem. For this reason, when designing rolling bearings, the static limit load (basic static load rating) is determined by contact stress, and JIS B 1519 (2009) specifies, for example, thrust ball bearings and self-aligning ball bearings It is specified that the contact stress of radial ball bearings, excluding the following, shall be 4.2 GPa.

また、自動車などの低燃費化を背景とした転がり軸受の小型化には、過大な荷重に耐えられるような塑性変形抵抗性が必要となる。従来、転がり軸受の塑性変形抵抗性の向上には、転がり軸受の外輪軌道輪及び内輪軌道輪の硬さと残留オーステナイト量とのバランスが重要であり、転がり軸受の軌道輪の硬さを上昇させたり、鋼の軟質な組織である残留オーステナイトを減少させたりすることで永久変形抵抗性を向上させて、耐圧痕性を向上させる取り組みが実施されている。 In addition, as rolling bearings become smaller due to lower fuel consumption in automobiles and the like, they need to have plastic deformation resistance that can withstand excessive loads. Conventionally, in order to improve the plastic deformation resistance of rolling bearings, it is important to balance the hardness of the outer ring raceway and inner ring raceway of the rolling bearing with the amount of retained austenite. Efforts are being made to improve permanent deformation resistance and indentation resistance by reducing retained austenite, which is the soft structure of steel.

例えば、特許文献1には、高炭素クロム軸受鋼に浸炭窒化処理及び焼戻しを施した技術が記載されている。また、特許文献2には、軸受内外輪の軌道面にサブゼロ処理を施した技術が記載されている。 For example, Patent Document 1 describes a technique in which high carbon chromium bearing steel is carbonitrided and tempered. Further, Patent Document 2 describes a technique in which sub-zero treatment is applied to raceway surfaces of inner and outer rings of a bearing.

特開2015-200351号公報JP 2015-200351 Publication 特開2000-274440号公報Japanese Patent Application Publication No. 2000-274440

しかしながら、浸炭窒化処理のような特殊熱処理は、長時間を要するとともに、そのための工程が別途必要にもなり、製造コストが増加する。また、サブゼロ処理は、靱性を低下させる懸念があるとともに、そのための工程が別途必要になり製造コストも増加する。 However, special heat treatment such as carbonitriding requires a long time and requires a separate process, which increases manufacturing costs. In addition, there is a concern that sub-zero treatment may reduce toughness, and a separate process is required, which increases manufacturing costs.

本発明は、上記の課題に着目してなされたものであり、低コストで耐圧痕性を向上させた転がり軸受及びその製造方法を提供することを目的とする。 The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a rolling bearing with improved indentation resistance at low cost and a method for manufacturing the same.

上記のように、熱処理及び成分調整のみで転がり軸受の耐圧痕性を向上させようとすると、耐割れ性など他機能の低下を招いたり、生産性の低下を招く。そのため、転がり軸受の機能を損なうことなく課題を解決する必要がある。 As described above, if an attempt is made to improve the indentation resistance of a rolling bearing only by heat treatment and component adjustment, other functions such as cracking resistance will be degraded, and productivity will be reduced. Therefore, it is necessary to solve the problem without impairing the function of the rolling bearing.

一方、転がり軸受の圧痕の形成は、転動体と軌道輪との接触に伴う軌道面の塑性変形によるものであり、単純な材料の降伏現象として説明できる。材料の強化法は種々の方法があり、熱処理や成分調整の他に、加工硬化という方法が知られている。本発明者らは、熱処理によって最大限に硬化された焼入れ鋼に機械加工を加えることで、転がり軸受の耐圧痕性をより一層高められることを見出した。転がり軸受の機械加工の方法にはバニシング加工やショットピーニング加工など様々な方法が知られており、工業的にも実現されている。転がり軸受にこのような機械加工を実施する場合、加工力が増大するほど得られる耐圧痕性が向上する。加工力の増大に伴って荷重を付与する機構が複雑で大型なものになったり、軌道面を加工するツールの消耗が激しくなったりするため、できるだけ小さな加工力で大きな硬化量を得ることが好ましい。 On the other hand, the formation of indentations in rolling bearings is due to plastic deformation of the raceway surface due to contact between the rolling elements and the raceway ring, and can be explained as a simple material yield phenomenon. There are various methods for strengthening materials, and in addition to heat treatment and component adjustment, a method called work hardening is known. The present inventors have discovered that the indentation resistance of a rolling bearing can be further improved by machining hardened steel that has been hardened to the maximum extent through heat treatment. Various methods are known for machining rolling bearings, such as burnishing and shot peening, and have been realized industrially. When performing such machining on a rolling bearing, the greater the machining force, the better the resulting indentation resistance. As the machining force increases, the mechanism that applies the load becomes complicated and large, and the tools used to process the raceway surface become more worn out, so it is preferable to obtain a large amount of hardening with as little machining force as possible. .

転がり軸受に使用される高炭素鋼を熱処理すると、マルテンサイトと呼ばれる硬い組織の中に残留オーステナイトと呼ばれる軟質の組織が混在した組織となる。軟質な残留オーステナイトは耐圧痕性を低下させる要因であるが、機械加工により大きな応力を加えるとマルテンサイトに変態する性質を持つ。マルテンサイトへの変態は転がり軸受の硬さを大きく向上させることができるという特徴がある。したがって、あらかじめ残留オーステナイトが残存している出発材に機械加工を施すと、大きな加工硬化が得られるとともに、耐圧痕性に有害な残留オーステナイトの量を低減させることができる。 When high carbon steel used in rolling bearings is heat treated, it becomes a structure in which a soft structure called retained austenite is mixed with a hard structure called martensite. Soft retained austenite is a factor that reduces indentation resistance, but it has the property of transforming into martensite when large stress is applied during machining. The transformation to martensite has the characteristic that it can greatly improve the hardness of rolling bearings. Therefore, by performing machining on a starting material in which retained austenite remains in advance, large work hardening can be obtained and the amount of retained austenite that is harmful to indentation resistance can be reduced.

本発明はこのような知見に基づくものであり、上記の課題を解決するために下記(1)及び(2)に示す転がり軸受を提供する。 The present invention is based on such knowledge, and provides rolling bearings shown in (1) and (2) below in order to solve the above problems.

(1) 内輪と外輪との間に、複数の転動体を転動自在に保持してなる転がり軸受において、
前記内輪及び前記外輪の少なくとも一方の軌道面における、機械加工の影響を受けておらず、残留オーステナイト量が10%以上である領域を第1領域とし、
前記転動体と接触する前記軌道面において、残留オーステナイト量が、前記第1領域の残留オーステナイト量より少なく、かつ、硬さが、前記第1領域の硬さより高い領域を第2領域とすることを特徴とする転がり軸受。
(1) In a rolling bearing in which a plurality of rolling elements are held between an inner ring and an outer ring so as to be able to roll freely,
A region on the raceway surface of at least one of the inner ring and the outer ring that is not affected by machining and has a residual austenite amount of 10% or more is a first region,
In the raceway surface that contacts the rolling elements, a second region is defined as a region in which the amount of retained austenite is smaller than the amount of retained austenite in the first region, and the hardness is higher than the hardness of the first region. Characteristic rolling bearings.

(2) 前記第2領域が、
(a)残留オーステナイト量が、前記第1領域の残留オーステナイト量の78%以下であり、
(b)硬さが、前記第1領域の硬さよりも104%以上であることを特徴とする上記(1)に記載の転がり軸受。
(2) The second region is
(a) the amount of retained austenite is 78% or less of the amount of retained austenite in the first region;
(b) The rolling bearing as described in (1) above, wherein the hardness is 104% or more than the hardness of the first region.

また、上記の課題は、本発明に関わる下記の転がり軸受の製造方法により解決される。 Moreover, the above-mentioned problem is solved by the following method for manufacturing a rolling bearing related to the present invention.

(3) 上記(1)又は(2)に記載の転がり軸受の製造方法であって、
前記内輪及び外輪に対し、焼入れ焼戻し処理を施した後、
前記内輪及び前記外輪の少なくとも一方の軌道面に対し、弾性変形のみが生じると仮定して算出した、加工治具との最大接触面圧を8.2GPa以上とした条件で機械加工を施すことを特徴とする転がり軸受の製造方法。
(3) The method for manufacturing a rolling bearing according to (1) or (2) above,
After quenching and tempering the inner ring and outer ring,
Machining is performed on the raceway surface of at least one of the inner ring and the outer ring under the condition that the maximum contact surface pressure with the processing jig is 8.2 GPa or more, which is calculated on the assumption that only elastic deformation occurs. Characteristic manufacturing method for rolling bearings.

本発明によれば、例えば、工作機械などの、軌道輪に静的荷重が負荷され、ブリネル圧痕が生じやすい軸受において、軌道輪に発生する1μm程度の微小な圧痕形成を抑制できる。また、浸炭窒化処理やサブゼロ処理のような別工程が不要であり、製造コストの増加を招くこともない。 According to the present invention, for example, in a bearing such as a machine tool where a static load is applied to the bearing ring and Brinell impressions are likely to occur, it is possible to suppress the formation of minute impressions of about 1 μm that occur in the bearing ring. Further, separate processes such as carbonitriding treatment and sub-zero treatment are not required, and manufacturing costs do not increase.

図1は、本発明に係る転がり軸受の一例であるラジアル玉軸受を示す一部切欠斜視図である。FIG. 1 is a partially cutaway perspective view showing a radial ball bearing, which is an example of a rolling bearing according to the present invention.

以下、本発明の実施形態について具体的に説明する。しかしながら、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲において適宜変更して適用することができる。 Embodiments of the present invention will be specifically described below. However, the present invention is not limited to the following embodiments, and can be modified and applied as appropriate without changing the gist of the present invention.

本発明において転がり軸受の種類や構成に制限はなく、例えば図1に示すラジアル玉軸受を挙げることができる。図示されるように、ラジアル玉軸受1は、内周面に外輪軌道面2を有する外輪3と、外周面に内輪軌道面4を有する内輪5と、これら外輪軌道面2と内輪軌道面4との間に設けた、それぞれが転動体である複数個の玉6とを備える。これら各玉6は、円周方向に等間隔に配置された状態で、保持器7により、転動自在に保持されている。 In the present invention, there are no restrictions on the type or configuration of the rolling bearing, and for example, a radial ball bearing shown in FIG. 1 may be used. As shown in the figure, the radial ball bearing 1 includes an outer ring 3 having an outer ring raceway surface 2 on its inner peripheral surface, an inner ring 5 having an inner ring raceway surface 4 on its outer peripheral surface, and the outer ring raceway surface 2 and the inner ring raceway surface 4. A plurality of balls 6, each of which is a rolling element, are provided between the balls. These balls 6 are rotatably held by a cage 7 in a state where they are arranged at equal intervals in the circumferential direction.

外輪3、内輪5及び玉6の材質には制限はなく、一般的な軸受用鋼材であるSUJ2やSUJ3などを用いることができる。そのため、鋼材の添加元素を調整することがなく、素材コストを抑えることができる。 There are no restrictions on the materials of the outer ring 3, inner ring 5, and balls 6, and general bearing steel materials such as SUJ2 and SUJ3 can be used. Therefore, there is no need to adjust the additive elements of the steel material, and material costs can be reduced.

上記のラジアル玉軸受1は、まず、環状素材に旋削加工を施して、所定形状の外輪用ブランク材や内輪用ブランク材を作製する。次いで、それぞれのブランク材に焼入れ焼戻し処理を施し、研磨加工によって外輪軌道面2や内輪軌道面4を所定精度に仕上げる。その後で、外輪軌道面2や内輪軌道面4に機械加工を施し、最終的に仕上げ加工を施す。機械加工までの各工程及び仕上げ加工は、常法に従うことができる。 The above-mentioned radial ball bearing 1 is manufactured by first subjecting an annular material to a turning process to produce an outer ring blank material and an inner ring blank material having a predetermined shape. Next, each blank material is subjected to quenching and tempering treatment, and the outer ring raceway surface 2 and the inner ring raceway surface 4 are finished to a predetermined precision by polishing. After that, the outer ring raceway surface 2 and the inner ring raceway surface 4 are machined and finally finished. Each process up to machining and finishing can be performed according to conventional methods.

機械加工としては、圧縮応力を付与する加工方法であれば制限はないが、バニシング加工やショットピーニング加工が好ましい。 The machining process is not limited as long as it applies compressive stress, but burnishing and shot peening are preferred.

バニシング加工とは、加工治具である先端が球状で高硬度の部品が設けられた装置を外輪軌道面2や内輪軌道面4に押し当てて、外輪3や内輪5を自身の軸線を中心にして回転させて圧縮応力を付与する加工方法である。また、ショットピーニング加工とは、高硬度で略球状の投射材を外輪軌道面2や内輪軌道面4に噴射する加工方法である。略球状の投射材の大きさや材質、噴射速度などの処理条件を調整し、バニシング加工と同等の品質に調整することができる。 Burnishing is a process in which a processing jig with a spherical tip and a high-hardness component is pressed against the outer ring raceway surface 2 or inner ring raceway surface 4, and the outer ring 3 or inner ring 5 is centered on its own axis. This is a processing method in which compressive stress is applied by rotating the material. Further, shot peening is a processing method in which a highly hard and substantially spherical shot material is injected onto the outer ring raceway surface 2 and the inner ring raceway surface 4. By adjusting processing conditions such as the size, material, and jetting speed of the approximately spherical shot material, it is possible to achieve the same quality as burnishing processing.

この機械加工により、第2領域の残留オーステナイト量を、第1領域の残留オーステナイト量より少なく、具体的には、第1領域の残留オーステナイト量の78%以下にすることが好ましい。残留オーステナイトは軟質なため、耐圧痕性を低下させる要因であるが、機械加工によりマルテンサイトに変態させて硬さを向上させる。そのため、第2領域の残留オーステナイト量を、第1領域の残留オーステナイト量の78%以下にすることにより、硬さを向上させ、かつ、軟質な組織である残留オーステナイトを減少させ、十分な耐圧痕性を実現することができる。 By this machining, it is preferable that the amount of retained austenite in the second region is smaller than the amount of retained austenite in the first region, specifically, 78% or less of the amount of retained austenite in the first region. Since retained austenite is soft, it is a factor that reduces indentation resistance, but it is transformed into martensite by machining, improving hardness. Therefore, by setting the amount of retained austenite in the second region to 78% or less of the amount of retained austenite in the first region, hardness can be improved and retained austenite, which is a soft structure, can be reduced, and sufficient indentation resistance can be achieved. You can realize your sexuality.

この機械加工により、第2領域の硬さを、第1領域の硬さより高く、具体的には、第1領域の硬さの104%以上にすることが好ましい。第2領域の硬さを第1領域の硬さの104%以上にすることにより、十分な耐圧痕性を実現することができる。 Through this machining, it is preferable that the hardness of the second region is higher than that of the first region, specifically, 104% or more of the hardness of the first region. By making the hardness of the second region 104% or more of the hardness of the first region, sufficient indentation resistance can be achieved.

なお、第2領域よりも更に深く、心部などの機械加工の影響を受けていない上記第1領域は、いわゆる「未加工領域」であり、機械加工の影響を受けている領域は「加工領域」である。この「加工領域」には、上記第2領域も含まれる。 Note that the first area, which is deeper than the second area and is not affected by machining such as the core, is the so-called "unprocessed area", and the area affected by machining is the "processed area". ”. This "processing area" also includes the second area.

このような残留オーステナイト量にするには、焼入れ焼戻し処理により、第1領域の残留オーステナイト量を10%以上、好ましくは13%以上にし、機械加工する前の残留オーステナイトを多く存在させるのがよい。 In order to obtain such an amount of retained austenite, it is preferable to increase the amount of retained austenite in the first region by quenching and tempering to 10% or more, preferably 13% or more, so that a large amount of retained austenite exists before machining.

また、機械加工において、外輪3や内輪5を製造する際に、外輪3や内輪5に対し、焼入れ焼戻し処理を施した後、弾性変形のみが生じると仮定して算出した、加工治具との最大接触面圧を8.2GPa以上にすることが好ましい。最大接触面圧が大きいほど、加工域の残留オーステナイトがマルテンサイト変態し、残留オーステナイトが減少する。そのため、最大接触面圧が8.2GPa未満では、硬さの上昇が少なく、残留オーステナイトが多く存在してしまい十分な耐圧痕性を得にくくなる。なお、最大接触面圧は、9.2GPa以上であることがより好ましい。 In addition, when manufacturing the outer ring 3 and inner ring 5 in machining, the relationship between the processing jig and the processing jig is calculated assuming that only elastic deformation occurs after the outer ring 3 and inner ring 5 are quenched and tempered. It is preferable that the maximum contact pressure is 8.2 GPa or more. The larger the maximum contact surface pressure, the more the retained austenite in the processed area undergoes martensitic transformation, and the retained austenite decreases. Therefore, if the maximum contact surface pressure is less than 8.2 GPa, the increase in hardness is small and a large amount of retained austenite is present, making it difficult to obtain sufficient indentation resistance. In addition, it is more preferable that the maximum contact surface pressure is 9.2 GPa or more.

(予備試験)
本実施例においては、機械加工としてバニシング加工を採用し、その加工条件を検討した。まず、軸受鋼(SUJ2鋼)を素材として所定形状の軌道輪を作製し、焼入れ焼戻し処理を行った。その後、軌道輪に対して、仕上げ加工を施した後、更に、3種の異なる条件でのバニシング加工を施し、仕様の異なる3種のスラスト玉軸受を作製した。
(Preliminary test)
In this example, burnishing was employed as the machining process, and the processing conditions were studied. First, a bearing ring of a predetermined shape was produced using bearing steel (SUJ2 steel) as a raw material, and was subjected to quenching and tempering treatment. Thereafter, the bearing rings were subjected to finishing processing, and then burnishing processing was performed under three different conditions to produce three types of thrust ball bearings with different specifications.

なお、バニシング加工装置において、バニシングツールの先端形状はφ3mm、すべり率は100%、周速は100m/min、バニシングツールの送り速度は0.05mm/rev、バニシングツールの押し込み量は0.3mmである。また、加工時には、ろ過された工作液を供給した。そして、バニシング加工におけるバニシングツールと軌道面との接触面圧を、弾性変形のみが生じると仮定して、最大接触面圧(P)を算出した。なお、予備試験で作製された各種転がり軸受の最大接触面圧(P)は、それぞれP=5.8GPa、P=7.3GPa、P=8.2GPaであった。 In addition, in the burnishing processing device, the tip shape of the burnishing tool is φ3 mm, the sliding rate is 100%, the circumferential speed is 100 m/min, the feed rate of the burnishing tool is 0.05 mm/rev, and the pushing amount of the burnishing tool is 0.3 mm. be. Also, during machining, filtered working fluid was supplied. Then, the maximum contact pressure (P) between the burnishing tool and the raceway surface during the burnishing process was calculated on the assumption that only elastic deformation occurs. The maximum contact pressures (P) of the various rolling bearings produced in the preliminary tests were P=5.8GPa, P=7.3GPa, and P=8.2GPa, respectively.

続いて、最大接触面圧(P)ごとに、軌道輪の軌道面の表面から深さ方向の残留応力をX線回折法により測定した結果を表1に示す。なお、深さ250μm以上の領域を未加工領域(第1領域)とし、当該領域はバニシング加工の影響を受けていない領域である。また、表面(深さ0μm)から深さ250μm未満の領域を加工領域(第2領域)とし、当該領域はバニシング加工の影響を受けている領域である。 Subsequently, Table 1 shows the results of measuring the residual stress in the depth direction from the surface of the raceway surface of the raceway ring using the X-ray diffraction method for each maximum contact surface pressure (P). Note that an area with a depth of 250 μm or more is defined as an unprocessed area (first area), and this area is an area that is not affected by the burnishing process. Further, a region less than 250 μm in depth from the surface (depth 0 μm) is defined as a processed region (second region), and this region is a region affected by the burnishing process.

なお、表面(深さ0μm)での残留オーステナイト量が少ないのは、バニシング加工前の研磨加工において残留オーステナイト量が5%程度に減少したためである。 The reason why the amount of retained austenite at the surface (depth 0 μm) is small is because the amount of retained austenite was reduced to about 5% in the polishing process before the burnishing process.

表1の結果から、バニシング荷重、すなわち最大接触面圧(P)が大きいほど、加工領域の残留オーステナイトが、加工誘起マルテンサイト変態して減少しており、最大接触面圧が8.2GPa以上であれば、加工領域(第2領域)である軌道面表層の残留オーステナイト量を少なくとも78%以下に減少できることがわかる。すなわち、第2領域の残留オーステナイト量を、第1領域の残留オーステナイト量の78%以下にすることにより、硬さを向上させ、かつ、軟質な組織である残留オーステナイトを減少させ、十分な耐圧痕性を実現することができる。 From the results in Table 1, it can be seen that the larger the burnishing load, that is, the maximum contact pressure (P), the more the residual austenite in the processed area decreases through deformation-induced martensitic transformation, and when the maximum contact pressure is 8.2 GPa or more, It can be seen that if there is, the amount of retained austenite in the raceway surface surface layer, which is the processed region (second region), can be reduced to at least 78% or less. In other words, by setting the amount of retained austenite in the second region to 78% or less of the amount of retained austenite in the first region, hardness is improved, retained austenite, which is a soft structure, is reduced, and sufficient indentation resistance is achieved. You can realize your sexuality.

Figure 0007363663000001
Figure 0007363663000001

(実施例1)
軸受鋼を用いて平板形状とし、840℃焼入れ180℃焼戻しを行い、平面仕上げ加工後にバニシング加工を施して試験片を作製した。バニシング加工における最大接触面圧は、上記した予備試験から8.2GPa以上あればよいことから、9.2GPaとした。なお、その他の加工条件は、上記と同様とした。
(Example 1)
A test piece was prepared by forming a flat plate using bearing steel, quenching at 840°C, tempering at 180°C, and performing burnishing after flat finishing. The maximum contact surface pressure in the burnishing process was determined to be 9.2 GPa because it is sufficient to have 8.2 GPa or more from the preliminary test described above. Note that other processing conditions were the same as above.

(比較例1)
840℃にて焼入れし、300℃で焼戻しを行った以外は、実施例1と同様にして試験片を作製した。すなわち、実施例1と比較例1とで、焼入れ焼戻し条件を変えることにより、残留オーステナイト量が異なるようにした。
(Comparative example 1)
A test piece was produced in the same manner as in Example 1, except that it was quenched at 840°C and tempered at 300°C. That is, Example 1 and Comparative Example 1 were made to have different amounts of retained austenite by changing the quenching and tempering conditions.

(比較例2)
軸受鋼を用いて平板形状とし、840℃焼入れ180℃焼戻しを行った後、平面仕上げ加工して試験片とした。すなわち、比較例2ではバニシング処理を行っていない。
(Comparative example 2)
Bearing steel was used to form a flat plate, which was quenched at 840°C and tempered at 180°C, and then flat-finished to give a test piece. That is, in Comparative Example 2, no burnishing process was performed.

(比較例3)
840℃で焼入れし、300℃で焼戻しを行った以外は、比較例2と同様にして試験片を作製した。すなわち、比較例3ではバニシング処理を行っていない。
(Comparative example 3)
A test piece was prepared in the same manner as in Comparative Example 2, except that it was quenched at 840°C and tempered at 300°C. That is, in Comparative Example 3, no burnishing process was performed.

表2に、実施例1及び比較例1における、軌道面表面から深さ方向の残留オーステナイト量をX線回折により測定した結果を示す。実施例1及び比較例1は、ずぶ焼き処理品であるため、未加工領域の結果から、バニシング加工前の実施例1及び比較例1の軌道面表層(加工領域相当)の残留オーステナイト量は、それぞれ約13%、約1%である。標準的な熱処理を施した軸受鋼であれば、残留オーステナイト量は10±5%程度であり、表1(予備試験)で示す3種類のスラスト玉軸受を測定した結果から好ましくは10%程度有るとよく、表2の実施例1に示すようにさらに好ましくは13%以上あるとよい。この理由は、後述する表5に示すように、13%の実施例1の耐圧痕性が、他の実施例と比較しほぼ倍以上に優れているからである。また、実施例1において、バニシング加工領域の残留オーステナイト量が未加工領域に比べて78%以下に減少しており、軟質な残留オーステナイトが大幅に減少している。 Table 2 shows the results of measuring the amount of retained austenite in the depth direction from the raceway surface in Example 1 and Comparative Example 1 by X-ray diffraction. Since Example 1 and Comparative Example 1 are hard-baked products, from the results of the unprocessed area, the amount of retained austenite in the raceway surface layer (corresponding to the processed area) of Example 1 and Comparative Example 1 before burnishing is as follows: They are about 13% and about 1%, respectively. For bearing steel that has been subjected to standard heat treatment, the amount of retained austenite is about 10±5%, and from the results of measuring three types of thrust ball bearings shown in Table 1 (preliminary test), it is preferably about 10%. As shown in Example 1 of Table 2, it is more preferably 13% or more. The reason for this is that, as shown in Table 5 below, the indentation resistance of Example 1 of 13% is almost twice as good as that of the other Examples. Further, in Example 1, the amount of retained austenite in the burnishing region was reduced to 78% or less compared to the untreated region, and the amount of soft retained austenite was significantly reduced.

Figure 0007363663000002
Figure 0007363663000002

続いて、表3及び表4に、実施例1及び比較例1~3における軌道面表面から深さ方向の硬さの測定結果を示すが、バニシング加工により加工硬化されていることがわかる。実施例1では加工領域の硬さが未加工領域に比べて104%以上に増加している。また、実施例1では比較例1に比べて加工領域の加工硬化量が大きい。このことから、残留オーステナイトが多く残存した状態で、バニシング加工を施すことにより、残留オーステナイトの加工誘起マルテンサイト変態量が増加して、硬さが大幅に増加することがわかる。 Subsequently, Tables 3 and 4 show the measurement results of the hardness in the depth direction from the raceway surface in Example 1 and Comparative Examples 1 to 3, and it can be seen that the hardness was work hardened by burnishing. In Example 1, the hardness of the processed area is increased by 104% or more compared to the unprocessed area. Furthermore, in Example 1, the amount of work hardening in the processed region was greater than in Comparative Example 1. From this, it can be seen that by performing burnishing in a state where a large amount of retained austenite remains, the amount of deformation-induced martensitic transformation of the retained austenite increases, and the hardness increases significantly.

Figure 0007363663000003
Figure 0007363663000003

Figure 0007363663000004
Figure 0007363663000004

更に表5に、実施例1及び比較例1~3の圧痕試験の結果を示す。圧痕試験では、転がり軸受の軌道輪を模擬した平板形状の試験片と同様、軸受鋼を熱処理して作製された3/8インチの鋼球(転動体)を用いて、実施例1及び比較例1~3で作製した各試験片に、最大接触面圧がそれぞれ5.0GPa、5.5GPa、6.0GPaとなるように荷重を負荷した後、テーラーホブソン社製の3次元表面性状測定機(CCI)を用いて、平板形状の試験片の表面に生じた圧痕の深さを測定した。表5の結果から、実施例1が最も圧痕深さが浅く、最も耐圧痕性に優れていることがわかる。 Further, Table 5 shows the results of the indentation test for Example 1 and Comparative Examples 1 to 3. In the indentation test, 3/8-inch steel balls (rolling elements) made by heat-treating bearing steel were used to test Example 1 and Comparative Example, as well as flat test pieces simulating the bearing rings of rolling bearings. After applying a load to each test piece prepared in steps 1 to 3 so that the maximum contact surface pressure was 5.0 GPa, 5.5 GPa, and 6.0 GPa, a three-dimensional surface texture measuring machine manufactured by Taylor Hobson Co., Ltd. ( CCI) was used to measure the depth of an indentation formed on the surface of a flat test piece. From the results in Table 5, it can be seen that Example 1 has the shallowest indentation depth and is the most excellent in indentation resistance.

Figure 0007363663000005
Figure 0007363663000005

1 ラジアル玉軸受
2 外輪軌道面
3 外輪
4 内輪軌道面
5 内輪
6 玉
7 保持器
1 Radial ball bearing 2 Outer ring raceway surface 3 Outer ring 4 Inner ring raceway surface 5 Inner ring 6 Ball 7 Cage

Claims (3)

内輪と外輪との間に、複数の転動体を転動自在に保持してなる転がり軸受において、
前記内輪及び前記外輪の少なくとも一方の軌道面における、機械加工の影響を受けておらず、残留オーステナイト量が10%以上である領域を第1領域とし、
前記転動体と接触する前記軌道面において、残留オーステナイト量が、前記第1領域の残留オーステナイト量より少なく、かつ、硬さが、前記第1領域の硬さより高い領域を第2領域とすることを特徴とする転がり軸受。
In a rolling bearing that has a plurality of rolling elements held between an inner ring and an outer ring so as to be able to roll freely,
A region on the raceway surface of at least one of the inner ring and the outer ring that is not affected by machining and has a residual austenite amount of 10% or more is a first region,
In the raceway surface that contacts the rolling elements, a second region is defined as a region in which the amount of retained austenite is lower than the amount of retained austenite in the first region, and the hardness is higher than the hardness of the first region. Characteristic rolling bearings.
前記第2領域が、
(a)残留オーステナイト量が、前記第1領域の残留オーステナイト量の78%以下であり、
(b)硬さが、前記第1領域の硬さよりも104%以上であることを特徴とする請求項1に記載の転がり軸受。
The second region is
(a) the amount of retained austenite is 78% or less of the amount of retained austenite in the first region;
The rolling bearing according to claim 1, wherein (b) the hardness is 104% or more than the hardness of the first region.
請求項1又は2に記載の転がり軸受の製造方法であって、
前記内輪及び外輪に対し、焼入れ焼戻し処理を施した後、
前記内輪及び前記外輪の少なくとも一方の軌道面に対し、弾性変形のみが生じると仮定して算出した、加工治具との最大接触面圧を8.2GPa以上とした条件で機械加工を施すことを特徴とする転がり軸受の製造方法。
A method for manufacturing a rolling bearing according to claim 1 or 2, comprising:
After quenching and tempering the inner ring and outer ring,
Machining is performed on the raceway surface of at least one of the inner ring and the outer ring under the condition that the maximum contact surface pressure with the processing jig is 8.2 GPa or more, which is calculated on the assumption that only elastic deformation occurs. Characteristic manufacturing method for rolling bearings.
JP2020080616A 2020-04-30 2020-04-30 Rolling bearing and its manufacturing method Active JP7363663B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020080616A JP7363663B2 (en) 2020-04-30 2020-04-30 Rolling bearing and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020080616A JP7363663B2 (en) 2020-04-30 2020-04-30 Rolling bearing and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2021173402A JP2021173402A (en) 2021-11-01
JP7363663B2 true JP7363663B2 (en) 2023-10-18

Family

ID=78281418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020080616A Active JP7363663B2 (en) 2020-04-30 2020-04-30 Rolling bearing and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7363663B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004116569A (en) 2002-09-24 2004-04-15 Koyo Seiko Co Ltd Rolling bearing
JP2004339575A (en) 2003-05-16 2004-12-02 Nsk Ltd Method for producing parts of rolling device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02168022A (en) * 1988-12-22 1990-06-28 Toyota Motor Corp Bearing parts

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004116569A (en) 2002-09-24 2004-04-15 Koyo Seiko Co Ltd Rolling bearing
JP2004339575A (en) 2003-05-16 2004-12-02 Nsk Ltd Method for producing parts of rolling device

Also Published As

Publication number Publication date
JP2021173402A (en) 2021-11-01

Similar Documents

Publication Publication Date Title
JP5121168B2 (en) Rolling member manufacturing method and rolling bearing manufacturing method
JP6535276B2 (en) Bearing component, method of manufacturing the same, and rolling bearing
JPH06246546A (en) Manufacture of bearing ring for rolling bearing
EP1725693B1 (en) Method for carburizing a steel article with improved wear resistance
KR100449680B1 (en) Raw material for bearing parts
US20080264528A1 (en) Rolling, sliding part and process for producing same
JP5598016B2 (en) Manufacturing method of thrust trace of needle thrust bearing
JPH10231908A (en) Roller for troidal type continuously variable transmission and its manufacture
JP4186568B2 (en) Rolling bearing and method for manufacturing inner ring of rolling bearing
JP2009203526A (en) Rolling bearing
JP7363663B2 (en) Rolling bearing and its manufacturing method
JP3752577B2 (en) Manufacturing method of machine parts
JP2007239837A (en) Tripod type constant velocity universal joint and its manufacturing method
JPH04333521A (en) Production of bearing ring
JP2007186760A (en) Manufacturing method of bearing ring for rolling bearing, and rolling bearing
JP2004205047A (en) Rolling bearing
JP2000234658A (en) Power roller for toroidal continuously variable transmission and manufacture therefor
JPH11257357A (en) Race for rolling bearing
WO2019193772A1 (en) Intermediary race member of rolling bearing, race, rolling bearing and production method therefor
JP2007182603A (en) Method for manufacturing rolling member, rolling member and rolling bearing
TWI833113B (en) Angled ball bearings
US20200370159A1 (en) Steel material for cvt sheave, cvt sheave, and method for manufacturing cvt sheave
CN113510449B (en) Hard tooth surface axle wheel edge inclined annular gear and manufacturing method thereof
JP6843786B2 (en) Manufacturing method of bearing parts, rolling bearings, and bearing parts
JP4186626B2 (en) Manufacturing method of rolling sliding member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230113

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230829

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230918

R150 Certificate of patent or registration of utility model

Ref document number: 7363663

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150