JP4180563B2 - Precipitation separation operation measurement management method and apparatus - Google Patents
Precipitation separation operation measurement management method and apparatus Download PDFInfo
- Publication number
- JP4180563B2 JP4180563B2 JP2004371235A JP2004371235A JP4180563B2 JP 4180563 B2 JP4180563 B2 JP 4180563B2 JP 2004371235 A JP2004371235 A JP 2004371235A JP 2004371235 A JP2004371235 A JP 2004371235A JP 4180563 B2 JP4180563 B2 JP 4180563B2
- Authority
- JP
- Japan
- Prior art keywords
- turbidity
- liquid
- sludge
- sedimentation
- discharge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000001556 precipitation Methods 0.000 title claims description 42
- 238000005259 measurement Methods 0.000 title claims description 29
- 238000000926 separation method Methods 0.000 title claims description 27
- 238000007726 management method Methods 0.000 title claims description 20
- 239000010802 sludge Substances 0.000 claims description 106
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 89
- 238000004062 sedimentation Methods 0.000 claims description 84
- 239000007788 liquid Substances 0.000 claims description 79
- 239000006228 supernatant Substances 0.000 claims description 40
- 230000008859 change Effects 0.000 claims description 38
- 238000000034 method Methods 0.000 claims description 32
- 239000007787 solid Substances 0.000 claims description 28
- 239000000203 mixture Substances 0.000 claims description 16
- 239000012071 phase Substances 0.000 claims description 16
- 230000008569 process Effects 0.000 claims description 11
- 238000005273 aeration Methods 0.000 claims description 7
- 238000007599 discharging Methods 0.000 claims description 7
- 239000002351 wastewater Substances 0.000 claims description 7
- 239000007791 liquid phase Substances 0.000 claims description 6
- 239000002244 precipitate Substances 0.000 claims description 5
- 238000006243 chemical reaction Methods 0.000 description 45
- 230000002776 aggregation Effects 0.000 description 29
- 238000005345 coagulation Methods 0.000 description 26
- 230000015271 coagulation Effects 0.000 description 26
- 238000005070 sampling Methods 0.000 description 20
- 239000011259 mixed solution Substances 0.000 description 18
- 238000005056 compaction Methods 0.000 description 16
- 238000005054 agglomeration Methods 0.000 description 15
- 230000004520 agglutination Effects 0.000 description 14
- 238000004220 aggregation Methods 0.000 description 14
- 230000004044 response Effects 0.000 description 9
- 239000000701 coagulant Substances 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- 238000013019 agitation Methods 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- 238000005406 washing Methods 0.000 description 5
- 238000002835 absorbance Methods 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000007667 floating Methods 0.000 description 4
- 238000002955 isolation Methods 0.000 description 4
- 241000233866 Fungi Species 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 230000004931 aggregating effect Effects 0.000 description 3
- 239000003513 alkali Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000007596 consolidation process Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 230000002349 favourable effect Effects 0.000 description 3
- 230000001376 precipitating effect Effects 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 244000144992 flock Species 0.000 description 2
- 238000005188 flotation Methods 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 1
- 239000012490 blank solution Substances 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 229920006317 cationic polymer Polymers 0.000 description 1
- 230000001364 causal effect Effects 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000005189 flocculation Methods 0.000 description 1
- 230000016615 flocculation Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- 238000005339 levitation Methods 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000010979 pH adjustment Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000000611 regression analysis Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/52—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D21/00—Separation of suspended solid particles from liquids by sedimentation
- B01D21/24—Feed or discharge mechanisms for settling tanks
- B01D21/2405—Feed mechanisms for settling tanks
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D21/00—Separation of suspended solid particles from liquids by sedimentation
- B01D21/24—Feed or discharge mechanisms for settling tanks
- B01D21/2444—Discharge mechanisms for the classified liquid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D21/00—Separation of suspended solid particles from liquids by sedimentation
- B01D21/24—Feed or discharge mechanisms for settling tanks
- B01D21/245—Discharge mechanisms for the sediments
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D21/00—Separation of suspended solid particles from liquids by sedimentation
- B01D21/30—Control equipment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D21/00—Separation of suspended solid particles from liquids by sedimentation
- B01D21/30—Control equipment
- B01D21/302—Active control mechanisms with external energy, e.g. with solenoid valve
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D21/00—Separation of suspended solid particles from liquids by sedimentation
- B01D21/30—Control equipment
- B01D21/32—Density control of clear liquid or sediment, e.g. optical control ; Control of physical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D21/00—Separation of suspended solid particles from liquids by sedimentation
- B01D21/30—Control equipment
- B01D21/34—Controlling the feed distribution; Controlling the liquid level ; Control of process parameters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/04—Investigating sedimentation of particle suspensions
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/47—Scattering, i.e. diffuse reflection
- G01N21/49—Scattering, i.e. diffuse reflection within a body or fluid
- G01N21/53—Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
- G01N21/534—Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke by measuring transmission alone, i.e. determining opacity
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/52—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
- C02F1/5209—Regulation methods for flocculation or precipitation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/10—Solids, e.g. total solids [TS], total suspended solids [TSS] or volatile solids [VS]
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/11—Turbidity
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Dispersion Chemistry (AREA)
- Organic Chemistry (AREA)
- Water Supply & Treatment (AREA)
- Environmental & Geological Engineering (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Separation Of Suspended Particles By Flocculating Agents (AREA)
- Activated Sludge Processes (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Description
本発明は、原水中の濁質または浮遊固形物(以下、SSという)を沈殿分離する水処理システムにおいて、原水に凝集剤等を添加し、濁質またはSSをフロック化する処理や曝気などの処理を行い、その固液混合液を沈殿槽に導き、固体を沈殿分離する操作が適正におこなわれているか否かを測定・管理することにより、凝集剤等の薬剤注入量を適正にしたり、沈殿分離工程の異常を早期発見したりして、処理水の安定化に資する測定管理方法及び装置に関する。 The present invention relates to a water treatment system that precipitates and separates turbidity or suspended solids (hereinafter referred to as SS) in raw water, such as adding flocculant or the like to the raw water to floculate turbidity or SS, aeration, etc. Process, guide the solid-liquid mixture to the precipitation tank, measure and manage whether or not the operation of precipitating and separating solids is done properly, make the drug injection amount such as flocculant appropriate, The present invention relates to a measurement management method and apparatus that contributes to stabilization of treated water by detecting abnormalities in the precipitation separation process at an early stage.
従来、濁質またはSSを含有する廃水の処理は、廃水に酸、やアルカリや凝集剤などを添加して、廃水中の濁質またはSSをフロック化して、沈殿槽に導き、固形物を沈殿分離する凝集沈殿処理や、曝気槽で曝気することにより微生物活動で濁質またはSSを分解したり、活性汚泥に付着・吸着させたのち、沈殿槽に導き、活性汚泥とともに沈殿分離する活性汚泥処理により行われている。廃水中の濁質のみを除去すればよい場合は、操作が簡単で短時間で処理できる凝集沈殿処理がひろく普及している。 Conventionally, turbidity or wastewater containing SS is treated by adding acid, alkali, flocculant, etc. to the wastewater to flock the turbidity or SS in the wastewater, leading to a sedimentation tank, and precipitating solid matter. Coagulation sedimentation treatment that separates, activated sludge treatment that decomposes turbidity or SS by microbial activity by aeration in an aeration tank, or adheres and adsorbs to activated sludge, then leads to the precipitation tank and precipitates and separates with activated sludge It is done by. When only the turbidity in the wastewater needs to be removed, a coagulation sedimentation process that is easy to operate and can be processed in a short time has become widespread.
廃水の凝集処理には、塩化アルミニウム、ポリ塩化アルミニウム、硫酸アルミニウム、塩化第二鉄、ポリ硫酸第二鉄等の無機系凝集剤や高分子凝集剤が用いられ、原水の濁質をフロック化し、沈殿槽に導入し、比重差により固液分離する。凝集の良否は凝集剤の質や添加量や原水の濁質の濃度や性質や凝集反応沈殿装置の装置特性などさまざまな要因で左右される。装置や凝集剤を特定したのちでも、原水の性状に変動がある場合には、凝集の良否は大きく変動する。このため、凝集沈殿処理操作を適正に運転管理するためには、いろいろな測定監視計器が用いられ、それらの測定値をもとに凝集剤添加量を調節する必要がある。凝集沈殿処理で用いられる測定計器としては、原水の流量計、原水の濁度計およびpH、電導度などのその他水質を測定する計器、凝集剤の添加流量計、沈殿槽上澄水の濁度計、沈殿槽の沈殿汚泥の界面計、沈殿汚泥の引き抜き汚泥や凝集混合液のSS濃度計などがある。活性汚泥処理においても、糸状菌による沈殿不良などのトラブルがあり、沈殿槽での固液分離操作の運転管理は重要であって、同様の計器が用いられている。 In waste water coagulation treatment, inorganic coagulants and polymer coagulants such as aluminum chloride, polyaluminum chloride, aluminum sulfate, ferric chloride, and polyferric sulfate are used to flock the turbidity of raw water, It is introduced into a precipitation tank and separated into solid and liquid by specific gravity difference. The quality of agglomeration depends on various factors such as the quality and amount of the aggregating agent, the concentration and nature of the turbidity of the raw water, and the characteristics of the agglomeration reaction precipitation apparatus. Even after specifying the apparatus and the flocculant, the quality of the flocculation varies greatly if the properties of the raw water vary. For this reason, in order to properly manage the operation of the coagulation sedimentation treatment, various measurement monitoring instruments are used, and it is necessary to adjust the addition amount of the coagulant based on the measured values. Measuring instruments used in coagulation sedimentation treatment include raw water flow meter, raw water turbidity meter and other water quality measuring devices such as pH and conductivity, flocculant added flow meter, turbidity meter for supernatant water in sedimentation tank There are the interface meter of sedimentation sludge in the sedimentation tank, the extraction sludge of sedimentation sludge and the SS concentration meter of flocculated mixture. Even in the activated sludge treatment, there are problems such as poor precipitation due to filamentous fungi, and operation management of the solid-liquid separation operation in the sedimentation tank is important, and the same instrument is used.
これらの計器を使用して測定したデータで沈殿操作の運転状況を管理し、適正な運転状態になるように、凝集沈殿処理にあっては凝集剤添加量や処理量など、活性汚泥処理にあっては処理量や返送汚泥量や曝気条件などを調節するが、原水変動や処理状況の変動が大きい場合は適正な条件変更をおこなうことは容易ではない。その理由は、現在の測定計器では、たとえば原水の変動が沈殿槽上澄水の濁度の変化に現れるまでには、凝集沈殿処理でも数時間、活性汚泥処理では沈殿槽だけでも半日以上、原水の変動からは1日以上の応答遅れがあるためである。その難しさは、活性汚泥処理より単純で短時間で処理できる凝集沈殿処理であっても、凝集剤添加量の自動制御法におけるさまざまな提案のなかに表現されている。代表的な制御方法として沈殿槽処理水の濁度を測定し、凝集剤添加量を制御するフィードバック制御では、実際の沈殿槽の処理水の濁度を計測し、装置内の応答遅れをコンピュータで補正して凝集剤の添加量を制御する方法が示されている(例えば、特許文献1参照)。また、原水の流量と濁度およびその他の特性値を計測し、予め想定した濁質負荷と凝集剤薬注量との関係を求める関係式を用いて、凝集剤添加量を制御するフィードフォワード制御についても提案されている(例えば、特許文献2参照)。 The data measured using these instruments is used to manage the operation status of the precipitation operation, and in order to achieve an appropriate operating state, the coagulation sedimentation treatment is suitable for activated sludge treatment, such as the amount of coagulant added and the amount treated. The amount of treated water, the amount of returned sludge, aeration conditions, etc. are adjusted. However, it is not easy to change the conditions appropriately if the fluctuations in raw water and treatment conditions are large. The reason for this is that with current measuring instruments, for example, several hours for coagulation sedimentation treatment, more than half a day for only the sedimentation tank for activated sludge treatment, until the fluctuation of the raw water appears in the change in turbidity of the sedimentation supernatant water. This is because there is a response delay of more than one day from the fluctuation. The difficulty is expressed in various proposals in the automatic control method of the amount of flocculant added, even in the case of the coagulation sedimentation treatment which is simpler than the activated sludge treatment and can be carried out in a short time. As a typical control method, turbidity of sedimentation tank treated water is measured, and feedback control that controls the amount of flocculant added measures the turbidity of the actual sedimentation tank treated water, and the response delay in the device is measured by a computer. A method of correcting and controlling the addition amount of the flocculant is disclosed (for example, see Patent Document 1). In addition, feedforward control that measures the flow rate, turbidity, and other characteristic values of raw water, and controls the amount of flocculant added using a relational expression that calculates the relationship between the estimated turbidity load and the amount of flocculant injected Has also been proposed (see, for example, Patent Document 2).
しかしながら、フィードバック制御においては、原水の変動が沈殿槽からの処理水にはっきりと影響するには数時間の応答遅れがあり、原水の変動が大きい場合には補正しきれない問題がある。またフィードフォワード制御においては、応答遅れによる不明確さは回避できるものの、凝集に影響する因子は原水の濁度だけでなく、pHや塩濃度などの因子のほか、コロイドの挙動など容易に解明されない因子もあり、測定計器のコストが大きいことに加え、原水の質によっては凝集の挙動を的確に捉えるのは難しい問題がある。 However, in the feedback control, there is a response delay of several hours for the fluctuation of the raw water to clearly affect the treated water from the settling tank, and there is a problem that cannot be corrected when the fluctuation of the raw water is large. In feed-forward control, ambiguity due to response delay can be avoided, but the factors affecting aggregation are not only the turbidity of raw water, but also factors such as pH and salt concentration, and the behavior of colloids cannot be easily clarified. There are factors, and in addition to the high cost of measuring instruments, there is a problem that it is difficult to accurately grasp the aggregation behavior depending on the quality of raw water.
このように現在の技術では、いずれの方法でも沈殿の挙動を的確に捉えるには不十分である。凝集の挙動を的確に捉え、運転操作に反映できるようにするためには、フィードバック制御を難しくしている応答遅れによる不明確さを軽減し、フィードフォワード制御での凝集作用因子を正確に把握する困難さを回避する、もっと適切な測定管理計器が求められる。活性汚泥処理においては、糸状菌による沈殿不良対策に代表されるように、応答おくれが大きいため、現象の解明・対策には一層の困難さがあるが、現象の早期発見や処置に対する効果確認などが適切に行えれば、現象の解明・対策に結びつくものであり、そのために沈殿操作を適切に測定管理できる装置が求められている。
本発明はあらたな測定装置を用いて、沈殿操作における運転状態を測定管理し、凝集沈殿処理においては最良の処理水濁度と、最大の汚泥圧密状態で最小のスラッジボリュームを、最も少ない凝集剤添加量で実現可能にし、活性汚泥処理においては沈殿槽での沈殿不良の解明対策に結びつけ安定した処理を可能にする測定管理装置を提供することにある。 The present invention uses a new measuring device to measure and manage the operating state in the sedimentation operation. In the coagulation sedimentation process, the best treatment water turbidity, the maximum sludge compaction state, the minimum sludge volume, and the smallest coagulant. An object of the present invention is to provide a measurement management device that can be realized with an added amount, and that can be used in activated sludge treatment, which is associated with measures for elucidating sedimentation defects in a sedimentation tank and enables stable treatment.
本発明は以下の内容を要旨とする。すなわち、本発明に係る沈殿分離操作測定管理方法は、
濁質または浮遊固形物を含有した廃水等(以下、原水という)を静置することにより濁質または浮遊固形物を沈殿分離する水処理システムにおいて、沈殿槽に入る前の固液混合液を静置沈殿容器に設定量チャージする第一の工程と、設定時間静置後、静置沈殿容器の液面レベルと汚泥界面レベルの相対位置を維持しつつ液を排出する第二の工程と、排出している間の排出経過時間と排出液の浮遊固形物または濁度を計測する第三の工程と、計測値から少なくとも沈殿汚泥界面が通過する時間を検出し、排出液の排出速度と沈殿汚泥界面が通過する時間から沈殿汚泥のスラッジボリュームを算出する第四の工程と、沈殿汚泥界面が通過した後の計測値から上澄液相の濁度を計測する第五の工程と、を含むことを特徴とする(請求項1)。
The gist of the present invention is as follows. That is, the precipitation separation operation measurement management method according to the present invention,
In a water treatment system that settles and separates turbidity or suspended solids by leaving waste water containing suspended or suspended solids (hereinafter referred to as raw water), the solid-liquid mixture before entering the sedimentation tank A first step of charging a set amount to the settling container, a second step of discharging the liquid while maintaining the relative position between the liquid level and the sludge interface level of the settling container after leaving for a set time, and discharging The third step to measure the discharge elapsed time and the suspended solids or turbidity of the discharged liquid during the operation, and at least the time that the precipitated sludge interface passes from the measured value is detected, the discharge speed of the discharged liquid and the precipitated sludge Including a fourth step of calculating the sludge volume of the precipitated sludge from the time that the interface passes, and a fifth step of measuring the turbidity of the supernatant liquid phase from the measured value after passing through the precipitated sludge interface. (Claim 1).
この場合、原水が沈殿槽に入る前に、凝集剤などを添加して濁質または浮遊固形物をフロック化する処理や曝気などの処理を行う場合において、前記第一の工程に加え、静置沈殿容器に原水をチャージする工程と、該原水の浮遊固形物または濁度を計測する工程と、を含むことを特徴とする(請求項2)。 In this case, before the raw water enters the settling tank, in the case of performing a treatment such as adding flocculant or the like to flocculate turbid or suspended solids or aeration, it is allowed to stand in addition to the first step. The method includes a step of charging raw water into a precipitation vessel and a step of measuring suspended solids or turbidity of the raw water (claim 2).
また、前記第一の工程に加え、静置沈殿容器に沈澱槽の上澄水をチャージする工程と、該上澄水の浮遊固形物または濁度を計測する工程と、を含むことを特徴とする(請求項3)。 Moreover, in addition to said 1st process, the process of charging the supernatant water of a sedimentation tank to a stationary sedimentation container, and the process of measuring the suspended solid or turbidity of this supernatant water are characterized by the above ( Claim 3).
また、前記第三の工程において、沈殿汚泥相が通過しているときの浮遊固形物または濁度の計測値のばらつきの大きさから、沈殿汚泥相の圧密の良否を判断する工程をさらに含むことを特徴とする(請求項4)。
また、前記第三の工程において、浮遊固形物または濁度を計測するセルに液が充満しているときの計測量と、セルに液がなくなったときの計測量の変化から、液の排出完了を検知し、液の排出速度を計測する工程をさらに含むことを特徴とする(請求項5)。
Further, in the third step, the method further includes a step of judging whether or not the sedimentation sludge phase is compacted from the magnitude of variation in the measured value of suspended solids or turbidity when the sedimentation sludge phase is passing through. (Claim 4).
In addition, in the third step, liquid discharge is completed from the change in the measured amount when the cell that measures suspended solids or turbidity is full and the measured amount when the cell runs out of liquid. The method further includes a step of measuring the liquid discharge rate and measuring the liquid discharge speed.
本発明に係る沈殿分離操作測定管理装置は、原水を静置することにより濁質または浮遊固形物を沈殿分離する水処理システムに用いる沈殿分離操作測定管理であって、沈殿槽に入る前の固液混合液を静置沈殿容器に設定量チャージする手段と、設定時間静置後、静置沈殿容器の液面レベルと汚泥界面レベルの相対位置を維持しつつ液を排出する手段と、排出している間の排出経過時間と排出液の浮遊固形物または濁度を計測する手段と、計測値から少なくとも沈殿汚泥界面が通過する時間を検出し、排出液の排出速度と沈殿汚泥界面が通過する時間から沈殿汚泥のスラッジボリュームを算出する手段と、沈殿汚泥界面が通過した後の計測値から上澄液相の濁度を計測する手段と、を備えて成ることを特徴とする(請求項6)。
上記各発明により、沈殿分離操作を適切に管理できるとともに、装置内で使用する排出速度の検量や検証が自動でおこなえるようになり、装置としての信頼性が向上する。
The precipitation separation operation measurement management device according to the present invention is a precipitation separation operation measurement management used in a water treatment system for precipitating and separating turbid or suspended solids by allowing raw water to stand, wherein the solid separation before entering the precipitation tank. Means for charging a set amount of the liquid mixture into the stationary sedimentation container; means for discharging the liquid while maintaining the relative position between the liquid level of the stationary sedimentation container and the sludge interface level after standing for a set time; and Means to measure the discharge elapsed time and the suspended solids or turbidity of the discharged liquid, and at least the time that the precipitated sludge interface passes from the measured value, and the discharged liquid discharge speed and the precipitated sludge interface pass Means for calculating the sludge volume of the precipitated sludge from the time, and means for measuring the turbidity of the supernatant liquid phase from the measured value after the precipitation sludge interface has passed (Claim 6). ).
According to each of the above inventions, the precipitation separation operation can be appropriately managed, and the discharge rate used in the apparatus can be automatically calibrated and verified, thereby improving the reliability of the apparatus.
このような水処理システムの沈殿分離操作測定管理装置は、活性汚泥処理や酸やアルカリ剤や凝集剤を添加して固液分離を促進する凝集沈殿処理や凝集浮上処理や汚泥脱水装置などの固液分離装置、その他の水処理装置を対象とし、運転管理を適切にし処理水の液質の安定化を実現できる。
本発明の特徴は、ひとつの装置で上澄液の濁度、界面の位置と排出時間からスラッジボリューム、沈殿汚泥の圧密性が測定でき、さらに原水の濁度、処理水の濁度も測定でき、それらの測定値をもとに適切な凝集剤添加量の制御ができることである。それぞれ計測値はそれ専用の計測器を使用すれば測定できるものであるが、上記の計測値を既存の計器の組み合わせで計測しようとするのは複雑かつ高価なものとなり実用的でなく、性能的にも充分とはいえない。例えば、汚泥界面を検出する装置としては、光の反射で検出する方法があるが、凝集汚泥の一部が浮上している場合には測定不能となる。また濁度センサーを沈殿槽内を移動させながら処理水の濁度と汚泥界面を測定する方式があるが、この方式はセンサー移動の構造など装置が複雑になるデメリットがある。またこの方式では圧密性の測定はできない。
もうひとつの特徴は、本発明では、沈殿槽に入る前の固液混合液をサンプリングし、測定器内に短い模擬沈殿槽をもち、その上澄液の濁度をもって測定管理する点であり、原水の変化から計器が感知するまで20〜30分程度の遅れで結果が測定できる。これは沈殿槽の上澄水の濁度を測定する場合のフィードバック制御の方法と比較し、応答おくれの影響はずっと少なくて済むという大きな利点がある。また実際の沈殿槽での挙動にきわめて近い操作で得られる情報を測定できることは、原水の処理量と濁度で管理するフィードフォワード制御の方法と比較し、凝集作用をずっと正確に予知できるおおきな利点がある。
Such water treatment system precipitation separation operation measurement and management devices include activated sludge treatment, solid precipitation such as coagulation sedimentation treatment, coagulation flotation treatment and sludge dewatering device that add acid, alkali agent and flocculant to promote solid-liquid separation. Targeting liquid separators and other water treatment devices, it is possible to achieve proper operation management and to stabilize the quality of treated water.
The feature of the present invention is that the turbidity of the supernatant liquid, the interface position and the discharge time can be used to measure the sludge volume and the compacted sludge, and the turbidity of raw water and treated water can also be measured with a single device. In addition, it is possible to appropriately control the amount of the flocculant added based on the measured values. Each measured value can be measured by using a dedicated measuring instrument, but it is complicated and expensive to measure the above measured value with a combination of existing instruments. It is not enough. For example, as a device for detecting the sludge interface, there is a method of detecting by reflection of light, but measurement becomes impossible when a part of the coagulated sludge is floating. In addition, there is a method of measuring the turbidity of the treated water and the sludge interface while moving the turbidity sensor in the sedimentation tank, but this method has the disadvantage that the apparatus is complicated such as the structure of sensor movement. Also, this method cannot measure the compactness.
Another feature is that in the present invention, the solid-liquid mixed solution before entering the settling tank is sampled, the measurement device has a short simulated settling tank, and the measurement and management is performed with the turbidity of the supernatant. The result can be measured with a delay of about 20 to 30 minutes from the change of raw water until the instrument senses it. This has the great advantage that the effect of the response delay is much less than the feedback control method when measuring the turbidity of the supernatant water of the sedimentation tank. In addition, the ability to measure information obtained by operations that are very close to the behavior of actual sedimentation tanks is a significant advantage that allows for a much more accurate prediction of coagulation compared to the feed-forward control method, which is controlled by the raw water throughput and turbidity. There is.
以下主として凝集沈殿処理を例にとって説明する。
凝集沈殿装置の一般的な形態は図1に示すような装置構成となっている。原水ポンプ1から供給された原水は、急速攪拌反応装置2に入り、無機凝集剤添加ポンプ3からポリ塩化アルミニウム(PAC)等を添加し、急速攪拌により無機凝集剤と混合反応し、原水中の濁度成分を凝集する。急速攪拌反応装置2をでた凝集混合液は緩速攪拌反応装置4に入り、高分子凝集剤添加ポンプ5から高分子凝集剤を添加し、緩速攪拌により、凝集固形物を大きく成長させる。以上の過程でpH調整が必要な場合は、酸またはアルカリが添加され凝集反応に適正なpHが維持される。また凝集反応をカチオン系高分子凝集剤のみで凝集反応で行う場合は、急速攪拌反応装置2のみで凝集反応をおこなう場合もある。凝集反応が終了した混合液は凝集沈殿槽6に入り、凝集汚泥と上澄液に分離され、上澄液は沈殿槽トラフ7から処理水として排出される。また凝集汚泥は沈澱槽底部より排出される。無機凝集剤、高分子凝集剤の添加ポンプはインバータ8、9の各出力によって駆動される。
本発明の測定管理装置10は凝集反応が終了し、沈殿槽に入る前の混合液の一部をサンプリングすることからスタートする。
In the following, description will be made mainly using the coagulation sedimentation treatment as an example.
A general form of the coagulation sedimentation apparatus has an apparatus configuration as shown in FIG. The raw water supplied from the raw water pump 1 enters the
The
図2に、本発明の沈殿分離操作測定管理装置の構成例を示す。
本発明の測定管理装置10は、静置沈殿容器11と、静置沈殿容器11に液を吸引するための真空ポンプ12、液を排出するための大気開放電磁弁13と、排出流量制御電磁弁14と排出流量制御オリフィス15と、静置沈殿容器11の底部の排出ライン16と排出ラインを通過する液のSSまたは濁度を計測する濁度計のセンサー部17、凝集反応後混合液サンプリング用電磁弁18と、原水サンプリング用電磁弁19と上澄水サンプリング用電磁弁20と排水電磁弁21を具備している。静置沈澱容器11は電磁弁などで密閉化されており、容器内の圧力を測定する圧力センサー22が設置してある。凝集反応後混合液サンプリング用電磁弁18の先は緩速攪拌反応装置4の出口に接続されており、凝集反応後の混合液をサンプリングできるようになっている。なお、図示はしていないが、原水サンプリング用電磁弁19の先は原水をサンプリングできるようになっており、上澄水サンプリング用電磁弁20の先は沈殿槽のトラフの処理水をサンプリングできるようになっている。コンピュータ23にはPCカード24が装着され、PCカードを介して、デジタル出力とアナログ→デジタル変換とデジタル→アナログ変換を行い、電磁弁のオンオフ操作や真空ポンプの作動を操作し、濁度計変換器25や圧力センサー22の測定値をコンピュータに取り込み、コンピュータ23からの制御量を凝集剤添加ポンプのインバータ8,9に出力する。
In FIG. 2, the structural example of the precipitation separation operation measurement management apparatus of this invention is shown.
The
濁度計は光の透過や反射による光式汚泥濃度計や超音波式濃度計やマイクロ波濃度計などが使用できるが、凝集反応は上澄液の清澄を目的とすることが多いので、低濁度を測定できる濃度計が好ましい。本実施形態では構造の最も簡単なレーザー光の透過による光式汚泥濃度計を例に説明する。またサンプリングする方法は上記実施例のように真空ポンプと電磁弁と圧力センサーの組み合わせでなく、揚水ポンプとレベルセンサーの組み合わせでもよい。 The turbidimeter can be an optical sludge densitometer based on light transmission or reflection, an ultrasonic densitometer, or a microwave densitometer, but the agglomeration reaction is often aimed at clarifying the supernatant, so it is low. A densitometer that can measure turbidity is preferred. In the present embodiment, an optical sludge densitometer using the simplest laser beam transmission structure will be described as an example. Further, the sampling method may be a combination of a pump and a level sensor instead of a combination of a vacuum pump, a solenoid valve and a pressure sensor as in the above embodiment.
次に測定管理装置10の操作について説明する。
静置沈殿容器11を洗浄後、洗浄水を排出した状態からスタートする。電磁弁を全て閉じて、静置沈殿容器11を密閉化した状態から、真空ポンプ12を作動し、静置沈殿容器11内を設定圧P1まで減圧する。次に凝集反応後混合液サンプリング用電磁弁18を開き、凝集反応後混合液を吸引する。吸引により静置沈殿容器11の圧力は変化するが、圧力P2になった時点で凝集反応後混合液サンプリング用電磁弁18を閉じる。吸引量と空間容積V0とP1、P2は温度変化がない場合、式1の関係があるので、圧力センサー22の測定値をコンピュータに取り込んで、コンピュータからデジタル出力で電磁弁を操作することにより任意の量を吸引できる。
吸引量=V0(1-P1/P2)・・・・・・・・(1)
吸引後、大気開放電磁弁13と排水電磁弁21を開き、静置沈殿容器11内の液を排出する。この操作を必要回数繰り返し、緩速攪拌反応装置4の出口から静置沈殿容器11までの配管内に滞留している液を新鮮な液に置換する。以後この操作を置換工程と称す。置換工程終了後、ただちに真空ポンプ12を作動し、静置沈殿容器11内を設定圧P1まで減圧にしたのち、凝集反応後混合液サンプリング用電磁弁18を開き、凝集反応後混合液を吸引し、静置沈殿容器11に設定量の凝集反応後の混合液をサンプリングする。サンプリングが終了したら、大気開放電磁弁13を開き、静置沈殿容器11内を大気圧にして設定されたt時間静置する。静置により、凝集反応後混合液は沈殿汚泥と上澄液に分離する。図2の静置沈殿容器11は沈殿汚泥と上澄液に分離した状態を示す。t時間経過後、大気開放電磁弁13を閉じ、排出流量制御電磁弁14と排水電磁弁21を開く。凝集反応後混合液は排出流量制御オリフィス15の空気抵抗にしたがって、ほぼ一定の低流速で排出ライン経由排水電磁弁21から排出される。排出にしたがって静置沈殿容器の液面レベルと汚泥界面レベルは相対位置をほぼ保ちながら低下していく。排出流量制御オリフィス15は予め、静置沈殿容器の液面レベルと汚泥界面レベルの相対位置がほぼ保ちながら低下する排出流量になるようにオリフィスの形状を設定しておく。静置沈殿容器の形状や凝集汚泥の質により多少の違いがあるが、概ね液面レベルの低下速度を15cm/min程度以下にすれば液面レベルと汚泥界面レベルの相対位置はほぼ保てる。排出液は排出ラインに設定した透過光式濁度計17で透過光強度を測定し、経過時間による変化をコンピュータ23に取り込む。液の排出終了は透過光強度の解析または設定経過時間で判定し、排出流量制御電磁弁14と排水電磁弁21を閉じる。コンピュータ23に取り込んだ透過光強度の変化データを後述のように解析し、汚泥界面が通過する時間を検出し、排出液の排出速度と沈殿汚泥界面が通過する時間から沈殿汚泥のスラッジボリュームを算出し、また、汚泥界面の通過時間以前の圧密汚泥相通過時のデータから圧密程度を判定し、汚泥界面の通過時間以後の上澄液相通過時のデータから上澄液の濁度を計測する。
Next, the operation of the
After the stationary sedimentation container 11 is washed, the process starts from a state in which the washing water is discharged. From the state where all the solenoid valves are closed and the stationary sedimentation container 11 is sealed, the
Suction volume = V0 (1-P1 / P2) (1)
After the suction, the air
排出液の排出速度は液の粘度や液面レベルやオリフィスの形状や排水パイプの抵抗などで決まる。オリフィスの形状や排水パイプの抵抗は装置特性なので、凝集混合液や原水や上澄液ごとに、予め排出時間と排出量を測定しておけば、概略の設定はできる。図16に排出時間と排出流速f1と積算排出量f2の関係を示す。オリフィスの汚れや排水パイプの汚れ、温度など、測定ごとに変化し、わずかに排出流速に影響する差は請求項5の操作で補正可能である。もちろん液を排出する手段としては、オリフィスを使用せずに、定量ポンプで排出してもよいし、定吐出量のエアポンプで容器内を加圧して押し出すことも可能である。 The discharge speed of the discharged liquid is determined by the liquid viscosity, liquid level, orifice shape, drain pipe resistance, and the like. Since the shape of the orifice and the resistance of the drainage pipe are characteristics of the device, if the discharge time and discharge amount are measured in advance for each of the flocculated liquid mixture, raw water, and supernatant liquid, an approximate setting can be made. FIG. 16 shows the relationship between the discharge time, the discharge flow rate f1, and the integrated discharge amount f2. Differences that vary from measurement to measurement, such as the contamination of the orifice, the contamination of the drain pipe, and the temperature, and slightly affect the discharge flow rate can be corrected by the operation of claim 5. Of course, as a means for discharging the liquid, without using an orifice, the liquid may be discharged by a metering pump, or the inside of the container may be pressurized and pushed out by a constant discharge amount air pump.
原水が沈殿槽に入る前に、凝集剤を添加して濁質または浮遊固形物をフロック化する処理や曝気などの処理を行う場合(請求項2に対応)は、真空ポンプ12と原水サンプリング用電磁弁19を使って置換工程をおこなったのち、原水をサンプリング、排出し、透過光式濁度計17で原水通過時の透過光強度を測定し、濁度を計測する。
When raw water enters the sedimentation tank, when flocculant is added to flocculate turbidity or suspended solids, or when processing such as aeration is performed (corresponding to claim 2), the
請求項3に対応する操作を行う場合は、真空ポンプ12と上澄水サンプリング用電磁弁20を使って置換工程をおこなったのち、沈殿槽トラフから処理水をサンプリング、排出し、透過光式濁度計17で処理水通過時の透過光強度を測定し、濁度を計測する。
When performing the operation corresponding to claim 3, after performing the replacement process using the
透過光式濁度計における透過光強度Yと濁度の関係は、濁度0のブランク液の透過光強度をY0として(2)式を吸光度とすると図3のG1の区間で示すように濁度またはSSと吸光度は低濁度範囲で(3)式のように直線関係にあるので、精度良く濁度を計測できる。濁度0のブランク液は、洗浄水通過時の透過光強度としても実用上問題ない。
吸光度=log(Y0/Y)・・・・・・・・(2)
濁度=係数×吸光度・・・・・・(3)
The relationship between the transmitted light intensity Y and the turbidity in the transmitted light turbidimeter is as shown in the section G1 in FIG. 3 where the transmitted light intensity of the blank liquid with
Absorbance = log (Y 0 / Y) (2)
Turbidity = Coefficient x Absorbance (3)
上記一連の操作をおこなったのち、図示していないが、洗浄水を吸引し、静置沈殿容器11を洗浄することが好ましい。操作時間は概ね、凝集反応後混合液の測定は約15分、原水濁度測定に5分、処理水濁度測定に5分、洗浄に3分程度である。この操作を繰り返すことで、ほぼ20分から30分ごとに測定が可能で、実用上、常時凝集状態を測定でき、そのデータをもとに、凝集剤添加量を適正に制御できる。
請求項2,3を行う場合、測定の順番は、原水濁度測定→凝集反応後混合液の測定→処理水濁度測定→洗浄が凝集沈殿操作の流れと合致し、好ましい。
After performing the above series of operations, although not shown, it is preferable to suck the washing water and wash the stationary precipitation container 11. The operation time is generally about 15 minutes for measuring the mixed solution after the agglutination reaction, 5 minutes for measuring the raw water turbidity, 5 minutes for measuring the treated water turbidity, and about 3 minutes for washing. By repeating this operation, it is possible to measure approximately every 20 to 30 minutes, and in practice, the state of aggregation can be measured at all times, and the amount of flocculant added can be appropriately controlled based on the data.
When performing
図4は凝集状態良好な凝集反応後混合液の場合の透過光強度の変化の例を示す図である。また図5はそのときの排出直前の静置沈殿容器内の分離状態を表す図である。
図4のt1区間は圧密状態の沈殿汚泥相が通過しているときの透過光強度の変化である。
t2区間は汚泥界面が通過しているときの透過光強度の変化である。t3区間は上澄相が通過しているときの透過光強度の変化である。t4区間は排出が終了したときの透過光強度の変化である。
汚泥界面通過時はt2区間のように透過光強度は急激に小→大へ大きく変化することから容易に解析できる。例えば、変化曲線の微分をとれば、図6のようになり、ピークが変化の中心になるので、その点を汚泥界面通過時刻tsと判定できる。排出時間と排出量の関係は予めコンピュータに記憶してあり、tsから汚泥界面通過までのスラッジボリュームが計算できる。SV=100×スラッジボリューム/サンプリング量とすればSVは凝集性能を判定する重要な指標となる。ts以前のt1区間は圧密汚泥相が通過しているときの透過光強度であるが、一般に透過光式濁度計では、透過率と濁度(SS)の関係が直線関係範囲を超え、図3のG2の領域になるため、SSの定量精度は悪く、SSの定量値から圧密性を判定するのは難しい。ts以後のt3区間は上澄液相が通過しているときの透過光強度であり、t3区間の安定領域の透過光強度から上澄液の濁度が測定でき、凝集性能を判定する重要な指標となる。
FIG. 4 is a diagram showing an example of a change in transmitted light intensity in the case of a mixed solution after agglomeration reaction having a good aggregation state. FIG. 5 is a view showing a separation state in the stationary sedimentation container immediately before the discharge at that time.
The t1 interval in FIG. 4 is a change in transmitted light intensity when the consolidated sludge phase is passing.
The t2 interval is a change in transmitted light intensity when the sludge interface passes. The t3 interval is a change in transmitted light intensity when the supernatant phase passes. The t4 interval is a change in transmitted light intensity when the discharge is completed.
When passing through the sludge interface, the transmitted light intensity changes abruptly from small to large as in the t2 interval, and can be easily analyzed. For example, if the change curve is differentiated, it becomes as shown in FIG. 6 and the peak becomes the center of change, so that point can be determined as the sludge interface passage time ts. The relationship between the discharge time and the discharge amount is stored in advance in a computer, and the sludge volume from ts to the sludge interface passage can be calculated. If SV = 100 × sludge volume / sampling amount, SV is an important index for determining the agglomeration performance. The t1 interval before ts is the transmitted light intensity when the compacted sludge phase is passing, but generally in the transmitted light turbidimeter, the relationship between transmittance and turbidity (SS) exceeds the linear relationship range, Since it is in the G2 region of 3, the SS quantitative accuracy is poor, and it is difficult to determine the compaction from the SS quantitative value. The t3 interval after ts is the transmitted light intensity when the supernatant liquid phase is passing, and the turbidity of the supernatant can be measured from the transmitted light intensity of the stable region in the t3 interval, which is important for judging the aggregation performance. It becomes an indicator.
図7は沈殿汚泥の一部が浮上した場合の透過光強度の変化の例を示す図である。また図8はそのときの排出直前の静置沈殿容器内の分離状態を表す図である。
変化曲線の微分をとれば、図9のように沈降汚泥の界面通過時はプラスのピークとなり、浮上汚泥の界面通過時はマイナスのピークとなるので、沈殿汚泥界面通過時刻ts、沈殿浮上汚泥界面通過時刻tfが判定でき、排出時間と排出量の関係からスラッジボリュームが計算できる。汚泥の浮上現象は汚泥に細かい気泡が付着して浮力となって浮上するものであるが、気泡の発生原因や汚泥への付着力は、凝集剤添加量の他、装置特性や原水の性状など複雑な要因が絡むので、凝集剤の添加量制御には因果関係を解明する必要があるが、少なくとも沈殿槽での沈殿分離性能には大きく影響するものである。また活性汚泥処理に
おいては、沈殿槽内で脱窒反応がおきると、窒素ガスなどが発生し、汚泥浮上の大きなトラブルとなる可能性があるので、この現象を早期に測定できることの意義は大きい。
FIG. 7 is a diagram illustrating an example of a change in transmitted light intensity when part of the precipitated sludge floats. FIG. 8 is a view showing a separation state in the stationary sedimentation container immediately before the discharge at that time.
If the derivative of the change curve is taken, as shown in FIG. 9, when the sedimentation sludge passes through the interface, it becomes a positive peak, and when the floatation sludge passes through the interface, it becomes a negative peak. The passage time tf can be determined, and the sludge volume can be calculated from the relationship between the discharge time and the discharge amount. The sludge levitation phenomenon is caused by fine bubbles adhering to the sludge and floating as buoyancy.The cause of bubbles and the adhesion to sludge are not only the amount of flocculant added, but also the characteristics of the equipment and the properties of raw water. Since complicated factors are involved, it is necessary to elucidate the causal relationship in controlling the amount of flocculant added, but it greatly affects at least the precipitation separation performance in the settling tank. In the activated sludge treatment, if a denitrification reaction occurs in the sedimentation tank, nitrogen gas and the like are generated, which may cause a serious problem of sludge floating. Therefore, it is significant that this phenomenon can be measured at an early stage.
次に請求項4に対応する操作の説明をおこなう。
図10は圧密性の悪い凝集反応後混合液の場合の透過光強度の変化の例を示す図である。また図11はそのときの排出直前の静置沈殿容器内の分離状態を表す図である。このときの透過光強度変化の特徴は、前述と同様の解析で汚泥界面通過時間tsを特定し、それ以前のt1区間の透過光強度が図4の場合のようなスムーズな変化ではなく、中心値に対しバラツクことである。この現象は、圧密性の悪い汚泥の場合、静置状態では凝集汚泥同士がくっつきあっているものの、液の排出の際に汚泥相が下に引っ張られて小さなブロックに分離し、その空間に上澄液が入り込んだ状態で(図11参照)、濁度計のセンサー部を通過するため、生じる現象である。圧密性が悪ければ悪いほど、この現象が顕著になり、バラツキが大きくなるので、バラツキの大きさで圧密性を評価できる。
このような場合には、圧密汚泥が膨潤するので、汚泥界面通過時間tsから算出したSV値は静置状態におけるSV値より若干大きな値となるが、圧密性が悪い場合にはSV値がより大きくなり、評価は同じ方向になるので、判定の支障にはならない。
Next, an operation corresponding to claim 4 will be described.
FIG. 10 is a diagram showing an example of a change in transmitted light intensity in the case of a mixed solution after agglomeration reaction having poor compactness. Moreover, FIG. 11 is a figure showing the isolation | separation state in the stationary sedimentation container immediately before discharge | emission at that time. The characteristic of the transmitted light intensity change at this time is that the sludge interface passage time ts is specified by the same analysis as described above, and the transmitted light intensity in the previous t1 section is not a smooth change as in FIG. It is a variation to the value. In the case of sludge with poor compaction, the coagulated sludge adheres in the stationary state, but when the liquid is discharged, the sludge phase is pulled down and separated into small blocks, This is a phenomenon that occurs because the liquid passes through the sensor part of the turbidimeter with the clear liquid entering (see FIG. 11). The worse the compactness, the more pronounced this phenomenon becomes, and the larger the variation, so the compactness can be evaluated by the size of the variation.
In such a case, since the consolidated sludge swells, the SV value calculated from the sludge interface passage time ts is slightly larger than the SV value in the stationary state, but if the compactness is poor, the SV value is higher. Since it becomes larger and the evaluation is in the same direction, it does not hinder the judgment.
図12は圧密性の非常に良い凝集反応後混合液の場合の透過光強度の変化から圧密性を評価する具体例を示す図である。図の○点は透過光強度の変化を1秒毎にサンプリングした透過光強度値である。汚泥相が通過している時間範囲θ秒間の実線は、排出時間を説明変量Xとし、その時間における透過光強度値を目的変量Yして、単回帰分析をした結果の単回帰直線Y=b1・X+b0である。バラツキの大きさは、たとえば単回帰直線の計算値からの残差εiの2乗の積和Σεi 2をθで割って平方根をとった単位時間当たりの誤差σで評価できる。圧密性の非常に良い凝集反応後混合液の沈殿汚泥相ではバラツキは小さい、図12のσ=17である。 FIG. 12 is a diagram showing a specific example in which the compactness is evaluated from the change in transmitted light intensity in the case of a mixed liquid after agglomeration reaction with very good compaction. The circles in the figure are transmitted light intensity values obtained by sampling changes in transmitted light intensity every second. The solid line in the time range θ seconds in which the sludge phase passes is the simple regression line Y = b1 as a result of the single regression analysis with the discharge time as the explanatory variable X and the transmitted light intensity value at that time as the target variable Y. -X + b0. The size of the variation can be evaluated by, for example, an error σ per unit time obtained by dividing the squared product sum Σε i 2 of the residual ε i from the calculated value of the single regression line by θ. In the precipitated sludge phase of the mixed liquid after the coagulation reaction with very good compaction, the variation is small, σ = 17 in FIG.
図13は圧密性の比較的良い凝集反応後混合液の場合の透過光強度の変化から圧密性を評価する具体例を示す図である。図の○点および汚泥相が通過している範囲の実線は、前述と同様である。図13のバラツキは図12より大きくσ=64である。 FIG. 13 is a diagram showing a specific example in which the compactness is evaluated from a change in transmitted light intensity in the case of a mixed liquid after agglomeration reaction with relatively good compaction. The circles in the figure and the solid line in the range through which the sludge phase passes are the same as described above. The variation in FIG. 13 is larger than that in FIG. 12 and σ = 64.
図14は圧密性の悪い凝集反応後混合液の場合の透過光強度の変化から圧密性を評価する具体例を示す図である。図の○点および汚泥相が通過している範囲の実線は、前述と同様である。図14のバラツキは、非常に大きくσ=160である。 FIG. 14 is a diagram showing a specific example in which the compaction is evaluated from the change in transmitted light intensity in the case of the mixed solution after the aggregation reaction having poor compaction. The circles in the figure and the solid line in the range through which the sludge phase passes are the same as described above. The variation in FIG. 14 is very large and σ = 160.
図15は同じ原水に対する凝集剤添加量と上澄液濁度、SV、圧密性の関係を示す図である。図15では圧密性=1/σとして図示する。図に示すように、上澄液の濁度は凝集剤添加量が多ければ多いほど低下し、良好な処理水が得られるが、適正量を超えると、あまり濁度は低下しなくなる。またSVは増大し圧密性は悪くなる。適正量を超える範囲では、SVの変化より本発明による圧密性評価のほうが変化が大きく、傾向が明確になる利点がある。またSVは原水濁度と凝集剤添加量と圧密性に影響されるので、原水の濁度が変化する場合には、SVの変化から圧密性を判断することは難しくなる。凝集剤添加量を適正量に制御する場合、凝集剤の不足は上澄液濁度から容易に判断できるが、過剰の場合は上澄液濁度は変化が少なく判断が難しくなるが、本発明の圧密性評価法を使えば、原水の変動があっても適切に評価できる大きな効果がある。圧密性はSV値とともに沈殿分離操作では重要な指標であり、実際の沈殿槽内のようにわずかな流動があるなかでの沈降性と関連が強い。また活性汚泥処理で糸状菌によるバルキングや沈殿槽で脱窒がおきると圧密性が著しく低下する減少があり、圧密性を評価できる意義は大きい。 FIG. 15 is a graph showing the relationship between the amount of flocculant added to the same raw water, supernatant turbidity, SV, and compactness. In FIG. 15, the consolidation is shown as 1 / σ. As shown in the figure, the turbidity of the supernatant decreases as the amount of the flocculant added increases, and a good treated water can be obtained. However, when the amount exceeds the appropriate amount, the turbidity does not decrease so much. Also, SV increases and the compactness deteriorates. In a range exceeding the proper amount, the compactness evaluation according to the present invention has a larger change than the change in SV, and there is an advantage that the tendency becomes clear. In addition, since SV is affected by the raw water turbidity, the amount of coagulant added, and the compactness, when the turbidity of the raw water changes, it is difficult to determine the compactness from the change in SV. When the amount of flocculant added is controlled to an appropriate amount, deficiency of flocculant can be easily determined from the supernatant turbidity, but in the case of excess, the supernatant turbidity changes little and is difficult to judge. If this method is used, there is a great effect that can be properly evaluated even if there is a fluctuation in the raw water. Consolidation is an important indicator in the precipitation separation operation together with the SV value, and is strongly related to sedimentation in the presence of slight flow as in an actual precipitation tank. Moreover, if denitrification occurs in bulking by a filamentous fungus or a sedimentation tank in activated sludge treatment, the compactness is significantly reduced, and it is significant to evaluate the compaction.
次に請求項5に対応する実施形態について説明する。図4において濁度計センサーのセルに液がなくなりセルの空隙に空気がはいったときの透過光強度L0は、散乱のため、セルに上澄液が充満しているときの透過光強度L2より低下する。液の排出時、汚泥の浮上がない場合でも、液の排出が終了直前では静置沈殿容器の底部のテーパー部分に付着堆積している汚泥が液の流れで洗いながされるので、透過光強度は一旦低下してから排出が終了する。このため液が排出完了となる近傍の変化は、図4のt3の終わりからt4にかけての変化となる。これを微分した変化は、図6のt3の終わりからt4にかけての変化となり、マイナスのピークのあとプラスのピークとなることから検出できる。テーパー部分に汚泥の付着堆積がほとんどない場合はプラスのピークが小さくなり、ほとんど目立たなくなる場合もあるが、マイナスのピークは残る。セルの空隙に空気がはいったときの透過光強度L0はあらかじめ測定可能であり、コンピュータに記憶しておくことで、微分の変化でピークを検出後、図4のt3の終わりからt4の測定値でL0程度の値で一定になれば、排出完了と判断できる。 Next, an embodiment corresponding to claim 5 will be described. In FIG. 4, the transmitted light intensity L0 when the cell of the turbidimeter sensor runs out of air and the air enters the cell gap is less than the transmitted light intensity L2 when the cell is full of supernatant due to scattering. descend. Even if there is no sludge floating when the liquid is discharged, the sludge deposited and deposited on the tapered portion of the bottom of the stationary sedimentation vessel is washed away by the flow of liquid just before the liquid discharge ends, so the transmitted light intensity is Once it is lowered, the discharge ends. Therefore, a change in the vicinity where the liquid is completely discharged is a change from the end of t3 to t4 in FIG. A change obtained by differentiating this is a change from the end of t3 to t4 in FIG. 6 and can be detected from a negative peak followed by a positive peak. When there is almost no sludge deposit on the taper portion, the positive peak becomes small and it may become almost inconspicuous, but the negative peak remains. The transmitted light intensity L0 when air enters the cell gap can be measured in advance. By storing it in the computer, the peak is detected by the change in the differential, and then the measured value of t4 from the end of t3 in FIG. If the value becomes constant at about L0, it can be determined that the discharge is completed.
液の排出時刻を自動で検出できれば、圧力値から真空ポンプと電磁弁を操作して、サンプル液を任意量チャージし、チャージした量に対し、排出時間を自動測定すれば、排出流量の検量線を簡単に作成でき、また測定中に一定量チャージした量に対し、液の排出時間を測定することで、固液混合液の性状変化による排出速度の補正をすることが可能であり、また詰まりなどの装置異常の検知も可能になる。 If the discharge time of the liquid can be detected automatically, operate the vacuum pump and solenoid valve from the pressure value, charge an arbitrary amount of sample liquid, and automatically measure the discharge time for the charged amount, then the discharge flow rate calibration curve It is possible to correct the discharge speed by changing the property of the solid-liquid mixture by measuring the discharge time of the liquid with respect to the amount charged constant amount during measurement, and clogging It is also possible to detect device abnormalities.
本発明の方法を使用すれば、凝集剤添加量を適正に制御できる。基本は請求項1および請求項4で取得できる上澄液濁度とSVと汚泥相の圧密性の情報である。沈殿槽の上澄水濁度を制御に使用すると、凝集沈殿でも1時間から数時間の応答遅れがあるため補正が必要で、変動の大きい原水の場合には適切に制御することは容易なことではないが、上澄液濁度は実際の沈殿槽の上澄水濁度との相関性は極めて強く、サンプリング後15分程度で測定できるので応答遅れの誤差は大幅に軽減される。また請求項2により原水の濁度情報が得られれば、上澄液濁度とSVと汚泥相の圧密性から計算した凝集剤適正添加量を基本にして原水の濁度情報でフィードフォワード的に補正を加えることができる。また請求項3で沈殿槽の上澄水濁度情報が得られれば、制御の結果を検証することが可能となり、制御の信頼性が増す。実施例では、濁度計変換器25の測定値をコンピュータ23に取り込み、コンピュータ23で制御量を演算し、PCカードでデジタル→アナログ変換して凝集剤添加ポンプのインバータ9,10に制御量を出力し、凝集剤添加量を制御したり、デジタル出力PCカードで警報を発生させる。
If the method of this invention is used, the addition amount of a coagulant | flocculant can be controlled appropriately. The basis is information on the supernatant turbidity, SV, and sludge phase consolidation that can be obtained in claims 1 and 4. If the supernatant water turbidity is used for the control in the sedimentation tank, there is a response delay of 1 hour to several hours even in the case of coagulation sedimentation, so correction is necessary.In the case of raw water with large fluctuations, it is not easy to control appropriately. Although there is no correlation between the supernatant turbidity and the supernatant turbidity in the actual sedimentation tank, it can be measured in about 15 minutes after sampling, so the response delay error is greatly reduced. In addition, if turbidity information of raw water is obtained according to
本発明は、凝集沈殿や活性汚泥の沈殿での固液分離などの重力による沈殿分離に限らず、凝集浮上や汚泥脱水のように凝集作用がキーポイントになる操作の評価や最適化にも利用可能である。 The present invention is not limited to precipitation separation by gravity, such as solid-liquid separation in coagulation sedimentation and activated sludge sedimentation, but is also used for evaluation and optimization of operations where coagulation action is a key point such as coagulation flotation and sludge dewatering Is possible.
1 原水ポンプ
2 急速攪拌反応装置
3 無機凝集剤添加ポンプ
4 緩速攪拌反応装置
5 高分子凝集剤添加ポンプ
6 凝集沈殿槽
7 沈殿槽トラフ
8、9 インバータ
10 測定管理装置
11 静置沈殿容器
12 真空ポンプ
13 大気開放電磁弁
14 排出流量制御電磁弁
15 排出流量制御オリフィス
16 排出ライン
17 透過光式濁度計
18 凝集反応後混合液サンプリング用電磁弁
19 原水サンプリング用電磁弁
20 上澄水サンプリング用電磁弁
21 排出ライン経由排水電磁弁
22 圧力センサー
23 コンピュータ
24 カード
25 濁度計変換器
DESCRIPTION OF SYMBOLS 1
Claims (6)
沈殿槽に入る前の固液混合液を静置沈殿容器に設定量チャージする第一の工程と、
設定時間静置後、静置沈殿容器の液面レベルと汚泥界面レベルの相対位置を維持しつつ液を排出する第二の工程と、
排出している間の排出経過時間と排出液の浮遊固形物または濁度を計測する第三の工程と、
計測値から少なくとも沈殿汚泥界面が通過する時間を検出し、排出液の排出速度と沈殿汚泥界面が通過する時間から沈殿汚泥のスラッジボリュームを算出する第四の工程と、
沈殿汚泥界面が通過した後の計測値から上澄液相の濁度を計測する第五の工程と、
を含むことを特徴とする沈殿分離操作測定管理方法。 In a water treatment system that precipitates and separates turbidity or suspended solids by standing waste water containing suspended turbidity or suspended solids (hereinafter referred to as raw water),
A first step of charging a set amount of the solid-liquid mixture before entering the precipitation tank into a stationary precipitation vessel;
A second step of discharging the liquid while maintaining the relative position between the liquid level of the stationary precipitation container and the sludge interface level after standing for a set time;
A third step of measuring the elapsed discharge time during discharge and the suspended solids or turbidity of the effluent;
A fourth step of detecting at least the time during which the precipitated sludge interface passes from the measured value, and calculating the sludge volume of the precipitated sludge from the discharge speed of the discharged liquid and the time through which the precipitated sludge interface passes;
A fifth step of measuring the turbidity of the supernatant liquid phase from the measured value after passing through the precipitated sludge interface;
A method for measuring and managing a precipitate separation operation, comprising:
静置沈殿容器に原水をチャージする工程と、該原水の浮遊固形物または濁度を計測する工程と、を含むことを特徴とする請求項1に記載の沈殿分離操作測定管理方法。 Before raw water enters the sedimentation tank, when flocculant or the like is added to flocculate turbidity or suspended solids or a process such as aeration, in addition to the first step,
The precipitation separation operation measurement management method according to claim 1, comprising a step of charging raw water in a stationary sedimentation vessel and a step of measuring suspended solids or turbidity of the raw water.
沈殿槽に入る前の固液混合液を静置沈殿容器に設定量チャージする手段と、
設定時間静置後、静置沈殿容器の液面レベルと汚泥界面レベルの相対位置を維持しつつ液を排出する手段と、
排出している間の排出経過時間と排出液の浮遊固形物または濁度を計測する手段と、
計測値から少なくとも沈殿汚泥界面が通過する時間を検出し、排出液の排出速度と沈殿汚泥界面が通過する時間から沈殿汚泥のスラッジボリュームを算出する手段と、
沈殿汚泥界面が通過した後の計測値から上澄液相の濁度を計測する手段と、
を備えて成ることを特徴とする沈殿分離操作測定管理装置。 Precipitation separation operation measurement management used in a water treatment system that precipitates turbid or suspended solids by allowing raw water to stand,
Means for charging a set amount of the solid-liquid mixture before entering the precipitation tank into the stationary precipitation container;
Means for discharging the liquid while maintaining the relative position between the liquid level of the stationary sedimentation container and the sludge interface level after standing for a set time;
Means for measuring the elapsed time of discharge during discharge and the suspended solids or turbidity of the effluent,
Means for detecting at least the time during which the precipitated sludge interface passes from the measured value, and calculating the sludge volume of the precipitated sludge from the discharge rate of the effluent and the time through which the precipitated sludge interface passes;
Means for measuring the turbidity of the supernatant liquid phase from the measured value after passing through the sedimentary sludge interface;
A precipitation separation operation measurement management device comprising:
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004371235A JP4180563B2 (en) | 2004-12-22 | 2004-12-22 | Precipitation separation operation measurement management method and apparatus |
PCT/JP2005/005929 WO2006067873A1 (en) | 2004-12-22 | 2005-03-29 | Method of measuring and managing sedimentation separation operation and apparatus therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004371235A JP4180563B2 (en) | 2004-12-22 | 2004-12-22 | Precipitation separation operation measurement management method and apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006175357A JP2006175357A (en) | 2006-07-06 |
JP4180563B2 true JP4180563B2 (en) | 2008-11-12 |
Family
ID=36601485
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004371235A Expired - Fee Related JP4180563B2 (en) | 2004-12-22 | 2004-12-22 | Precipitation separation operation measurement management method and apparatus |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4180563B2 (en) |
WO (1) | WO2006067873A1 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101441207B (en) * | 2008-12-23 | 2012-07-11 | 浙江大学 | Integrated apparatus for researching sediment sampling and laminated gradient |
JP5201372B2 (en) * | 2010-05-27 | 2013-06-05 | 栗田工業株式会社 | Sludge characterization device |
CN102914634B (en) * | 2012-10-17 | 2015-07-01 | 中国水产科学研究院南海水产研究所 | Determining system for flux of bottom mud nutritive salt under condition of simulating natural environment |
KR101364726B1 (en) | 2013-09-06 | 2014-02-20 | 김철 | The interface detecting of radio frequency laser |
CN105548018B (en) * | 2015-11-30 | 2018-11-06 | 临沂大学 | The measuring device and measuring method of solid content in a kind of solid-liquid system |
JP7056825B2 (en) * | 2018-03-13 | 2022-04-19 | 住友重機械エンバイロメント株式会社 | Solid-liquid separator |
JP6949770B2 (en) * | 2018-03-29 | 2021-10-13 | 水ing株式会社 | Coagulation sedimentation device and coagulation sedimentation method |
DE102018122808A1 (en) * | 2018-09-18 | 2020-03-19 | Voith Patent Gmbh | Control method of a cleaning device with heavy part separator |
WO2022034710A1 (en) * | 2020-08-12 | 2022-02-17 | 栗田工業株式会社 | Sampling device for coagulation treatment device, coagulation treatment device, and water treatment method |
JP7535958B2 (en) | 2021-02-16 | 2024-08-19 | 株式会社日水コン | Sewage treatment system and method for controlling sewage treatment |
CN113670838B (en) * | 2021-08-09 | 2022-08-05 | 力合科技(湖南)股份有限公司 | Method and system for measuring total phosphorus of high-turbidity sample, automatic water quality monitoring station, automatic water quality monitoring equipment and storage medium |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03284305A (en) * | 1990-03-30 | 1991-12-16 | Ebara Infilco Co Ltd | Control method for injecting flocculant |
JPH05345103A (en) * | 1992-06-12 | 1993-12-27 | Kawasaki Steel Corp | Precipitation pond operating method in wastewater treatment |
JP3631872B2 (en) * | 1997-01-28 | 2005-03-23 | 株式会社伊藤製作所 | Device for controlling the amount of flocculant added to the stock solution |
JP2000102703A (en) * | 1998-09-29 | 2000-04-11 | Mitsubishi Electric Corp | Flocculant injection controller |
JP4037615B2 (en) * | 2001-02-28 | 2008-01-23 | オルガノ株式会社 | Aggregation condition determination method |
-
2004
- 2004-12-22 JP JP2004371235A patent/JP4180563B2/en not_active Expired - Fee Related
-
2005
- 2005-03-29 WO PCT/JP2005/005929 patent/WO2006067873A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
JP2006175357A (en) | 2006-07-06 |
WO2006067873A1 (en) | 2006-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2006067873A1 (en) | Method of measuring and managing sedimentation separation operation and apparatus therefor | |
TWI585389B (en) | System and methods of determining liquid phase turbidity of multiphase wastewater | |
JP5208061B2 (en) | Flocculant injection control system | |
US8092688B2 (en) | Method of treating water by ballasted flocculation/settling, which includes a continuous measurement of the ballast, and corresponding installation | |
JP4862576B2 (en) | Aggregation apparatus and aggregation method | |
JP2008161809A (en) | Coagulant injection control system | |
JP5401087B2 (en) | Flocculant injection control method | |
JP5636263B2 (en) | Flocculant injection control system | |
JP4933473B2 (en) | Slurry circulation type coagulation sedimentation treatment apparatus and operation method thereof | |
JP4784241B2 (en) | Flocculant injection method and apparatus for water purification process | |
JP2007098287A (en) | Method for controlling operation of water purifying process | |
JP2538466B2 (en) | Method and apparatus for controlling coagulant injection | |
JP2009022865A (en) | Precipitation status measuring method in water treatment system | |
US20230295022A1 (en) | Sampling device for coagulation treatment device, coagulation treatment device, and water treatment method | |
JP5210948B2 (en) | Chemical injection control method for water purification plant | |
JP5579404B2 (en) | Apparatus and method for controlling flocculant injection rate | |
JP5571424B2 (en) | Method and apparatus for controlling the injection rate of flocculant in real time | |
JP3500606B2 (en) | How to determine the optimal coagulant injection amount | |
JP2023039098A (en) | Correction method of chemical feeding rate | |
KR20210067059A (en) | Coagulant controlling device for water treatment, method of controlling coagulant injection concentration using the same, and water treatment device comprising the same | |
JPH01139109A (en) | Flocculant injection controller in water purifying plant | |
CN118112084A (en) | Water plant PAC dosing control method and system based on SCD | |
JPH0321239B2 (en) | ||
JPS58180209A (en) | Method for controlling feeding of flocculating agent | |
JPH08132069A (en) | Treatment of metal-containing waste water |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080819 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080827 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4180563 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110905 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110905 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120905 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120905 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130905 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140905 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |