JP4182335B2 - Spinning molding method and catalytic converter container - Google Patents

Spinning molding method and catalytic converter container Download PDF

Info

Publication number
JP4182335B2
JP4182335B2 JP2002355238A JP2002355238A JP4182335B2 JP 4182335 B2 JP4182335 B2 JP 4182335B2 JP 2002355238 A JP2002355238 A JP 2002355238A JP 2002355238 A JP2002355238 A JP 2002355238A JP 4182335 B2 JP4182335 B2 JP 4182335B2
Authority
JP
Japan
Prior art keywords
forming
tube
raw
pipe
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002355238A
Other languages
Japanese (ja)
Other versions
JP2004160536A (en
Inventor
明 川合
潤司 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002355238A priority Critical patent/JP4182335B2/en
Publication of JP2004160536A publication Critical patent/JP2004160536A/en
Application granted granted Critical
Publication of JP4182335B2 publication Critical patent/JP4182335B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、素管の端部にテーパ部と小径のストレート部とを連続に成形するスピニング成形方法とこのスピニング成形方法により素管から一体に成形された触媒コンバータ容器とに関する。
【0002】
【従来の技術】
例えば、自動車の排気系に装備される排ガス浄化用の触媒コンバータは、図8に示されるように、金属製の容器1に触媒担体Sを内装した構造となっており、通常は、エンジンから延ばされた排気管Pの途中に直列に介装される。このような触媒コンバータにおいて、その容器(触媒コンバータ容器)1は、触媒担体Sを収納保持する比較的大径の触媒保持部2を中央部に備えると共に、前記排気管Pに接続(溶接)される比較的小径の接続部3を両端部に備え、さらに触媒保持部2から接続部3に向かって次第に縮径するコーン部4とを備えている。
【0003】
そして従来、この種の触媒コンバータ容器1は、製造コストの低減を図るため、素管の端部にスピニング成形を加えてコーン部4と接続部3とを一体に成形し、素管の非成形部は触媒保持部2としてそのまま用いるようにしている。
図9は、従来一般に行われていたスピニング成形方法を示したもので、素管Wの中間部をクランパ10によってクランプし、成形工具11を素管Wの軸Oの回りに相対的に公転させながら、太線矢印のように素管Wの軸Oに傾斜する方向と平行な方向とへ、クランパ11による被クランプ側(中間部側)から管端側へ送って、テーパ部Waとストレート部Wbとを同時成形し、この送り(パス)を繰返して、所定の寸法形状を有する上記コーン部4と接続部3とを形成するようにしていた。
【0004】
ところで、この種の触媒コンバータ容器1は、軽量化や材料コストの低減を図りかつ熱容量を小さくして初期アイドリング時の触媒効率を高めるには、触媒保持部2の板厚をできるだけ薄くする必要があり、一方、排気管Pに加わる曲げモーメントに耐える強度、剛性を確保するには、接続部3の板厚をできるだけ厚くする必要がある。
しかるに、上記図9に示した一般的なスピニング成形によれば、素管Wの被クランプ側から管端側へ成形工具11を送って成形を進めるため、材料が自由端となる管端側へ流れ、接続部3およびコーン部4の板厚が素管Wの板厚よりも薄くなる傾向にあり、接続部3の強度、剛性を確保するには、素管Wとして厚肉のものを選択せざるを得ない状況にあった。また、このスピニング成形においては、成形工具11をテーパ部Waの途中に戻して(細線矢印で示す)から管端側へ送る動作を繰返すので、テーパ部Waの上部側(被クランプ側に寄った部位)に局所的な薄肉部Wfが形成され易く、該薄肉部Wfが応力集中部となる、という問題もあった。
【0005】
そこで従来、上記接続部3およびコーン部4の板厚を素管よりも増肉させるため、前記図9に示したスピニング成形方法において、素管Wの管端を押圧工具(回転体)により軸方向に押え、管端に向う材料の流れを規制して、触媒保持部2から接続部3の先端に至るまでの板厚を徐々に増肉することが行われていた(例えば、特許文献1、特許文献2等参照)。
なお、本発明者等は、図10に示すように、クランパ10によりクランプした素管Wに対し、成形工具11を、太線矢印のように素管Wの軸Oに平行な方向と傾斜する方向とへ、管端側から被クランプ側へ送ってストレート部Wbとテーパ部Waとを同時成形し、この送り(パス)を繰返すごとにストレート部Wbとテーパ部Waとの境界部Wcを被クランプ側へ進ませることにより、上記管端の押圧工具を不要にした改良タイプのスピニング成形方法を考案し、既に特願2001−313876号(未公知)にて明らかにしている。
【0006】
【特許文献1】
特開平11−132038号公報
【特許文献2】
特開2000−179334号公報
【0007】
【発明が解決しようとする課題】
しかしながら、上記特許文献1、2に記載されたスピニング成形方法によれば、素管Wの管端を押える押圧工具とこれを支持する装置が必要なため、成形設備にかかるコスト負担が増大する、という問題があった。
一方、上記図10に示した改良スピニング成形方法によれば、テーパ部Waの中間に材料が集まり易くなるため、屈曲部である境界部Wc付近の増肉がいま一つ不足する、という問題があった。
【0008】
本発明は、上述した問題点に鑑みてなされたもので、その課題とするところは、管端を押圧工具により押えることなく十分なる増肉を図ることができるようにし、もって設備コストの低減と強度の安定的向上とに大きく寄与するスピニング成形方法を提供し、併せて該スピニング成形方法により成形された触媒コンバータ容器を提供することにある。
【0009】
【課題を解決するための手段】
上記課題を解決するため、本発明に係るスピニング成形方法は、成形工具を素管の軸回りに相対的に公転させながら、素管の半径方向と軸方向とに送って、該素管の端部に先端へ向けて次第に縮径するテーパ部と該テーパ部に連続する小径のストレート部とを成形するスピニング成形方法において、始めに、前記成形工具を前記素管の軸に傾斜する方向へ、その中間部側から管端側へ送って該素管の端部をテーパ形状に絞り、次に、前記成形工具を前記素管の軸に傾斜する方向へ往復運動させて、該素管の端部の絞り部分をさらに絞ると共に該絞り部分の板厚を増加させ、次に、前記成形工具を前記素管の軸に平行な方向へ、その管端側から中間部側へ送って前記ストレート部を成形すると共に該ストレート部と前記テーパ部との境界部を増肉させ、最終的に、前記成形工具を素管の軸に傾斜する方向と平行な方向とへ移動させて仕上成形を行うことを特徴とする。
本発明のスピニング成形方法においては、初期段階で管端部を薄肉化した後、中期段階で管端部の増肉を図るので、最終的に成形されるテーパ部およびストレート部が必要以上に増肉されることはなくなる。また、終盤で管端側から中間部側へ成形工具を送ってストレート部を成形することで、境界部の増肉も進み、境界部を含めたテーパ部およびストレート部の板厚はほぼ一定となる。また、初期段階で素管の中央側から管端側へ成形工具を送って高能率にテーパ形状に絞った後に、成形工具の往復運動による絞りを行うので、全体の成形時間が短縮する。もちろん、素管の管端を押える押圧工具を用いることなく成形を行うので、成形設備にかかるコストも大幅に低減する。
上記課題を解決するため、本発明に係る触媒コンバータ容器は、請求項1に記載のスピニング成形方法により素管の端部にテーパ部とストレート部とを一体に成形し、前記素管の非成形部を触媒担体が収納保持される触媒保持部として、前記ストレート部を排気管が接続される接続部として、前記テーパ部を前記触媒保持部と前記接続部とを連接するコーン部としてそれぞれ用いる触媒コンバータ容器であって、前記接続部および前記コーン部の板厚が、前記両部の境界部をも含めて前記触媒保持部の板厚よりも厚くなっており、かつ板厚ほぼ一定に平均化していることを特徴とする。
このように構成した触媒コンバータ容器は、接続部およびコーン部が、該両部の境界部も含めて触媒保持部の板厚よりも厚くなっており、かつ板厚ほぼ一定に平均化しているので、応力集中が緩和される。
【0010】
【発明の実施の形態】
以下、本発明の実施の形態を添付図面に基いて説明する。
図1は、本発明に係るスピニング成形方法の第1の実施形態の基本工程を示したものである。本第1の実施の形態において、初期乃至中期段階では、同図(1)に示すように、成形工具11を素管Wの軸Oに傾斜する方向へ往復運動させて(太線矢印A、A´にて示す)、素管Wの端部W´をテーパ形状に絞る。また、最終段階では、同図(2)に示すように、成形工具11を素管Wの軸Oに平行な方向と傾斜する方向とへ往復運動させて(太線矢印B、B´にて示す)、テーパ部Waとストレート部Wbとを成形する。このように初期乃至中期段階で、成形工具11の直線的な往復運動だけで素管Wの端部(管端部)W´を絞ることで、管端部W´の中間部分から先端側にかけてほぼ一様に増肉が進む。一方、このように増肉が進んだ後の最終段階で、テーパ部Waとストレート部Wbとを成形するので、この段階では、材料流動がほとんど起こらず、したがって、得られるテーパ部Waとストレート部Wbとの板厚は、両部の間の境界部Wcをも含めて十分な厚さとなる。
【0011】
本第1の実施の形態は、前記図8に示した触媒コンバータ容器1の成形に適用したもので、得られた成形体Fは、図2に示すように、素管Wの非成形部W″が前記触媒担体S(図8)を収納保持する触媒保持部2として、そのストレート部Wbが前記排気管P(図8)を接続させる接続部3として、そのテーパ部Waが前記コーン部4としてそれぞれ供されるようになる。しかして、この成形体Fは、排気管Pが接続される接続部3(Wb)を始め、該接続部3とコーン部(Wa)4との境界部5(Wc)の板厚が、素管Wの板厚よりも十分に厚くなっているので、前記排気管Pの接続に必要な強度、剛性が十分に確保される。換言すれば、素管Wとしてより薄肉のものを用いることができるようになり、薄肉の素管Wの使用が可能になる分、材料コストが低減するばかりか軽量化も実現する。また、素管Wとしてより薄肉のものを用いる分、触媒保持部2の熱容量が小さくなり、初期アイドリング時に触媒担体Sの加熱が促進されて浄化効率が高まるようになる。
【0012】
なお、触媒コンバータの製造に際しては、素管Wの一端部W´にテーパ部Wa(コーン部4)とストレート部Wb(接続部3)とを成形した後、その被加工部W″(触媒保持部2)に触媒担体Sを収納し、その後、素管Wの他端部にテーパ部Wa(コーン部4)とストレート部Wb(接続部3)とを成形するようにしても、予め素管Wに触媒担体Sを収納した後、その両端部に順次テーパ部Wa(コーン部4)とストレート部Wb(接続部3)とを成形するようにしてもよい。
【0013】
以下、本第1の実施の形態としてのスピニング成形方法を、図3および図4に基いて具体的に説明する。
スピンニング成形に際しては、図3(1)に示すように、スピニング成形装置内のクランパ10に素管Wの長手方向中間部をクランプさせ、このクランプされた素管Wに対して、一対の成形工具(成形ローラ)11を素管Wの軸Oの回りに公転させながら、半径方向(Y軸方向)と軸方向(X軸方向)とへ移動させる。素管Wは、前記成形しようとする触媒コンバータ容器1(図8)の触媒保持部2の内径と同じ口径を有するものを選択し、また、本スピニング成形による増肉を考慮して適宜板厚のものを選択する。なお、この素管Wは、溶接管であっても、シームレス管であってもよい。
【0014】
上記した成形工具11の公転およびX軸、Y軸方向への移動は、スピニング成形装置内の制御装置により制御されるようになっており、図4に示すように、スタート(S1)に応じて、先ず、成形ローラ11の公転回転数が適宜選択されると共にその駆動源が駆動され(S2)、次いで、ステップS3で行程数aが0(a=0)に設定される。なお、以下の説明では、説明の便宜のため、図3の右方向への成形ローラ11の移動をX軸前進、これと反対方向(図の左方向)への成形ローラ11の移動をX軸後退、半径内方向への成形ローラ11の移動をY軸前進、半径外方向への成形ローラ11の移動をY軸後退とそれぞれ呼ぶこととする。
【0015】
スピニング成形に際しては、先ず、ステップS4でこれから行う行程数1が加えられ(a=a+1)、図3(2)および図4のステップS5に示す初期乃至中期段階のスピニング成形が行われる。このスピニング成形では、成形ローラ11を次第にY軸後退させながら、すなわち成形ローラ11の公転径を次第に拡大させながら管端側からクランパ10による被クランプ側へ成形ローラ11をX軸前進させた後、成形ローラ11をY軸前進させながら、すなわち成形ローラ11の公転径を次第に縮小させながら被クランプ側から管端側へ成形ローラ11をX軸後退させる。これにより、成形工具11は素管Wの軸Oに傾斜する方向へ太線矢印A、A´のように一往復運動し、これに応じて素管Wの端部W´はテーパ形状に絞られる。このとき、X軸方向の移動量をα、Y軸方向の移動量をβとすると、管端側から被クランプ側への成形ローラ11の移動軌跡A→は[αX→−βY→]となり、一方、被クランプ側から管端側への成形ローラ11の移動軌跡A´→は[−αX→+βY→]となる。
【0016】
上記成形ローラ11の一往復運動(一行程)後、図4のステップS6で、管端の口径daが、目標の口径dに所定のマージンδを加えた値[d+δ]に達したかどうかが判断され、達していない場合は、再び、行程数をカウントし(S4)、成形ローラ11をさらに追い込みながら往復運動させ(S5)、管端の口径daが[d+δ]以下になるまで前記往復運動が繰返えされる。
そして、管端の口径daが[d+δ]以下になったら、図3(3)および図4のステップS7に示す最終段階のスピニング成形が行われる。このスピニング成形では、成形工具11を素管Wの軸Oに平行な方向と傾斜する方向とへ、太線矢印B、B´で示すように往復運動させ、テーパ部Waとストレート部Wbとを同時成形する。この時、成形工具11の往復運動は、通常一回だけでよいが、設定するマージンδ(S6)の大きさによっては、成形工具11の往復運動を二回以上繰返えしてもよい。
その後は、成形ローラ11をY軸後退させる(S8)と共に、X軸後退させ(S9)、成形ローラ11をスタート位置に復帰させ、さらに、その回転(公転)を停止し(S10)、これにて一連のスピニング成形は終了(停止)する(S11)。
【0017】
なお、上記第1の実施の形態においては、素管Wを位置固定して成形工具11を素管Wの軸Oの回りに公転させるようにしたが、成形工具11を公転させずに素管Wをその軸Oを中心に回転させるようにしてもよい。
また、上記実施の形態においては、成形の最終段階でも成形ローラ11を往復運動させるようにしたが、この最終段階では、素管Wの管端側から被クランプ側へ、または被クランプ側から管端側へ一回だけ成形ローラ11を移動させるようにしてもよい。
【0018】
図5は、本発明に係るスピニング成形方法の第2の実施形態の基本工程を示したものである。本第2の実施の形態において、初期段階では、同図(1)に示すように、前記成形工具(成形ローラ)11を素管Wの軸Oに傾斜する方向へ、その被クランプ側(中間部側)から管端側へ送って(太線矢印C、C´にて示す)、管端部W´をテーパ形状に絞る。この成形は、前記図9に示した一般的なスピニング成形と似た加工様式となり、これにより、材料が管端側へ流れて絞り部分の板厚が素管Wの板厚よりわずか薄くなる。また、この工程は、成形工具11をテーパ部Waの途中に戻して(細線矢印にて示す)から管端側へ送る動作を繰返すので、絞り部分の上部側(被クランプ側に寄った部位)に局所的な薄肉部Wfが形成される。
【0019】
中期段階では、図5(2)に示すように、成形工具11を素管Wの軸Oに傾斜する方向へ往復運動させて(太線矢印A、A´にて示す)、前記絞り部分(管端部W´)をさらに絞る。この成形は、前記図1(1)に示した、第1の実施の形態における初期乃至中期段階と同じ加工様式となり、これにより上記初期段階で薄肉化した管端部W´の増肉が進み、前記薄肉部Wfも解消される。
【0020】
末期段階では、図5(3)に示すように、成形工具11を素管Wの軸Oに平行な方向へ、管端側から被クランプ側へわずかの距離だけ送り(太線矢印Dにて示す)、ストレート部Wbを成形する。すると、このストレート部Wbの成形と同時にテーパ部Waも最終形状に近づき、両者の間に屈曲形状の境界部Wcが出現する。しかして、この末期段階では、管端側から被クランプ側への成形工具11の送りを繰返すことで、管端側の材料が境界部Wc側へ寄せられ、これにより境界部Wc付近が増肉される。すなわち、図10に示した改良タイプのスピニング成形に際して生じる可能性のあった境界部Wc付近の増肉不足が解消される。
【0021】
さらに、最終段階では、図5(4)に示すように、成形工具11を素管Wの軸Oに傾斜する方向と平行な方向とへ、被クランプ側から管端側へ送って(太線矢印Eにて示す)、仕上成形を行い、これにより所望の寸法形状を有する成形体F(図2)が得られる。なお、この最終段階における成形工具11の送り方向は任意であり、管端側から被クランプ側へ送ってもよい。
【0022】
本第2の実施の形態においては、上記したように一旦、初期段階で管端部を薄肉化した後、中期段階で管端部の増肉を図るので、最終的に成形されるテーパ部Waおよびストレート部Wbが必要以上に増肉されることはなくなる。したがって、素管Wの非成形部W″(図2)と成形後の管端部(Wa、Wb)との間に大きな板厚差が生じることはなく、両者の境界部が応力集中部となることはない。また、中期段階における成形工具11の往復運動により、初期段階で生じた薄肉部Wfが解消されると共に、末期工程における境界部Wcへの材料寄せにより、該境界部Wc付近の薄肉化も防止されるので、境界部Wcを含めたテーパ部Waおよびストレート部Wbの板厚は平均化され、管端部に応力集中部が残存することもない。したがって、得られる成形体Fに対する強度的信頼性は、著しく高いものとなる。
【0023】
ところで、成形工具11の往復運動により管端部W´を絞る場合は、しわが発生し易いため、1パス当りの絞り量をあまり大きくとれない、という制約がある。一方、被クランプ側から管端側へ成形工具11を送って管端部W´を絞る場合は、1パス当りの絞り量を比較的大きくとることができ、その分、成形能率が向上する。本第2の実施の形態においては、初期段階でこの成形能率の高い絞り成形(図5(1))を行っているので、その後の成形、すなわち成形工具11の往復運動による絞り成形(図5(2))のパス回数を、第1の実施の形態に比べて大幅に削減することができ、その分、全体の成形に要する時間が短縮する。
【0024】
図6は、本第2の実施の形態における具体的な成形フローを示したもので、前記第1の実施の形態における成形フロー(図4)と同じステップには、同一符号を付している。本第2の実施の形態においては、スタート(S1)に応じて、成形ローラ11の公転回転数が適宜選択されると共にその駆動源が駆動され(S2)た後、ステップ21で、図5(1)に示した初期段階の絞り成形(スピニング成形)が行われる。このスピニング成形は、被クランプ側から管端側へ成形工具11を送って、管端部W´をテーパ形状に絞るようにするので、前記したように1パス当りの絞り量を比較的大きくとることができ、短時間で成形が終了する。
【0025】
その後は、第1の実施の形態と同じステップS3〜S6で、図5(2)に示した中期段階のスピニング成形が行われ、成形工具11の往復運動により、管端部W´がさらに絞られると共に、その絞り部分が増肉される。
そして、ステップS6で、管端の口径daが、目標の口径dに所定のマージンδを加えた値[d+δ]に達したと判断されると、ステップS22で図5(3)に示した末期段階の成形が行われ、さらにステップS23で仕上成形が行われる。S22の成形は、管端側から被クランプ側への成形工具11の送りを繰返すことで、管端側の材料を境界部Wc側へ寄せる内容を含み、これにより境界部Wcが増肉される。また、ステップ23の成形は、成形工具11を被クランプ側から管端側へまたは管端側から被クランプ側へ送って寸法形状出しを行う内容を含み、これにより所望の寸法形状を有する成形体F(図2)が得られる。
その後は、第1の実施の形態と同じステップS8〜S10を経て成形工具11がスタート位置に復帰して回転(公転)を停止され、これにて一連のスピニング成形は終了(停止)する(S11)。
【0026】
【実施例】
外径114mm、板厚1.2mmの素管Wを用い、図3に示した第1の実施の形態および図5に示した第2の実施の形態に従って素管Wの端部W´にスピニング成形を加えて、長さが約65mmのテーパ部Waと長さが約15mmで口径(d)が約55mmのストレート部Wbとを有する成形体Fを得た。成形体Fは第1の実施の形態で得られたものを参考品、第2の実施の形態で得られたものを本発明品としてそれぞれ区分し、これら成形体Fについて、図7に示すように、その非成形部W″側からストレート部Wbの中間に至るまで、10mmピッチで板厚を測定した。また、比較のため、同じ板厚(1.2mm)の同径の素管Wに対し、前記図10に示した改良タイプのスピニング成形を加えて改良品を得ると共に、板厚1.5mmの同径の素管に対し、前記図9に示した一般的なスピニング成形を加えて従来品を得、これら改良品および従来品についても、前記同様に板厚を測定した。
【0027】
図7は、上記した板厚の測定結果を示したものである。同図に示す結果より、従来品では、テーパ部Waおよびストレート部Wbの板厚が素管Wの板厚(1.4mm)よりも薄くなっており、特にテーパ部Waの、非成形部W″側に寄った部位(カの部位)に板厚の著しく薄くなる部分が生じる。一方、改良品の場合は、テーパ部Waの中間部の板厚が素管Wの板厚(1.2mm)に対して、1.6mm以上とかなり厚くなっているが、ストレート部Wb側特にストレート部Wbとテーパ部Waとの境界部Wc付近の板厚が、元の素管Wの板厚(1.2mm)に近いレベルまで減じている。これに対し、参考品は、テーパ部Waの中間部はもとより、前記境界部Wcを含むストレート部Wbの板厚が1.6mm以上(40%以上の増肉)となっており、成形部の全体に増肉効果がゆきわっていることが明らかである。また、本発明品は、境界部Wcを含むテーパ部Waおよびストレート部Wbの板厚が1.3mm程度に平均化しており、素管Wの非成形部W″との間の板厚差が本発明品1に比べて大幅に減じている。
【0028】
【発明の効果】
以上、説明したように、本発明によれば、素管の管端を押える押圧工具を用いることなく成形を行うので、成形設備にかかるコストが大幅に低減する。しかも、境界部を含めたテーパ部およびストレート部の板厚は、素管の非成形部との間に大きな差を生じない状態で平均化されるので、得られる成形体に対する強度的信頼性は著しく向上する。また、初期段階に素管の中央側から管端側へ成形工具を送って高能率にテーパ形状に絞った後に、成形工具の往復運動による絞りを行うので、全体の成形時間の短縮が可能になる。
一方、本発明に係る触媒コンバータ容器によれば、上記したスピニング成形により境界部を含めたコーン部および接続部の板厚が、触媒保持部との間に大きな差を生じない状態で平均化されているので、応力集中が緩和され、強度的信頼性が高いものとなる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態としてのスピニング成形方法の基本工程を模式的に示す断面図である。
【図2】本第1の実施の形態により得られた成形体の形状を示す断面図である。
【図3】本第1の実施の形態にける成形過程を順を追って示す模式図である。
【図4】本第1の実施の形態を実行する際の成形フローを示すフローチャートである。
【図5】本発明の第2の実施形態としてのスピニング成形方法の基本工程を模式的に示す断面図である。
【図6】本第1の実施の形態を実行する際の成形フローを示すフローチャートである。
【図7】本発明に係るスピニング成形方法により得られた成形体のテーパ部およびストレートにおける板厚分布を、比較例と対比して示すグラフである。
【図8】従来の一般的な触媒コンバータの構造を示す断面図である。
【図9】従来の一般的なスピニング成形方法の実施状況を模式的に示す断面図である。
【図10】本発明者等による改良スピニング成形方法の実施状況を模式的に示す断面図である。
【符号の説明】
1 触媒コンバータ容器
2 触媒保持部
3 接続部
4 コーン部
10 クランパ
11 成形工具(成形ローラ)
W 素管
W’ 素管の端部
Wa テーパ部
Wb ストレート部
Wc 境界部
S 触媒担体
P 排気管
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a spinning molding method in which a tapered portion and a small-diameter straight portion are continuously formed at an end portion of a raw pipe, and a catalytic converter container integrally formed from the raw pipe by this spinning molding method.
[0002]
[Prior art]
For example, as shown in FIG. 8, a catalytic converter for purifying exhaust gas equipped in an exhaust system of an automobile has a structure in which a catalyst carrier S is housed in a metal container 1, and usually extends from an engine. The exhaust pipe P is inserted in series in the middle. In such a catalytic converter, the container (catalytic converter container) 1 is provided with a relatively large-diameter catalyst holding part 2 for accommodating and holding the catalyst carrier S in the center part, and is connected (welded) to the exhaust pipe P. And a cone portion 4 that gradually decreases in diameter from the catalyst holding portion 2 toward the connection portion 3.
[0003]
Conventionally, in order to reduce the manufacturing cost, this type of catalytic converter container 1 is formed by integrally forming the cone portion 4 and the connection portion 3 by adding spinning forming to the end portion of the raw tube, and unforming the raw tube. The part is used as it is as the catalyst holding part 2.
FIG. 9 shows a conventional spinning forming method, in which the intermediate portion of the raw tube W is clamped by the clamper 10 and the forming tool 11 is relatively revolved around the axis O of the raw tube W. However, the taper portion Wa and the straight portion Wb are sent from the clamped side (intermediate portion side) to the tube end side by the clamper 11 in a direction parallel to the direction inclined to the axis O of the raw tube W as indicated by a thick line arrow. Are formed at the same time, and this feeding (pass) is repeated to form the cone portion 4 and the connecting portion 3 having a predetermined size and shape.
[0004]
By the way, this type of catalytic converter container 1 needs to be as thin as possible in order to reduce the weight, reduce the material cost, reduce the heat capacity, and increase the catalyst efficiency at the initial idling. On the other hand, in order to ensure the strength and rigidity that can withstand the bending moment applied to the exhaust pipe P, it is necessary to make the connecting portion 3 as thick as possible.
However, according to the general spinning forming shown in FIG. 9, since the forming tool 11 is fed from the clamped side of the raw tube W to the tube end side and the forming proceeds, the material is moved to the tube end side where the free end is formed. Flow, the thickness of the connecting part 3 and the cone part 4 tend to be thinner than the thickness of the raw tube W, and in order to ensure the strength and rigidity of the connecting part 3, select a thick tube as the raw tube W I was in a situation where I had to. Further, in this spinning molding, since the forming tool 11 is returned to the middle of the taper portion Wa (indicated by a thin line arrow) and sent back to the tube end side, the upper side of the taper portion Wa (closed to the clamped side) is repeated. There is also a problem that a local thin portion Wf is easily formed in the portion), and the thin portion Wf becomes a stress concentration portion.
[0005]
Therefore, conventionally, in order to increase the thickness of the connecting portion 3 and the cone portion 4 as compared with the raw tube, in the spinning forming method shown in FIG. 9, the tube end of the raw tube W is pivoted by a pressing tool (rotating body). The thickness of the plate from the catalyst holding unit 2 to the tip of the connection unit 3 is gradually increased by controlling the material flow toward the tube end and restricting the flow of the material toward the tube end (for example, Patent Document 1). , See Patent Document 2).
In addition, as shown in FIG. 10, the present inventors, for the raw tube W clamped by the clamper 10, incline the forming tool 11 with a direction parallel to the axis O of the raw tube W as indicated by a thick arrow. The straight part Wb and the taper part Wa are simultaneously molded from the pipe end side to the clamped side, and the boundary part Wc between the straight part Wb and the taper part Wa is clamped each time this feed (pass) is repeated. The improved spinning forming method that eliminates the need to press the pipe end is devised, and has already been clarified in Japanese Patent Application No. 2001-313876 (unknown).
[0006]
[Patent Document 1]
JP 11-1332038 A [Patent Document 2]
Japanese Patent Laid-Open No. 2000-179334
[Problems to be solved by the invention]
However, according to the spinning forming method described in Patent Documents 1 and 2, since a pressing tool for pressing the tube end of the raw tube W and a device for supporting the pressing tool are necessary, the cost burden on the forming equipment increases. There was a problem.
On the other hand, according to the improved spinning forming method shown in FIG. 10, the material is likely to gather in the middle of the taper portion Wa, so that there is a problem that the thickness increase near the boundary portion Wc which is a bent portion is insufficient. there were.
[0008]
The present invention has been made in view of the above-described problems, and the object of the present invention is to enable sufficient thickness increase without pressing the tube end with a pressing tool, thereby reducing the equipment cost. An object of the present invention is to provide a spinning molding method that greatly contributes to the stable improvement of strength, and to provide a catalytic converter container molded by the spinning molding method.
[0009]
[Means for Solving the Problems]
In order to solve the above-described problem, the spinning forming method according to the present invention sends the forming tool to the radial direction and the axial direction of the raw pipe while relatively revolving around the axis of the raw pipe, and ends the raw pipe. In a spinning molding method of molding a tapered portion gradually reducing the diameter toward the tip and a small-diameter straight portion continuous to the tapered portion, first, in a direction in which the molding tool is inclined to the axis of the raw tube, From the intermediate side to the tube end side, the end of the raw tube is squeezed into a taper shape, and then the forming tool is reciprocated in a direction inclined to the axis of the raw tube, thereby Further reducing the throttle part and increasing the thickness of the throttle part, and then sending the forming tool from the pipe end side to the intermediate part side in a direction parallel to the axis of the raw pipe And the boundary between the straight part and the taper part is increased. Is allowed, ultimately, and performing said forming tool are moved to the direction parallel to the direction inclined to the axis of the base pipe and finish forming.
In the spinning molding method of the present invention, after the pipe end is thinned in the initial stage, the pipe end is increased in the middle stage, so that the taper part and the straight part to be finally formed are increased more than necessary. There is no meat. Also, by forming a straight part by sending a forming tool from the pipe end side to the intermediate part side at the end stage, the thickness of the boundary part increases, and the thickness of the taper part and the straight part including the boundary part is almost constant. Become. In addition, since the forming tool is sent from the center side to the pipe end side at the initial stage and is highly efficiently squeezed into a tapered shape, the forming tool is squeezed by reciprocating motion, so that the entire forming time is shortened. Of course, since the forming is performed without using a pressing tool for pressing the tube end of the raw tube, the cost of the forming equipment is greatly reduced.
In order to solve the above problems, a catalytic converter container according to the present invention is formed by integrally forming a taper portion and a straight portion at an end portion of a raw tube by the spinning forming method according to claim 1, and non-forming the raw tube. The catalyst is used as a catalyst holding part in which the catalyst carrier is housed and held, the straight part is used as a connection part to which an exhaust pipe is connected, and the taper part is used as a cone part connecting the catalyst holding part and the connection part. In the converter container, the plate thickness of the connection portion and the cone portion is thicker than the plate thickness of the catalyst holding portion including the boundary portion between the two portions, and the plate thickness is averaged to be almost constant. It is characterized by.
In the catalytic converter container configured as described above, the connecting portion and the cone portion are thicker than the plate thickness of the catalyst holding portion including the boundary portion between the two portions , and the plate thickness is averaged almost constant . , Stress concentration is relaxed.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 shows the basic steps of a first embodiment of the spinning molding method according to the present invention. In the first embodiment, in the initial to middle stage, as shown in FIG. 1A, the forming tool 11 is reciprocated in the direction inclined to the axis O of the raw tube W (thick arrows A and A). ), The end W ′ of the raw tube W is narrowed to a tapered shape. Further, at the final stage, as shown in FIG. 2B, the forming tool 11 is reciprocated in a direction parallel to the axis O of the raw tube W and a direction inclined (indicated by bold arrows B and B ′). ), The taper portion Wa and the straight portion Wb are formed. Thus, in the initial to middle stage, by narrowing the end portion (tube end portion) W ′ of the raw tube W only by the linear reciprocating motion of the forming tool 11, from the intermediate portion of the tube end portion W ′ to the tip side. Thickening progresses almost uniformly. On the other hand, since the taper portion Wa and the straight portion Wb are formed at the final stage after the increase in thickness in this way, almost no material flow occurs at this stage, and therefore the taper portion Wa and the straight portion to be obtained are obtained. The plate thickness with Wb is sufficient including the boundary portion Wc between the two portions.
[0011]
The first embodiment is applied to the molding of the catalytic converter container 1 shown in FIG. 8, and the obtained molded body F has a non-molded portion W of the raw tube W as shown in FIG. ″ Is the catalyst holding portion 2 that houses and holds the catalyst carrier S (FIG. 8), the straight portion Wb is the connecting portion 3 that connects the exhaust pipe P (FIG. 8), and the tapered portion Wa is the cone portion 4. However, the molded body F includes a connecting portion 3 (Wb) to which the exhaust pipe P is connected, and a boundary portion 5 between the connecting portion 3 and the cone portion (Wa) 4. Since the plate thickness of (Wc) is sufficiently thicker than the plate thickness of the raw tube W, sufficient strength and rigidity necessary for the connection of the exhaust pipe P are ensured. As a result, it becomes possible to use a thinner wall and to use a thin walled tube W. Not only material costs are reduced, but also lighter weight is realized, and the heat capacity of the catalyst holding unit 2 is reduced by using a thinner tube W, and heating of the catalyst carrier S is promoted during initial idling for purification. Increases efficiency.
[0012]
In manufacturing the catalytic converter, after forming the tapered portion Wa (cone portion 4) and the straight portion Wb (connecting portion 3) at one end W ′ of the raw tube W, the workpiece W ″ (catalyst holding) The catalyst carrier S is accommodated in the portion 2), and thereafter the taper portion Wa (cone portion 4) and the straight portion Wb (connecting portion 3) are formed on the other end portion of the raw tube W. After the catalyst carrier S is accommodated in W, the taper portion Wa (cone portion 4) and the straight portion Wb (connecting portion 3) may be sequentially formed at both ends thereof.
[0013]
Hereinafter, the spinning molding method according to the first embodiment will be described in detail with reference to FIGS.
At the time of spinning forming, as shown in FIG. 3 (1), the clamper 10 in the spinning forming apparatus clamps the intermediate portion in the longitudinal direction of the raw tube W, and a pair of forming is performed on the clamped raw tube W. The tool (forming roller) 11 is moved in the radial direction (Y-axis direction) and the axial direction (X-axis direction) while revolving around the axis O of the raw tube W. The raw tube W is selected to have the same diameter as the inner diameter of the catalyst holding portion 2 of the catalytic converter container 1 (FIG. 8) to be molded, and the plate thickness is appropriately determined in consideration of the increase in thickness by this spinning molding. Choose one. The raw tube W may be a welded tube or a seamless tube.
[0014]
The revolution of the forming tool 11 and the movement in the X-axis and Y-axis directions are controlled by a control device in the spinning forming apparatus, and as shown in FIG. 4, according to the start (S1). First, the revolution speed of the forming roller 11 is appropriately selected and its drive source is driven (S2), and then the stroke number a is set to 0 (a = 0) in step S3. In the following description, for convenience of explanation, the movement of the molding roller 11 in the right direction in FIG. 3 is advanced by the X axis, and the movement of the molding roller 11 in the opposite direction (left direction in the figure) is the X axis. The backward movement and the movement of the forming roller 11 in the radial inward direction are referred to as Y-axis advance, and the movement of the forming roller 11 in the outward radial direction is referred to as Y-axis backward movement, respectively.
[0015]
In the spinning molding, first, the number of strokes 1 to be performed is added in step S4 (a = a + 1), and the initial to middle-stage spinning molding shown in FIG. 3 (2) and step S5 in FIG. 4 is performed. In this spinning molding, the molding roller 11 is moved forward from the tube end side to the clamped side by the clamper 10 while the molding roller 11 is gradually retracted in the Y axis, that is, the revolution diameter of the molding roller 11 is gradually increased. While the forming roller 11 is moved forward in the Y axis, that is, while the revolution diameter of the forming roller 11 is gradually reduced, the forming roller 11 is moved backward from the clamped side to the tube end side. As a result, the forming tool 11 reciprocates as indicated by the thick arrows A and A ′ in a direction inclined to the axis O of the raw tube W, and the end W ′ of the raw tube W is narrowed to a taper shape accordingly. . At this time, if the movement amount in the X-axis direction is α and the movement amount in the Y-axis direction is β, the movement locus A → of the forming roller 11 from the tube end side to the clamped side becomes [αX → −βY →] On the other hand, the movement trajectory A ′ → of the forming roller 11 from the clamped side to the tube end side is [−αX → + βY →].
[0016]
After one reciprocating motion (one stroke) of the forming roller 11, it is determined in step S6 of FIG. 4 whether or not the diameter da of the pipe end has reached a value [d + δ] obtained by adding a predetermined margin δ to the target diameter d. If it has been judged and has not been reached, the number of strokes is counted again (S4), and the reciprocating motion is performed while further pushing the forming roller 11 (S5), and the reciprocating motion is continued until the diameter da of the tube end becomes [d + δ] or less. Is repeated.
When the pipe end diameter da becomes equal to or less than [d + δ], the final spinning forming shown in step S7 of FIG. 3 (3) and FIG. 4 is performed. In this spinning forming, the forming tool 11 is reciprocated in the direction parallel to the axis O of the raw tube W and the direction inclined, as indicated by the thick line arrows B and B ′, and the taper portion Wa and the straight portion Wb are simultaneously moved. Mold. At this time, the reciprocating motion of the forming tool 11 is usually required only once, but the reciprocating motion of the forming tool 11 may be repeated two or more times depending on the size of the margin δ (S6) to be set.
Thereafter, the forming roller 11 is retracted in the Y axis (S8) and the X axis is retracted (S9), the forming roller 11 is returned to the start position, and the rotation (revolution) is stopped (S10). Thus, the series of spinning molding ends (stops) (S11).
[0017]
In the first embodiment, the raw tube W is fixed and the forming tool 11 is revolved around the axis O of the raw tube W. However, the forming tube 11 is not revolved. W may be rotated about its axis O.
In the above-described embodiment, the forming roller 11 is reciprocated even in the final stage of molding. However, in this final stage, the pipe end side of the raw tube W is to be clamped, or the pipe is to be clamped from the clamped side. The forming roller 11 may be moved only once to the end side.
[0018]
FIG. 5 shows the basic steps of the second embodiment of the spinning molding method according to the present invention. In the second embodiment, at the initial stage, as shown in FIG. 1A, the forming tool (forming roller) 11 is inclined to the axis O of the raw tube W in the direction to be clamped (intermediate). From the section side) to the pipe end side (indicated by thick arrows C and C ′), the pipe end W ′ is narrowed to a tapered shape. This forming is a processing mode similar to the general spinning forming shown in FIG. 9, whereby the material flows toward the tube end side, and the plate thickness of the drawn portion becomes slightly thinner than the plate thickness of the raw tube W. Further, in this step, the operation of returning the forming tool 11 to the middle of the taper portion Wa (indicated by the thin line arrow) and then sending it to the tube end side is repeated, so that the upper side of the throttle portion (site close to the clamped side) A locally thin portion Wf is formed.
[0019]
In the middle stage, as shown in FIG. 5 (2), the forming tool 11 is reciprocated in the direction inclined to the axis O of the raw tube W (indicated by thick arrows A and A ′), and the throttle portion (tube Further narrow the end W ′). This forming is the same processing mode as the initial to intermediate stage in the first embodiment shown in FIG. 1 (1), thereby increasing the thickness of the pipe end W ′ that has been thinned in the initial stage. The thin wall portion Wf is also eliminated.
[0020]
At the final stage, as shown in FIG. 5 (3), the forming tool 11 is fed in a direction parallel to the axis O of the raw tube W by a small distance from the tube end side to the clamped side (indicated by a thick arrow D). ), Forming the straight portion Wb. Then, at the same time as forming the straight portion Wb, the tapered portion Wa approaches the final shape, and a bent boundary portion Wc appears between the two. Thus, in this final stage, by repeatedly feeding the forming tool 11 from the tube end side to the clamped side, the material on the tube end side is brought closer to the boundary portion Wc, and thereby the vicinity of the boundary portion Wc is increased in thickness. Is done. That is, the lack of thickness increase near the boundary portion Wc that may occur during the improved type of spinning molding shown in FIG. 10 is resolved.
[0021]
Further, in the final stage, as shown in FIG. 5 (4), the forming tool 11 is sent from the clamped side to the tube end side in a direction parallel to the direction inclined to the axis O of the raw tube W (thick arrow). E)), and finish molding is performed, whereby a molded body F (FIG. 2) having a desired dimensional shape is obtained. Note that the feeding direction of the forming tool 11 in this final stage is arbitrary, and it may be fed from the tube end side to the clamped side.
[0022]
In the second embodiment, as described above, after the pipe end is once thinned in the initial stage, the pipe end is increased in the middle stage. And the straight portion Wb is not increased more than necessary. Therefore, a large difference in plate thickness does not occur between the non-formed portion W ″ (FIG. 2) of the raw tube W and the tube end portions (Wa, Wb) after forming, and the boundary portion between the two is the stress concentration portion. In addition, the thin-walled portion Wf generated in the initial stage is eliminated by the reciprocating motion of the forming tool 11 in the intermediate stage, and the material approach to the boundary part Wc in the final stage process causes the vicinity of the boundary part Wc. Since the thinning is also prevented, the thicknesses of the taper portion Wa and the straight portion Wb including the boundary portion Wc are averaged, and no stress concentration portion remains at the tube end portion. The strength reliability with respect to is extremely high.
[0023]
By the way, when the tube end portion W ′ is squeezed by the reciprocating motion of the forming tool 11, wrinkles are likely to occur, so that there is a restriction that the squeezing amount per pass cannot be made very large. On the other hand, when the forming tool 11 is sent from the clamped side to the tube end side to narrow the tube end portion W ′, the amount of drawing per pass can be made relatively large, and the forming efficiency is improved accordingly. In the second embodiment, since the drawing with high forming efficiency (FIG. 5 (1)) is performed at the initial stage, the subsequent forming, that is, the drawing by reciprocating movement of the forming tool 11 (FIG. 5). The number of passes (2)) can be greatly reduced as compared with the first embodiment, and the time required for the entire molding is reduced accordingly.
[0024]
FIG. 6 shows a specific molding flow in the second embodiment. The same steps as those in the molding flow (FIG. 4) in the first embodiment are denoted by the same reference numerals. . In the second embodiment, according to the start (S1), the revolution speed of the forming roller 11 is appropriately selected and its drive source is driven (S2). The initial stage drawing (spinning) shown in 1) is performed. In this spinning forming, the forming tool 11 is sent from the clamped side to the tube end side so that the tube end portion W ′ is narrowed into a tapered shape, so that the amount of drawing per pass is relatively large as described above. The molding can be completed in a short time.
[0025]
Thereafter, in the same steps S3 to S6 as in the first embodiment, the middle-stage spinning forming shown in FIG. 5B is performed, and the tube end W ′ is further narrowed by the reciprocating motion of the forming tool 11. In addition, the squeezed portion is increased in thickness.
When it is determined in step S6 that the pipe end diameter da has reached a value [d + δ] obtained by adding a predetermined margin δ to the target diameter d, the end stage shown in FIG. Stage molding is performed, and finish molding is further performed in step S23. The forming of S22 includes the content of bringing the material on the tube end side toward the boundary portion Wc by repeating the feeding of the forming tool 11 from the tube end side to the clamped side, thereby increasing the thickness of the boundary portion Wc. . In addition, the molding in step 23 includes the content of performing dimensioning by sending the molding tool 11 from the clamped side to the tube end side or from the tube end side to the clamped side, thereby forming a molded body having a desired dimension and shape. F (FIG. 2) is obtained.
Thereafter, through the same steps S8 to S10 as in the first embodiment, the forming tool 11 returns to the start position and stops rotating (revolution), thereby completing (stopping) a series of spinning forming operations (S11). ).
[0026]
【Example】
Using an element tube W having an outer diameter of 114 mm and a plate thickness of 1.2 mm, spinning is performed on an end W ′ of the element tube W according to the first embodiment shown in FIG. 3 and the second embodiment shown in FIG. Molding was applied to obtain a molded body F having a tapered portion Wa having a length of about 65 mm and a straight portion Wb having a length of about 15 mm and a diameter (d) of about 55 mm. The molded product F is divided into the product obtained in the first embodiment as a reference product and the product obtained in the second embodiment as a product of the present invention , and these molded products F are shown in FIG. In addition, the plate thickness was measured at a pitch of 10 mm from the non-molded portion W ″ side to the middle of the straight portion Wb. For comparison, an element tube W having the same plate thickness (1.2 mm) and the same diameter was also measured. On the other hand, the improved type spinning forming shown in FIG. 10 is added to obtain an improved product, and the general spinning forming shown in FIG. Conventional products were obtained, and the plate thickness of these improved products and conventional products was measured in the same manner as described above.
[0027]
FIG. 7 shows the measurement results of the plate thickness described above. From the results shown in the figure, in the conventional product, the thickness of the taper portion Wa and the straight portion Wb is thinner than the plate thickness (1.4 mm) of the raw tube W, and in particular, the non-molded portion W of the taper portion Wa. ″ A portion where the plate thickness is remarkably reduced occurs at the portion (figure portion) that is closer to the ″ side. ) Is considerably thicker than 1.6 mm, but the thickness of the straight portion Wb side, particularly in the vicinity of the boundary portion Wc between the straight portion Wb and the tapered portion Wa, is the thickness of the original tube W (1 In contrast, in the reference product , the thickness of the straight portion Wb including the boundary portion Wc is 1.6 mm or more (40% or more) in addition to the intermediate portion of the taper portion Wa. (Thickening), and the effect of increasing the thickness of the molded part It is clear. Further, the product of the present invention, the thickness of the tapered portion Wa and the straight portion Wb including the boundary portion Wc has averaged about 1.3 mm, between the non-forming portion W "of the base pipe W The plate thickness difference is significantly reduced as compared with the product 1 of the present invention.
[0028]
【The invention's effect】
As described above, according to the present invention , molding is performed without using a pressing tool for pressing the pipe end of the raw pipe, so that the cost for the molding equipment is greatly reduced. In addition, the thickness of the taper part and the straight part including the boundary part is averaged in a state that does not cause a large difference from the non-molded part of the raw tube, so the strength reliability for the obtained molded body is Remarkably improved. In addition, since the forming tool is sent from the center side to the pipe end side in the initial stage and is highly efficiently squeezed into a tapered shape, the forming tool is squeezed by reciprocating movement, so the overall forming time can be shortened. Become.
On the other hand, according to the catalytic converter container of the present invention, the plate thickness of the cone part and the connection part including the boundary part is averaged in the state in which no significant difference is generated between the catalyst holding part and the catalyst holding part. Therefore, the stress concentration is relaxed and the strength reliability is high.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view schematically showing a basic process of a spinning molding method as a first embodiment of the present invention.
FIG. 2 is a cross-sectional view showing the shape of a molded body obtained according to the first embodiment.
FIG. 3 is a schematic diagram illustrating the molding process in the first embodiment step by step.
FIG. 4 is a flowchart showing a molding flow when executing the first embodiment.
FIG. 5 is a cross-sectional view schematically showing a basic process of a spinning molding method as a second embodiment of the present invention.
FIG. 6 is a flowchart showing a molding flow when executing the first embodiment.
FIG. 7 is a graph showing a plate thickness distribution in a tapered portion and a straight portion of a molded body obtained by the spinning molding method according to the present invention in comparison with a comparative example.
FIG. 8 is a cross-sectional view showing the structure of a conventional general catalytic converter.
FIG. 9 is a cross-sectional view schematically showing an implementation state of a conventional general spinning forming method.
FIG. 10 is a cross-sectional view schematically showing an implementation status of the improved spinning molding method by the present inventors.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Catalytic converter container 2 Catalyst holding part 3 Connection part 4 Cone part 10 Clamper 11 Molding tool (molding roller)
W Elementary pipe W ′ End part Wa of element pipe Wa Taper part Wb Straight part Wc Boundary part S Catalyst carrier P Exhaust pipe

Claims (2)

成形工具を素管の軸回りに相対的に公転させながら、素管の半径方向と軸方向とに送って、該素管の端部に先端へ向けて次第に縮径するテーパ部と該テーパ部に連続する小径のストレート部とを成形するスピニング成形方法において、始めに、前記成形工具を前記素管の軸に傾斜する方向へ、その中間部側から管端側へ送って該素管の端部をテーパ形状に絞り、次に、前記成形工具を前記素管の軸に傾斜する方向へ往復運動させて、該素管の端部の絞り部分をさらに絞ると共に該絞り部分の板厚を増加させ、次に、前記成形工具を前記素管の軸に平行な方向へ、その管端側から中間部側へ送って前記ストレート部を成形すると共に該ストレート部と前記テーパ部との境界部を増肉させ、最終的に、前記成形工具を素管の軸に傾斜する方向と平行な方向とへ移動させて仕上成形を行うことを特徴とするスピニング成形方法。  A taper part that gradually sends a forming tool to the radial direction and the axial direction of the raw pipe while relatively revolving around the axis of the raw pipe and gradually reduces the diameter toward the tip of the raw pipe, and the tapered part In the spinning forming method of forming a straight portion having a small diameter continuous with the first, the forming tool is first sent in the direction inclined to the axis of the raw tube from the intermediate portion side to the tube end side to end the raw tube. The part is squeezed into a taper shape, and then the forming tool is reciprocated in a direction inclined to the axis of the base pipe to further squeeze the throttle part at the end of the base pipe and increase the plate thickness of the throttle part. Next, the forming tool is sent in the direction parallel to the axis of the raw pipe from the pipe end side to the intermediate part side to form the straight part, and the boundary part between the straight part and the taper part is formed. The thickness is increased, and finally, the forming tool is inclined in the direction inclined to the axis of the blank tube. Spinning molding method and performing finish forming by moving the the a direction. 請求項1に記載のスピニング成形方法により素管の端部にテーパ部とストレート部とを一体に成形し、前記素管の非成形部を触媒担体が収納保持される触媒保持部として、前記ストレート部を排気管が接続される接続部として、前記テーパ部を前記触媒保持部と前記接続部とを連接するコーン部としてそれぞれ供する触媒コンバータ容器であって、前記接続部および前記コーン部の板厚が、前記両部の境界部をも含めて前記触媒保持部の板厚よりも厚くなっており、かつ板厚ほぼ一定に平均化していることを特徴とする触媒コンバータ容器。A taper portion and a straight portion are integrally formed at an end portion of the raw tube by the spinning forming method according to claim 1, and the non-formed portion of the raw tube is used as a catalyst holding portion in which a catalyst carrier is housed and held. A catalytic converter container that serves as a connecting portion to which an exhaust pipe is connected and the tapered portion serves as a cone portion that connects the catalyst holding portion and the connecting portion, respectively, and the plate thickness of the connecting portion and the cone portion However, the catalytic converter container is characterized in that it is thicker than the plate thickness of the catalyst holding portion including the boundary portion between the two portions, and is averaged at a substantially constant plate thickness .
JP2002355238A 2002-09-18 2002-12-06 Spinning molding method and catalytic converter container Expired - Fee Related JP4182335B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002355238A JP4182335B2 (en) 2002-09-18 2002-12-06 Spinning molding method and catalytic converter container

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002271442 2002-09-18
JP2002355238A JP4182335B2 (en) 2002-09-18 2002-12-06 Spinning molding method and catalytic converter container

Publications (2)

Publication Number Publication Date
JP2004160536A JP2004160536A (en) 2004-06-10
JP4182335B2 true JP4182335B2 (en) 2008-11-19

Family

ID=32827617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002355238A Expired - Fee Related JP4182335B2 (en) 2002-09-18 2002-12-06 Spinning molding method and catalytic converter container

Country Status (1)

Country Link
JP (1) JP4182335B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8603239B2 (en) 2000-03-14 2013-12-10 James Hardie Technology Limited Fiber cement building materials with low density additives
JP2018144063A (en) * 2017-03-03 2018-09-20 株式会社三五 Spinning machining method and cylindrical body having head-cut cone part at end part

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009195913A (en) * 2008-02-19 2009-09-03 Nisshin Steel Co Ltd Spinning method
CN113857323B (en) * 2021-09-19 2023-05-23 西北工业大学 Spinning forming method of complex thin-wall variable-section component of aluminum alloy splice plate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8603239B2 (en) 2000-03-14 2013-12-10 James Hardie Technology Limited Fiber cement building materials with low density additives
JP2018144063A (en) * 2017-03-03 2018-09-20 株式会社三五 Spinning machining method and cylindrical body having head-cut cone part at end part

Also Published As

Publication number Publication date
JP2004160536A (en) 2004-06-10

Similar Documents

Publication Publication Date Title
EP0916426A1 (en) Method and apparatus for forming an end portion of a cylindrical member
JP4182335B2 (en) Spinning molding method and catalytic converter container
JP2874532B2 (en) Corrugated tube molding method and apparatus
CN109351835A (en) Integral spinning forming method with modal circumferential stiffening rib song bus thin-wall case
EP3713690B1 (en) Manufacturing method for hollow rack bar
JP2010051990A (en) Method of manufacturing necked elbow
JP6618940B2 (en) Spinning method and cylindrical body having a head cone at the end
TWI272143B (en) Forging method, forged article and forging apparatus
JP2000263161A (en) Method and device for spinning
JP2007283315A (en) Method for spinning tube end
US3496627A (en) Method of forming ball tips for ball point pens and ball tips formed thereby
JP2002239657A (en) Spinning method for tube
JP2004001023A (en) Method for shaping metal vessel
JP3679376B2 (en) Method for manufacturing exhaust treatment apparatus for holding columnar body through buffer member in cylindrical member
JP5226170B2 (en) Method for deforming hollow processed member and molding machine
CN109201830B (en) A method of preventing flange defect occur without bottomless drum shape part spinning process
GB2092041A (en) Upsetting and swaging hollow bodies
JP5756618B2 (en) Manufacturing method of purification equipment for automobile
KR100833148B1 (en) Method and forming machine for deforming a hollow workpiece
JP2001269721A (en) Method and apparatus for bending double tube
JP3601577B2 (en) Method and apparatus for manufacturing catalytic converter container
JP2000317533A (en) Catalyst converter container, and its manufacture
JP2002045935A (en) Stepped part of metal tube and its forming method
JP2002018511A (en) Drawing device
JP2003010935A (en) Hollow member, manufacturing method therefor, and fluid circulation system using the hollow member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050506

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080806

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080819

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees