JP4185381B2 - Lens polishing method - Google Patents

Lens polishing method Download PDF

Info

Publication number
JP4185381B2
JP4185381B2 JP2003047591A JP2003047591A JP4185381B2 JP 4185381 B2 JP4185381 B2 JP 4185381B2 JP 2003047591 A JP2003047591 A JP 2003047591A JP 2003047591 A JP2003047591 A JP 2003047591A JP 4185381 B2 JP4185381 B2 JP 4185381B2
Authority
JP
Japan
Prior art keywords
polishing
caf
lens
single crystal
crystal orientation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003047591A
Other languages
Japanese (ja)
Other versions
JP2004255499A (en
Inventor
洋 黒澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP2003047591A priority Critical patent/JP4185381B2/en
Publication of JP2004255499A publication Critical patent/JP2004255499A/en
Application granted granted Critical
Publication of JP4185381B2 publication Critical patent/JP4185381B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明はCaF2単結晶を素材としたレンズの研磨方法の改良に関する。
【0002】
【従来の技術】
従来から、フッ化カルシウム(CaF2)系の結晶性ガラス材料の蛍石レンズ を研磨する技術が知られている(特許文献1参照)。
【0003】
しかしながら、深紫外線領域において、CaF2単結晶は、結晶方位を起因と して固有複屈折が生じることが問題になっている。
【0004】
特許文献2によれば、図4に示すように複数のCaF2単結晶レンズからなる 光学系で、光軸=〔111〕軸の場合、次席レンズを光軸廻りに60度位相を回転 させて配置することで、回転非対称な複屈折収差成分を解消できるとしている。
【0005】
一方、CaF2素材の研磨方法については、各種の方法が公知になっている。
【0006】
特許文献3によれば、液中研磨において、CaF2微粉末を溶媒中に溶解度5 0%以上溶解させた溶液に、研磨砥粒(粒径0.2μmのダイヤモンド)を分散攪拌させた研磨液を用いることで、表面あらさrms=0.1nmのものを得ている旨記載されている。
【0007】
一般的にCaF2素材のようにイオン結合性の高い素材(アルカリハライド結 晶)の研磨に際しては、エッチング効果により素材表面に曇り・ヤケ等が発現し易いので、酸・アルカリ性の溶液は避けるべき事が広く知られている。
【0008】
さらに特許文献3においては、CaF2材のイオン化による表面状態の悪化は 中性の精製水中でも起こり得るので、CaF2過飽和水溶液を用いてイオン化を 完全に阻止することにより、ダイヤモンド微粒子による機械的除去を支配的にする効果が得られ、CaF2材の表面あらさが向上するとしている。
【0009】
【特許文献1】
特開2002−103227号公報
【0010】
【特許文献2】
「ステッパー技術の最先端」石山著、光技術コンタクト、Vol.40,No.9(2002),pp.5-13.
【0011】
【特許文献3】
特開平8−19943号公報
【0012】
【発明が解決しようとする課題】
通常、レンズメーカーがCaF2単結晶素材を調達する際は、素材メーカーに 対して、光軸を〔111〕軸のように指定し、素材メーカーから、円柱型に切り出 した素材を購入している。この場合、そのまわりで3方位:〔100〕,〔010〕,〔001〕軸がどちらを向いているのかは未知のままであった。したがって、如何 にレンズの真球度を厳しく仕上げたところで、組み立ての際に意図的に3方位を60度の位相でずらさなければ、回転非対称収差成分(アス)が生じる。
【0013】
切り出された個々の円柱型レンズ素材に対して、光軸まわりの3方位を指定する事は素材メーカーに依頼すればX線を用いた方法で不可能ではないが、その分、コストアップが生じる。
【0014】
また、レンズ素材が各工程を通過するうちに、3方位が、素材上どの位置なのかが不明になってしまう事もあり得る。
【0015】
本発明の目的は、レンズの結晶方位を確認できる、レンズ研磨方法を提供することである。
【0016】
【課題を解決するための手段】
上記目的を達成させるための本発明の解決手段を例示すると、次のとおりである。
【0017】
(1)CaF 2 単結晶を素材としたレンズを研磨する際に、陰イオン系界面活性剤が混入したセリアスラリーを用いて、CaF2単結晶素材の結晶方位を示す稜線を明瞭にし、さらに前述のスラリーとは別のスラリーを用いて、稜線を消去することを特徴とするレンズの研磨方法。
【0018】
(2)CaF 2 単結晶を素材としたレンズを研磨する際に、陰イオン系界面活性剤が混入したセリアスラリーを用いて、予備的研磨として、CaF2単結晶素材の結晶方位を示す稜線を明瞭にし、さらに、レンズ表面を鏡面状態に移行させるとともに、前述のスラリーとは別のスラリーを用いて、稜線を消去することを特徴とするレンズの研磨方法。
【0019】
(3)CaF 2 単結晶を素材としたレンズを研磨する際に、まずCaF 2 単結晶素材の結晶方位を示す稜線を残すようにセリアスラリーを用いてレンズを研磨し、そのあと、非イオン系界面活性剤が混入したダイヤモンドスラリーを用いて、CaF2単結晶素材の結晶方位を示す稜線を消去するように研磨することを特徴とするレンズの研磨方法。
【0020】
(4)予備的研磨法で用いるものと同一の研磨工具を利用して、非イオン系界面活性剤が混入したダイヤモンドスラリーを用いて、CaF2単結晶を素材とし たレンズを研磨する際に、仕上げ研磨として、CaF2単結晶素材の結晶方位を 示す稜線を消去するとともに、真球度と表面あらさを向上させることを特徴とするレンズの仕上げ研磨法。
【0021】
(5)陰イオン系界面活性剤が混入したセリアスラリーを用い、CaF2単結 晶素材の結晶方位を示す稜線を残して、CaF2単結晶を素材としたレンズを研 磨する第1の研磨工程と、非イオン系界面活性剤が混入したダイヤモンドスラリーを用い、CaF2単結晶素材の結晶方位を示す稜線を消去するように、CaF2単結晶を素材としたレンズを研磨する第2の研磨工程とからなることを特徴とするレンズの研磨方法。
【0022】
【発明の実施の形態】
本発明においては、好ましくは、CaF2単結晶を素材としたレンズの予備的 研磨と仕上げ研磨を組み合せる。
【0023】
予備的研磨方法として、陰イオン系界面活性剤が混入されたセリア(CeO2 )スラリーを用い、結晶方位を示す稜線を明瞭にするとともに、迅速に鏡面状態に移行させる。
【0024】
また、CaF2単結晶を素材としたレンズの仕上げ研磨方法として、予備的研 磨方法のものと同一の研磨工具を継続して用いるとともに、非イオン系界面活性剤が混入されたダイヤモンドスラリーを用いて、CaF2単結晶素材の結晶方位 を示す稜線を消去するとともに、真球度と表面あらさを向上させる。
【0025】
本発明は、好ましくは、予備的な研磨工程と、仕上げ工程とを一連の継続した工程として組み合わせる。
【0026】
【実施例】
まず、予備的な研磨工程にて、陰イオン系界面活性剤が混入されたセリア(CeO2)スラリーを用いることにより迅速に鏡面仕上げを進行させるとともに、 レンズ素材の結晶方位を確認できるようにする。そのように素材の結晶方位を明瞭にすると、光学系を構成する際に有益となる。
【0027】
また、その後、同一の研磨工具を用いた仕上げ研磨工程にて、非イオン系界面活性剤が混入されたダイヤモンドスラリーを用いる事で、真球度・表面あらさを改善する。
【0028】
図1は本発明の1つの実施例による予備研磨の一例を示す。
【0029】
図1は、CaF2単結晶を素材としたレンズ素材が予備的研磨方法により研磨 され、結晶方位を示す稜線を明瞭にするとともに迅速に鏡面状態に移行させた状態を示す。
【0030】
予備的な研磨工程においては、陰イオン系の界面活性剤を混入した軟質のセリア(CeO2)微粒子スラリーを用いる。
【0031】
研磨工具としては、特願2003−29662号の明細書及び図面に記載されている研磨工具、研磨装置及び方法を用いると、とくに、カーボン樹脂を母材としたレンズ曲率整形面に適切な溝を加え、表層に厚さ0.3mm以下のピッチ層を形成した工具を用いると、より効果的である。
【0032】
セリアは、軟質の微粒子であるにもかかわらず、陰イオン系の界面活性剤の影響によりスラリーはアルカリ性を呈し、イオン結合性の強いCaF2単結晶中の Caは、迅速にイオン化して、スラリー中に溶解してゆく。
【0033】
また、セリアは、一種のハロゲン吸着剤であり、もう一方のFイオンを吸着してゆく。
【0034】
このように、化学的除去反応で、エッチングが過剰に進行し、除去効率は飛躍的に高まるが、この反応は素材表面の原子配列の影響を受け、結晶方位を示す稜線が次第に鮮明に浮き彫りになる。この状態で、レンズ外周部に結晶方位を示す印を記入する。
【0035】
ところで、CaF2素材の表面平滑化メカニズムにおいて、その表層において は、CaF2の再付着(Re-deposition)が起こっているとされ、表面下の数μm〜100μmの潜傷領域に残留したセリアは、紫外線吸収源となり、レンズ表面の欠陥成長を誘導する事が懸念される。
【0036】
また、Fを吸着したセリア微粒子は次第に凝集を起こし始め、ポリシャ上に吸着し、硬質の皮膜として成長するようになる。
【0037】
図2は、Fを吸着したセリア(CeO2)微粒子が次第に凝集し、ピッチポリ シャ上に吸着した後、硬質皮膜として成長する過程を示している。
【0038】
このように硬質化皮膜により被覆されたポリシャは、CaF2素材の表面を傷 つけるばかりでなく、ポリシャ表面の形状も劣化させるので、予備的研磨で結晶方位の確認と迅速な鏡面化が終わり次第、工程を切り上げるのが好ましい。
【0039】
十分に鏡面化に至らずにポリシャの変質化が先行する気配がある場合、PEG(ポリエチレングリコール)等の非イオン系界面活性剤を添加すると、セリアの凝集や、凝集体のポリシャへの吸着を遅らせる事ができる。
【0040】
図3は、本発明の実施例による仕上げ研磨の一例を示す。
【0041】
図3は、CaF2単結晶を素材としたレンズ素材が仕上げ研磨方法により研磨 され、結晶方位を示す稜線を消去にするとともに真球度と表面あらさを改善させた状態を示す。
【0042】
この仕上げ研磨に際しては、予備的研磨工程での研磨工具を洗浄した後、同じ研磨工具を継続して利用するとともに、高分子材料による非イオン系の界面活性剤を混入したダイヤモンド微粒子スラリーを用いる。高分子溶媒中では、立体障害効果によりCaF2のイオン化は抑制され、ダイヤモンド微粒子により、原子 配列に依存しない微小な機械的除去が支配的となり、結晶方位を示す稜線は次第に無くなり、真球度および表面あらさは向上する。
【0043】
予備研磨と仕上げ研磨の両工程で同一の研磨工具を利用する事により、形状は比較的迅速に仕上がり、また、吸着した硬質化セリア層は、より硬質のダイヤモンド微粒子により摩滅してゆく。
【0044】
また、特願2003−29662号に記載の研磨工具(カーボン樹脂を母材としたレンズ曲率整形面に適切な溝を加え、表層に厚さ0.3mm以下のピッチ層を形成した磨工具)を用い、ダイヤモンドホイールにて表面のピッチ層に曲率のツルーイングを加えると、レンズ曲率半径もμmオーダで仕上げられる。
【0045】
仕上げ研磨の終了後に芯取工程がある。ここでレンズ外周部が研削除去されるが、その前に、芯取ホルダーで押さえる部分より内側のレンズ面に、結晶方位を示す印を、溶剤にて溶解したピッチを吸った筆で書き込む。
【0046】
さらに、研削終了後、今度はレンズ外周部にダイヤモンドペンシルで浅く結晶方位を示す印を書き込む。
【0047】
さらに、蒸着工程にて光学的機能薄膜が形成された後、〔111〕軸を光軸とし たCaF2構成レンズがN枚の場合、レンズ外周部の印を基準に、順次レンズ外 周を120/N度ずつ回転し、光学系を組み立ててゆくと、複屈折の影響は緩和される。
【0048】
【発明の効果】
本発明によれば、CaF2単結晶を素材としたレンズの結晶方位を示す稜線を 明瞭にすることができる。さらに、迅速に鏡面状態に移行させることができるとともに、真球度・表面あらさを向上させることができる。
【図面の簡単な説明】
【図1】図1は、CaF2単結晶を素材としたレンズ素材が予備的研磨方法により研磨 され、結晶方位を示す稜線を明瞭にするとともに迅速に鏡面状態に移行させた状態を示す。
【図2】図2は、Fを吸着したセリア(CeO2)微粒子が次第に凝集し、ピッチポリ シャ上に吸着した後、硬質皮膜として成長する過程を示している。
【図3】図3は、CaF2単結晶を素材としたレンズ素材が仕上げ研磨方法により研磨 され、結晶方位を示す稜線を消去にするとともに真球度と表面あらさを改善させた状態を示す。
【図4】図4は、複数のCaF2単結晶レンズからなる光学系で、光軸=〔111〕軸の場合、次席レンズを光軸廻りに60度位相を回転させて配置することを示す説明図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improvement of a lens polishing method using a CaF 2 single crystal as a material.
[0002]
[Prior art]
Conventionally, a technique of polishing a fluorite lens made of a calcium fluoride (CaF 2 ) -based crystalline glass material is known (see Patent Document 1).
[0003]
However, in the deep ultraviolet region, the CaF 2 single crystal has a problem in that intrinsic birefringence occurs due to the crystal orientation.
[0004]
According to Patent Document 2, as shown in FIG. 4, in an optical system comprising a plurality of CaF 2 single crystal lenses, when the optical axis = [111] axis, the phase of the secondary lens is rotated 60 degrees around the optical axis. By arranging it, the rotationally asymmetric birefringence aberration component can be eliminated.
[0005]
On the other hand, various methods are known for the CaF 2 material polishing method.
[0006]
According to Patent Document 3, in polishing in a liquid, a polishing liquid in which abrasive grains (diamond having a particle diameter of 0.2 μm) are dispersed and stirred in a solution in which a CaF 2 fine powder is dissolved in a solvent by 50% or more. It is described that a surface roughness of rms = 0.1 nm is obtained by using.
[0007]
In general, when polishing materials with high ion binding properties (alkali halide crystals) such as CaF 2 materials, the surface of the material is likely to become cloudy or burnt due to the etching effect, so acid / alkaline solutions should be avoided. Things are widely known.
[0008]
Furthermore, in Patent Document 3, since surface deterioration due to ionization of CaF 2 material can occur even in neutral purified water, mechanical removal by diamond fine particles can be achieved by completely preventing ionization using CaF 2 supersaturated aqueous solution. The surface roughness of the CaF 2 material is improved.
[0009]
[Patent Document 1]
Japanese Patent Laid-Open No. 2002-103227
[Patent Document 2]
`` Leading Stepper Technology '' by Ishiyama, Optical Technology Contact, Vol. 40, No. 9 (2002), pp. 5-13.
[0011]
[Patent Document 3]
Japanese Patent Application Laid-Open No. 8-19923
[Problems to be solved by the invention]
Normally, when a lens manufacturer procures CaF 2 single crystal material, the optical axis is specified to the material manufacturer as the [111] axis, and a material cut into a cylindrical shape is purchased from the material manufacturer. Yes. In this case, it remains unknown which of the three directions: [100], [010], [001] axes are facing. Accordingly, when the sphericity of the lens is strictly finished, rotationally asymmetric aberration components (asp) are generated unless the three directions are intentionally shifted by 60 degrees during assembly.
[0013]
Specifying three orientations around the optical axis for each cut-out cylindrical lens material is not impossible with the method using X-rays if requested by the material manufacturer, but the cost increases accordingly. .
[0014]
In addition, while the lens material passes through each process, it may be unclear which position the three directions are on the material.
[0015]
The objective of this invention is providing the lens grinding | polishing method which can confirm the crystal orientation of a lens.
[0016]
[Means for Solving the Problems]
Examples of the solving means of the present invention for achieving the above object are as follows.
[0017]
(1) when polishing a lens with a material the CaF 2 single crystal, using a ceria slurry anionic surfactant is mixed, and clarity of ridge showing the crystal orientation of CaF 2 single crystal material further above A method for polishing a lens, wherein a ridge line is erased using a slurry different from the slurry .
[0018]
(2) when polishing a lens with a material the CaF 2 single crystal, using a ceria slurry anionic surfactant is mixed, as a preliminary polishing, the edge line showing the crystal orientation of CaF 2 single crystal material and clarity, further Rutotomoni transitions the lens surface in a mirror state, using another slurry to the aforementioned slurry, the polishing method of the lens characterized by also erase ridge.
[0019]
(3) when polishing a lens with a material the CaF 2 single crystal, first, polishing the lens by using a ceria slurry to leave the ridge line indicating the crystal orientation of CaF 2 single crystal material, after which, nonionic A polishing method for a lens, characterized by polishing using a diamond slurry mixed with a surfactant so as to erase a ridge line indicating a crystal orientation of a CaF 2 single crystal material.
[0020]
(4) When polishing a lens made of CaF 2 single crystal using diamond slurry mixed with nonionic surfactant using the same polishing tool as that used in the preliminary polishing method, A finish polishing method for a lens characterized in that, as finish polishing, a ridge line indicating the crystal orientation of a CaF 2 single crystal material is erased, and sphericity and surface roughness are improved.
[0021]
(5) using a ceria slurry anionic surfactant is mixed, leaving a ridge line indicating the crystal orientation of CaF 2 single crystal material, a first polishing which Migaku Ken the lens with a material the CaF 2 single crystal And a second polishing for polishing a lens made of a CaF 2 single crystal so as to erase a ridge line indicating a crystal orientation of the CaF 2 single crystal material using a diamond slurry mixed with a nonionic surfactant. A method for polishing a lens comprising the steps of:
[0022]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, preferably, preliminary polishing and finishing polishing of a lens made of a CaF 2 single crystal are combined.
[0023]
As a preliminary polishing method, a ceria (CeO 2 ) slurry mixed with an anionic surfactant is used to clarify the ridge line indicating the crystal orientation and quickly shift to the mirror surface state.
[0024]
Also, as a final polishing method for lenses made of CaF 2 single crystal, the same polishing tool as that used in the preliminary polishing method is used continuously, and a diamond slurry mixed with a nonionic surfactant is used. Thus, the ridgeline indicating the crystal orientation of the CaF 2 single crystal material is erased and the sphericity and surface roughness are improved.
[0025]
The present invention preferably combines a preliminary polishing step and a finishing step as a series of continuous steps.
[0026]
【Example】
First, by using a ceria (CeO 2 ) slurry mixed with an anionic surfactant in a preliminary polishing process, the mirror finish can be rapidly advanced and the crystal orientation of the lens material can be confirmed. . If the crystal orientation of the material is made clear in this way, it will be useful when configuring the optical system.
[0027]
In addition, the sphericity and surface roughness are improved by using a diamond slurry mixed with a nonionic surfactant in a final polishing step using the same polishing tool.
[0028]
FIG. 1 shows an example of preliminary polishing according to one embodiment of the present invention.
[0029]
FIG. 1 shows a state in which a lens material made of CaF 2 single crystal is polished by a preliminary polishing method so that a ridge line indicating a crystal orientation is clarified and a mirror surface state is quickly changed.
[0030]
In the preliminary polishing step, a soft ceria (CeO 2 ) fine particle slurry mixed with an anionic surfactant is used.
[0031]
When the polishing tool, polishing apparatus and method described in the specification and drawings of Japanese Patent Application No. 2003-29662 are used as the polishing tool, in particular, an appropriate groove is formed on the lens curvature shaping surface using a carbon resin as a base material. In addition, it is more effective to use a tool in which a pitch layer having a thickness of 0.3 mm or less is formed on the surface layer.
[0032]
Although ceria is a soft fine particle, the slurry exhibits alkalinity due to the influence of an anionic surfactant, and Ca in the CaF 2 single crystal having strong ion binding is rapidly ionized to form a slurry. Dissolve inside.
[0033]
Ceria is a kind of halogen adsorbent, and adsorbs the other F ion.
[0034]
In this way, the chemical removal reaction causes excessive etching and the removal efficiency increases dramatically, but this reaction is affected by the atomic arrangement on the surface of the material, and the ridge line indicating the crystal orientation gradually becomes more clearly highlighted. Become. In this state, a mark indicating the crystal orientation is written on the outer periphery of the lens.
[0035]
By the way, in the surface smoothing mechanism of the CaF 2 material, it is said that CaF 2 re-deposition occurs on the surface layer, and ceria remaining in the latent scratch area of several μm to 100 μm below the surface is There is a concern that it becomes an ultraviolet absorption source and induces defect growth on the lens surface.
[0036]
Further, the ceria fine particles adsorbing F gradually start to aggregate, and adsorb on the polisher to grow as a hard film.
[0037]
FIG. 2 shows a process in which ceria (CeO 2 ) fine particles adsorbing F are gradually aggregated and adsorbed on the pitch polisher, and then grow as a hard film.
[0038]
Such a polisher coated with a hardened film not only damages the surface of the CaF 2 material, but also degrades the shape of the polisher surface, so as soon as the confirmation of crystal orientation and rapid mirroring are completed by preliminary polishing. It is preferable to round up the process.
[0039]
If there is a sign that the polisher is not sufficiently mirror-finished and the polisher is preceded by modification, adding a nonionic surfactant such as PEG (polyethylene glycol) will cause ceria to aggregate and adsorb the aggregate to the polisher. Can be delayed.
[0040]
FIG. 3 shows an example of finish polishing according to an embodiment of the present invention.
[0041]
FIG. 3 shows a state in which a lens material made of a CaF 2 single crystal is polished by a finish polishing method to eliminate a ridge line indicating a crystal orientation and improve sphericity and surface roughness.
[0042]
In this final polishing, after the polishing tool in the preliminary polishing step is washed, the same polishing tool is continuously used and a diamond fine particle slurry mixed with a nonionic surfactant made of a polymer material is used. In polymer solvents, the ionization of CaF 2 is suppressed due to the steric hindrance effect, and the fine particles of diamond dominated the fine mechanical removal independent of the atomic arrangement, and the ridge lines indicating the crystal orientation gradually disappeared. Surface roughness is improved.
[0043]
By using the same polishing tool in both the preliminary polishing and the finishing polishing, the shape is finished relatively quickly, and the adsorbed hardened ceria layer is worn away by harder diamond particles.
[0044]
In addition, the polishing tool described in Japanese Patent Application No. 2003-29662 (a polishing tool in which an appropriate groove is added to a lens curvature shaping surface using a carbon resin as a base material and a pitch layer having a thickness of 0.3 mm or less is formed on the surface layer) When the truing of curvature is applied to the pitch layer on the surface with a diamond wheel, the lens curvature radius is also finished on the order of μm.
[0045]
There is a centering step after finishing polishing. Here, the outer peripheral portion of the lens is ground and removed, but before that, a mark indicating the crystal orientation is written on the lens surface inside the portion pressed by the centering holder with a brush sucking a pitch dissolved in a solvent.
[0046]
Further, after grinding, a mark indicating the crystal orientation is written shallowly with a diamond pencil on the outer periphery of the lens.
[0047]
Furthermore, after the optically functional thin film is formed in the vapor deposition process, when there are N CaF 2 constituting lenses with the [111] axis as the optical axis, the outer circumference of the lens is sequentially set to 120 with reference to the mark on the outer circumference of the lens. When the optical system is assembled by rotating by / N degrees, the influence of birefringence is mitigated.
[0048]
【The invention's effect】
According to the present invention, a ridge line indicating the crystal orientation of a lens made of a CaF 2 single crystal can be clarified. Furthermore, it is possible to quickly shift to a mirror surface state, and it is possible to improve sphericity and surface roughness.
[Brief description of the drawings]
FIG. 1 shows a state in which a lens material made of a CaF 2 single crystal is polished by a preliminary polishing method to clarify a ridge line indicating a crystal orientation and quickly shift to a mirror surface state.
FIG. 2 shows a process in which ceria (CeO 2 ) fine particles adsorbing F gradually aggregate and adsorb on a pitch polisher, and then grow as a hard film.
FIG. 3 shows a state in which a lens material made of a CaF 2 single crystal is polished by a finish polishing method to erase a ridge line indicating a crystal orientation and improve sphericity and surface roughness.
FIG. 4 is an optical system composed of a plurality of CaF 2 single crystal lenses, and shows that when the optical axis = [111] axis, the secondary lens is arranged with the phase rotated by 60 degrees around the optical axis. It is explanatory drawing.

Claims (1)

陰イオン系の界面活性剤が混入したセリアスラリーを用いて、CaF単結晶素材の結晶方位を示す稜線を残して、CaF単結晶を素材としたレンズを研磨する第1の研磨工程と、非イオン系界面活性剤が混入したダイヤモンドスラリーを用い、CaF単結晶素材の結晶方位を示す稜線を消去するように、CaF単結晶を素材としたレンズを研磨する第2の研磨工程とからなることを特徴とするレンズの研磨方法。Using a ceria slurry anionic surfactant is mixed, leaving a ridge line indicating the crystal orientation of CaF 2 single crystal material, a first polishing step of polishing a lens with a material the CaF 2 single crystal, From the second polishing step of polishing the lens made of the CaF 2 single crystal material so as to erase the ridge line indicating the crystal orientation of the CaF 2 single crystal material using the diamond slurry mixed with the nonionic surfactant. A lens polishing method comprising:
JP2003047591A 2003-02-25 2003-02-25 Lens polishing method Expired - Fee Related JP4185381B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003047591A JP4185381B2 (en) 2003-02-25 2003-02-25 Lens polishing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003047591A JP4185381B2 (en) 2003-02-25 2003-02-25 Lens polishing method

Publications (2)

Publication Number Publication Date
JP2004255499A JP2004255499A (en) 2004-09-16
JP4185381B2 true JP4185381B2 (en) 2008-11-26

Family

ID=33113806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003047591A Expired - Fee Related JP4185381B2 (en) 2003-02-25 2003-02-25 Lens polishing method

Country Status (1)

Country Link
JP (1) JP4185381B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105269412B (en) * 2015-09-17 2017-08-25 中国科学院光电技术研究所 A kind of combined technique suitable for calcirm-fluoride convex cone mirror highly-efficient processing

Also Published As

Publication number Publication date
JP2004255499A (en) 2004-09-16

Similar Documents

Publication Publication Date Title
US8070557B2 (en) Method of polishing glass substrate
JP4858154B2 (en) A method for polishing a glass substrate for mask blanks.
JP5090633B2 (en) Glass substrate polishing method
JP2002222780A (en) Surface polishing method of silicon wafer
TWI690588B (en) Colloidal silica polishing composition and method for manufacturing synthetic quartz glass substrates using the same
JP2011240483A (en) Polishing method for glass substrate, and glass substrate
JP3966840B2 (en) Mask blank glass substrate manufacturing method, mask blank manufacturing method, transfer mask manufacturing method, semiconductor device manufacturing method, mask blank glass substrate, mask blank, transfer mask
JP4792146B2 (en) Mask blank glass substrate manufacturing method, mask blank manufacturing method, exposure mask manufacturing method, reflective mask blank manufacturing method, and reflective mask manufacturing method
KR20120074328A (en) Low-expansion glass substrate for a reflective mask and reflective mask
KR20140027314A (en) Mask blank substrate, mask blank, reflective mask blank, transfer mask, reflective mask, and method for making these
JP5598371B2 (en) Glass substrate polishing method
JPH10296610A (en) Grinding method
JP5344806B2 (en) Method for manufacturing glass substrate for magnetic disk, glass substrate polishing apparatus for magnetic disk, and method for manufacturing magnetic disk
WO2019043895A1 (en) Double-side polishing method for silicon wafer
JP4526547B2 (en) Mask blank glass substrate manufacturing method, mask blank manufacturing method, EUV reflective mask blank manufacturing method, transfer mask manufacturing method, EUV reflective mask manufacturing method, and semiconductor device manufacturing method
JP4185381B2 (en) Lens polishing method
JPH10337645A (en) Grinding method and glass lens worked by the grinding method
KR101334012B1 (en) Manufacturing method of substrate for mask blank, and manufacturing method of mask blank and mask
JP2006058777A (en) Method for manufacturing mask blank substrate, method for manufacturing mask blank, and method for manufacturing exposure mask
JP2013043238A (en) Method for polishing glass substrate
JP2010238310A (en) Method for manufacturing substrate for magnetic disk
JP5362771B2 (en) Mask blank glass substrate manufacturing method, mask blank manufacturing method, exposure mask manufacturing method, reflective mask blank manufacturing method, and reflective mask manufacturing method
WO2001098024A1 (en) Abrasive article, apparatus and process for finishing glass or glass-ceramic recording disks
JP2000038572A (en) Glass or quartz abrasive composition and preparation thereof
JP4887073B2 (en) Square substrate carrier, double-side polishing apparatus for square substrate, and method for polishing square substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071022

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080414

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080905

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees