JP4184361B2 - エンジンの制御装置 - Google Patents

エンジンの制御装置 Download PDF

Info

Publication number
JP4184361B2
JP4184361B2 JP2005169218A JP2005169218A JP4184361B2 JP 4184361 B2 JP4184361 B2 JP 4184361B2 JP 2005169218 A JP2005169218 A JP 2005169218A JP 2005169218 A JP2005169218 A JP 2005169218A JP 4184361 B2 JP4184361 B2 JP 4184361B2
Authority
JP
Japan
Prior art keywords
intake
fuel
air
fuel ratio
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005169218A
Other languages
English (en)
Other versions
JP2005299678A (ja
Inventor
昌志 山口
茂喜 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP2005169218A priority Critical patent/JP4184361B2/ja
Publication of JP2005299678A publication Critical patent/JP2005299678A/ja
Application granted granted Critical
Publication of JP4184361B2 publication Critical patent/JP4184361B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

本発明は、燃料を吸気管内に噴射する方式のエンジンにおける制御装置の技術分野に属する。
従来、燃料を吸気管内に噴射する方式のエンジンにおいて、燃焼後の排気ガス中の酸素濃度から混合気の空燃比(A/F)を検出する空燃比センサを設け、目標空燃比になるように燃料噴射量をフィードバック制御し、これによりエンジン性能や排ガス特性、燃費の向上を図るようにした燃料噴射制御方式が知られている (特許文献1参照)。
この方式においては、A/Fがリーン側からリッチ側になると燃料噴射量を減少させるよう制御することによりA/Fをリーン側に変化させる。そしてA/Fがリッチ側からリーン側になると燃料噴射量を増大させるように制御することによりA/Fをリッチ側に変化させる。このようにして目標A/Fとなるように燃料噴射量が制御されるようになっている。
特開2001−355497号公報
ところで、上記空燃比制御においては、吸入空気量を正確に算出でき、燃料噴射量を吸入空気量に応じて正確に管理することができれば、現在の空燃比を目標空燃比に精度よく合わせることができる。しかし実際上は、燃料噴射量および吸入空気量が種々の原因で変化するため、現在の空燃比と目標空燃比との間にズレが生じてしまう。
これは以下の理由によると考えられる。吸気管内に噴射された燃料は、その全量が燃焼室に入るわけではなく燃料の一部は吸気管壁に付着する。吸気管壁に付着した燃料の蒸発量は、エンジンの運転状態及び吸気管壁温度により定まる蒸発時定数によって変化する。また、エンジンの運転状態に応じて吸気管壁に付着する燃料付着率も変化する。さらに、吸入空気量は、吸気温度や大気圧等のエンジン周囲の環境変化(空気密度の変化)やバルブタイミング等のエンジン自体の経時変化によっても変動してしまう。これらの理由により上述のズレが生じる。
この問題を解決するために、前記従来のフィードバック制御において、前記A/Fのズレをなくそうとすると、多数のセンサ及び制御マップが必要になるとともに、制御が複雑になり応答性が悪くなってしまい、高精度の空燃比制御を行うことができないという問題がある。また、噴射された燃料が燃焼室に入るまでの無駄時間が存在するため、スロットル開度が大きく変化するエンジン過渡時において、制御の応答性が悪くなり高精度の空燃比制御を行うことができないという問題がある。
さらにまた、前記センサ等の配置構造を簡単な構造にするためには、前記センサ等をどのように配置するかが大きな課題となる。
本発明は、上記課題を解決するものであって、高精度の空燃比制御を行なうことができ、また上記センサ等を簡単な配設構造で配置することができるエンジンの制御装置を提供することを目的とする。
本発明は、吸気管に配設されたインジェクタ及びスロットル弁と、該スロットル弁下流の吸気圧力を検出する吸気圧力検出手段と、該吸気圧力検出手段で検出された信号に応じて前記インジェクタを制御するマイコンが配設された基板とを備え、該基板は前記吸気管の外壁に取り付けられ、前記吸気圧力検出手段は、その一端が前記基板の前記吸気管側の面に配設されるとともに、他端が弾性部材を介して前記吸気管の貫通孔に接続されていることを特徴とするエンジンの制御装置である。
本発明によれば、スロットル弁下流の吸気圧力を検出し、該検出された信号に応じてインジェクタを制御するようにしたので、吸入空気量に対する吸気圧力の影響を加味した空燃比制御を行なうことができ、空燃比制御の精度を高めることができる。
また基板に吸気圧力検出手段を配設するとともに、該吸気圧力検出手段を弾性部材を介して吸気管に接続したので、吸気圧検出手段を簡単な構造により、かつ基板に外力を作用させることなく配設することができる。即ち、基板に吸気圧力検出手段を配設した場合、該吸気圧力検出手段に外力が作用するとこの外力が基板に伝達され、基板が損傷するおそれがある。しかし本発明ではこのような外力が基板に作用するのを前記弾性部材で抑制することができ、基板の損傷を回避できる。
以下、本発明の実施の形態を図面を参照しつつ説明する。図1〜図14は、本発明が適用される燃料噴射制御装置の1例を示している。
図1は、エンジンの構成図である。4サイクルエンジン1は、シリンダボディ2、クランク軸3、ピストン4、燃焼室5、吸気管6、吸気弁7、排気管8、排気弁9、点火プラグ10、点火コイル11を備えている。前記吸気管6内にはスロットル弁12が配設され、また、スロットル弁12の上流側にはインジェクタ13が配設され、さらに、吸気管6の壁面には制御装置15を内蔵したコントロールボックス50が配設されている。インジェクタ13は、圧力調整弁16、電動モータにより駆動される燃料ポンプ17及びフィルタ18を介して燃料タンク19に接続されている。
前記制御装置15には、エンジン1の運転状態を検出する各種センサからの検出信号が入力される。すなわち、センサとして、クランク軸3の回転角を検出するクランク角センサ(エンジン回転数検出手段)20、吸気管6内の吸気圧力を検出する吸気管負圧センサ(吸気圧力検出手段)21、制御装置15のコントロールボックス50内に配設されエンジン周囲の外気温度を検出する外気温度検出手段23(温度センサ1)、コントロールボックス50内に配設され吸気管6の壁温を検出する吸気管壁温度検出手段24(温度センサ2)が設けられている。前記制御装置15は、これら各センサの検出信号を演算処理し、制御信号をインジェクタ13、燃料ポンプ17、点火コイル11に伝送する。
図2に示すように、制御装置15は、バッテリに接続された電源回路15a、入力I/F15b、不揮発性メモリ15cを有するマイコン15d、及び出力I/F15eを備え、後述するように、温度センサ1、2及び吸気管負圧センサ21は制御装置15のコントロールボックス50内に配設され、検出信号は、入力I/F15bに入力される。
図3は、図2のマイコン15d内で行われるインジェクタに関する空燃比制御の構成を示すブロック図である。制御ユニットは、クランク角信号からエンジン回転数を算出するエンジン回転数算出部25と、クランク角信号に基づいてクランク軸3の回転変動を算出する回転変動算出部28と、吸気圧力信号を複数のデータに加工する吸気圧力情報加工部26と、温度センサ1と温度センサ2の信号からエンジン温度と吸気管壁温度を作成する温度情報加工部35と、モデルベース制御部27を備えている。前記モデルベース制御部27は、エンジン回転数、回転変動、吸気圧力情報、エンジン温度、吸気管壁温度の信号を後述する方法により演算処理し、噴射信号をインジェクタ13に出力する。
図4は、図3の吸気圧力情報加工部26の構成を示すブロック図である。吸気圧力情報加工部26は、吸気信号から1行程間の平均吸気圧力を算出する平均圧力算出部26aと、1行程間の最低吸気圧力を算出する最低圧力算出部26bを備え、両者の信号をモデルベース制御部27aに出力する。
図5(A)は、図3の温度情報加工部35の構成を示すブロック図、図5(B)はエンジン温度の算出を説明するための図である。温度センサ1と温度センサ2の信号によりエンジン温度算出部35aにてエンジン温度を算出し、モデルベース制御部27に出力する。これは図5(B)に示すように、温度センサ2による吸気管壁温度と温度センサ1によるエンジン周囲の温度によりエンジン温度を推定し算出するものである。温度センサ2の信号はそのまま吸気管壁温度としてモデルベース制御部27に出力される。
図6は、図3のモデルベース制御部27の構成を示すブロック図である。モデルベース制御部27は、吸気圧力情報とエンジン回転数から吸入空気量を算出する吸入空気量算出部30と、エンジン回転数、吸入空気量、吸気管壁温度及び噴射燃料量から吸入燃料量を算出する吸入燃料量算出部31と、算出された推定吸入空気量と推定吸入燃料量から推定空燃比を算出する推定空燃比算出部32と、推定吸入空気量、エンジン回転数、回転変動及びエンジン温度から目標空燃比を算出する目標空燃比算出部33と、算出された目標空燃比と推定空燃比のズレに応じて燃料噴射量を制御する内部F/B(フィードバック)演算部34とを備えている。各算出部の内容について説明する。
ところで、現在の排気空燃比と推定空燃比との間に生じるズレには、(1)吸気温度や大気圧等のエンジン周囲の環境変化(空気密度の変化)によるズレ、(2)バルブタイミング等のエンジン自体の経時変化によるズレ、(3)吸気管6に付着した燃料の蒸発時定数の変化によるズレ、(4)吸気管6に付着する燃料付着率の変化によるズレが考えられる。
そこで、本実施形態では、吸入空気量、吸入燃料量及び目標空燃比をモデル化し、A/Fのズレを、各4つの原因のそれぞれの変化量として算出するようにしている。
図7は、図6の吸入空気量算出部30のモデルを示し、推定吸入空気量を求めるためのファジィニューラルネットの概略構成図である。このファジィニューラルネットは、6つの処理層を備えた階層構造型であり、第1層から第4層までの前件部と第5層及び第6層の後件部からなる。前件部で入力した1行程間の平均吸気圧力、最低吸気圧力及びエンジン回転数が、所定のルールにどの程度適合しているかをファジィ推論し、前件部で得られた値を用いて後件部で重心法を用いて推定吸入空気量を求める。
前記ルールは、図8に示すように、入力情報である1行程間の平均吸気圧力、1行程間の最低吸気圧力及びエンジン回転数に対応した各3個の運転条件A11、A21、A31、A12、A22、A32及びA13、A23、A33とした場合、合計9個の運転条件と27個の結論R1 〜R27との組み合わせにより構成されている。
図8は、ルールを3次元マップの形式で表した図であり、縦軸が1行程間の平均吸気圧力に対する運転条件A12、A22、A32を、横軸がエンジン回転数に対する運転条件A11、A21、A31と、1行程間の平均吸気圧力に対する運転条件A13、A23、A33を示し、これらエンジン回転数、1行程間の平均吸気圧力及び最低吸気圧力により形成される3次元空間を各運転条件に対応するように分割した27個の領域が結論R1 〜R27を示している。
この場合、前記運転条件A11はエンジン回転数が「低回転域」、A21は「中回転域」、A31は「高回転域」、運転条件A12は1行程間の平均吸気圧力が「低い」、A22は「中くらい」、A32は「高い」、運転条件A13は1行程間の最低吸気圧力が「低い」、A23は「中くらい」、A33は「高い」という曖昧な表現で運転条件を示しており、また、結論R1 〜R27は、エンジン回転数の大きさと1行程間の平均吸気圧力及び最低吸気圧力の大きさに対応する推定吸入空気量を示している。これらの運転条件及び結論により、ルールは、例えば、「エンジン回転数が中回転域にあり、1行程間の平均吸気圧力が中くらい、最低吸気圧力が中くらいの場合は、推定吸入空気量はV1 である。」、又は「エンジン回転数が高回転域にあり、1行程間の平均吸気圧力が高く、最低吸気圧力が高い場合は、推定吸入空気量はV2 である。」等の27個のルールに別れる。
前記第1層から第4層までは、エンジン回転数に対する処理と1行程間の平均吸気圧力及び最低吸気圧力に対する処理とが分かれており、第1層でエンジン回転数信号、1行程間の平均吸気圧力及び最低吸気圧力信号をそれぞれ入力信号xi(i=1〜3)として入力し、第2層から第4層までで、各入力信号xi の各運転条件A11、A21、A31、A12、A22、A32及びA13、A23、A33に対する寄与率aijを求める。具体的には寄与率aijは数1式に示すシグモイド関数f(xi)により求められる。
Figure 0004184361
なお、上式中、wc 、wg はそれぞれシグモイド関数の中心値及び傾きに関する係数である。
上記シグモイド関数により第4層で寄与率aijを求めた後、第5層で数2式を用いて前記寄与率から入力したエンジン回転数及びスロットル開度に対する9個の結論R1 〜R27に対する適合度μiを求め、さらに数3式を用いて適合度μiを正規化した正規化適合度を求め、第6層では数4式を用いて数3式で得られた各結論に対する正規化適合度と、ファジィルールの各出力値fi (すなわち各結論R1 〜R27に対応する出力値)との荷重平均をとって推定吸入空気量Vを求める。
Figure 0004184361
Figure 0004184361
Figure 0004184361
図9は、1行程間の平均吸気圧力及び最低吸気圧力と吸入空気量との相関を示す図であり、いずれの場合にも相関が強いことを示している。このように吸入空気量と相関の強い2つの吸気圧力情報を入力することにより、推定吸入空気量を正確に算出することが可能になる。なお、吸入空気量と相関の強い吸気圧力情報としては、これに限定されるものではなく、最大圧力と最小圧力との差や吸気圧力の脈動周波数を用いてもよく、また、これらの吸気圧力情報の中から3つ以上の情報を用いるようにしてもよい。なお、図9に示したファジィニューラルネットは、1例であって例えば、入力されるエンジン回転数やスロットル開度をさらに細かい条件に分けて27個以上の結論を用いて推定吸入空気量を求めるように構成してもよいことは勿論である。
図10は、図6の吸入燃料量算出部31の学習モデルを示すブロック構成図である。蒸発時定数算出部31aは、エンジン温度、エンジン回転数及び推定吸入空気量に基づいて吸気管6壁面に付着した燃料が蒸発する時定数τを算出する。燃料付着率算出部31bは、エンジン回転数及び推定吸入空気量に基づいて噴射された燃料が吸気管6壁面やスロットル弁12に付着する割合(燃料付着率=x)を算出する。非付着燃料算出部31cは、前記算出された燃料付着率xに基づいて、入力される燃料噴射量が直接、燃焼室5に入る燃料量を算出する。付着燃料算出部31dは、前記算出された燃料付着率xに基づいて、入力される燃料噴射量が吸気管6壁面に付着する燃料量を算出する。前記非付着燃料算出部31c及び付着燃料算出部31dにおいて算出された燃料量は、それぞれ1次遅れ部31e、31fで、蒸発時定数算出部31aで算出された推定蒸発時定数τに基づいて1次遅れ系にて近似された後、加算され、推定吸入燃料量として出力される。なお、蒸発時定数及び燃料付着率は、図7及び図8で説明したファジィニューラルネットのモデルを用いて算出する。
以上のようにして、推定吸入空気量Ae と推定吸入燃料量Fe が算出されると、図6の推定空燃比算出部32において、Ae /Fe により推定空燃比が算出され、推定空燃比の信号は内部フィードバック演算部34に送られる。また、推定吸入空気量の信号は目標空燃比算出部33と吸入燃料量算出部31に送られる図11は、図6の目標空燃比算出部33の学習モデルを示すブロック図である。学習信号算出部33cは、前記回転変動の信号を学習信号として出力し、目標空燃比学習部33dにおいて目標空燃比を学習させるための教師データとして用いられる。目標空燃比学習部33dには、エンジン回転数、吸入空気量算出部30で算出された推定吸入空気量と、変化率算出部33aで算出された推定吸入空気量変化率の信号が入力され、ここで目標空燃比が算出される。さらに、この目標空燃比は、エンジン温度補正マップ33eにて補正された信号により補正される。
図12は、図11の目標空燃比学習部33dにおいて、目標空燃比を求めるためのファジィニューラルネットの概略構成図である。基本的な構成及び算出方法は、図7及び図8で説明した推定吸入空気量を求めるファジィニューラルネットと同様である。
エンジン回転数と推定吸入空気量から目標空燃比を算出した後、推定吸入空気量変化率から加速補正マップを用いて補正係数を設定し、この補正係数により目標空燃比を補正する。この場合、図8に示すルールは2次元マップになり、入力情報であるエンジン回転数及び推定空気吸入量に対応した各3個の運転条件A11、A21、A31及びA12、A22、A32とした場合、合計6個の運転条件と9個の結論R1 〜R9 との組み合わせにより行われる。そして、運転条件A11はエンジン回転数が「低回転域」、A21は「中回転域」、A31は「高回転域」、運転条件A12は推定吸入空気量が「少ない」、A22は「中くらい」、A32は「多い」という曖昧な表現で条件を示しており、また、結論R1 〜R9 は、エンジン回転数の大きさと推定吸入空気量の大きさに対応する目標空燃比を示している。これらの運転条件及び結論により、ルールは、例えば、「エンジン回転数が中回転域にあり、推定吸入空気量が中くらいの場合は、目標空燃比は14.5である。」、又は「エンジン回転数が高回転域にあり、推定吸入空気量が大きい場合は、目標空燃比は12である。」等の9個のルールに別れる。この目標空燃比学習部33dは、学習可能に構成されており、初期状態においては、全域において目標空燃比が理論空燃比になるように結合係数wf (数3式の正規化適合度に相当する)を修正することによりファジィニューラルネットでの学習を行い、その後は前記回転変動のズレの情報である学習信号を小さくするように結合係数wf を更新することによりファジィニューラルネットでの学習が行われる。
図13は、図12の目標空燃比を学習させるためのフロー図であり、これを図14をも参照して説明する。図14はクランク軸3の回転変動と空燃比との関係を示す図であり、A/Fは急激にリーン側に変動し所定値Kを越えると、エンジン(クランク軸3)の回転変動が所定値R0 を越える。そこで、本例においては、エンジンを可能な限りリーン側で運転させるとともに、回転変動がR0 を越える場合には、空燃比Kをリッチ側に移動するように制御する。すなわち、ステップS1でクランク軸3の回転変動を読込、ステップS2で回転変動が所定値R0 以上か否かを判定し、回転変動が所定値以上の場合には、ステップS3でA/Fが所定量K0 だけリッチ側になるように教師データを変更して、各係数wc 、wg 、wf を更新し、この制御により空燃比がリッチ側に移動し、ステップS4で所定時間、回転変動が所定値R1 以下であるか否かを判定し、以下であれば、ステップS5でA/Fが所定量K1 だけリーン側になるように教師データを変更して、結合係数wf を更新する。この制御によりエンジンを可能な限りリーン側で運転させるとともに、回転変動が所定値を越える場合には、目標空燃比をリッチ側に変更して回転変動を抑え、適正な空燃比に制御することができる。
図15及び図16は、本発明のエンジンの制御装置の1実施形態を示し、図15は全体構成を示す断面図、図16は図15の要部断面図である。図15において、吸気管6は、スロットルボディ6aと吸気入口管6bからなり、スロットルボディ6aはエンジン1の吸気ポート1aに接続されている。スロットルボディ6aには、スロットル弁12とインジェクタ13が装着され、スロットルボディ6aの外壁面にはコントロールボックス50が配設されている。
図16において、スロットルボディ6aの壁面には、立設壁51及び筒状壁52、53が一体に形成されている。スロットルボディ6aの外壁面及び前記立設壁51とカバー部材62で制御装置15を収納するためのコントロールボックス50が形成されている。前記筒状壁53はスロットル弁12の下流側に形成され、該筒状壁53には吸気管貫通孔54が吸気通路のスロットル弁下流側に連通するように形成されている。前記立設壁51には制御装置15の基板55が防振ゴム56を介してネジ57により固定されている。前記基板55には、電源回路15a、入力I/F15b、マイコン15d、出力I/F15eが配設されている。また、前記基板55の下面には吸気管負圧センサ(吸気圧力検出手段)21、吸気管壁温度検出手段(温度センサ2)24が配設され、基板55の上面にはエンジン周囲の外気温度を検出する外気温度検出手段(温度センサ1)23が配設されている。
前記吸気管負圧センサ21は、前記筒状壁53の吸気管貫通孔54に対向するように配設されている。そして該吸気管負圧センサ21の負圧導入部と前記筒状壁53との対向部の周囲にゴムチューブ等の弾性部材59が装着されている。この弾性部材59は、吸気管6と吸気管負圧センサ21との間での外力の伝達を抑制するように機能し、これにより吸気管6側からの外力が吸気管負圧センサ21を介して基板55に伝達されるのを抑制している。なお、前記吸気管貫通孔54には必要に応じてフィルタが配設される。
また、吸気管壁温度検出手段24は、前記筒状壁52内に収納され、周囲には熱伝導性樹脂60が充填されている。そして、コントロールボックス50内にはモールド樹脂61が充填され、これにより防水性及び耐振性が確保されている。また前記立設壁51にはカバー部材62が固定されている。なお、63はコネクタである。
このように本実施形態では、スロットル弁12の下流の吸気圧力を検出し、該検出された信号に応じてインジェクタ13を制御するようにしたので、吸入空気量に対する吸気圧力の影響を加味した空燃比制御を行なうことができ、空燃比制御の精度を高めることができる。
また基板55に吸気管負圧センサ21を配設するとともに、該吸気管負圧センサ21を弾性部材59を介して吸気管6に接続したので、吸気管負圧センサ21を簡単な構造により、かつ基板55に外力を作用させることなく配設することができる。即ち、基板55に吸気管負圧センサ21を配設した場合、該吸気管負圧センサ21に吸気管6側から外力が作用すると、この外力が基板55に伝達され、該基板55が損傷するおそれがある。しかし本実施形態ではこのような外力が吸気管負圧センサ21に、ひいては基板55に伝達されるのを前記弾性部材59で抑制することができ、基板55の損傷を回避できる。
以上、本発明の実施の形態について説明したが、本発明はこれらの実施形態に限定されるものではなく種々の変更が可能である。例えば、上記実施形態においては、空燃比制御の学習モデルに適用しているが、これに限定されるものではなく、吸気圧力検出手段と吸気管壁温度検出手段によりエンジンの状態を判断することにより、点火時期の制御や、消費電力が最小になるように燃料ポンプをデューティ制御する等、エンジンを制御する全ての方式に適用可能である。また、上記実施形態においては、4サイクルエンジンに適用した例を示しているが、2サイクルエンジンにも適用可能である。
本発明が適用される燃料噴射制御装置の1例を示すエンジンの構成図である。 図1の制御装置15の構成図である。 図2のマイコン15d内で行われるインジェクタに関する制御ユニットの構成を示すブロック図である。 図3の吸気圧力情報加工部26の構成を示すブロック図である。 図5(A)は、図3の温度情報加工部35の構成を示すブロック図、図5(B)はエンジン温度の算出を説明するための図である。 図3のモデルベース制御部27の構成を示すブロック図である。 図6の吸入空気量算出部30のモデルを示し、推定吸入空気量を求めるためのファジィニューラルネットの概略構成図である。 図7のルールをマップの形式で表した図である。 1行程間の平均吸気圧力及び最低吸気圧力と吸入空気量との相関を示す図である。 図6の吸入燃料量算出部31の学習モデルを示すブロック構成図である。 図6の目標空燃比算出部33の学習モデルを示すブロック図である。 図11の目標空燃比学習部33dにおいて、目標空燃比を求めるためのファジィニューラルネットの概略構成図である。 図12の目標空燃比を学習させるためのフロー図である。 クランク軸の回転変動と空燃比の関係を示す図である。 本発明のエンジンの制御装置の1実施形態であり全体構成を示す断面図である。 図15の要部断面図である。
符号の説明
1 エンジン
6 吸気管
12 スロットル弁
13 インジェクタ
15 制御装置。
15d マイコン
21 吸気管負圧センサ(吸気圧力検出手段)
55 基板
59 弾性部材
50 コントロールボックス
61 モールド樹脂
64 検出管

Claims (3)

  1. 吸気管に配設されたインジェクタ及びスロットル弁と、
    該スロットル弁下流の吸気圧力を検出する吸気圧力検出手段と、
    該吸気圧力検出手段で検出された信号に応じて前記インジェクタを制御するマイコンが配設された基板とを備え、
    該基板は前記吸気管の外壁に取り付けられ、前記吸気圧力検出手段は、その一端が前記基板の前記吸気管側の面に配設されるとともに、他端が弾性部材を介して前記吸気管の貫通孔に接続されている
    ことを特徴とするエンジンの制御装置。
  2. 請求項1において、前記基板を覆うコントロールボックスを備え、
    該コントロールボックス内にモールド樹脂を充填したことを特徴とするエンジンの制御装置。
  3. 請求項2において、前記弾性部材を前記コントロールボックス内に配設したことを特徴とするエンジンの制御装置。
JP2005169218A 2005-06-09 2005-06-09 エンジンの制御装置 Expired - Fee Related JP4184361B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005169218A JP4184361B2 (ja) 2005-06-09 2005-06-09 エンジンの制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005169218A JP4184361B2 (ja) 2005-06-09 2005-06-09 エンジンの制御装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP10266198A Division JPH11294216A (ja) 1998-04-14 1998-04-14 エンジンの制御装置

Publications (2)

Publication Number Publication Date
JP2005299678A JP2005299678A (ja) 2005-10-27
JP4184361B2 true JP4184361B2 (ja) 2008-11-19

Family

ID=35331468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005169218A Expired - Fee Related JP4184361B2 (ja) 2005-06-09 2005-06-09 エンジンの制御装置

Country Status (1)

Country Link
JP (1) JP4184361B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4921515B2 (ja) * 2009-04-27 2012-04-25 本田技研工業株式会社 汎用内燃機関の制御装置
JP5305538B2 (ja) * 2010-09-08 2013-10-02 本田技研工業株式会社 スロットル装置

Also Published As

Publication number Publication date
JP2005299678A (ja) 2005-10-27

Similar Documents

Publication Publication Date Title
US5048495A (en) Electronic engine control method and system for internal combustion engines
KR930011555B1 (ko) 내연기관의 드로틀밸브개방도 제어장치
KR0160396B1 (ko) 공연비제어장치
EP0950805B1 (en) Fuel injection control unit for an engine
US6349293B1 (en) Method for optimization of a fuzzy neural network
JPS58150039A (ja) 電子制御機関の空燃比の学習制御方法
JP3980424B2 (ja) 内燃機関の空燃比制御装置
US6789534B2 (en) Air-fuel ratio control system and method and engine control unit for internal combustion engine
US5706782A (en) Engine control system
CN101755115A (zh) 用于内燃机的异常检测装置及用于内燃机的空燃比控制设备
JPH11294216A (ja) エンジンの制御装置
US7195007B2 (en) Apparatus for calculating amount of recirculated exhaust gas for internal combustion engine
US6466859B1 (en) Control system
JP4184361B2 (ja) エンジンの制御装置
CN116234978A (zh) 电子控制装置及发动机控制系统
JPH04101041A (ja) 内燃機関の燃料噴射装置
US6223121B1 (en) Air-to-fuel ratio control device
JPH11294230A (ja) エンジンの燃料噴射制御装置
JP4401635B2 (ja) 内燃機関用制御装置
US9856798B2 (en) Control device for internal combustion engine
US20090084351A1 (en) Idle speed control method for controlling the idle speed of an engine with a continuous variable event and lift system and a fuel control system using the method
JPH11294231A (ja) エンジンの燃料噴射制御装置
JP4748044B2 (ja) 内燃機関の点火時期制御装置
US6474309B2 (en) Fuel injection control apparatus
JPS63195355A (ja) 内燃機関のアイドル回転速度制御方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees