JP4180682B2 - Liquid crystalline charge transport material - Google Patents

Liquid crystalline charge transport material Download PDF

Info

Publication number
JP4180682B2
JP4180682B2 JP01615398A JP1615398A JP4180682B2 JP 4180682 B2 JP4180682 B2 JP 4180682B2 JP 01615398 A JP01615398 A JP 01615398A JP 1615398 A JP1615398 A JP 1615398A JP 4180682 B2 JP4180682 B2 JP 4180682B2
Authority
JP
Japan
Prior art keywords
charge transport
liquid crystal
liquid crystalline
transport material
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01615398A
Other languages
Japanese (ja)
Other versions
JPH11209761A (en
Inventor
純一 半那
俊夫 吉原
恭子 古後
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP01615398A priority Critical patent/JP4180682B2/en
Publication of JPH11209761A publication Critical patent/JPH11209761A/en
Application granted granted Critical
Publication of JP4180682B2 publication Critical patent/JP4180682B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Photoreceptors In Electrophotography (AREA)
  • Electroluminescent Light Sources (AREA)
  • Liquid Crystal Substances (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、1分子中に分子間或いは分子内で新たな結合を形成し得る官能基を有する液晶性電荷輸送材料に関し、更に詳しくは液晶性と共に正孔及び/又は電子電荷輸送性を有する有機材料と、該有機材料を使用した各種素子或いは装置に関する。
【0002】
【従来の技術】
従来、電荷輸送材料としては、電荷を輸送するサイトとなる電荷輸送性分子を、ポリカーボネート樹脂等のマトリックス材料中に溶解或いは分散させた材料や、ポリビニルカルバゾール等の如くポリマー主鎖に電荷輸送性分子構造をペンダントさせた材料が知られている。これらの材料は、複写機やプリンター等の感光体の材料として広く使用されているが、上記分散型の電荷輸送材料の場合には、電荷輸送分子がマトリックスであるポリマーに高い溶解性を有することが電荷輸送性能を向上させるためには望ましいが、実際にはマトリックス中における電荷輸送分子を高濃度にすると、電荷輸送分子がマトリックスにおいて結晶化し、電荷輸送分子の濃度は、種類によって異なるが、一般的には20〜50重量%の濃度が限界である。その結果、全体の50重量%以上が電荷輸送性のないマトリックスが占めることになり、成膜した場合に十分な電荷輸送性や十分な応答速度が、マトリックスによって制限されるという問題がある。
【0003】
一方、前記ペンダント型の電荷輸送性ポリマーの場合には、電荷輸送性を有するペンダントの占める割合が高いが、成膜した膜の機械的強度、環境安全性、耐久性及び成膜性の点で実用上の問題が多い。又、この種の電荷輸送材料は、電荷輸送性ペンダントが局所的に近接配置をとるために、このような局所接近部分が電荷をホッピングする際に安定サイトとなり、一種のトラップとして作用するために電荷の移動度を低下させるという問題がある。
【0004】
又、上記いずれの材料においても、上記の如きアモルファス材料の電気特性から見た特徴は、結晶性材料とは異なり、ホッピングサイトが空間的にばかりでなく、エネルギー的にも揺らぎを有するという問題が存在する。そのために電荷輸送サイトの濃度に大きく依存し、その移動度は一般に10-6〜10-5cm2/v・s程度で、分子性結晶の0.1〜1cm2/v・sに比較して著しく小さい。更には電荷の輸送特性に対して強い温度依存性や電界強度依存性があるという問題がある。この点は結晶性の電荷輸送材料と大きく異なる点である。又、大面積の電荷輸送性層が必要とされる用途においては、大面積に均一な電荷輸送成膜が均一に形成し得るという点では多結晶の電荷輸送性材料が期待されているが、多結晶材料はミクロ的には本質的に不均一な材料であって、例えば、粒子界面に形成される欠陥を制御する必要がある等の問題があり、大面積なものを連続的に大量に製造することは極めて困難である。
【0005】
【発明が解決しようとする課題】
これらの問題点に対し、本発明者らは構造柔軟性と大面積にわたる均一性を有するアモルファス材料の利点と、分子配向性を有する結晶性材料の利点を同時に有し、更に電荷輸送性を外部場によって制御できる高品位の電荷輸送性、薄膜形成性及び各種耐久性等に優れた新規な電荷輸送材料を提供することを目的としてスメクチック液晶性を有し、且つ電子輸送材料であるために、電子親和力の大きな分子である必要から、電子移動度が1×10-5cm2/v・s以上であることを特徴とする液晶性電荷輸送材料及びスメクチック液晶相を有し、且つイオン化ポテンシャルの小さい分子である必要から、キャリア移動度が1×10-5cm2/v・s以上であることを特徴とする液晶性電荷輸送材料を提案したが(特願平9−55450号明細書等の参照)、溶液状態の液晶分子は、実使用上は対向電極等を配したセル等への封入が必要であるが、大面積化や曲面上での使用、更には積層構造を有する機能性素子の一部や、ある特定のパターンを形成しての使用はこのままでは困難である。
又、上記の低分子電荷輸送材料においては、液晶相をなす温度領域が限定されるため、実使用上不都合が見られる。
【0006】
従って本発明の目的は、上記従来技術の問題を解決し、液晶性電荷輸送材料の加工性を容易にするため、構造柔軟性と大面積にわたる均一性を有するアモルファス材料の利点と、分子配向性を有する結晶性材料の利点を同時に有し、高品位の電荷輸送性、薄層形成性、各種耐久性等の優れた特性を有しながら、同一分子中に分子間或いは分子内で新たな結合を形成し得る官能基とを併せ持つ液晶性化合物を少なくとも1種含むことで、大面積化が容易であり、且つ広い温度範囲で液晶性に由来する分子の配列に変化が生じない電荷輸送材料を提供することにある。
【0007】
【課題を解決するための手段】
上記目的は以下の本発明によって達成される。即ち、本発明は、下記式(1)で表される液晶化合物を含むことを特徴とする液晶性電荷輸送材料である。

Figure 0004180682
【0008】
本発明で使用する液晶性分子は、その分子構造により自己配向性を有するため、これをホッピングサイトとする電荷輸送は、前述の分子分散系材料とは異なり、ホッピングサイトの空間的且つエネルギー的な分散が抑制され、分子性結晶にみられるバンドライクな輸送特性が実現する。このために従来の分子分散系材料に比べて極めて大きな移動度が実現でき、更にその電界依存性がみられないという特徴が現れる。
【0009】
本発明の液晶性化合物は、結合形成性と電子及び/又は正孔輸送性とを併せ持つため、他のバインダー成分の添加に伴う自己配向性の阻害が無く、電荷輸送材料全体の電子や正孔の輸送性を殆ど低減させずに膜形成性等の加工性を新たに付与することが可能となる。
本発明の電荷輸送性液晶材料は、又、電極や電荷発生層等の界面から電子や正孔の受け渡しを行うため、結合形成性と電子及び/又は正孔輸送性とを併せ持つ液晶性化合物をバインダー成分として用いることで電荷の注入効率が殆ど低減せず、膜形成後も高い電荷移動度が保持される。
【0010】
本発明の結合形成性と電子及び/又は正孔輸送性とを併せ持つ液晶性材料は、電子及び/又は正孔輸送性のみを示す液晶性化合物に対して、0.01〜100重量%の範囲で、より好ましくは1〜90重量%の範囲で用いられる。結合形成性の液晶性化合物はそれ単独で用いることもできるが、液晶分子の高分子量化に伴い、加工性が向上する分、分子性結晶にみられるバンドライクな輸送特性の実現が困難となる可能性があるため、その含有量は使用目的に応じて適時調節する必要がある。本発明の材料は、膜状にして或いは種々の形状に成形して用いることが可能となる。
【0011】
【発明の実施の形態】
次に実施の形態を挙げて本発明を更に詳細に説明する。
本発明の液晶性電荷輸送材料は下記の式(1)で表される。
Figure 0004180682
【0012】
以上の如き本発明の液晶性電荷輸送材料は、単独で用いてもよいが、本発明の化合物同士、更には他の種々の化合物と混合して用いてもよい。例えば、界面活性剤や光重合開始剤等の低分子量化合物、ポリメタクリル酸メチル等の合成高分子材料、セルロース誘導体等の天然高分子由来の化合物等、液晶性又は非液晶性の材料のいずれでもよく、更に紫外線硬化樹脂として用いられるモノマー等の如く分子間或いは分子内に新たな結合を形成し得るもの、キシレン等の容易には新たな結合を形成し得ないもののいずれでもよい。
【0013】
本発明の材料は、例えば、鋳型を用いて種々の形状に成形して用いる、或いは膜状にして用いることが可能である。
本発明の材料は、一般的な塗布法で支持体上に膜を形成した後、液晶相形成温度範囲内の温度で、液晶相を形成させつつ一定時間熱処理、或いは紫外線等の電離放射線を照射して、前記液晶性化合物に新たな結合を形成させることができる。この時、必要に応じて重合開始剤等を添加することで重合速度を大きくすることができる。
【0014】
以上の如き本発明の液晶性電荷輸送材料は、光センサ、エレクトロルミネッセンス素子、光導電体、空間変調素子、薄膜トランジスタ等の種々の用途に有用である。
本発明の液晶性電荷輸送材料は、高速な電荷移動度と構造的なトラップの形成が抑制されることから、先ず第一の応用として、高速応答性の光センサが挙げられる。次に電荷輸送性能に優れることからエレクトロルミネッセンス素子の電荷輸送層として使用でき、又、電荷輸送材料として、新たな結合を形成しないものを内在させておけば、電場配向性と光導電性とが同時にスイッチングできることから、画像表示素子に用いることが可能である。同様に、液晶性を有し、各相が温度によって異なる電荷移動度を示し、光導電性も異なることから温度と光とで同時にスイッチングできる、従来とは異なった温度センサとして使用できる。
【0015】
図1は、画像表示素子への応用を説明する図である。画像表示素子においては、ガラス等の透明基板、ITO(インジウム錫オキサイド)等の透明電極、露光に応じてキャリアを発生する電荷発生層、本発明の液晶性電荷輸送材料、対向電極(金電極等)を順次積層した素子に、模式図下部から画像露光(入力画像)とすると、露光に応じて液晶性電荷輸送材料が配向して対向電極(金電極)にキャリアが流れる。この液晶の配向を光学的に読み取ることによって入力画像を再生することができる。上記液晶のスメクチック性が大きければ液晶の配向は長時間保存されて入力情報が長時間保存されることとなる。
【0016】
図2及び3は、画像記録装置の電荷輸送層に本発明の液晶性電荷輸送材料を適用した例を説明する図である。図2は光センサの模式図であり、電荷輸送層に本発明の液晶性電荷輸送材料を使用した例である。使用方法を更に詳しく説明すると、図3に示すように上下の電極13、13’に電圧を印加しつつ、図面上部よりパターン露光を行なう。14’においてパターン上にキャリアが発生し、電荷輸送層14により輸送された電荷が、空間19において放電し、情報記録層11の表面に達する。
【0017】
図4は、図3の場合と同様に電圧印加露光を行なう。発生した電荷(像)は誘電体層20の上部表面に蓄積され、図3と同様に蓄積された電荷による電界で液晶がパターン上に配向し、蓄積され、光学的読み取りを行なうことができる。
更に本発明の液晶性電荷輸送材料は、図5に模式的に説明するように空間変調素子にも使用することができる。又、本発明の液晶性電荷輸送材料は、薄膜トランジスタの活性層として用いることも可能である。例えば、図6に示すように、ソース、ドレイン、ゲートの各電極を配置した基板に上記液晶材料を配置して用いることができる。
【0018】
図7〜10はエレクトロルミネッセンス素子への応用を代表例として説明する図である。素子の最も簡単な構造は図7に示したように、発光層を陰極と陽極で挟んだものである。強い発光を得るためには、電子注入の役割を果たす陰極材料は仕事関数の小さいもの、陽極材料は逆に仕事関数の値が陰極と同じ、又はより大きなものを選択することが好ましい。
【0019】
陽極材料としては、一般的に例えば、ITO、酸化インジウム、酸化錫(アンチモン、砒素、又はフッ素ドープ)、Cd2SnO4、酸化亜鉛、又は金等の透明又は半透明電極材料が挙げられ、又、陰極材料としては、例えば、アルカリ金属又はアルカリ土類金属を基本とするナトリウム、カリウム、マグネシウム、リチウム、ナトリウム−カリウム合金、マグネシウム−インジウム合金、マグネシウム−銀合金、アルミニウム、金、銀、ガリウム、インジウム、銅等、更に陽極に使用した材料と同一のものが挙げられる。
【0020】
発光層に用いる材料は、本発明の液晶性電荷輸送材料と発光材料とからなる。液晶性電荷輸送材料は、電子及び正孔両輸送性材料、又は両輸送性材料の混合物、若しくは電子輸送性材料と正孔輸送材料の混合物が好ましいが、電極界面での発光を利用する場合には、一方の輸送性材料だけでもよい。又、液晶自身が蛍光を持つ場合には、発光材料は特に必要としない。液晶のコア部分が固体状態で強い蛍光を持つ有機色素類から構成される場合の多くが上記条件に該当する。
【0021】
発光材料としては、蛍光量子収率の高い色素材料を利用する。例えば、ジフェニルエチレン誘導体、トリフェニルアミン誘導体、ジアミノカルバゾール誘導体、ビススチリル誘導体、ベンゾチアゾール誘導体、ベンゾオキサゾール誘導体、芳香族ジアミン誘導体、キナクリドン系化合物、ペリレン系化合物、オキサジアゾール誘導体、クマリン系化合物、アントラキノン誘導体、又はDCM−1等のレーザ発振用色素等が挙げられる、本発明の液晶性電荷輸送材料の液晶性を壊さない程度に、好ましくは本発明の液晶性電荷輸送材料に対して約0.01〜30重量%の割合で添加する。
【0022】
又、図9及び10に示したような層構成とした場合には、発光層(発光材料)の厚味は電子又は正孔の移動を妨げない程度とする。発光層の膜厚は、好ましくは0.2〜15μmとし、材料中へスペーサ粒子の散布、或いはセルの周囲に設ける封止剤で膜厚を調整することができる。
【0023】
図11は、温度センサへの応用を代表例として説明する図である。温度センサの構成条件としては、電極13、13’と本発明の液晶性電荷輸送材料14とからなる。温度センサとして利用し得る性質としては、電荷移動の温度変化、導電率の温度変化、導電率の光照射時における温度変化及び光透過性の温度変化等が利用できる。但し、温度センサとして光照射を併用する場合には、電極材料及び基材は透明性が必要である。
【0024】
図12及び13は光センサへの応用を代表例として説明する図である。光センサの構成条件としては、電極13、13’と本発明の液晶性電荷輸送材料14とからなる。光センサとして利用し得る性質としては、光照射による電流値の変化が利用できる。
【0025】
【実施例】
次に実施例を挙げて本発明をより具体的に説明するが、本発明は以下の実施例に制限されるわけではない。
実施例1
以下の構造を持つベンゾチアゾール系液晶(式(1)Crystal-90℃-SmA-100℃-Iso)の正孔キャリアー移動度をtime of flight法で測定し、95℃でのスメクチックA相において5×10-3cm2/v・sの値が得られた。この液晶を50℃の時と、150℃に加熱した時の正孔キャリアー移動度はそれぞれ0cm2/v・s及び5×10-5cm2/v・sとなった。
Figure 0004180682
【0026】
この液晶をスメクチックA相を保持したまま電子線照射装置により25Mradで電子線を照射し、改めて50℃及び150℃に加熱して正孔キャリアー移動度をtime of flight法で測定したところ、それぞれ2×10-3cm2/v・s、4×10-3cm2/v・sの値が得られ、液晶の重合により高い導電性を示す液晶相が固定できることが分った。
【0027】
実施例2
真空成膜によりITO電極(表面抵抗100〜200Ω/□)を設けたガラス基板上に実施例1のベンゾチアゾール系液晶と該液晶に対して発光材料(3-(2-Benzothiaolyl)-7-(diethylamino)-2H-1-benzopyran-2-one(株式会社日本感光色素研究所製、発振波長域607〜585nm)を1モル%の割合で混合したものを110℃で加熱しながら0.7μm厚に塗布し、スペーサー粒子を基板上にまいた後、110℃に保持して電子線照射装置で25Mradの電子線を照射し液晶相を固定して、その上にITO電極を設けたガラス基板を貼り合わせ、暗所中、上記セルを50℃と150℃に加熱し、50Vの直流電界をかけたところ発光色素の蛍光波長に由来する発光が見られた。
【0028】
【発明の効果】
以上、本発明によれば、液晶状態で得られた分子の配列が広い温度範囲で消失しない材料が容易に得られる。又、この液晶性電荷輸送材料は、光センサ、エレクトロルミネッセンス素子、光導電体、空間変調素子、薄膜トランジスタ、温度センサ等の種々の用途に有用である。
【図面の簡単な説明】
【図1】 画像表示素子の模式図
【図2】 画像記録装置の模式図
【図3】 画像表示素子の模式図
【図4】 画像表示素子の模式図
【図5】 空間変調素子の模式図
【図6】 薄膜トランジスタの模式図
【図7】 エレクトロルミネッセンス素子の模式図
【図8】 エレクトロルミネッセンス素子の模式図(電極パターン例)
【図9】 エレクトロルミネッセンス素子の模式図
【図10】 エレクトロルミネッセンス素子の模式図
【図11】 温度センサの模式図
【図12】 エレクトロルミネッセンス素子の模式図(電極パターン例)
【図13】 光センサの模式図
【符号の説明】
11:情報記録層
13:透明電極
13’:電極(対向電極)
14:液晶性電荷輸送材料
14’:電荷発生層
15:透明基板
15’:基板
19:空間
20:誘電体層[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a liquid crystal charge transport material having a functional group capable of forming a new bond between molecules or within a molecule, and more specifically, an organic material having hole and / or electron charge transport properties in addition to liquid crystal properties. The present invention relates to a material and various elements or devices using the organic material.
[0002]
[Prior art]
Conventionally, as a charge transport material, a charge transport molecule serving as a site for transporting charges is dissolved or dispersed in a matrix material such as a polycarbonate resin, or a charge transport molecule in a polymer main chain such as polyvinyl carbazole. Materials with pendant structures are known. These materials are widely used as materials for photoconductors such as copying machines and printers. However, in the case of the above-described dispersion type charge transport material, the charge transport molecule should have high solubility in the matrix polymer. Although it is desirable to improve the charge transport performance, in reality, when the charge transport molecule in the matrix is made high, the charge transport molecule is crystallized in the matrix, and the concentration of the charge transport molecule varies depending on the type. Specifically, the concentration is 20 to 50% by weight. As a result, the matrix having no charge transport property occupies 50% by weight or more of the whole, and there is a problem that sufficient charge transport property and sufficient response speed are limited by the matrix when the film is formed.
[0003]
On the other hand, in the case of the pendant type charge transporting polymer, the proportion of the pendant having charge transporting property is high, but in terms of mechanical strength, environmental safety, durability and film forming property of the film formed. There are many practical problems. In addition, since this type of charge transport material has a charge transporting pendant that is located in close proximity to each other, this local approach portion becomes a stable site when hopping charges and acts as a kind of trap. There is a problem that the mobility of charges is lowered.
[0004]
In addition, in any of the above materials, the characteristics of the amorphous material as described above are different from the crystalline material, and there is a problem that the hopping site has fluctuations not only in space but also in energy. Exists. Therefore, it depends greatly on the concentration of charge transport sites, and its mobility is generally about 10 −6 to 10 −5 cm 2 / v · s, which is 0.1 to 1 cm 2 / v · s of molecular crystals. Remarkably small. Furthermore, there is a problem that the charge transport property has a strong temperature dependency and electric field strength dependency. This point is greatly different from the crystalline charge transport material. In applications where a large area charge transport layer is required, a polycrystalline charge transport material is expected in that a uniform charge transport film can be formed uniformly over a large area. Polycrystalline materials are microscopically inhomogeneous materials, and have problems such as the need to control defects formed at the particle interface. It is extremely difficult to manufacture.
[0005]
[Problems to be solved by the invention]
In response to these problems, the present inventors simultaneously have the advantages of an amorphous material having structural flexibility and uniformity over a large area, and the advantages of a crystalline material having molecular orientation, and further charge transportability to the outside. In order to provide a novel charge transport material excellent in charge transport properties, thin film formation properties, various durability, etc. that can be controlled by a field, it has smectic liquid crystal properties and is an electron transport material. Since it needs to be a molecule having a high electron affinity, it has a liquid crystalline charge transporting material and a smectic liquid crystal phase characterized by an electron mobility of 1 × 10 −5 cm 2 / v · s or more, and has an ionization potential. the need is small molecule, carrier mobility 1 × 10 -5 cm 2 / v · has been proposed a liquid crystalline charge transport material, wherein s or more at a (Japanese Patent Application No. 9-55450 Patent specification The liquid crystal molecules in the solution state need to be sealed in a cell or the like provided with a counter electrode in actual use. However, the liquid crystal molecules have a large area, are used on a curved surface, and have a laminated structure. It is difficult to use a part of the luminescent element or a specific pattern as it is.
Further, in the above low molecular charge transport material, since the temperature region forming the liquid crystal phase is limited, there is a problem in practical use.
[0006]
Accordingly, an object of the present invention is to solve the problems of the prior art described above and to facilitate the processability of the liquid crystalline charge transport material, so that the advantages of the amorphous material having structural flexibility and uniformity over a large area, and molecular orientation At the same time, it has the advantages of a crystalline material with high quality, and has excellent properties such as high-grade charge transportability, thin layer formation, and various durability properties, while it is a new bond between molecules or within a molecule. A charge transporting material that includes at least one liquid crystalline compound having a functional group capable of forming a liquid crystal and that is easy to increase in area and that does not change the arrangement of molecules derived from liquid crystallinity in a wide temperature range. It is to provide.
[0007]
[Means for Solving the Problems]
The above object is achieved by the present invention described below. That is, the present invention is a liquid crystalline charge transport material characterized containing Mukoto a liquid crystal compound represented by the following formula (1).
Figure 0004180682
[0008]
Since the liquid crystalline molecule used in the present invention has self-orientation due to its molecular structure, charge transport using this as a hopping site is different from the aforementioned molecular dispersion material in that the hopping site is spatially and energetic. Dispersion is suppressed, and the band-like transport properties found in molecular crystals are realized. For this reason, the characteristics that an extremely large mobility can be realized as compared with the conventional molecular dispersion material and the electric field dependency is not observed.
[0009]
Since the liquid crystalline compound of the present invention has both bond-forming properties and electron and / or hole transport properties, there is no inhibition of self-alignment due to the addition of other binder components, and electrons and holes in the entire charge transport material. Thus, it is possible to newly impart workability such as film formation without substantially reducing the transportability of the film.
The charge transporting liquid crystal material according to the present invention also includes a liquid crystalline compound having both bond-forming properties and electron and / or hole transporting properties in order to transfer electrons and holes from the interface such as the electrode and the charge generation layer. By using it as a binder component, the charge injection efficiency is hardly reduced, and high charge mobility is maintained after film formation.
[0010]
The liquid crystalline material having both the bond-forming property and the electron and / or hole transport property of the present invention is in the range of 0.01 to 100% by weight with respect to the liquid crystal compound exhibiting only the electron and / or hole transport property. More preferably, it is used in the range of 1 to 90% by weight. The bond-forming liquid crystalline compound can be used alone, but as the molecular weight of the liquid crystal molecules increases, it becomes difficult to realize the band-like transport characteristics found in molecular crystals. Since there is a possibility, it is necessary to adjust the content according to the purpose of use. The material of the present invention can be used in the form of a film or formed into various shapes.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Next, the present invention will be described in more detail with reference to embodiments.
The liquid crystalline charge transport material of the present invention is represented by the following formula (1).
Figure 0004180682
[0012]
Although the liquid crystalline charge transport material of the present invention as described above may be used alone, it may be used by mixing the compounds of the present invention with each other and various other compounds. For example, any of liquid crystalline or non-liquid crystalline materials such as low molecular weight compounds such as surfactants and photopolymerization initiators, synthetic polymer materials such as polymethylmethacrylate, compounds derived from natural polymers such as cellulose derivatives, etc. Moreover, any of those that can form a new bond between or within molecules such as a monomer used as an ultraviolet curable resin, or those that cannot easily form a new bond such as xylene may be used.
[0013]
The material of the present invention can be used, for example, by forming it into various shapes using a mold, or in the form of a film.
In the material of the present invention, after a film is formed on a support by a general coating method, a liquid crystal phase is formed at a temperature within a liquid crystal phase formation temperature range, and heat treatment for a certain period of time or irradiation with ionizing radiation such as ultraviolet rays is performed. Thus, a new bond can be formed in the liquid crystal compound. At this time, the polymerization rate can be increased by adding a polymerization initiator or the like as necessary.
[0014]
The liquid crystalline charge transport material of the present invention as described above is useful for various applications such as an optical sensor, an electroluminescence element, a photoconductor, a spatial modulation element, and a thin film transistor.
Since the liquid crystalline charge transport material of the present invention suppresses the formation of high-speed charge mobility and structural traps, the first application is a high-speed responsive optical sensor. Next, since it has excellent charge transport performance, it can be used as a charge transport layer of an electroluminescence device. If a charge transport material that does not form a new bond is included, electric field orientation and photoconductivity can be obtained. Since it can be switched simultaneously, it can be used for an image display element. Similarly, it has liquid crystal properties, each phase exhibits different charge mobility depending on the temperature, and the photoconductivity is different, so that it can be used as a temperature sensor different from the conventional one that can be switched simultaneously between temperature and light.
[0015]
FIG. 1 is a diagram for explaining application to an image display element. In an image display element, a transparent substrate such as glass, a transparent electrode such as ITO (indium tin oxide), a charge generation layer that generates carriers in response to exposure, the liquid crystalline charge transport material of the present invention, a counter electrode (such as a gold electrode) ) Is sequentially exposed to an image exposure (input image) from the lower part of the schematic diagram, the liquid crystalline charge transport material is oriented according to the exposure and carriers flow to the counter electrode (gold electrode). The input image can be reproduced by optically reading the orientation of the liquid crystal. If the smectic property of the liquid crystal is large, the orientation of the liquid crystal is stored for a long time, and input information is stored for a long time.
[0016]
2 and 3 are diagrams illustrating an example in which the liquid crystalline charge transport material of the present invention is applied to the charge transport layer of the image recording apparatus. FIG. 2 is a schematic diagram of an optical sensor, which is an example in which the liquid crystalline charge transport material of the present invention is used for the charge transport layer. The method of use will be described in more detail. As shown in FIG. 3, pattern exposure is performed from the upper part of the drawing while applying a voltage to the upper and lower electrodes 13, 13 '. At 14 ′, carriers are generated on the pattern, and the charges transported by the charge transport layer 14 are discharged in the space 19 and reach the surface of the information recording layer 11.
[0017]
In FIG. 4, voltage application exposure is performed in the same manner as in FIG. The generated charge (image) is accumulated on the upper surface of the dielectric layer 20, and the liquid crystal is oriented and accumulated on the pattern by the electric field due to the accumulated charge in the same manner as in FIG. 3, so that optical reading can be performed.
Furthermore, the liquid crystalline charge transport material of the present invention can also be used in a spatial modulation element as schematically illustrated in FIG. The liquid crystalline charge transport material of the present invention can also be used as an active layer of a thin film transistor. For example, as shown in FIG. 6, the liquid crystal material can be used by being placed on a substrate on which source, drain, and gate electrodes are arranged.
[0018]
7 to 10 are diagrams illustrating application to an electroluminescence element as a representative example. As shown in FIG. 7, the simplest structure of the device is one in which a light emitting layer is sandwiched between a cathode and an anode. In order to obtain strong light emission, it is preferable to select a cathode material that plays a role of electron injection having a small work function, and an anode material having a work function value equal to or larger than that of the cathode.
[0019]
Examples of the anode material generally include transparent or translucent electrode materials such as ITO, indium oxide, tin oxide (antimony, arsenic, or fluorine-doped), Cd 2 SnO 4 , zinc oxide, or gold. As the cathode material, for example, sodium, potassium, magnesium, lithium, sodium-potassium alloy, magnesium-indium alloy, magnesium-silver alloy, aluminum, gold, silver, gallium, based on alkali metal or alkaline earth metal, Examples thereof include indium, copper, and the same materials used for the anode.
[0020]
The material used for the light emitting layer is composed of the liquid crystalline charge transport material of the present invention and the light emitting material. The liquid crystalline charge transport material is preferably an electron and hole transport material, or a mixture of both transport materials, or a mixture of an electron transport material and a hole transport material. Only one transportable material may be used. Further, when the liquid crystal itself has fluorescence, a light emitting material is not particularly required. In many cases, the core portion of the liquid crystal is composed of organic dyes having strong fluorescence in a solid state.
[0021]
As the light emitting material, a dye material having a high fluorescence quantum yield is used. For example, diphenylethylene derivatives, triphenylamine derivatives, diaminocarbazole derivatives, bisstyryl derivatives, benzothiazole derivatives, benzoxazole derivatives, aromatic diamine derivatives, quinacridone compounds, perylene compounds, oxadiazole derivatives, coumarin compounds, anthraquinone derivatives Or a liquid crystal charge transport material of the present invention, preferably about 0.01 to the liquid crystal charge transport material of the present invention. Add at ~ 30 wt%.
[0022]
In the case of the layer structure as shown in FIGS. 9 and 10, the thickness of the light emitting layer (light emitting material) is set so as not to hinder the movement of electrons or holes. The film thickness of the light emitting layer is preferably 0.2 to 15 μm, and the film thickness can be adjusted with a dispersion of spacer particles in the material or with a sealant provided around the cell.
[0023]
FIG. 11 is a diagram illustrating application to a temperature sensor as a representative example. The temperature sensor is composed of electrodes 13 and 13 'and the liquid crystalline charge transport material 14 of the present invention. Properties that can be used as a temperature sensor include a change in temperature of charge transfer, a change in temperature of conductivity, a change in temperature during light irradiation of the conductivity, a change in light transmittance, and the like. However, when light irradiation is used together as a temperature sensor, the electrode material and the substrate must be transparent.
[0024]
12 and 13 are diagrams illustrating application to an optical sensor as a representative example. The optical sensor is composed of electrodes 13 and 13 'and the liquid crystalline charge transport material 14 of the present invention. As a property that can be used as an optical sensor, a change in current value due to light irradiation can be used.
[0025]
【Example】
EXAMPLES Next, although an Example is given and this invention is demonstrated more concretely, this invention is not necessarily restrict | limited to a following example.
Example 1
The hole carrier mobility of a benzothiazole-based liquid crystal having the following structure (formula (1) Crystal-90 ° C-SmA-100 ° C-Iso) was measured by the time of flight method, and 5 in the smectic A phase at 95 ° C. A value of × 10 −3 cm 2 / v · s was obtained. The hole carrier mobility when this liquid crystal was heated to 50 ° C. and 150 ° C. was 0 cm 2 / v · s and 5 × 10 −5 cm 2 / v · s, respectively.
Figure 0004180682
[0026]
The liquid crystal was irradiated with an electron beam at 25 Mrad by an electron beam irradiation apparatus while maintaining the smectic A phase, and again heated to 50 ° C. and 150 ° C., and the hole carrier mobility was measured by the time of flight method. It was found that values of × 10 −3 cm 2 / v · s and 4 × 10 −3 cm 2 / v · s were obtained, and a liquid crystal phase exhibiting high conductivity could be fixed by polymerization of the liquid crystal.
[0027]
Example 2
The benzothiazole-based liquid crystal of Example 1 and a light-emitting material (3- (2-Benzothiaolyl) -7- () on a glass substrate provided with an ITO electrode (surface resistance 100 to 200Ω / □) by vacuum film formation. Diethylamino) -2H-1-benzopyran-2-one (Nippon Sensitive Dye Research Co., Ltd., oscillation wavelength range 607-585 nm) mixed at a rate of 1 mol%, heated at 110 ° C., 0.7 μm thick After the spacer particles are spread on the substrate, the glass substrate is held at 110 ° C. and irradiated with an electron beam of 25 Mrad with an electron beam irradiation device to fix the liquid crystal phase, and an ITO electrode is provided thereon. In the dark, the cell was heated to 50 ° C. and 150 ° C., and when a direct current electric field of 50 V was applied, light emission derived from the fluorescence wavelength of the luminescent dye was observed.
[0028]
【The invention's effect】
As described above, according to the present invention, a material in which the arrangement of molecules obtained in a liquid crystal state does not disappear in a wide temperature range can be easily obtained. The liquid crystalline charge transport material is useful for various applications such as a photosensor, an electroluminescence element, a photoconductor, a spatial modulation element, a thin film transistor, and a temperature sensor.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of an image display device. FIG. 2 is a schematic diagram of an image recording apparatus. FIG. 3 is a schematic diagram of an image display device. FIG. 4 is a schematic diagram of an image display device. 6 is a schematic diagram of a thin film transistor. FIG. 7 is a schematic diagram of an electroluminescence element. FIG. 8 is a schematic diagram of an electroluminescence element (electrode pattern example).
9 is a schematic diagram of an electroluminescence element. FIG. 10 is a schematic diagram of an electroluminescence element. FIG. 11 is a schematic diagram of a temperature sensor. FIG. 12 is a schematic diagram of an electroluminescence element.
FIG. 13 is a schematic diagram of an optical sensor.
11: Information recording layer 13: Transparent electrode 13 ': Electrode (counter electrode)
14: Liquid crystalline charge transport material 14 ': Charge generation layer 15: Transparent substrate 15': Substrate 19: Space 20: Dielectric layer

Claims (8)

下記式(1)で表される液晶化合物を含むことを特徴とする液晶性電荷輸送材料。
Figure 0004180682
Liquid crystalline charge transport material of the liquid crystal compound is characterized in containing Mukoto represented by the following formula (1).
Figure 0004180682
請求項1に記載の材料の少なくとも1種を駆動経路に有することを特徴とする画像表示素子。An image display device comprising at least one of the materials according to claim 1 in a drive path. 請求項1に記載の材料の少なくとも1種を駆動経路に有することを特徴とするエレクトロルミネッセンス素子。An electroluminescence device comprising at least one of the materials according to claim 1 in a drive path. 請求項1に記載の材料の少なくとも1種を駆動経路に有することを特徴とする光導電体。Photoconductor, characterized in that it comprises at least one the drive path of the material according to claim 1. 請求項1に記載の材料の少なくとも1種を駆動経路に有することを特徴とする空間変調素子。A spatial modulation element having at least one of the materials according to claim 1 in a drive path. 請求項1に記載の材料の少なくとも1種を駆動経路に有することを特徴とする薄膜トランジスタ。A thin film transistor comprising at least one of the materials according to claim 1 in a drive path. 請求項1に記載の材料の少なくとも1種を駆動経路に有することを特徴とする温度センサ。Temperature sensor, characterized in that it comprises at least one the drive path of the material according to claim 1. 請求項1に記載の材料の少なくとも1種を駆動経路に有することを特徴とする光センサ。An optical sensor comprising at least one of the materials according to claim 1 in a drive path.
JP01615398A 1998-01-28 1998-01-28 Liquid crystalline charge transport material Expired - Fee Related JP4180682B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01615398A JP4180682B2 (en) 1998-01-28 1998-01-28 Liquid crystalline charge transport material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01615398A JP4180682B2 (en) 1998-01-28 1998-01-28 Liquid crystalline charge transport material

Publications (2)

Publication Number Publication Date
JPH11209761A JPH11209761A (en) 1999-08-03
JP4180682B2 true JP4180682B2 (en) 2008-11-12

Family

ID=11908571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01615398A Expired - Fee Related JP4180682B2 (en) 1998-01-28 1998-01-28 Liquid crystalline charge transport material

Country Status (1)

Country Link
JP (1) JP4180682B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010048982A1 (en) * 2000-04-28 2001-12-06 Tohoku Pioneer Corporation Organic electroluminescent display device and chemical compounds for liquid crystals
JP2002231054A (en) * 2001-02-01 2002-08-16 Stanley Electric Co Ltd Transparent electrode material and electronic element using the same
DE10257711B4 (en) 2001-12-27 2019-09-26 Merck Patent Gmbh Polymerizable monocyclic compounds containing liquid crystal mixtures

Also Published As

Publication number Publication date
JPH11209761A (en) 1999-08-03

Similar Documents

Publication Publication Date Title
JP3412076B2 (en) Organic EL device
KR100306954B1 (en) Electroluminescent device
US6218061B1 (en) Ferroelectric charge-transport liquid crystal material
Shallcross et al. Photochromic transduction layers in organic memory elements
Ko et al. Organic light-emitting diodes based on 2-(stilben-4-yl) benzoxazole derivatives: An implication on the emission mechanism
JPH11501144A (en) EL device
JPH10255985A (en) Oragnic el device
EP0864631B1 (en) Liquid crystalline charge transport material
KR20120099114A (en) Charge transport film, method for producing the same, and light-emitting element and photoelectric conversion element using the same
JP3157589B2 (en) Tetraaryldiamine compound
JP3552317B2 (en) Manufacturing method of organic electroluminescent device
JP4180682B2 (en) Liquid crystalline charge transport material
JPH10312711A (en) Liquid crystalline electron charge transporting material
JPH09316442A (en) Liquid crystal charge-transporting material
JPH0790255A (en) Organic electroluminescent device
JP2001291594A (en) Electro-conductive liquid crystal element
JP2001233872A (en) Asymmetric liquid crystalline charge transport material having terthiophene skeleton
JP2002050473A (en) Light emitting element
JPH11251068A (en) Organic electroluminescence element
JP2665788B2 (en) Organic electroluminescent device
JP3851429B2 (en) Fluorescent liquid crystalline charge transport material
JP3851428B2 (en) Fluorescent liquid crystalline charge transport material
EP0915144A1 (en) Fluorescent liquid crystalline charge transfer materials
JP4184547B2 (en) Ferroelectric liquid crystalline charge transport material
JP2001332385A (en) Light emitting element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080828

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees