JP4184546B2 - Chlorine generator - Google Patents

Chlorine generator Download PDF

Info

Publication number
JP4184546B2
JP4184546B2 JP19572299A JP19572299A JP4184546B2 JP 4184546 B2 JP4184546 B2 JP 4184546B2 JP 19572299 A JP19572299 A JP 19572299A JP 19572299 A JP19572299 A JP 19572299A JP 4184546 B2 JP4184546 B2 JP 4184546B2
Authority
JP
Japan
Prior art keywords
water
gap
communicating
space
inner electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19572299A
Other languages
Japanese (ja)
Other versions
JP2001017975A (en
Inventor
隆明 須賀
元春 佐藤
一重 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Holdings Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP19572299A priority Critical patent/JP4184546B2/en
Publication of JP2001017975A publication Critical patent/JP2001017975A/en
Application granted granted Critical
Publication of JP4184546B2 publication Critical patent/JP4184546B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • C02F1/4674Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation with halogen or compound of halogens, e.g. chlorine, bromine

Description

【0001】
【発明の属する技術分野】
本発明は、水道水や地下水等の原水を浄化して一般家庭用或いは業務用の飲料水として供給する塩素発生器に関するものである。
【0002】
【従来の技術】
従来、この種の塩素発生器として、シスターン内に陽極と陰極で構成された一対の平板の電極を設置したものが一般的に知られている。この塩素発生器によれば、タイマにより所定のインターバルで各電極に直流電流を通電し、シスターン内の飲料水を電気分解し、殺菌に有効な成分である有効塩素(次亜塩素酸)を発生させている。
【0003】
しかしながら、この塩素発生器では、シスターンが開放或いは開放に近い状態であるため、発生した有効塩素が外部に蒸散し易く、また外部からバクテリア等が侵入して水質汚損を生じるという問題がある。
【0004】
そこで、このような問題点を解決するため、出願人は特開平11ー114566号に係る塩素発生器を提案している。この塩素発生器は、給水管路を通じて圧送された水道水等の塩素イオン含有水を貯留する密閉の貯水容器と、この貯水容器内に所定間隔をおいて同心円状に配置され直流電流が通電される一対の筒状の電極と、貯水容器内の水を内外の各電極間に通す通水管路と、通水管路内を通った水を蛇口、飲料機等の端末側に送水する送水管路とを有し、各電極に直流電流を通電して電解し有効塩素を含む水を生成する密閉型の塩素発生器である。
【0005】
この塩素発生器によれば、停水時に貯水容器内に貯留された水に有効塩素を含ませるシスターン型の塩素発生器と、給水時に有効塩素を含ませる流水型の塩素発生器との両者の機能を備えているため、殺菌生成された水を安定的に供給でき、また、シスターン型の塩素発生器と比較し小型にできる。
【0006】
【発明が解決しようとする課題】
ところで、この密閉型の塩素発生器は、家庭用の飲料用水供給器又は業務用の飲料ディスペンサに搭載されているが、各電極に直流電流が通電されるタイミングは、供給器(或いはディスペンサ)に飲料供給信号が出力されたとき(流水時通電)、そして、流水が終了した後所定時間となっている(停水時通電)。
【0007】
また、各電極への直流電流の通電により塩素が発生し、この発生塩素は瞬時に水に溶け込み、水のなかで次亜塩素酸或いは次亜塩素酸イオンとなる。一方、この電気分解により陰極側で水素ガスが発生し、陽極側で酸素ガスが発生する。
【0008】
ここで、水素ガス或いは酸素ガスは微小の気泡となって発生し、これらの多くは互いに融合して大きな気泡となっ貯水容器の上部に滞留するが、微小の気泡の一部は浮遊して貯水容器内の水中に留まる。
【0009】
このような状況で供給器(或いはディスペンサ)に水を供給するときは、この貯水容器内に浮遊する微小の気泡が供給水に混合して供給されるため、供給水の色がやや乳白色となり、飲料品質の点で不都合なものとなっていた。
【0010】
本発明の目的は前記従来の課題に鑑み、気泡状の電解ガスの流通を規制し、ガス混入水の供給を防止する塩素発生器を提供することにある。
【0011】
【課題を解決するための手段】
本発明は前記課題を解決するため、請求項1の発明は、給水管路を通じて給送された水道水等の塩素イオン含有水を貯留する貯水容器と、貯水容器内に所定間隔をおいて同心円状に配置され直流電流が通電される一対の筒状の電極と、貯水容器内の塩素イオン含有水を内外の各電極に通す通水管路と、通水管路内を通った水を蛇口、飲料機等の端末側に送水する送水管路とを有し、貯水容器内への給水のたびに各電極に直流電流を通電して電解し有効塩素を含む水を生成する塩素発生器において、通水管路はその内部に各電極間の隙間で浮遊する電解ガスの下流への流通を規制するガス流通規制部材を有する構造となっている。
【0012】
本発明によれば、各電極に直流電流を通電することにより、塩素イオン含有水が電気分解され、塩素が発生し水に溶け込む。一方、この電気分解により陰極側で水素ガスが発生し、陽極側で酸素ガスが発生する。ここで、貯水容器内の水を送水管路を通じて飲料機等に送水するとき、貯水容器内の水に浮遊する微小の電解ガス(水素ガス及び酸素ガス)がガス流通規制部材により下流への流通が規制される。従って、電解ガスの混入した水が飲料機等に供給されることがない。
【0013】
ここで、ガス流通規制部材の設置個所に関して、請求項2の発明では通水管路のうち下部開口に、請求項3の発明では通水管路のうち各電極間の隙間の下部側に、請求項4及び請求項5の発明では通水管路のうち内側電極内の空所にそれぞれ設置している。何れの場合もガス流通規制部材で下流へのガス流れが規制される。
【0014】
なお、このガス流通規制部材として請求項6の発明の如く、不織布、メッシュ状部材、多孔質部材、粒子状部材の集合体、或いは、これらの各部材の組み合わせた部材で形成する。
【0015】
請求項7の発明は、給水管路を通じて給送された水道水等の塩素イオン含有水を貯留する貯水容器と、貯水容器内に所定間隔をおいて同心円状に配置され直流電流が通電される一対の筒状の電極と、貯水容器内の塩素イオン含有水を内外の各電極に通す通水管路と、通水管路内を通った水を蛇口、飲料機等の端末側に送水する送水管路とを有し、貯水容器内への給水のたびに各電極に直流電流を所定時間通電して電解し有効塩素を含む水を生成する塩素発生器において、通水管路は、各電極の上部開口部、上部開口部に連通する各電極の隙間、隙間に連通し内側電極の下部に形成された下部開口部、下部開口部に連通する内側電極内の空所、空所の底部と送水管路を連通させる流出口を順次連通して構成し、内側電極の空所に、外面に環状の鍔部を複数段に形成し水の流れに乱流を形成する案内筒を配置した構造となっている。
【0016】
この発明によれば、飲料機等に水を流す際、内側電極内の空所に流入した水が案内筒の鍔部で乱流を起こし、電解ガスの微小の気泡が集合して大きな気泡となって貯水容器の上部に上昇し、貯留容器の上部に溜まる。これにより、飲料機等に供給される水への電解ガスの混入量が減少する。
【0017】
なお、請求項1から請求項7の塩素発生器の貯水容器にガス抜き機構を設けるときは、貯水容器内に溜まった電解ガスを外部に放出することができる。
【0018】
【発明の実施の形態】
図1乃至図6は本発明に係る塩素発生器の第1実施形態を示すもので、図1は塩素発生器の縦断面図、図2はキャップの斜視図、図3は内側電極を展開した状態を示す図、図4は外側電極を展開した状態を示す図、図5は塩素発生器の平面断面図、図6はガス流通規制部材の他の設置例を示す省略断面図である。
【0019】
この塩素発生器2は、図1に示すように、原水(例えば塩素イオン含有水である水道水)を電解して有効塩素濃度を向上させ、飲料機1(例えばジュース、コーヒ等を販売する飲料ディスペンサ)に給水するものとして使用される。
【0020】
この塩素発生器2は、図1に示すように密閉された円筒状の貯水容器21を有する。この貯水容器21の下部開口のハウジング22と、このハウジング22に螺合して密閉状態とする蓋体23とを有し、この蓋体23の周縁寄りには流入口23aを設け、給水管20を通じて圧送される水道水をハウジング22内に導いている。また、この蓋体23の中央側には流出口23bを設け、送水管24(送水管路)を通じてハウジング22内に貯留された水を飲料機1に送水するようになっている。
【0021】
このように構成された貯水容器21において、蓋体23には電極ユニット25が設置されている。この電極ユニット25は円筒状の内側電極25aとこの内側電極25aの外側に所定間隙をおいて同心円上に配置された外側電極25bとを有し、各電極25a,25bを例えばチタン材料をベースに白金或いは白金系(白金−イリジウムも含む)をコーティングした電極材で形成している。内側電極25aの上部開口には絶縁物質、例えばポリプロピレン製で円盤状のキャップ25cが嵌入されている。更に、図2で示すように、キャップ25cの外周には径方向外方に突出する突出部25dが周方向に等間隔で複数個所、例えば4個所設けられている。この突出部25dの径方向先端側には、その下面に嵌め込み溝25eが形成され、この嵌め込み溝25eを外側電極25bの上端部の切り欠き部25fに係合している。これにより、内側及び外側電極25a,25bは、互いにその径方向の移動が阻止され、両電極25a,25b間の径方向距離が所定の値(例えば、3〜5mm)に維持される(なお、図1に示されているキャップ25cの断面は図2のA−O−B線矢印方向に沿って切断した面で表している。)。こうして、両電極25a,25bとによって円環筒状の隙間25gが画成され、キャップ25c、内側電極25a及び蓋体23によって円筒状の空所26が画成される。また、内側電極25aと外側電極25bの各々上端はキャップ25cの突出部25dを除き開口しており、上端開口部25hを形成している。なお、各々の電極25a,25bの下端には電極用端子25j,25kがそれぞれ接続固定されている。これら電極用端子25j,25kは気密性を保ちつつ蓋体23に貫通し、外部直流電源(図示せず)に接続されている。
【0022】
図1に加え図3をも参照すると、内側電極25aの下部には周方向に等間隔で複数個の下部開口部25mが形成されており、その直径は例えば8mmとなるように設計されている。上記のような構成により、流水時(飲料が販売されている時)、給水管20を通り流入口23aを介してハウジング22内で外側電極25bの外方空所27に流入した原水は、図1の実線矢印で示すように上端開口部25hを経て隙間25gに流れ込み、この隙間25gで電気分解される。この電気分解された原水は隙間25gから下部開口部25mを経て空所26に流れ、更にハウジング22の流出口23bを経て送水管24に流れ、飲料水として飲料機1に供給される。このように、塩素発生器2のハウジング22の内部には流入口23a、外方空所27、上部開口部25h、隙間25g、下部開口部25m、空所26及び流出口23bと連なる流路が形成されることとなる。なお、この流路のうち、上部開口部25h、隙間25g、下部開口部25m、空所26及び流出口23bと連なる流路により、空所27に入った原水を送水管24に流す通水管路を構成している。
【0023】
更に、外側電極25bの上部にはガス拡散用の複数の小孔25nが図5で示すような配列で穿設されている。小孔25nの直径は例えば1.8mmとなるよう設計されている。従って、小孔25nの開口面積は、下部開口部25mのそれと比較して極めて小さな値となっている。また、外部電極25bの上端には上記した切り欠き部25fが形成されている。
【0024】
以上のように構成された塩素発生器において、本実施形態に係る塩素発生器2は図1及び図5に示すようにガス流通規制部材30を設置している。このガス流通規制部材30は例えば環状に形成された不織布(メッシュ径、例えば10μm程度)で形成されているもので、図1に示すように、下部開口部25mの内側内面を閉塞するよう接着されている。
【0025】
また、この塩素発生器2には空所26,27内に滞留した電解ガスを抜くガス抜き機構40が設けられている。即ち、空所26内の電解ガスを抜く手段としてキャップ25cの中央には各空所26,27に連通するガス抜き穴41が穿設されている。また、ハウジング22の上板中央にはガス出口42が突出しており、このガス出口42にガス排出弁43が設置されたガス抜き管44が連結している。
【0026】
本実施形態によれば、流水時(飲料が販売されている時)の原水は、前述の如く、給水管20→流入口23a→空所27→上部開口部25h→隙間25g→下部開口部25m→空所26→流出口23→送水管24→飲料機1と順次流れる。この流水時に各電極25a,25bに直流電流を通電するときは、隙間25gを流れる水が電気分解され、微小の塩素ガス、水素ガス及び酸素ガスが発生する。ここで、塩素ガスは瞬時に水に溶け込んで次亜塩素酸或いは次亜塩素酸イオンとなって水に混入する。一方、水素ガス及び酸素ガスは水に溶け込むことなく気泡Aとなって水に浮遊し、流水と一緒に下部開口部25mに向かって流れるが、この水素ガス等がガス流通規制部材30で空所26への侵入が規制され、また、ガス流通規制部材30の表面でガスが集まって大きな気泡Aとなる。そして、流水が終了した後はこの気泡Aが図1に示すように隙間25gを上昇して空所27の上部に移動する。従って、流水時においてガス混入水が飲料機1に供給されることがない。
【0027】
なお、ハウジング22内に溜まったガスはガス排出弁43を開動作することによりガス抜き管44を通じて外に排出することができる。
【0028】
図6はガス流通規制部材30の設置手段の他の例を示すもので、この例では環状の弾性枠31を内側電極25aの内側に配置し、この弾性枠31と内側電極25aとの間にガス流通規制部材30を挟持している。なお、この弾性枠31には下部開口部25mと対向する部位に水流通を確保するため通水穴31aを形成している。このように、ガス流通規制部材30の保持部材として弾性枠31を使用するときは、この弾性枠31の着脱によりガス流通規制部材30を容易に着脱でき、メンテナンスが簡単になる。
【0029】
図7及び図8は本発明に係る塩素発生器の第2実施形態を示すものである。この実施形態ではガス流通規制部材32として粒状(直径50μm程度)の樹脂を隙間25gの下部に多数充填し、下部開口部25mを覆った構造となっている。
【0030】
この実施形態によれば、隙間25g内に生成される水素ガスの気泡や酸素ガスの気泡が、このガス流通規制部材32で堰き止められるため、水素ガス等が空所26に侵入することがなく、飲料機1へ供給される水に水素ガス等が混入することがない。なお、その他の構成及び作用は前記第1実施形態と同様であるため、その説明を省略する。
【0031】
図9及び図10は本実施形態に係る塩素発生器の第3実施形態を示すものである。この実施形態ではガス流通規制部材33として粒状(直径50μm程度)の樹脂を空所26の下部全体を覆うよう設置した構造となっている。この粒状の樹脂は通水性を有する受皿33aに収容されており、この受皿33aを介して内側電極25aの内面に設置されている。また、ガス流通規制部材33の上下位置は、図10に示すように、下部開口部25mより下方に設置している。
【0032】
この実施形態によれば、隙間25g内に生成される水素ガスの気泡や酸素ガスの気泡は、内側電極25aの内側の空所26内に侵入するが、その後、ガス流通規制部材33で堰き止められるため、流出口23b側には流れず、飲料機1へ供給される水に水素ガス等が混入することがない。なお、その他の構成及び作用は前記第1実施形態と同様であるため、その説明を省略する。
【0033】
図11及び図12は本実施形態に係る塩素発生器の第4実施形態を示すものである。この実施形態では、内側電極25aの内側の空所26内に水の流れを案内する案内筒34を設置している。この案内筒34は、図11に示すように、有底筒状に形成したもので、底部34aには流出口23bに連通する出口34bを有し、この出口34bを通じて空所26内の水を流出口23bに流すようになっている。また、案内筒34の側壁外面には外方向に突出した環状の鍔部34cを上下複数段に形成している。
【0034】
本実施形態によれば、流水時(飲料販売時)は、隙間25g内に水が流れかつ電解され、水素ガスの気泡や酸素ガスの気泡が発生する。これらの気泡は水の流れに従って下部開口部25mを通じて空所26内に侵入する。この空所26内に侵入した気泡は水の流れとともに案内筒34の外面に沿って上昇する。この案内筒34の外面の上昇中に図11の矢印に示すように鍔部34cの箇所で乱流を起こし、この乱流により微小の水素ガスの気泡が互いに集合して大きな気泡Aとなる。従って、この大きな気泡Aが、図11に示すように、キャップ25cのガス抜き穴41を通じて空所27側に移動する。
【0035】
このようにガス抜きされた水は案内筒34の内側を通り、更に出口34b及び流出口23bを通って飲料機1に供給される。なお、その他の構成及び作用は前記第1実施形態と同様であるため、その説明を省略する。
【0036】
図13は本実施形態に係る塩素発生器の第5実施形態を示すものである。この実施形態では、前記各実施形態に係る電極ユニット25の構造を改良したものである。
【0037】
即ち、電極ユニット250は同心円状に内側電極250aと外側電極250bとを有し、この外側電極250bの上端にはキャップ250cが被せられており、外側電極250b内を密閉している。この外側電極250bの上部側にはガス拡散用の複数の小孔250nを穿設し、下部には空所27から各電極250a,250b間の隙間250gへ水を流すための下部開口部250mを形成している。また、内側電極250aの上端はキャップ250cより下方に位置しており、内側電極250aの上端とキャップ250cとの間に上端開口部250hを形成し、隙間250gを通る水がこの上端開口部250hを通じて空所260内に流れるようになっている。更に、この内側電極250aの下部にはガス流通規制部材300、例えば前記第1実施形態と同様の不織布を展張しており、これにより、空所260内に流入した気泡が流出口23bに流れないよう規制している。
【0038】
本実施形態によれば、流水時(飲料販売時)には、原水は、図13の矢印に示すように、給水管20→流入口23a→空所27→下部開口部250m→隙間250g→上端開口部250h→空所260→ガス流通規制部材300→流出口23b→送水管24→飲料機1と順次流れる。この流水時に各電極250a,250bに直流電流を通電するときは、有効塩素が生成されるとともに、水素ガスや酸素ガスが発生し、図13に示すように、これらガスが微小の気泡となって水の流れに従って空所260内に移動する。この空所に移動した微小の気泡はガス流通規制部材300で流出口23b側への侵入が規制され、また、ガス流通規制部材300の表面でガスが集まって大きな気泡Aとなる。従って、流水操作が終了した後はこの気泡Aが図13に示すように空所260を上昇し、更にキャップ250cのガス抜き穴410を通じて空所27側に移動する。このようにしてガス抜きされた水は流出口23bを通じて飲料機1に供給される。なお、その他の構成及び作用は前記第1実施形態と同様であるため、その説明を省略する。
【0039】
【発明の効果】
以上説明したように、本発明によれば、貯水容器内の水を送水管路を通じて飲料機等に送水するとき、貯水容器内の水に浮遊する微小の電解ガス(水素ガス及び酸素ガス)がガス流通規制部材により下流への流通が規制され、電解ガスが飲料機等に供給されることがない。従って、供給される水が乳白色になる等、水の品質低下を防止することができる。
【図面の簡単な説明】
【図1】第1実施形態に係る塩素発生器の縦断面図
【図2】第1実施形態に係る塩素発生器のキャップの斜視図
【図3】第1実施形態に係る塩素発生器の内側電極を展開した状態を示す図
【図4】第1実施形態に係る塩素発生器の外側電極を展開した状態を示す図
【図5】第1実施形態に係る塩素発生器の塩素発生器の平面断面図
【図6】第1実施形態に係る塩素発生器のガス流通規制部材の他の設置例を示す省略断面図
【図7】第2実施形態に係る塩素発生器の平面断面図
【図8】第2実施形態に係る塩素発生器の要部断面図
【図9】第3実施形態に係る塩素発生器の平面断面図
【図10】第3実施形態に係る塩素発生器の要部断面図
【図11】第4実施形態に係る塩素発生器の縦断面図
【図12】第4実施形態に係る塩素発生器の平面断面図
【図13】第5実施形態に係る塩素発生器の縦断面図
【符号の説明】
1…飲料機、2…塩素発生器、21…貯水容器、24…送水管、25,250…電極ユニット、25a,25b,250a,250b…電極、30,32,33,300…ガス流通規制部材、34…案内筒、34c…鍔部。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a chlorine generator that purifies raw water such as tap water and groundwater and supplies it as drinking water for general household use or business use.
[0002]
[Prior art]
Conventionally, as this type of chlorine generator, one in which a pair of flat plate electrodes composed of an anode and a cathode are installed in a cis-turn is generally known. According to this chlorine generator, a direct current is applied to each electrode at predetermined intervals by a timer to electrolyze the drinking water in the cistern and generate effective chlorine (hypochlorous acid) that is an effective component for sterilization. I am letting.
[0003]
However, in this chlorine generator, since the cistern is in an open state or close to an open state, there is a problem that generated effective chlorine is easily evaporated to the outside, and bacteria and the like enter from the outside to cause water pollution.
[0004]
In order to solve such problems, the applicant has proposed a chlorine generator according to JP-A-11-114566. This chlorine generator has a sealed water storage container for storing chlorine ion-containing water such as tap water pumped through a water supply pipe, and is concentrically arranged in the water storage container at a predetermined interval and is supplied with a direct current. A pair of cylindrical electrodes, a water conduit that passes the water in the water storage container between the inner and outer electrodes, and a water conduit that feeds the water that has passed through the water conduit to the terminal side of a faucet, beverage machine, etc. And a closed type chlorine generator that generates water containing effective chlorine by passing a direct current through each electrode for electrolysis.
[0005]
According to this chlorine generator, both a cistern type chlorine generator that contains effective chlorine in the water stored in the water storage container when the water is stopped and a flowing water type chlorine generator that contains effective chlorine when water is supplied. Since it has a function, it can stably supply sterilized water and can be made smaller than a cistern type chlorine generator.
[0006]
[Problems to be solved by the invention]
By the way, this sealed chlorine generator is mounted on a domestic drinking water supply device or a commercial beverage dispenser. The timing at which a direct current is applied to each electrode is applied to the supply device (or dispenser). When the beverage supply signal is output (energization during running water), and after the running water has ended, it is a predetermined time (energization during stopping water).
[0007]
In addition, chlorine is generated by the application of a direct current to each electrode, and this generated chlorine instantaneously dissolves in water and becomes hypochlorous acid or hypochlorite ions in the water. On the other hand, this electrolysis generates hydrogen gas on the cathode side and oxygen gas on the anode side.
[0008]
Here, hydrogen gas or oxygen gas is generated as fine bubbles, and many of these coalesce with each other to form large bubbles and stay in the upper part of the water storage container. Stay in the water in the container.
[0009]
When water is supplied to the supply device (or dispenser) in such a situation, since the minute bubbles floating in the water storage container are mixed and supplied to the supply water, the color of the supply water becomes slightly milky white, It was inconvenient in terms of beverage quality.
[0010]
An object of the present invention is to provide a chlorine generator that regulates the flow of cell-like electrolytic gas and prevents the supply of gas-mixed water in view of the above-described conventional problems.
[0011]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention provides a water storage container for storing chlorine ion-containing water such as tap water fed through a water supply pipe, and a concentric circle at a predetermined interval in the water storage container. A pair of cylindrical electrodes that are arranged in a straight line and energized with a direct current, a water conduit that passes chlorine ion-containing water in the water storage container to each of the inner and outer electrodes, and water that has passed through the water conduit is a faucet, beverage In a chlorine generator that has a water supply pipe that supplies water to the terminal side of a machine, etc., and generates water containing effective chlorine by electrolyzing each electrode with a direct current each time water is supplied to the water storage container. The water pipe has a structure in which a gas flow restricting member for restricting the flow of the electrolytic gas floating in the gap between the electrodes to the downstream is provided in the water pipe.
[0012]
According to the present invention, when a direct current is applied to each electrode, chlorine ion-containing water is electrolyzed, and chlorine is generated and dissolved in water. On the other hand, this electrolysis generates hydrogen gas on the cathode side and oxygen gas on the anode side. Here, when the water in the water storage container is supplied to a beverage machine or the like through the water supply pipe, the minute electrolytic gas (hydrogen gas and oxygen gas) floating in the water in the water storage container is circulated downstream by the gas distribution regulating member. Is regulated. Therefore, water mixed with electrolytic gas is not supplied to a beverage machine or the like.
[0013]
Here, regarding the installation location of the gas flow regulating member, in the invention of claim 2, the lower opening of the water conduit, and in the invention of claim 3, the lower portion of the gap between the electrodes of the water conduit. In invention of 4 and Claim 5, it installs in the space in an inner side electrode among water conduits, respectively. In either case, the gas flow restriction member restricts the downstream gas flow.
[0014]
The gas flow regulating member is formed of a nonwoven fabric, a mesh member, a porous member, an aggregate of particulate members, or a combination of these members as in the invention of claim 6.
[0015]
The invention according to claim 7 is a water storage container for storing chlorine ion-containing water such as tap water fed through a water supply pipe, and a concentric circle disposed at a predetermined interval in the water storage container, and a direct current is energized. A pair of cylindrical electrodes, a water conduit for passing chlorine ion-containing water in the water storage container to the inner and outer electrodes, and a water pipe for feeding the water passing through the water conduit to the terminal side of a faucet, a beverage machine, etc. A chlorine generator for generating water containing effective chlorine by electrolyzing each electrode with a direct current for a predetermined time each time water is supplied into the water storage container. Openings, gaps between the electrodes communicating with the upper openings, lower openings formed in the lower portions of the inner electrodes communicating with the gaps, voids in the inner electrodes communicating with the lower openings, bottoms of the voids, and water pipes The outlet that communicates the channel is configured to communicate sequentially, and the annular space is formed on the outer surface of the inner electrode. It has a structure in which the guide tube to form a turbulent flow in the formation and flow of water in a plurality of stages of parts.
[0016]
According to this invention, when flowing water into a beverage machine or the like, the water that has flowed into the void in the inner electrode causes turbulent flow in the buttocks of the guide tube, and microscopic bubbles of electrolytic gas gather to form large bubbles. It rises to the upper part of the water storage container and accumulates on the upper part of the storage container. As a result, the amount of electrolytic gas mixed into the water supplied to the beverage machine or the like is reduced.
[0017]
In addition, when providing the degassing mechanism in the water storage container of the chlorine generator according to claims 1 to 7, the electrolytic gas accumulated in the water storage container can be discharged to the outside.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
1 to 6 show a first embodiment of a chlorine generator according to the present invention. FIG. 1 is a longitudinal sectional view of the chlorine generator, FIG. 2 is a perspective view of a cap, and FIG. 3 is a developed inner electrode. FIG. 4 is a diagram showing a state, FIG. 4 is a diagram showing a state in which an outer electrode is expanded, FIG. 5 is a plan sectional view of a chlorine generator, and FIG. 6 is an abbreviated sectional view showing another installation example of a gas flow regulating member.
[0019]
As shown in FIG. 1, the chlorine generator 2 electrolyzes raw water (for example, tap water that is chlorine ion-containing water) to improve the effective chlorine concentration, and drinks that sell beverage machines 1 (for example, juice, coffee, etc.) Used to supply water to the dispenser).
[0020]
The chlorine generator 2 has a cylindrical water storage container 21 sealed as shown in FIG. The housing 22 has a lower opening 22 of the water storage container 21 and a lid 23 that is screwed into the housing 22 to be in a sealed state. An inflow port 23 a is provided near the periphery of the lid 23, and the water supply pipe 20 The tap water pumped through is guided into the housing 22. In addition, an outlet 23b is provided on the center side of the lid body 23 so that water stored in the housing 22 is supplied to the beverage machine 1 through a water supply pipe 24 (water supply pipe line).
[0021]
In the water storage container 21 configured as described above, an electrode unit 25 is installed on the lid 23. This electrode unit 25 has a cylindrical inner electrode 25a and an outer electrode 25b arranged concentrically with a predetermined gap outside the inner electrode 25a. Each electrode 25a, 25b is made of, for example, a titanium material as a base. It is made of an electrode material coated with platinum or platinum-based (including platinum-iridium). A disc-shaped cap 25c made of an insulating material, for example, polypropylene, is fitted into the upper opening of the inner electrode 25a. Further, as shown in FIG. 2, a plurality of, for example, four, protruding portions 25d protruding radially outward are provided at equal intervals in the circumferential direction on the outer periphery of the cap 25c. A fitting groove 25e is formed on the lower surface of the protruding portion 25d in the radial direction, and the fitting groove 25e is engaged with a notch 25f at the upper end of the outer electrode 25b. Thus, the inner and outer electrodes 25a and 25b are prevented from moving in the radial direction, and the radial distance between the electrodes 25a and 25b is maintained at a predetermined value (for example, 3 to 5 mm). The cross section of the cap 25c shown in FIG. 1 is represented by a plane cut along the arrow direction of the AOB line in FIG. Thus, an annular cylindrical gap 25g is defined by the electrodes 25a and 25b, and a cylindrical space 26 is defined by the cap 25c, the inner electrode 25a and the lid 23. The upper ends of the inner electrode 25a and the outer electrode 25b are opened except for the protruding portion 25d of the cap 25c, thereby forming an upper end opening portion 25h. Note that electrode terminals 25j and 25k are connected and fixed to the lower ends of the electrodes 25a and 25b, respectively. These electrode terminals 25j and 25k pass through the lid body 23 while maintaining airtightness, and are connected to an external DC power source (not shown).
[0022]
Referring to FIG. 3 in addition to FIG. 1, a plurality of lower openings 25m are formed at equal intervals in the circumferential direction at the lower portion of the inner electrode 25a, and the diameter thereof is designed to be, for example, 8 mm. . With the above configuration, when running water (when beverages are sold), the raw water flowing into the outer space 27 of the outer electrode 25b in the housing 22 through the water supply pipe 20 and the inlet 23a is shown in FIG. As indicated by a solid line arrow 1, the gas flows into the gap 25g through the upper end opening 25h, and is electrolyzed in the gap 25g. The electrolyzed raw water flows from the gap 25g through the lower opening 25m to the space 26, and further flows through the outlet 23b of the housing 22 to the water supply pipe 24 and is supplied to the beverage machine 1 as drinking water. Thus, in the housing 22 of the chlorine generator 2, there are flow paths connected to the inlet 23 a, the outer space 27, the upper opening 25 h, the gap 25 g, the lower opening 25 m, the space 26, and the outlet 23 b. Will be formed. Of these channels, a water conduit that allows the raw water that has entered the void 27 to flow into the water supply pipe 24 through a channel that is continuous with the upper opening 25h, the gap 25g, the lower opening 25m, the void 26, and the outlet 23b. Is configured.
[0023]
Furthermore, a plurality of small holes 25n for gas diffusion are formed in the upper part of the outer electrode 25b in an arrangement as shown in FIG. The diameter of the small hole 25n is designed to be 1.8 mm, for example. Accordingly, the opening area of the small holes 25n is extremely small compared to that of the lower opening 25m. Further, the above-described cutout portion 25f is formed at the upper end of the external electrode 25b.
[0024]
In the chlorine generator configured as described above, the chlorine generator 2 according to the present embodiment is provided with a gas flow regulating member 30 as shown in FIGS. The gas flow regulating member 30 is formed of, for example, an annular nonwoven fabric (mesh diameter, for example, about 10 μm), and is bonded so as to close the inner inner surface of the lower opening 25m as shown in FIG. ing.
[0025]
Further, the chlorine generator 2 is provided with a degassing mechanism 40 for extracting the electrolytic gas remaining in the cavities 26 and 27. That is, a gas vent hole 41 communicating with each of the cavities 26 and 27 is formed in the center of the cap 25c as a means for extracting the electrolytic gas in the cavities 26. A gas outlet 42 protrudes from the center of the upper plate of the housing 22, and a gas vent pipe 44 in which a gas discharge valve 43 is installed is connected to the gas outlet 42.
[0026]
According to the present embodiment, the raw water at the time of running water (when beverages are sold) is, as described above, the water supply pipe 20 → the inlet 23a → the void 27 → the upper opening 25h → the gap 25g → the lower opening 25m. → The empty space 26 → the outlet 23 → the water pipe 24 → the beverage machine 1 sequentially flows. When a direct current is applied to the electrodes 25a and 25b during the flowing water, the water flowing through the gap 25g is electrolyzed to generate minute chlorine gas, hydrogen gas, and oxygen gas. Here, chlorine gas instantaneously dissolves in water and becomes hypochlorous acid or hypochlorous acid ions and is mixed into water. On the other hand, hydrogen gas and oxygen gas become bubbles A without dissolving in water, float in the water, and flow toward the lower opening 25 m together with running water. 26 is restricted, and gas collects on the surface of the gas flow restricting member 30 to form a large bubble A. And after flowing water is complete | finished, this bubble A raises the clearance gap 25g, as shown in FIG. Therefore, gas-mixed water is not supplied to the beverage machine 1 during running water.
[0027]
The gas accumulated in the housing 22 can be discharged outside through the gas vent pipe 44 by opening the gas discharge valve 43.
[0028]
FIG. 6 shows another example of the means for installing the gas flow regulating member 30. In this example, an annular elastic frame 31 is arranged inside the inner electrode 25a, and the elastic frame 31 and the inner electrode 25a are disposed between the elastic frame 31 and the inner electrode 25a. The gas distribution restriction member 30 is sandwiched. The elastic frame 31 is formed with a water passage hole 31a in order to ensure water flow in a portion facing the lower opening 25m. As described above, when the elastic frame 31 is used as the holding member of the gas flow restriction member 30, the gas flow restriction member 30 can be easily attached and detached by attaching and detaching the elastic frame 31, and the maintenance is simplified.
[0029]
7 and 8 show a second embodiment of the chlorine generator according to the present invention. In this embodiment, the gas flow regulating member 32 has a structure in which a large amount of granular resin (diameter of about 50 μm) is filled in the lower part of the gap 25g and the lower opening 25m is covered.
[0030]
According to this embodiment, hydrogen gas bubbles and oxygen gas bubbles generated in the gap 25g are blocked by the gas flow regulating member 32, so that hydrogen gas or the like does not enter the space 26. In addition, hydrogen gas or the like is not mixed into the water supplied to the beverage machine 1. Since other configurations and operations are the same as those in the first embodiment, description thereof is omitted.
[0031]
9 and 10 show a third embodiment of the chlorine generator according to this embodiment. In this embodiment, a granular resin (diameter of about 50 μm) is installed as the gas flow regulating member 33 so as to cover the entire lower portion of the void 26. This granular resin is accommodated in a tray 33a having water permeability, and is disposed on the inner surface of the inner electrode 25a via the tray 33a. Further, as shown in FIG. 10, the vertical position of the gas flow regulating member 33 is set below the lower opening 25m.
[0032]
According to this embodiment, the hydrogen gas bubbles and the oxygen gas bubbles generated in the gap 25g enter the void 26 inside the inner electrode 25a, but are then dammed by the gas flow restriction member 33. Therefore, hydrogen gas or the like does not flow into the water supplied to the beverage machine 1 without flowing to the outlet 23b side. Since other configurations and operations are the same as those in the first embodiment, description thereof is omitted.
[0033]
FIG.11 and FIG.12 shows 4th Embodiment of the chlorine generator based on this embodiment. In this embodiment, a guide tube 34 that guides the flow of water is installed in a space 26 inside the inner electrode 25a. As shown in FIG. 11, the guide tube 34 is formed in a bottomed tube shape, and has an outlet 34b communicating with the outflow port 23b in the bottom 34a, and water in the space 26 is supplied through the outlet 34b. It is made to flow to the outflow port 23b. Further, on the outer surface of the side wall of the guide tube 34, an annular flange 34c protruding outward is formed in a plurality of upper and lower stages.
[0034]
According to this embodiment, at the time of running water (during beverage sales), water flows and is electrolyzed in the gap 25g, and hydrogen gas bubbles and oxygen gas bubbles are generated. These bubbles enter the space 26 through the lower opening 25m according to the flow of water. The bubbles that have entered the space 26 rise along the outer surface of the guide tube 34 along with the flow of water. While the outer surface of the guide tube 34 is rising, turbulent flow is generated at the flange portion 34c as shown by the arrow in FIG. 11, and minute hydrogen gas bubbles gather together to form a large bubble A. Therefore, as shown in FIG. 11, this large bubble A moves to the space 27 side through the vent hole 41 of the cap 25c.
[0035]
The water degassed in this way passes through the inside of the guide tube 34 and is further supplied to the beverage machine 1 through the outlet 34b and the outlet 23b. Since other configurations and operations are the same as those in the first embodiment, description thereof is omitted.
[0036]
FIG. 13 shows a fifth embodiment of the chlorine generator according to this embodiment. In this embodiment, the structure of the electrode unit 25 according to each of the above embodiments is improved.
[0037]
In other words, the electrode unit 250 has an inner electrode 250a and an outer electrode 250b concentrically, and a cap 250c is put on the upper end of the outer electrode 250b to seal the inside of the outer electrode 250b. A plurality of small holes 250n for gas diffusion are formed on the upper side of the outer electrode 250b, and a lower opening 250m for flowing water from the space 27 to the gap 250g between the electrodes 250a and 250b is formed on the lower side. Forming. The upper end of the inner electrode 250a is located below the cap 250c, and an upper end opening 250h is formed between the upper end of the inner electrode 250a and the cap 250c, and water passing through the gap 250g passes through the upper end opening 250h. It flows in the void 260. Further, a gas flow restricting member 300, for example, the same non-woven fabric as in the first embodiment, is stretched under the inner electrode 250a, so that bubbles flowing into the void 260 do not flow to the outlet 23b. It regulates so that.
[0038]
According to this embodiment, at the time of running water (drink sales), as shown by the arrow in FIG. 13, the raw water is supplied from the water supply pipe 20, the inlet 23a, the empty space 27, the lower opening 250m, the gap 250g, and the upper end. The opening 250h → the void 260 → the gas flow regulating member 300 → the outlet 23b → the water supply pipe 24 → the beverage machine 1 sequentially flows. When a direct current is applied to the electrodes 250a and 250b during running water, effective chlorine is generated and hydrogen gas and oxygen gas are generated. As shown in FIG. 13, these gases become minute bubbles. It moves into the void 260 according to the water flow. The minute bubbles that have moved to the void are restricted from entering the outlet 23b by the gas flow restriction member 300, and the gas gathers on the surface of the gas flow restriction member 300 to form a large bubble A. Therefore, after the flowing water operation is completed, the bubble A moves up the space 260 as shown in FIG. 13, and further moves to the space 27 side through the gas vent hole 410 of the cap 250c. In this way, the degassed water is supplied to the beverage machine 1 through the outlet 23b. Since other configurations and operations are the same as those in the first embodiment, description thereof is omitted.
[0039]
【The invention's effect】
As described above, according to the present invention, when the water in the water storage container is supplied to a beverage machine or the like through the water supply conduit, the minute electrolytic gas (hydrogen gas and oxygen gas) floating in the water in the water storage container is present. The gas flow restriction member restricts the downstream flow, and the electrolytic gas is not supplied to the beverage machine or the like. Accordingly, it is possible to prevent deterioration in the quality of water such as the water supplied becomes milky white.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a chlorine generator according to a first embodiment. FIG. 2 is a perspective view of a chlorine generator cap according to the first embodiment. FIG. 3 is an inner side of the chlorine generator according to the first embodiment. The figure which shows the state which expand | deployed the electrode [FIG. 4] The figure which shows the state which expand | deployed the outer electrode of the chlorine generator which concerns on 1st Embodiment [FIG. 5] The plane of the chlorine generator of the chlorine generator which concerns on 1st Embodiment Sectional view [FIG. 6] An abbreviated sectional view showing another installation example of the gas flow regulating member of the chlorine generator according to the first embodiment. [FIG. 7] A plan sectional view of the chlorine generator according to the second embodiment. ] Cross-sectional view of the main part of the chlorine generator according to the second embodiment [FIG. 9] Cross-sectional plan view of the chlorine generator according to the third embodiment [FIG. 10] Cross-sectional view of the main part of the chlorine generator according to the third embodiment FIG. 11 is a longitudinal sectional view of a chlorine generator according to the fourth embodiment. FIG. 12 is a plan view of the chlorine generator according to the fourth embodiment. Figure 13 is a longitudinal cross-sectional view of the chlorine generator according to the fifth embodiment EXPLANATION OF REFERENCE NUMERALS
DESCRIPTION OF SYMBOLS 1 ... Beverage machine, 2 ... Chlorine generator, 21 ... Water storage container, 24 ... Water supply pipe, 25, 250 ... Electrode unit, 25a, 25b, 250a, 250b ... Electrode, 30, 32, 33, 300 ... Gas distribution regulation member , 34 ... guide tube, 34c ... buttocks.

Claims (8)

給水管路を通じて給送された水道水等の塩素イオン含有水を貯留する貯水容器と、該貯水容器内に所定間隔をおいて同心円状に配置され直流電流が通電される一対の筒状の電極と、該貯水容器内の塩素イオン含有水を内外の該各電極に通す通水管路と、該通水管路内を通った水を蛇口、飲料機等の端末側に送水する送水管路とを有し、該貯水容器内への給水のたびに該各電極に直流電流を通電して電解し有効塩素を含む水を生成する塩素発生器において、
前記通水管路の内部に、前記各電極間の隙間で浮遊する電解ガスの下流への流通を規制するガス流通規制部材を有する
ことを特徴とする塩素発生器。
A water storage container that stores chlorine ion-containing water such as tap water fed through a water supply pipe, and a pair of cylindrical electrodes that are concentrically arranged in the water storage container at predetermined intervals and are energized with a direct current And a water conduit for passing chlorine ion-containing water in the water storage container to each of the electrodes inside and outside, and a water conduit for feeding the water that has passed through the water conduit to the terminal side of a faucet, a beverage machine, etc. A chlorine generator for generating water containing effective chlorine by electrolyzing each electrode with a direct current each time water is supplied to the water storage container;
A chlorine generator comprising a gas flow restricting member for restricting the flow of the electrolytic gas floating in the gap between the electrodes to the downstream inside the water conduit.
前記通水管路は、前記各電極間の上部開口部、該上部開口部に連通する該各電極の隙間、該隙間に連通し内側電極の下部に穿設された下部開口部、該下部開口部に連通する内側電極内の空所、該空所の底部と前記送水管路を連通させる流出口を順次連通して構成し、
前記ガス流通規制部材は前記内側電極の前記下部開口部を覆うよう設置した
ことを特徴とする請求項1記載の塩素発生器。
The water conduit includes an upper opening between the electrodes, a gap between the electrodes that communicates with the upper opening, a lower opening that is communicated with the gap and is formed in a lower portion of the inner electrode, and the lower opening. A space in the inner electrode that communicates with the bottom, a bottom portion of the space, and an outlet that communicates the water supply pipe line are configured to communicate sequentially,
The chlorine generator according to claim 1, wherein the gas flow restriction member is installed so as to cover the lower opening of the inner electrode.
前記通水管路は、前記各電極の上部開口部、該上部開口部に連通する該各電極の隙間、該隙間に連通し内側電極の下部に形成された下部開口部、該下部開口部に連通する内側電極内の空所、該空所の底部と前記送水管路を連通させる流出口を順次連通して構成し、
前記隙間のうち前記下部開口部に対応する部分に前記ガス流通規制部材を充填した
ことを特徴とする請求項1記載の塩素発生器。
The water conduit includes an upper opening of each electrode, a gap between the electrodes communicating with the upper opening, a lower opening formed at a lower portion of the inner electrode, communicating with the gap, and communicating with the lower opening. A space in the inner electrode to be configured, and an outflow port for communicating the bottom of the space and the water supply conduit are sequentially communicated,
The chlorine generator according to claim 1, wherein a portion of the gap corresponding to the lower opening is filled with the gas flow restriction member.
前記通水管路は、前記各電極の上部開口部、該上部開口部に連通する該各電極の隙間、該隙間に連通し内側電極の下部に形成された下部開口部、該下部開口部に連通する内側電極内の空所、該空所の底部と前記送水管路を連通させる流出口を順次連通して構成し、
前記内側電極の空所で前記下部開口部より下位に前記ガス流通規制部材を配置した
ことを特徴とする請求項1記載の塩素発生器。
The water conduit includes an upper opening of each electrode, a gap between the electrodes communicating with the upper opening, a lower opening formed at a lower portion of the inner electrode, communicating with the gap, and communicating with the lower opening. A space in the inner electrode to be configured, and an outflow port for communicating the bottom of the space and the water supply conduit are sequentially communicated,
The chlorine generator according to claim 1, wherein the gas flow restriction member is disposed below the lower opening in the void of the inner electrode.
前記通水管路は、前記外側電極の下部に穿設した下部開口部、該下部開口部に連通する該各電極の隙間、該隙間に連通し内側の上部に形成された上部開口部、該上部開口部に連通する内側電極内の空所、該空所の底部と前記送水管路を連通させる流出口を順次連通して構成し、
前記内側電極の空所で前記上部開口部より下位に前記ガス流通規制部材を配置した
ことを特徴とする請求項1記載の塩素発生器。
The water conduit includes a lower opening formed in a lower portion of the outer electrode, a gap between the electrodes communicating with the lower opening, an upper opening formed in an upper portion in communication with the gap, and the upper portion. A space in the inner electrode that communicates with the opening, a bottom portion of the space, and an outlet that communicates the water supply pipe line are configured to communicate sequentially,
The chlorine generator according to claim 1, wherein the gas flow restriction member is disposed below the upper opening in a space of the inner electrode.
前記ガス流通規制部材は、不織布、メッシュ状部材、多孔質部材、粒子状部材の集合体、或いは、これらの各部材を組み合わせた部材で形成した
ことを特徴とする請求項1乃至請求項5の何れか1項記載の塩素発生器。
6. The gas flow regulating member is formed of a nonwoven fabric, a mesh member, a porous member, an aggregate of particulate members, or a combination of these members. The chlorine generator according to any one of claims.
給水管路を通じて給送された水道水等の塩素イオン含有水を貯留する貯水容器と、該貯水容器内に所定間隔をおいて同心円状に配置され直流電流が通電される一対の筒状の電極と、該貯水容器内の塩素イオン含有水を内外の該各電極に通す通水管路と、該通水管路内を通った水を蛇口、飲料機等の端末側に送水する送水管路とを有し、該貯水容器内への給水のたびに該各電極に直流電流を通電して電解し有効塩素を含む水を生成する塩素発生器において、
前記通水管路は、前記各電極の上部開口部、該上部開口部に連通する該各電極の隙間、該隙間に連通し内側電極の下部に形成された下部開口部、該下部開口部に連通する内側電極内の空所、該空所の底部と前記送水管路を連通させる流出口を順次連通して構成し、
前記内側電極の空所に、外面に環状の鍔部を複数段に形成し水の流れに乱流を形成する案内筒を配置した
ことを特徴とする塩素発生器。
A water storage container that stores chlorine ion-containing water such as tap water fed through a water supply pipe, and a pair of cylindrical electrodes that are concentrically arranged in the water storage container at predetermined intervals and are energized with a direct current And a water conduit for passing chlorine ion-containing water in the water storage container to each of the electrodes inside and outside, and a water conduit for feeding the water that has passed through the water conduit to the terminal side of a faucet, a beverage machine, etc. A chlorine generator for generating water containing effective chlorine by electrolyzing each electrode with a direct current each time water is supplied to the water storage container;
The water conduit includes an upper opening of each electrode, a gap between the electrodes communicating with the upper opening, a lower opening formed at a lower portion of the inner electrode, communicating with the gap, and communicating with the lower opening. A space in the inner electrode to be configured, and an outflow port for communicating the bottom of the space and the water supply conduit are sequentially communicated,
A chlorine generator, characterized in that a guide tube for forming a turbulent flow in the flow of water is formed in a space of the inner electrode by forming a plurality of annular flanges on the outer surface.
前記貯水容器にはガス抜き機構を設けた
ことを特徴とする請求項1乃至請求項7の何れか1項記載の塩素発生器。
The chlorine generator according to any one of claims 1 to 7, wherein the water storage container is provided with a gas venting mechanism.
JP19572299A 1999-07-09 1999-07-09 Chlorine generator Expired - Fee Related JP4184546B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19572299A JP4184546B2 (en) 1999-07-09 1999-07-09 Chlorine generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19572299A JP4184546B2 (en) 1999-07-09 1999-07-09 Chlorine generator

Publications (2)

Publication Number Publication Date
JP2001017975A JP2001017975A (en) 2001-01-23
JP4184546B2 true JP4184546B2 (en) 2008-11-19

Family

ID=16345888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19572299A Expired - Fee Related JP4184546B2 (en) 1999-07-09 1999-07-09 Chlorine generator

Country Status (1)

Country Link
JP (1) JP4184546B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4543584B2 (en) * 2001-06-08 2010-09-15 富士電機リテイルシステムズ株式会社 Beverage supply equipment
CN108862533A (en) * 2018-06-21 2018-11-23 鲁言和 A kind of hydrogen beverage dispenser

Also Published As

Publication number Publication date
JP2001017975A (en) 2001-01-23

Similar Documents

Publication Publication Date Title
US10653976B2 (en) Water purification apparatus of fuel cell generation system
JP3220389U (en) Functional water generator
KR100331945B1 (en) Electrolytic Water Generator
JP4184546B2 (en) Chlorine generator
JP2016190232A (en) Generator for generating liquid containing dissolved hydrogen
JP2001104941A (en) Gas-liquid separator
KR100311911B1 (en) Apparatus for making drinking water and disinfected water simultaneously
CN211056735U (en) Water purification system
JP2016221451A (en) Electrolysis water generation device and electrolytic unit
JP3789707B2 (en) Alkaline ion water generator
CN218709433U (en) Reverse osmosis membrane filter core and purifier
JP4543884B2 (en) Alkaline ion water conditioner
CN216007170U (en) Toilet bowl
CN217972814U (en) Water purifier
JP3905583B2 (en) Ionized water generator with pH adjusting substance addition tank
CN217535656U (en) Water purifier
CN115261929B (en) Automatic backflow explosion-proof water collector of medical oxyhydrogen machine
JPH10296261A (en) Electrolytic ionic water preparation device
JP2000024670A (en) Chlorine generator
JP3655068B2 (en) Chlorine generator
JP2001191073A (en) Alkaline ionized water production device
JP3964549B2 (en) Beverage supply equipment
CN112624366A (en) Double-outlet barrel type integrated water purifier
JP3760611B2 (en) Calcium feeder for ion water conditioner
CN114716044A (en) Water purifier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080904

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees