JP3851428B2 - Fluorescent liquid crystalline charge transport material - Google Patents

Fluorescent liquid crystalline charge transport material Download PDF

Info

Publication number
JP3851428B2
JP3851428B2 JP31665497A JP31665497A JP3851428B2 JP 3851428 B2 JP3851428 B2 JP 3851428B2 JP 31665497 A JP31665497 A JP 31665497A JP 31665497 A JP31665497 A JP 31665497A JP 3851428 B2 JP3851428 B2 JP 3851428B2
Authority
JP
Japan
Prior art keywords
charge transport
charge
transport material
liquid crystalline
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31665497A
Other languages
Japanese (ja)
Other versions
JPH11144525A (en
Inventor
純一 半那
恭子 古後
公明 加福
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP31665497A priority Critical patent/JP3851428B2/en
Priority to US09/183,947 priority patent/US20010004107A1/en
Priority to EP98120668A priority patent/EP0915144A1/en
Publication of JPH11144525A publication Critical patent/JPH11144525A/en
Application granted granted Critical
Publication of JP3851428B2 publication Critical patent/JP3851428B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Photoreceptors In Electrophotography (AREA)
  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)
  • Liquid Crystal Substances (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、蛍光性を有する液晶性電荷輸送材料に関し、更に詳しくは液晶性とともに蛍光性及び電荷輸送性を有する有機材料と、該有機材料を使用した各種素子或いは装置に関する。
【0002】
【従来の技術】
従来、電荷輸送材料としては、電荷を輸送するサイトとなる電荷輸送性分子を、ポリカーボネート樹脂等のマトリックス材料中に溶解或いは分散させた材料や、ポリビニルカルバゾール等の如くポリマー主鎖に電荷輸送性分子構造をペンダントさせた材料が知られている。これらの材料は、複写機やプリンタ等の感光体の材料として広く使用されている。
【0003】
【発明が解決しようとしている課題】
上記従来の電荷輸送材料において、分散型の電荷輸送材料の場合には、電荷輸送分子がマトリックスであるポリマーに高い溶解性を有することが電荷輸送性能を向上させるためには望ましいが、実際にはマトリックス中における電荷輸送分子を高濃度にすると、電荷輸送分子がマトリックスにおいて結晶化し、電荷輸送分子の濃度は、種類によって異なるが、一般的には20〜50重量%の濃度が限界である。その結果、全体の50重量%以上が電荷輸送性のないマトリックスが占めることになり、成膜した場合に十分な電荷輸送性や十分な応答速度が、マトリックスによって制限されるという問題がある。
一方、前記ペンダント型の電荷輸送性ポリマーの場合には、電荷輸送性を有するペンダントの占める割合が高いが、成膜した膜の機械的強度、環境安定性、耐久性及び成膜性の点で実用上の問題が多い。又、この種の電荷輸送材料は、電荷輸送性ペンダントが局所的に近接配置をとるために、このような局所近接部分が電荷をホッピングする際に安定サイトとなり、一種のトラップとして作用するために電荷の移動度を低下させるという問題がある。
【0004】
又、上記いずれの材料においても、上記の如きアモルファス材料の電気特性からみた特徴は、結晶性材料とは異なり、ホッピングサイトが空間的にばかりでなく、エネルギー的にも揺らぎを有するという問題が存在する。そのために電荷輸送サイトの濃度に大きく依存し、その移動度は一般に10-6〜10-5cm2/vs程度で、分子性結晶の0.1〜1cm2/vsに比較して著しく小さい。更には電荷の輸送特性に対して強い温度依存性や電界強度依存性があるという問題がある。この点は結晶性の電荷輸送材料と大きく異なる点である。
又、大面積の電荷輸送性層が必要とされる用途においては、大面積で電荷輸送性膜を均一に形成し得るという点で多結晶の電荷輸送性材料が期待されているが、多結晶材料はミクロ的には本質的に不均一な材料であって、例えば、粒子界面に形成される欠陥を抑制する必要がある等の問題がある。
【0005】
従って本発明の目的は、上記従来技術の問題を解決し、構造柔軟性と大面積にわたる均一性を有するアモルファス材料の利点と、分子配向性を有する結晶性材料の利点を同時に有し、高品位の電荷輸送性、薄層形成性及び各種耐久性等に優れた新規な電荷輸送材料を提供することである。
更に、本発明者は、上記新規な電荷輸送材料の一部は、それ自身が蛍光性を有することも見出した。このことから、該電荷輸送材料を用いてエレクトロルミネッセンス等の表示素子を構成する場合、液晶分子の並びを阻害する蛍光材料の導入が不要となるため、電荷輸送性の低下や液晶性の変化が起こらず、高い移動度が実現できる電荷輸送材料の提供も併せて行う。
【0006】
更に、本発明の液晶性材料は、電荷輸送性と蛍光性を併せ持つため、例えば、エレクトロルミネッセンス素子として使用する場合、通常のエレクトロルミネッセンス素子がエレクトロン輸送性、ホール輸送性、蛍光性を有する材料を用いてエレクトロン輸送層、ホール輸送層、及び発光層からなる2層又は3層で構成する必要があるのに対し、該液晶性材料単独でエレクトロルミネッセンス素子が形成可能なために素子形成の工程の簡略化が可能となる。
また、通常の2又は3層構成のエレクトロルミネッセンス素子では、各層を形成する材料に素材や構造が大きく異なるものを用いているため、エレクトロン輸送層やホール輸送層と発光層との間で形成される界面でのエレクトロンやホールの受け渡しがうまく行われずに、発光の効率が落ちる場合があるが、本発明の液晶性電荷輸送材料を用いたエレクトロルミネッセンス素子は、同一の材料を各層の区別無く用いる事ができるため、発光の効率の低下を極力抑える事が可能となる。
【0007】
【課題を解決するための手段】
上記目的は以下の本発明によって達成される。即ち、本発明は、2−(4’−ヘプチロキシフェニル)−6−ドデシルベンゾチアゾール(以下「本発明の液晶性電荷輸送材料」と云う)からなることを特徴とする電荷輸送材料である
【0008】
液晶性分子は、その分子構造により自己配向性を有するため、これをホッピングサイトとする電荷輸送は、前述の分子分散系材料とは異なり、ホッピングサイトの空間的且つエネルギー的な分散が抑制され、分子性液晶にみられるバンドライクな輸送特性が実現する。このために従来の分子分散系材料に比べて極めて大きな移動度が実現でき、更にその電界依存性がみられないという特徴が現れる。又、上記の自己配向性を有する液晶性分子に蛍光性を示す骨格構造を導入することによって、自己配向性が蛍光材料の添加によって阻害されることがない液晶性電荷輸送材料となる。
【0009】
【発明の実施の形態】
次に好ましい発明の実施の形態を挙げて本発明を更に詳細に説明する
【0010】
以上の如き本発明の液晶性電荷輸送材料は、光センサ、エレクトロルミネッセンス素子、光導電体、空間変調素子、薄膜トランジスタ等の種々の用途に有用である。
本発明の液晶性電荷輸送材料は、高速な移動度と構造的なトラップの形成が抑制されることから、先ず第一の応用として、高速応答性の光センサが挙げられる。次に電荷輸送性能に優れ、且つそれ自身が蛍光性を示すため、高い移動度を保持したままで作成可能なエレクトロルミネッセンス素子の電荷輸送層として使用でき、又、電場配向性と光導電性とが同時にスイッチングできることから、画像表示素子に用いることが可能である。
【0011】
図1〜4は、本発明の電荷輸送材料のエレクトロルミネッセンス素子への応用を代表例として説明する図である。素子の最も簡単な構造は図1に示したように、発光層及び電荷輸送層を一層として陰極と陽極で挟んだものであり、本発明の液晶性電荷輸送材料のような、電荷輸送性と蛍光性とを併せ持つ場合のみ、この層構成でのエレクトロルミネッセンス素子の作製が可能となる。この時、強い発光を得るためには、電子注入の役割を果たす陰極材料は仕事関数の小さいもの、陽極材料は逆に仕事関数の値が陰極と同じ値又はより大きなものを選択することが好ましい。
【0012】
陽極材料としては、一般的に例えば、ITO、酸化インジウム、酸化錫(アンチモン、砒素、又はフッ素ドープ)、Cd2SnO4、酸化亜鉛、沃化銅、又はアルカリ金属又はアルカリ土類金属を基本とするナトリウム、カリウム、マグネシウム、リチウム、ナトリウム−カリウム合金、マグネシウム−インジウム合金、マグネシウム−銀合金、アルミニウム、金、銀、ガリウム、インジウム、銅等、更に陽極に使用した材料と同一のものが挙げられる。
【0013】
発光層及び電荷輸送層に用いる材料は、電荷輸送材料と発光材料とからなる。電荷輸送材料は、電子及び正孔両輸送性材料又は両輸送性材料の混合物、若しくは電子輸送性材料と正孔輸送性材料の混合物が好ましいが、電極界面での発光を利用する場合には一方の輸送性材料だけでもよい。本発明では、本発明の電荷輸送材料自身が蛍光性を有するため、発光材料は特に必要としないが併用してもよい。
又、図3及び4に示したような層構成とした場合には、発光層(発光材料)の厚みは電子又は正孔の移動を妨げない程度とする。発光層の膜厚は、好ましくは0.2〜15μmとし、材料中へのスペーサ粒子の散布、或いはセルの周囲に設ける封止剤で膜厚を調整することができる。
【0014】
図5〜図7は光センサへの応用を代表例として説明する図である。光センサの構成条件としては、電極13、13’と本発明の液晶性電荷輸送材料14とからなる。光センサとして利用し得る性質としては、光照射による電流値の変化が利用できる。
【0015】
図8は、画像表示素子への応用を代表例として説明する図である。画像表示素子においては、ガラス等の透明基板、ITO(インジウムチタンオキサイド)等の透明電極、露光に応じてキャリアを発生する電荷発生層、本発明の液晶性電荷輸送材料、対向電極(金電極等)を順次積層した素子に、模式図下部から画像露光(入力画像)とすると、露光に応じて液晶性電荷輸送材料が配向して対向電極(金電極)にキャリアが流れる。この液晶の配向を光学的に読みとることによって入力画像を再生することができる。上記液晶のスメクチック性が大きければ液晶の配向は長時間保存されて入力情報が長時間保存されることとなる。
【0016】
図9は、画像記録装置の電荷輸送層に本発明の液晶性電荷輸送材料を適用した例を説明する図である。図9に示すように上下の電極13、13’に電圧を印加しつつ、図面上部よりパターン露光を行なう。14’においてパターン状にキャリアが発生し、電荷輸送層14により輸送された電荷が、空間19において放電し、情報記録層11の表面に達する。
情報記録層は、例えば、スメクチック液晶と高分子の複合体からなる液晶高分子複合体層であり、蓄積された電荷による電界で液晶がパターン状に配向し、蓄積され、光学的読み取りを行なうことができる。
【0017】
図10は、図9の場合と同様に電圧印加露光を行なう。発生した電荷(像)は誘電体層20の上部表面に蓄積され、光学的読み取りを行なうことができる。
更に本発明の液晶性電荷輸送材料は、図11に模式的に説明するように空間光変調素子にも使用することができる。又、本発明の液晶性電荷輸送材料は、薄膜トランジスタの活性層として用いることも可能である。例えば、図12に示すように、ソース、ドレイン、ゲートの各電極を配置した基板に上記液晶材料を配置して用いることができる。
【0018】
【実施例】
次に実施例を挙げて本発明をより具体的に説明するが、本発明は以下の実施例に制限されるわけではない。
実施例1
真空成膜によりITO電極(表面抵抗:100〜200Ω/□)を設けたガラス基板を、ITO電極が対向するように、スペーサー粒子によってギャップを設け、張り合せたセルを作成した。そのセルにベンゾチアゾール系液晶(2−(4’−heptyloxyphenyl)−6−dodecylbenzothiazole、Crystal−90℃−SmA−100℃−Iso.)を110℃の条件下で注入した。暗所中、上記セルに250Vの直流電界をかけたところ上記液晶材料に由来する発光が見られた。
【0019】
実施例2
真空成膜によりITO電極(表面抵抗 100〜200Ω/□)を設けたガラス基板と、Ag電極(比抵抗 1Ω/cm以下、膜厚3000Å)を設けたガラス基板とを、電極が対向するように、スペーサー粒子によってギャップを設け、張り合せたセルを作成した。そのセルに実施例1で用いたと同じ結晶材料を110℃の条件下セル中に注入した。暗所中、上記セルに250Vの直流電界をかけたところ上記液晶材料に由来する発光が見られた。
【0020】
実施例3
実施例1で用いたと同じ液晶材料を用いて、図2に示した層構成を有するセルを作成した。このセルには、液晶材料を110℃条件下で注入した。暗所中、上記セルに250Vの直流電界をかけたところ上記液晶材料に由来する発光が見られた。
【0021】
実施例4
実施例1で用いたと同じ液晶材料を用いて、図3に示した層構成を有するセルを作成した。このセルには、液晶材料を110℃条件下で注入した。暗所中、上記セルに250Vの直流電界をかけたところ上記液晶材料に由来する発光が見られた。
【0022】
実施例5
実施例1で用いたと同じ液晶材料を用いて、図4に示した層構成を有するセルを作成した。このセルには、液晶材料を110℃条件下で注入した。暗所中、上記セルに250Vの直流電界をかけたところ上記液晶材料に由来する発光が見られた。
【0023】
【発明の効果】
以上の如き本発明によれば、液晶性を有するとともに、電荷輸送性及び蛍光性を有する新規液晶性化合物が提供される。該新規液晶性化合物は従来の液晶としての用途に加えて、電荷輸送性を利用した光センサ、エレクトロルミネッセンス素子、光導電体、空間変調素子、薄膜トランジスタ、その他のセンサ等の材料として有用である。特に本発明の液晶性化合物は、エレクトロルミネッセンス素子の材料として使用した場合、蛍光性を示す骨格構造を導入することによる電荷輸送性の低下、液晶性の変化を防いで、発光を得ることができる。
【図面の簡単な説明】
【図1】エレクトロルミネッセンス素子の模式図
【図2】エレクトロルミネッセンス素子の模式図(電極パターン例)
【図3】エレクトロルミネッセンス素子の模式図
【図4】エレクトロルミネッセンス素子の模式図
【図5】光センサの模式図
【図6】光センサの模式図
【図7】光センサの模式図
【図8】画像表示素子の模式図
【図9】画像記録装置の模式図
【図10】画像記録装置の模式図
【図11】空間変調素子の模式図
【図12】薄膜トランジスタの模式図
【符号の説明】
11:情報記録層
13:透明電極
13′:電極(対向電極)
14:液晶性電荷輸送材料
14′:電荷発生層
15:透明基板
15′:基板
19:空間
20:誘電体層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a liquid crystal charge transport material having fluorescence, and more particularly to an organic material having fluorescence and charge transport properties as well as liquid crystal properties and various elements or devices using the organic material.
[0002]
[Prior art]
Conventionally, as a charge transport material, a charge transport molecule serving as a site for transporting charges is dissolved or dispersed in a matrix material such as a polycarbonate resin, or a charge transport molecule in a polymer main chain such as polyvinyl carbazole. Materials with pendant structures are known. These materials are widely used as materials for photoreceptors such as copying machines and printers.
[0003]
[Problems to be solved by the invention]
In the above-described conventional charge transport material, in the case of a dispersion type charge transport material, it is desirable for the charge transport molecule to have high solubility in the polymer as a matrix in order to improve the charge transport performance. When the charge transport molecule in the matrix has a high concentration, the charge transport molecule is crystallized in the matrix, and the concentration of the charge transport molecule varies depending on the type, but generally a concentration of 20 to 50% by weight is the limit. As a result, the matrix having no charge transport property occupies 50% by weight or more of the whole, and there is a problem that sufficient charge transport property and sufficient response speed are limited by the matrix when the film is formed.
On the other hand, in the case of the pendant type charge transporting polymer, the proportion of the pendant having the charge transporting property is high, but in terms of mechanical strength, environmental stability, durability and film forming property of the formed film. There are many practical problems. In addition, since this type of charge transport material has a charge transporting pendant that is in close proximity to the local area, this local proximity part becomes a stable site when hopping charges and acts as a kind of trap. There is a problem that the mobility of charges is lowered.
[0004]
In addition, in any of the above materials, the characteristics of the amorphous material as described above have a problem that the hopping site has fluctuations not only in space but also in energy unlike the crystalline material. To do. Therefore, it greatly depends on the concentration of the charge transport site, and its mobility is generally about 10 −6 to 10 −5 cm 2 / vs, which is significantly smaller than 0.1 to 1 cm 2 / vs of molecular crystals. Furthermore, there is a problem that the charge transport property has a strong temperature dependency and electric field strength dependency. This point is greatly different from the crystalline charge transport material.
In applications where a large area charge transport layer is required, a polycrystalline charge transport material is expected in that a charge transport film can be uniformly formed in a large area. The material is microscopically non-uniform material, and there is a problem that, for example, it is necessary to suppress defects formed at the particle interface.
[0005]
Accordingly, the object of the present invention is to solve the above-mentioned problems of the prior art, and to simultaneously have the advantages of an amorphous material having structural flexibility and uniformity over a large area, and the advantage of a crystalline material having molecular orientation. It is to provide a novel charge transporting material excellent in charge transporting property, thin layer forming property and various durability.
Furthermore, the present inventor has also found that some of the novel charge transporting materials themselves have fluorescence. Therefore, when a display element such as electroluminescence is formed using the charge transport material, it is not necessary to introduce a fluorescent material that obstructs the alignment of liquid crystal molecules, so that the charge transport property is deteriorated or the liquid crystal property is changed. A charge transport material that does not occur and can achieve high mobility is also provided.
[0006]
Furthermore, since the liquid crystalline material of the present invention has both charge transporting properties and fluorescence, for example, when used as an electroluminescence device, a normal electroluminescence device is a material having electron transporting properties, hole transporting properties, and fluorescence properties. In contrast to the use of two or three layers consisting of an electron transport layer, a hole transport layer, and a light emitting layer, it is possible to form an electroluminescence device with the liquid crystalline material alone, so that the device formation process Simplification is possible.
In addition, in a normal two- or three-layer electroluminescence element, since materials having different materials and structures are used as materials for forming each layer, it is formed between an electron transport layer or a hole transport layer and a light emitting layer. Electrons and holes are not successfully transferred at the interface, and the efficiency of light emission may be reduced. However, the electroluminescent device using the liquid crystalline charge transport material of the present invention uses the same material without distinguishing each layer. Therefore, it is possible to suppress a decrease in light emission efficiency as much as possible.
[0007]
[Means for Solving the Problems]
The above object is achieved by the present invention described below. That is, the present invention is 2- (4'-heptene Ciro hydroxyphenyl) -6-dodecyl-benzothiazole (hereinafter referred to as "liquid crystalline charge transport material of the present invention") Tona Rukoto with a charge transport material characterized There is .
[0008]
Since the liquid crystalline molecule has self-orientation due to its molecular structure, the charge transport using this as a hopping site is different from the above-mentioned molecular dispersion material, and the spatial and energy dispersion of the hopping site is suppressed, Realizes the band-like transport properties found in molecular liquid crystals. For this reason, the characteristics that an extremely large mobility can be realized as compared with the conventional molecular dispersion material and the electric field dependency is not observed. Further, by introducing a skeletal structure exhibiting fluorescence into the above liquid crystal molecules having self-orientation property, a liquid crystalline charge transport material in which the self-orientation property is not hindered by addition of the fluorescent material is obtained.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Next, the present invention will be described in more detail with reference to preferred embodiments of the invention .
[0010]
The liquid crystalline charge transport material of the present invention as described above is useful for various applications such as an optical sensor, an electroluminescence element, a photoconductor, a spatial modulation element, and a thin film transistor.
Since the liquid crystalline charge transport material of the present invention suppresses the formation of high-speed mobility and structural traps, the first application is a high-speed responsive photosensor. Next, since it has excellent charge transport performance and exhibits fluorescence itself, it can be used as a charge transport layer of an electroluminescent device that can be produced while maintaining high mobility, and also has electric field orientation and photoconductivity. Can be switched at the same time, it can be used for an image display element.
[0011]
1-4 is a figure explaining the application to the electroluminescent element of the charge transport material of this invention as a representative example. As shown in FIG. 1, the simplest structure of the device is one in which a light emitting layer and a charge transport layer are sandwiched between a cathode and an anode, and has a charge transport property such as the liquid crystalline charge transport material of the present invention. Only when it has both fluorescence, it is possible to produce an electroluminescence element with this layer structure. At this time, in order to obtain strong light emission, it is preferable to select a cathode material that plays a role of electron injection having a small work function, and an anode material having a work function value equal to or larger than that of the cathode. .
[0012]
The anode material is generally based on, for example, ITO, indium oxide, tin oxide (antimony, arsenic, or fluorine-doped), Cd 2 SnO 4 , zinc oxide, copper iodide, or alkali metal or alkaline earth metal. Sodium, potassium, magnesium, lithium, sodium-potassium alloy, magnesium-indium alloy, magnesium-silver alloy, aluminum, gold, silver, gallium, indium, copper, etc., and the same materials as those used for the anode. .
[0013]
The material used for the light emitting layer and the charge transport layer includes a charge transport material and a light emitting material. The charge transport material is preferably an electron and hole transport material or a mixture of both transport materials, or a mixture of an electron transport material and a hole transport material. However, when using light emission at the electrode interface, Only the transportable material may be used. In the present invention, since the charge transport material of the present invention itself has fluorescence, a light emitting material is not particularly required, but may be used in combination.
In the case of the layer structure as shown in FIGS. 3 and 4, the thickness of the light emitting layer (light emitting material) is set so as not to hinder the movement of electrons or holes. The film thickness of the light emitting layer is preferably 0.2 to 15 μm, and the film thickness can be adjusted with a dispersion of spacer particles in the material or with a sealant provided around the cell.
[0014]
5-7 is a figure explaining the application to an optical sensor as a representative example. The optical sensor is composed of electrodes 13 and 13 'and the liquid crystalline charge transport material 14 of the present invention. As a property that can be used as an optical sensor, a change in current value due to light irradiation can be used.
[0015]
FIG. 8 is a diagram illustrating application to an image display element as a representative example. In an image display element, a transparent substrate such as glass, a transparent electrode such as ITO (indium titanium oxide), a charge generation layer that generates carriers in response to exposure, the liquid crystalline charge transport material of the present invention, a counter electrode (such as a gold electrode) ) Is sequentially exposed to an image exposure (input image) from the lower part of the schematic diagram, the liquid crystalline charge transport material is oriented according to the exposure and carriers flow to the counter electrode (gold electrode). An input image can be reproduced by optically reading the orientation of the liquid crystal. If the smectic property of the liquid crystal is large, the orientation of the liquid crystal is stored for a long time, and input information is stored for a long time.
[0016]
FIG. 9 is a diagram illustrating an example in which the liquid crystalline charge transport material of the present invention is applied to the charge transport layer of the image recording apparatus. As shown in FIG. 9, pattern exposure is performed from the upper part of the drawing while applying a voltage to the upper and lower electrodes 13, 13 '. Carriers are generated in a pattern at 14 ′, and the charges transported by the charge transport layer 14 are discharged in the space 19 and reach the surface of the information recording layer 11.
The information recording layer is, for example, a liquid crystal polymer composite layer composed of a composite of smectic liquid crystal and a polymer, and the liquid crystal is aligned in a pattern by an electric field due to the accumulated charge, and is stored for optical reading. Can do.
[0017]
In FIG. 10, voltage application exposure is performed in the same manner as in FIG. The generated charge (image) is accumulated on the upper surface of the dielectric layer 20 and can be read optically.
Furthermore, the liquid crystalline charge transport material of the present invention can also be used in a spatial light modulator as schematically illustrated in FIG. The liquid crystalline charge transport material of the present invention can also be used as an active layer of a thin film transistor. For example, as shown in FIG. 12, the liquid crystal material can be used by being placed on a substrate on which source, drain, and gate electrodes are arranged.
[0018]
【Example】
EXAMPLES Next, although an Example is given and this invention is demonstrated more concretely, this invention is not necessarily restrict | limited to a following example.
Example 1
A glass substrate provided with ITO electrodes (surface resistance: 100 to 200 Ω / □) by vacuum film formation was provided with a gap by spacer particles so that the ITO electrodes face each other, thereby preparing a cell. A benzothiazole-based liquid crystal (2- (4′-heptyloxyphenyl) -6-dedodecylbenzothiazole, Crystal-90 ° C.-SmA-100 ° C.-Iso.) Was injected into the cell at 110 ° C. When a DC electric field of 250 V was applied to the cell in a dark place, light emission derived from the liquid crystal material was observed.
[0019]
Example 2
A glass substrate provided with an ITO electrode (surface resistance 100 to 200Ω / □) by vacuum film formation and a glass substrate provided with an Ag electrode (specific resistance 1Ω / cm or less, film thickness 3000 mm) so that the electrodes face each other. Then, a gap was provided by spacer particles, and a bonded cell was prepared. The same crystal material used in Example 1 was injected into the cell under the condition of 110 ° C. When a DC electric field of 250 V was applied to the cell in a dark place, light emission derived from the liquid crystal material was observed.
[0020]
Example 3
Using the same liquid crystal material as used in Example 1, a cell having the layer configuration shown in FIG. 2 was prepared. A liquid crystal material was injected into this cell under the condition of 110 ° C. When a DC electric field of 250 V was applied to the cell in a dark place, light emission derived from the liquid crystal material was observed.
[0021]
Example 4
Using the same liquid crystal material as used in Example 1, a cell having the layer configuration shown in FIG. 3 was prepared. A liquid crystal material was injected into this cell under the condition of 110 ° C. When a DC electric field of 250 V was applied to the cell in a dark place, light emission derived from the liquid crystal material was observed.
[0022]
Example 5
Using the same liquid crystal material as that used in Example 1, a cell having the layer configuration shown in FIG. 4 was prepared. A liquid crystal material was injected into this cell under the condition of 110 ° C. When a DC electric field of 250 V was applied to the cell in a dark place, light emission derived from the liquid crystal material was observed.
[0023]
【The invention's effect】
According to the present invention as described above, a novel liquid crystalline compound having liquid crystallinity, charge transportability and fluorescence is provided. The novel liquid crystalline compounds in addition to use as a conventional liquid crystal, useful optical sensor using a charge-transporting, electroluminescent devices, photoconductors, spatial modulation element, a thin film transistor motor, as a material, such as other sensor It is. In particular, when the liquid crystalline compound of the present invention is used as a material for an electroluminescence element, it can obtain light emission by preventing a decrease in charge transportability and a change in liquid crystallinity by introducing a skeleton structure exhibiting fluorescence. .
[Brief description of the drawings]
FIG. 1 is a schematic diagram of an electroluminescence element. FIG. 2 is a schematic diagram of an electroluminescence element (electrode pattern example).
FIG. 3 is a schematic diagram of an electroluminescence element. FIG. 4 is a schematic diagram of an electroluminescence element. FIG. 5 is a schematic diagram of an optical sensor. FIG. 6 is a schematic diagram of an optical sensor. Schematic diagram of the image display device FIG. 9 Schematic diagram of the image recording device FIG. 10 Schematic diagram of the image recording device FIG. 11 Schematic diagram of the spatial modulation device FIG. 12 Schematic diagram of the thin film transistor
11: Information recording layer 13: Transparent electrode 13 ': Electrode (counter electrode)
14: Liquid crystalline charge transport material 14 ': Charge generation layer 15: Transparent substrate 15': Substrate 19: Space 20: Dielectric layer

Claims (9)

2−(4’−ヘプチロキシフェニル)−6−ドデシルベンゾチアゾールからなることを特徴とする電荷輸送材料。 2- (4'-heptene Ciro hydroxyphenyl) -6-dodecyl-benzothiadiazole charge transport material Rukoto wherein such azole. 請求項1に記載の材料を駆動経路に有することを特徴とするエレクトロルミネッセンス素子。Electroluminescent element characterized by having a wood charge according to the driving path in claim 1. 電荷輸送部と発光部が請求項1に記載の材料からなることを特徴とするエレクトロルミネッセンス素子。Electroluminescent element emitting portion and the charge-transporting unit is characterized in that wood charge or Ranaru of claim 1. 請求項1に記載の材料を駆動経路に有し、かつ電荷輸送部と発光部が単層構造であることを特徴とするエレクトロルミネッセンス素子。Electroluminescent device characterized by claim 1 having a wood charge according to the driving path, and the light emitting portion and the charge-transporting unit has a single layer structure. 請求項1に記載の材料を駆動経路に有することを特徴とする光センサ。Light sensor, characterized in that it comprises a timber fee according to drive path in claim 1. 請求項1に記載の材料を駆動経路に有することを特徴とする光導電体。Photoconductor, characterized in that it comprises a timber fee according to drive path in claim 1. 請求項1に記載の材料を駆動経路に有することを特徴とする画像表示素子。An image display device characterized by having a wood charge according to the driving path in claim 1. 請求項1に記載の材料を駆動経路に有することを特徴とする空間光変調素子。Spatial light modulator characterized by having a wood charge according to the driving path in claim 1. 請求項1に記載の材料を駆動経路に有することを特徴とする薄膜トランジスタ。A thin film transistor and having a wood charge according to the driving path in claim 1.
JP31665497A 1997-11-04 1997-11-04 Fluorescent liquid crystalline charge transport material Expired - Fee Related JP3851428B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP31665497A JP3851428B2 (en) 1997-11-04 1997-11-04 Fluorescent liquid crystalline charge transport material
US09/183,947 US20010004107A1 (en) 1997-11-04 1998-11-02 Fluorescent liquid crystalline charge transfer materials
EP98120668A EP0915144A1 (en) 1997-11-04 1998-11-04 Fluorescent liquid crystalline charge transfer materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31665497A JP3851428B2 (en) 1997-11-04 1997-11-04 Fluorescent liquid crystalline charge transport material

Publications (2)

Publication Number Publication Date
JPH11144525A JPH11144525A (en) 1999-05-28
JP3851428B2 true JP3851428B2 (en) 2006-11-29

Family

ID=18079431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31665497A Expired - Fee Related JP3851428B2 (en) 1997-11-04 1997-11-04 Fluorescent liquid crystalline charge transport material

Country Status (1)

Country Link
JP (1) JP3851428B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010048982A1 (en) * 2000-04-28 2001-12-06 Tohoku Pioneer Corporation Organic electroluminescent display device and chemical compounds for liquid crystals

Also Published As

Publication number Publication date
JPH11144525A (en) 1999-05-28

Similar Documents

Publication Publication Date Title
US6218061B1 (en) Ferroelectric charge-transport liquid crystal material
CN100392888C (en) Organic electroluminescent display device
US6188175B1 (en) Electroluminescent device
US6559449B2 (en) Planar X-ray detector
CN1665360A (en) Organic electroluminescencent devices
CN1413069A (en) Organic electroluminescent device
EP0864631B1 (en) Liquid crystalline charge transport material
JP4915477B2 (en) Image input / output device
EP1246270A2 (en) Organic semiconductor diode
JP2673261B2 (en) Organic electroluminescent device
JP2009212162A (en) Radiation detector
US6572985B2 (en) Electroluminescent compositions and devices
JP3518047B2 (en) Organic thin film EL device
JPH10312711A (en) Liquid crystalline electron charge transporting material
JP3851429B2 (en) Fluorescent liquid crystalline charge transport material
JP3851428B2 (en) Fluorescent liquid crystalline charge transport material
EP0915144A1 (en) Fluorescent liquid crystalline charge transfer materials
JPH09316442A (en) Liquid crystal charge-transporting material
EP1246271A2 (en) Organic semiconductor diode
JP4180682B2 (en) Liquid crystalline charge transport material
JP2665788B2 (en) Organic electroluminescent device
JP2001233872A (en) Asymmetric liquid crystalline charge transport material having terthiophene skeleton
JPH09185332A (en) Display device
JP4184547B2 (en) Ferroelectric liquid crystalline charge transport material
JPH11241069A (en) Liquid crystalline charge transport material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060901

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees