JP4181893B2 - Hot metal refining method - Google Patents

Hot metal refining method Download PDF

Info

Publication number
JP4181893B2
JP4181893B2 JP2003046057A JP2003046057A JP4181893B2 JP 4181893 B2 JP4181893 B2 JP 4181893B2 JP 2003046057 A JP2003046057 A JP 2003046057A JP 2003046057 A JP2003046057 A JP 2003046057A JP 4181893 B2 JP4181893 B2 JP 4181893B2
Authority
JP
Japan
Prior art keywords
converter
hot metal
refining
solid iron
iron source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003046057A
Other languages
Japanese (ja)
Other versions
JP2004256839A (en
Inventor
正信 中村
昭夫 新田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2003046057A priority Critical patent/JP4181893B2/en
Publication of JP2004256839A publication Critical patent/JP2004256839A/en
Application granted granted Critical
Publication of JP4181893B2 publication Critical patent/JP4181893B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、転炉を用いて溶銑の精錬を行う際に、すでに精錬を終えたスラグを再度造滓剤として使用する場合の有効な方法に関するものである。
【0002】
【従来の技術】
高炉からの溶銑は一般に脱珪、脱硫及び脱燐などの溶銑予備処理が施された後、転炉で主として最終的な脱燐と脱炭精錬がなされて鋼となるが、この転炉での精錬によって発生した脱炭スラグは出鋼時に排出されずに転炉内にその一部あるいは全部を残した状態で次のチャージの溶銑の精錬に再使用することが行われている。
【0003】
ところが、通常、転炉内に脱炭スラグを残したまま次チャージの溶銑を装入すると、このスラグ中の酸素と溶銑中の炭素とが急激に反応して溶銑の突沸現象を起こす問題がある。
【0004】
そこで、このため(1)脱炭スラグが固化するまで待って溶銑を装入したり、(2)脱炭スラグに冷却材(生ドロマイト、CaCO3,鉄鉱石及びスケールなど)を添加して強制的に固化させる方法が採られているが、これらによると生産性が低下したり、熱ロスを生じて、操業上不利を招くことになる。
【0005】
また、別な方法として、(3)脱炭スラグに一定量の脱酸材(C、Si、Al)を添加する方法(特許文献1など)が提案されている。しかし、この方法は脱酸材のコストの問題が大きく、実際にはあまり適用されていないのが現状である。
【0006】
さらに、他の方法として(4)脱炭スラグ中のFeO,Fe23,MnO及びスラグの温度に着目し、これらの関係式が一定値以下になるように成分や温度を調整する方法(特許文献2など)も提案されている。しかしながら、この方法は突沸騰現象を精度良く防止できるものの、実際には前記(1)〜(3)の方法を選択あるいはこれらの方法組み合わせて行うもので、前記した同様な問題を有すると共に出鋼時の脱炭スラグの分析・測定値をもとに計算が必要であるなどの煩雑さを伴うものであった。
【0007】
【特許文献1】
特公平4−52207号
【特許文献2】
特開昭61−238908号
【特許文献3】
特許第2896838号
【0008】
【本発明が解決しようとする課題】
本発明は、上記した従来の問題や不利を解消し、精錬を終えた前チャージ脱炭スラグを次チャージの造滓剤として再使用するに当たり、比較的簡単な手法により溶銑装入時おいても突沸現象を起こすことなく、円滑な操業を確保することができる有効な方法を提供することをその課題として完成されたものである。
【0009】
【課題を解決するための手段】
上記課題を解決するためになした本発明とは、溶銑の精錬を終えた際に、脱炭処理によって生成した脱炭スラグを転炉に残したまま出鋼し、転炉内に固体鉄源を装入した後、この転炉を前後にその正立位置に対する傾斜角度が50度以上として1往復以上傾動させると共に、下記の式を満足する条件で、次の溶銑を装入し、精錬を行なうことを特徴とする溶銑の精錬方法を、その要旨とするものである。
ERI=Wsl/{ Wsc・(2−N −2 }<1
ここにERIは突沸指数、Wscは固体鉄源装入量(t/ch)、Wslは脱炭スラグ残し量(t/ch)、Nは転炉の往復傾動回数をそれぞれ表している。
【0010】
【発明の実施の形態】
本発明者らは前記課題を達成すべく脱炭スラグの溶銑装入時における突沸現象を抑える従来とは異なった有効な方法がないかどうか、各種検討を行ったところ、毎回装入されるスクラップや地金、あるいは冷銑、鋳物クズなどの固体鉄源の冷却能を活用する着想を得た。しかしながら、単純にこの固体鉄源を脱炭スラグ上に装入しただけでは、脱炭スラグの固化に少なくとも1時間以上を要し、迅やかに処理できないことが判明した。また、固化を速めるために多量の固体鉄源を用いることも考えられるが溶銑配合率の制限があり、適切な方法とはいえない。
【0011】
そこで、さらに鋭意、この固体鉄源を利用する研究、実験を重ねた結果、後述の実施例で明かにするが、固体鉄源を転炉に装入した後に、この転炉を一定条件のもとに揺動させて固体鉄源の転動を利用した攪拌・混合作用により脱炭スラグを固体鉄源の表面全体にわたって絡みつかせる(または巻きつかせる)ようにして被覆、コーティングすると、短時間でスラグの顕熱が固体鉄源に奪われ、効果的に冷却固化することを知見した。ここに言う、揺動は一往復以上に転炉を傾動させる操作を指す。
【0012】
図1により、この転炉の揺動操作とその作用を説明すると、(A)は転炉(1)を用いて精錬を終えた前チャージの溶鋼を脱炭スラグ(2)を残して出鋼した後、固体鉄源(3)を装入して転炉(1)を正立させた状態を示す。(B)は(A)の正立状態から、同転炉(1)を一方向(図では左方向)に一定の傾斜角度(α)で傾動させた状態を示し、また(C)は(B)の状態から反対方向(図では右方向)傾動させ、正立状態を経て、さらに同方向に一定の傾斜角度(α)で傾動させた状態を示す。そして、この(C)の状態から元の(A)の正立状態に傾動復帰させることによって一往復の傾動サイクルが完了することになる。
【0013】
本発明ではこの一往復以上の傾動操作を施すことすなわち往復傾動回数を一回以上行うことが重要な条件となる。この傾動操作により、脱炭スラグ(2)と固体鉄源(3)とが十分に攪拌・混合されるため脱炭スラグ(2)が装入された固体鉄源(3)の個々の表面に広く接触して全体にわたって被覆されることから、固体鉄源(3)との熱交換が極めて効率的に行われる。この結果、1000℃〜1500℃の高温の脱炭スラグ(2)は固体鉄源(3)により迅やかに奪熱され、短時間に冷却固化するのである。従って、傾動操作が終了後、直ちに次チャージの溶銑を装入した場合においても突沸現象は起きず、安定した操業を行うことができる。
【0014】
一方、傾動操作が一往復に満たない場合は、脱炭スラグ(2)と固体鉄源(3)の混合接触が不足し、脱炭スラグ(2)が固体鉄源(3)の表面全体にわたって均一に被覆することが困難となり、その冷却固化が不十分となり、傾動操作を終えた後に次チャージの溶銑を装入した場合は突沸現象が起きる恐れが大きく、本件発明の目的を達成できない。上記の如く、往復傾動回数は1回であれば良いがスラグの冷却固化をより効果的に進行させるためには2回以上とすることが好ましく、一方、あまり回数を増やしてもその上積みは少なく、むしろ生産性の阻害を招来する不利が出てくるため、2〜4回の範囲とすることが最適である。
【0015】
また、前記傾動操作時における傾斜角度(α)は50度以上とすることが必要である。50度未満の傾斜角度では固体鉄源(3)が転炉(1)内で殆ど転動せず、静止状態のままとなることが多いので脱炭スラグ(2)の流動だけでは両者の混合接触が足りず、同スラグの冷却固化が促進されない。この結果、液相率の高い(全体の50%以上)のスラグが残存することとなり、突沸現象を十分に防止できない恐れがあるため好ましくない。一方、この傾斜角度(α)がさらに大きくなった場合も固体鉄源(3)の転動距離はあまり変わらないため安全操作の観点をも加味して、50〜90度の範囲で実施することがより好ましいと言える。
【0016】
さらに、本件発明においては、やはり後述の実施例で具体的に明らかにするが、前チャージの出鋼後に転炉内に残存させた脱炭スラグ残し量、引き続いて転炉に装入される固体鉄源装入量及び転炉の往復傾動回数を次の関係式(1式)を満たすように調整することが必須となる。
ERI=Wsl/{ Wsc・(2−N −2 }<1 ・・・1式
ここにERIは突沸指数、Wscは固体鉄源装入量(t/ch)、Wslは脱炭スラグ残し量(t/ch)、Nは転炉の往復傾動回数をそれぞれ表している。
【0017】
本1式の突沸指数(ERI)を1以下にすることによって、次チャージの溶銑装入時の突沸の発生を効果的に防止することができる。また、実際の調整に当っては固体鉄源装入量(Wsc)と脱炭スラグ残し量(Wsl)に応じて転炉の往復傾動回数を変更するかあるいは、引き続いて装入される固体鉄源装入量(Wsc)に応じて脱炭スラグ残し量(Wsl)を増減させる方法が推奨される。
【0018】
次に、以上の本発明の特徴を生かした転炉による溶銑の精錬プロセスについてその代表的なパターンを説明する。
(1)パターン▲1▼(予備処理を経た溶銑を対象とする場合)
このパターンは既に仕上げ脱燐を含めた脱燐などの溶銑予備処理を行った溶銑を対象とするもので、先ず転炉にスクラップなどの固体鉄源並びに溶銑を装入後、生石灰、石灰石、軽焼ドロマイトなどの復燐防止及び耐火物保護用の造滓剤を添加する。次に、上吹き酸素によって脱炭精錬を行う。次いで、脱炭精錬を終えた段階で脱炭スラグを残して精錬後の溶綱を出鋼する。そして、前述した本発明の方法により、転炉に固体鉄源を装入し、往復傾動操作を行って、脱炭スラグを冷却固化させた後、次チャージの溶銑を装入して新たな造滓剤を添加することなくまたは必要に応じて少量の造滓剤を加えて同様に脱炭精錬を行う。以降、これらの工程を繰り返して行う。
【0019】
(2)パターン▲2▼(予備処理を経ない溶銑を対象とする場合)
このパターンは上記脱燐などの溶銑予備処理を行っていない溶銑を対象とするもので、先ず転炉にスクラップなどの固体鉄源並びに溶銑を装入後、生石灰、石灰石、鉄鉱石、軽焼ドロマイトなどの脱燐用の造滓剤を添加すると共に上吹き酸素によって脱燐を行う。次に、脱燐を終えた段階で生成したスラグを排出する。次いで、この脱燐された溶銑を上吹き酸素により、(また、必要に応じて復燐防止及び耐火物保護用の造滓剤を添加して)脱炭精錬を行う。次いで、脱炭精錬を終えた段階で脱炭スラグを残して精錬後の溶綱を出鋼する。そして、前述した本発明の方法により、転炉に固体鉄源を装入し、往復傾動操作を行って、脱炭スラグを冷却固化させた後、次チャージの溶銑を装入して新たな造滓剤を添加することなくまたは必要に応じて少量の造滓剤を加えて同様に脱燐を行う。以降、これらの工程を繰り返して行う。
【0020】
以下、実施例について比較例を合せて説明し、本発明の優れた効果を実証することにする。
(実施例)
溶銑予備処理を経た溶銑(成分% C:3.9〜4.2、Mn:0.10〜0.15、P:0.010〜0.025、Si:tr〜0.03、S:0.003〜0.008)を200〜240Tの量で転炉に装入し、造滓剤として生石灰5〜10Kg/t及び軽焼ドロマイト6〜10Kg/tを添加して、上吹き酸素により脱炭精錬を行い、得られた溶鋼(吹き止め成分% C:0.04〜0.06、Mn:0.09〜0.13、P:0.007〜0.018、Si:tr、S:0・003〜0.008)を脱炭スラグを残した状態で出鋼した。次ぎに、固体鉄源としてスクラップ及び地金を転炉に装入し、50度以上の傾斜角度で1往復以上傾動操作を行って脱炭スラグを冷却固化させた後、次チャージの前記成分範囲の溶銑を装入した。この際、何れの実施例においても前述の▲1▼式を満足するように、固体鉄源装入量(Wsc)、脱炭スラグ残し量(Wsl)及び転炉の往復傾動回数を適宜変化させて行った。次いで、固化した脱炭スラグを造滓剤として上吹き酸素により脱炭精錬を行ない、同様に前記成分範囲の溶鋼を得た。
【0021】
また、比較例は、実施例と同一成分範囲の溶銑予備処理を経た溶銑を同様な要領で脱炭精錬を行い、やはり同一成分範囲の溶鋼を、脱炭スラグを残した状態で出鋼し、次ぎに、固体鉄源としてスクラップ及び地金を転炉に装入したのち、次チャージの溶銑を装入するに当って、本発明のような1往復以上の傾動操作を行なうも傾斜角度が50度未満の場合、さらに傾斜角度が50度以上で1往復以上の傾動操作を行なうも、前記1式を満足しない場合についての実施結果である。
【0022】
表1は、本発明の実施例と比較例の条件及び溶銑装入時の突沸状況(突沸有無)を示すものである。この表から明らかなように、本発明の条件を満たさない比較例1〜8の場合は突沸現象が認められるが、本発明の条件を満たす実施例1〜12によれば全て突沸現象が有効に防止されていることが分かる。
【0023】
【表1】

Figure 0004181893
【0024】
【発明の効果】
以上のように、本発明によれば溶銑の精錬方法において一旦脱炭精錬に使用されたスラグを同一の転炉に残したまま熱間で次の精錬の造滓剤として活用するに際し、溶銑装入時に問題となる突沸現象を転炉の往復傾動操作という比較的簡単な手法を用いて極めて有効に防止することができ、従って、多量の脱炭スラグの熱間再利用を可能とすると共に新たな造滓剤を必要最小限の量として安全かつ円滑な操業を確保することができるもので、本分野に優れた技術的貢献をもたらすものといえる。
【図面の簡単な説明】
【図1】本発明に係る転炉の揺動操作とその作用を説明する模式図である。
符号の説明
(1)転炉 (2)脱炭スラグ (3)固体鉄源[0001]
BACKGROUND OF THE INVENTION
The present invention, when performing refining molten iron by using a converter, it relates to an effective method in the case that already used as slag again slag agent finished refining.
[0002]
[Prior art]
The hot metal from the blast furnace is generally subjected to hot metal pretreatments such as desiliconization, desulfurization, and dephosphorization, and is finally subjected to final dephosphorization and decarburization refining in the converter to become steel. The decarburized slag generated by refining is reused for refining the hot metal of the next charge in a state where a part or all of the decarburized slag is left in the converter without being discharged at the time of steelmaking.
[0003]
However, normally, when the molten iron of the next charge is charged while leaving the decarburized slag in the converter, there is a problem that the oxygen in the slag and the carbon in the hot metal react rapidly to cause a hot metal bumping phenomenon. .
[0004]
Therefore, for this reason (1) Wait until the decarburized slag has solidified and insert hot metal, or (2) add coolant (raw dolomite, CaCO 3 , iron ore, scale, etc.) to the decarburized slag and force However, according to these methods, productivity is lowered and heat loss is caused, resulting in operational disadvantages.
[0005]
As another method, (3) a method of adding a certain amount of deoxidizing material (C, Si, Al) to the decarburized slag has been proposed (Patent Document 1, etc.). However, this method has a large problem of the cost of the deoxidizing material, and in reality, it has not been applied so much.
[0006]
Further, as another method, (4) focusing on the temperature of FeO, Fe 2 O 3 , MnO and slag in decarburized slag, and adjusting the components and temperature so that these relational expressions are below a certain value ( Patent Document 2) has also been proposed. However, although this method can prevent the bumping phenomenon with high accuracy, it is actually performed by selecting the methods (1) to (3) or combining these methods. The calculation was necessary based on the analysis and measurement values of the decarburized slag at the time.
[0007]
[Patent Document 1]
Japanese Patent Publication No. 4-52207 [Patent Document 2]
JP 61-238908 [Patent Document 3]
Japanese Patent No. 28963838
[Problems to be solved by the present invention]
The present invention eliminates the above-mentioned conventional problems and disadvantages and recycles the precharge decarburization slag after refining as a next charge ironmaking agent. The object of the present invention is to provide an effective method capable of ensuring a smooth operation without causing a bumping phenomenon.
[0009]
[Means for Solving the Problems]
The present invention made to solve the above-mentioned problem is that when the refining of hot metal is finished, the decarburized slag generated by the decarburization process is left in the converter, and the solid iron source is left in the converter. After that, the converter is tilted back and forth one or more times with an inclination angle with respect to its upright position being 50 degrees or more, and the following hot metal is charged under the conditions satisfying the following formula, and refining is performed: The gist of the hot metal refining method is characterized by being performed.
ERI = Wsl / { Wsc · (2-N −2 ) } <1
Here, ERI represents the bumping index, Wsc represents the solid iron source charging amount (t / ch), Wsl represents the decarburized slag remaining amount (t / ch), and N represents the number of reciprocating tilts of the converter.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
In order to achieve the above-mentioned problems, the present inventors have made various studies to determine whether there is an effective method different from the conventional one that suppresses bumping phenomenon during hot metal charging of decarburized slag. The idea was to use the cooling capacity of solid iron sources such as steel, metal, cold metal, and casting scraps. However, it has been found that simply loading this solid iron source on the decarburized slag requires at least one hour to solidify the decarburized slag, and cannot be treated promptly. In addition, it is conceivable to use a large amount of solid iron source in order to accelerate solidification, but there is a limitation on the hot metal mixing ratio, which is not an appropriate method.
[0011]
Therefore, further intensive studies utilizing this solid iron sources, as a result of repeated experiments, but to clarify in the Examples below, the solid iron sources after charged into the converter, also the converter to a predetermined condition The decarburized slag can be entangled (or entangled) over the entire surface of the solid iron source by agitation and mixing action utilizing the rolling of the solid iron source, and the coating and coating can be performed for a short time. Thus, it was found that the sensible heat of the slag was taken away by the solid iron source and effectively cooled and solidified. As used herein, rocking refers to an operation of tilting the converter more than one reciprocation.
[0012]
FIG. 1 explains the swinging operation of this converter and its action. (A) shows the pre-charged molten steel that has been refined using the converter (1), leaving the decarburized slag (2). Then, the state in which the solid iron source (3) is charged and the converter (1) is upright is shown. (B) shows a state in which the converter (1) is tilted in one direction (left direction in the figure) at a constant tilt angle (α) from (A) in an upright state, and (C) shows ( B is tilted in the opposite direction (rightward in the figure) from the state of B), followed by an upright state, and further tilted in the same direction at a constant tilt angle (α). Then, the reciprocating tilting cycle is completed by returning the tilting from the state (C) to the original erecting state (A).
[0013]
In the present invention, it is an important condition to perform a tilting operation of one or more reciprocations, that is, to perform the number of reciprocating tilts once or more. By this tilting operation, the decarburized slag (2) and the solid iron source (3) are sufficiently agitated and mixed, so that each surface of the solid iron source (3) charged with the decarburized slag (2) is applied to each surface. Since it is widely contacted and coated over the whole, heat exchange with the solid iron source (3) is performed very efficiently. As a result, the decarburized slag (2) having a high temperature of 1000 ° C. to 1500 ° C. is quickly deprived of heat by the solid iron source (3), and is cooled and solidified in a short time. Therefore, even when the hot metal of the next charge is charged immediately after the tilting operation is completed, the bumping phenomenon does not occur and stable operation can be performed.
[0014]
On the other hand, when the tilting operation is less than one reciprocation, the mixed contact between the decarburized slag (2) and the solid iron source (3) is insufficient, and the decarburized slag (2) extends over the entire surface of the solid iron source (3). It becomes difficult to coat uniformly, the cooling and solidification becomes insufficient, and when the hot metal of the next charge is charged after the tilting operation is completed, there is a large possibility of bumping, and the object of the present invention cannot be achieved. As described above, the number of reciprocating tilts may be one. However, in order to make the slag cool and solidify more effectively, the number of reciprocating tilts is preferably two or more. On the contrary, since there is a disadvantage that results in an inhibition of productivity, it is optimal to set the range to 2 to 4 times.
[0015]
Further, the tilt angle (α) during the tilting operation needs to be 50 degrees or more. At an inclination angle of less than 50 degrees, the solid iron source (3) hardly rolls in the converter (1) and often remains stationary, so the flow of the decarburized slag (2) alone mixes both. The contact is insufficient, and cooling and solidification of the slag is not promoted. As a result, a slag having a high liquid phase ratio (50% or more of the whole) remains, which is not preferable because the bumping phenomenon may not be sufficiently prevented. On the other hand, even when the inclination angle (α) is further increased, the rolling distance of the solid iron source (3) does not change so much, so that it is performed in the range of 50 to 90 degrees in consideration of the viewpoint of safe operation. Is more preferable.
[0016]
Furthermore, in the present invention, as will be clarified specifically in the examples described later, the amount of decarburized slag remaining in the converter after the pre-charging steel is discharged, and the solid charged in the converter subsequently It is essential to adjust the iron source charging amount and the number of reciprocating tilts of the converter so as to satisfy the following relational expression (1 expression).
ERI = Wsl / { Wsc · (2-N −2 ) } <1 Formula 1 where ERI is the bumping index, Wsc is the solid iron source charge (t / ch), and Wsl is the decarburized slag remaining amount (T / ch) and N represent the number of reciprocating tilts of the converter.
[0017]
By making the bumping index (ERI) of Formula 1 1 or less, the occurrence of bumping at the time of charging the hot metal of the next charge can be effectively prevented. In actual adjustment, the number of reciprocating tilts of the converter is changed according to the solid iron source charging amount (Wsc) and the decarburized slag remaining amount (Wsl), or the solid iron to be subsequently charged is changed. A method of increasing or decreasing the decarburized slag remaining amount (Wsl) according to the source charge amount (Wsc) is recommended.
[0018]
Next, a typical pattern of the hot metal refining process by the converter utilizing the features of the present invention will be described.
(1) Pattern (1) (for hot metal that has undergone preliminary treatment)
This pattern is for hot metal that has already undergone hot metal pretreatment such as dephosphorization, including final dephosphorization. First, a solid iron source such as scrap and hot metal are charged into the converter, and then quick lime, limestone, light Add anti-phosphorus and anti-refractory protecting agents such as baked dolomite. Next, decarburization refining is performed by top blowing oxygen. Next, when the decarburization refining is completed, the decarburized slag is left and the refining molten steel is produced. Then, according to the method of the present invention described above, a solid iron source is charged into the converter, a reciprocating tilting operation is performed, and the decarburized slag is cooled and solidified, and then a hot metal of the next charge is charged to form a new structure. Decarburization refining is performed in the same manner without adding a glaze or adding a small amount of a glaze builder as necessary. Thereafter, these steps are repeated.
[0019]
(2) Pattern {circle over (2)} (for hot metal that has not undergone preliminary treatment)
This pattern is intended for hot metal that has not undergone hot metal pretreatment such as dephosphorization, and after first charging a solid iron source such as scrap and hot metal into the converter, quick lime, limestone, iron ore, light-burned dolomite A dephosphorizing agent such as a dephosphorizing agent is added, and dephosphorization is performed by top blowing oxygen. Next, the slag produced at the stage where dephosphorization is completed is discharged. Next, the dephosphorized hot metal is decarburized and refined with top-blown oxygen (and, if necessary, added with a fouling prevention and refractory protecting agent). Next, when the decarburization refining is completed, the decarburized slag is left and the refining molten steel is produced. Then, according to the method of the present invention described above, a solid iron source is charged into the converter, a reciprocating tilting operation is performed, and the decarburized slag is cooled and solidified, and then a hot metal of the next charge is charged to form a new structure. Dephosphorization is performed in the same manner without adding a glaze or adding a small amount of a glaze builder as necessary. Thereafter, these steps are repeated.
[0020]
Hereinafter, examples will be described together with comparative examples to demonstrate the excellent effects of the present invention.
(Example)
Hot metal that has undergone hot metal pretreatment (component% C: 3.9 to 4.2, Mn: 0.10 to 0.15, P: 0.010 to 0.025, Si: tr to 0.03, S: 0 .003 to 0.008) into the converter in an amount of 200 to 240 T, and 5 to 10 kg / t of quick lime and 6 to 10 kg / t of light calcined dolomite are added as a kneading agent, and degassed by top blowing oxygen. Carbon steel refining was performed, and the resulting molten steel (anti-blow component% C: 0.04 to 0.06, Mn: 0.09 to 0.13, P: 0.007 to 0.018, Si: tr, S: 0.003-0.008) was produced with the decarburized slag remaining. Next, scrap and bullion as a solid iron source are charged into the converter, and the decarburized slag is cooled and solidified by performing a reciprocating operation more than once at an inclination angle of 50 degrees or more. The hot metal was charged. At this time, the solid iron source charging amount (Wsc), the decarburized slag remaining amount (Wsl), and the number of reciprocating tilts of the converter are appropriately changed so as to satisfy the above formula (1) in any of the embodiments. I went. Next, decarburization refining was performed with top blown oxygen using the solidified decarburized slag as a slagging agent, and similarly, molten steel having the above-mentioned component range was obtained.
[0021]
In addition, the comparative example performs decarburization refining of the hot metal that has undergone the hot metal pretreatment in the same component range as in the example, and the molten steel of the same component range is also produced with the decarburized slag left, next to, after charged with scrap and ingots to converter as solid iron source, hitting the charged molten iron of the next charge, 1 the inclination angle line Nau reciprocating or more tilting operation as in the present invention When the angle is less than 50 degrees, the tilting angle is 50 degrees or more and the tilting operation is performed one or more reciprocations, but the results are not satisfied.
[0022]
Table 1 shows the conditions of Examples and Comparative Examples of the present invention and the bumping situation (presence / absence of bumping) at the time of hot metal charging. As it is apparent from the table, in Comparative Examples 1-8 which do not satisfy the conditions of the present invention is observed bumping phenomenon satisfying Examples 1 to 12 to enable all bumping phenomenon according to the present invention It can be seen that this is prevented.
[0023]
[Table 1]
Figure 0004181893
[0024]
【The invention's effect】
As described above, according to the present invention, in the hot metal refining method, when the slag once used for decarburization refining is used in the next hot refining as a smelting agent while remaining in the same converter , The bumping phenomenon that becomes a problem at the time of entering can be prevented very effectively by using a relatively simple method of reciprocating tilting operation of the converter , so that a large amount of decarburized slag can be reused hot. Therefore, safe and smooth operation can be ensured with a minimum amount of a proper antiseptic agent, and it can be said that this technology will make an excellent technical contribution in this field.
[Brief description of the drawings]
FIG. 1 is a schematic diagram for explaining a swing operation of a converter and its operation according to the present invention.
Explanation of symbols (1) Converter (2) Decarburization slag (3) Solid iron source

Claims (1)

溶銑の精錬を終えた際に、脱炭処理によって生成した脱炭スラグを転炉に残したまま出鋼し、転炉内に固体鉄源を装入した後、この転炉を前後にその正立位置に対する傾斜角度が50度以上として1往復以上傾動させると共に、下記の式を満足する条件で、次の溶銑を装入し、精錬を行なうことを特徴とする溶銑の精錬方法。
ERI=Wsl/{ Wsc・(2−N −2 }<1
ここにERIは突沸指数、Wscは固体鉄源装入量(t/ch)、Wslは脱炭スラグ残し量(t/ch)、Nは転炉の往復傾動回数をそれぞれ表している。
When the hot metal refining was finished, the decarburized slag produced by the decarburization process was left in the converter, and after the solid iron source was charged in the converter, the converter was moved back and forth. A method for refining hot metal, characterized in that the tilt angle with respect to the standing position is 50 degrees or more and tilted one or more times, and the following hot metal is charged under the conditions satisfying the following formula to perform refining.
ERI = Wsl / { Wsc · (2-N −2 ) } <1
Here, ERI represents the bumping index, Wsc represents the solid iron source charging amount (t / ch), Wsl represents the decarburized slag remaining amount (t / ch), and N represents the number of reciprocating tilts of the converter.
JP2003046057A 2003-02-24 2003-02-24 Hot metal refining method Expired - Fee Related JP4181893B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003046057A JP4181893B2 (en) 2003-02-24 2003-02-24 Hot metal refining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003046057A JP4181893B2 (en) 2003-02-24 2003-02-24 Hot metal refining method

Publications (2)

Publication Number Publication Date
JP2004256839A JP2004256839A (en) 2004-09-16
JP4181893B2 true JP4181893B2 (en) 2008-11-19

Family

ID=33112714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003046057A Expired - Fee Related JP4181893B2 (en) 2003-02-24 2003-02-24 Hot metal refining method

Country Status (1)

Country Link
JP (1) JP4181893B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4340517B2 (en) 2003-10-30 2009-10-07 Okiセミコンダクタ株式会社 Semiconductor device and manufacturing method thereof
JP2011099148A (en) * 2009-11-06 2011-05-19 Nippon Steel Corp Steel-making method for producing stable slag as by-product
JP6136379B2 (en) * 2013-03-05 2017-05-31 新日鐵住金株式会社 Molten steel manufacturing method
JP7363731B2 (en) * 2020-09-30 2023-10-18 Jfeスチール株式会社 Method for dephosphorizing hot metal and manufacturing method for molten steel

Also Published As

Publication number Publication date
JP2004256839A (en) 2004-09-16

Similar Documents

Publication Publication Date Title
JP6421634B2 (en) Manufacturing method of molten steel
JP2582692B2 (en) Converter steelmaking method
JP4181893B2 (en) Hot metal refining method
CN113832289A (en) Method for improving converter double-slag once-reversing dephosphorization rate
CN115044741B (en) Dephosphorization method for low-phosphorus steel double slag in low-silicon high-phosphorus molten iron smelting
JP3097474B2 (en) Hot metal dephosphorization method
JP2005015889A (en) Method for preventing effluence of slag in converter
JPH01316409A (en) Method for dephosphorizing molten iron accompanied with scrap melting
JP2002275519A (en) Method for producing low phosphorus pig iron
CN106498113A (en) A kind of converter smelting process of 82B steel
JP2020125541A (en) Converter refining method
JP3486886B2 (en) Steelmaking method using two or more converters
JP3772918B2 (en) Dephosphorization method of hot metal in converter type refining vessel
JP3704267B2 (en) Method for refining molten steel
JP3333339B2 (en) Converter steelmaking method for recycling decarburized slag
JP2004277830A (en) Steelmaking method in converter
JP4411934B2 (en) Method for producing low phosphorus hot metal
JP4759832B2 (en) Hot phosphorus dephosphorization method
JP2002285221A (en) Refining method in converter
TWI655291B (en) Refine method of molten iron
JP3486887B2 (en) Steelmaking method using multiple converters
JPH01252753A (en) Method for refining of stainless steel mother molten metal, arrangement of tuyere at bottom of reactor for refining and bottom tuyere
JPH111714A (en) Steelmaking method
SU1712424A1 (en) Method of making high-carbon steel for high-strength wire
JP2002275520A (en) Method for refining molten high carbon steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080901

R150 Certificate of patent or registration of utility model

Ref document number: 4181893

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070309

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees