JP4180560B2 - Battery voltage measurement circuit - Google Patents

Battery voltage measurement circuit Download PDF

Info

Publication number
JP4180560B2
JP4180560B2 JP2004347874A JP2004347874A JP4180560B2 JP 4180560 B2 JP4180560 B2 JP 4180560B2 JP 2004347874 A JP2004347874 A JP 2004347874A JP 2004347874 A JP2004347874 A JP 2004347874A JP 4180560 B2 JP4180560 B2 JP 4180560B2
Authority
JP
Japan
Prior art keywords
cell
voltage
stage
cells
differential amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004347874A
Other languages
Japanese (ja)
Other versions
JP2006153780A (en
Inventor
貴幸 太田
雅紀 川元
裕司 蓑田
敏明 有吉
宜一 野本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Keihin Corp
Original Assignee
Honda Motor Co Ltd
Keihin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Keihin Corp filed Critical Honda Motor Co Ltd
Priority to JP2004347874A priority Critical patent/JP4180560B2/en
Priority to US11/285,319 priority patent/US7719284B2/en
Publication of JP2006153780A publication Critical patent/JP2006153780A/en
Application granted granted Critical
Publication of JP4180560B2 publication Critical patent/JP4180560B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Secondary Cells (AREA)

Description

本発明は、組電池の電圧を測定する電池電圧測定回路に関し、特に、燃料電池などのように多数のセルが直列に接続された組電池をスキャンしながらセル電圧を測定する電池電圧測定回路に関する。   The present invention relates to a battery voltage measuring circuit for measuring a voltage of an assembled battery, and more particularly to a battery voltage measuring circuit for measuring a cell voltage while scanning an assembled battery in which a large number of cells are connected in series such as a fuel cell. .

燃料電池は、水素を主成分とする燃料ガスと酸素とを電気化学的に反応させて起電力を発生させる電池である。このような燃料電池のセル電圧は1V程度であるので、一般的には、数百セルを直列に接続して一つの燃料電池スタックが構成されて高電圧(例えば、260V)で使用される。このとき、1枚のセルが極端に低い電圧の状態(例えば、0.5Vの状態)で燃料電池の発電が継続されると、その不調なセルが腐食して燃料電池全体の出力電圧を低下させたり、燃料電池の破損を至らしめることがある。したがって、燃料電池の運転中には、燃料電池スタックを構成する各セルを1枚ずつ又は複数枚ずつまとめて順次スキャンしながらセル電圧の測定・監視が行われている。つまり、燃料電池の運転中に1枚又は複数枚のセルが破損した場合は、該当セルの電圧が顕著に低下するため、セル電圧を常時測定し、監視していれば異常セルの発生が即座にわかるので、直ちに燃料電池の運転を停止して異常発生の検知遅れによる破損の拡大を未然に防止することができる。   A fuel cell is a cell that generates an electromotive force by electrochemically reacting a fuel gas mainly composed of hydrogen with oxygen. Since the cell voltage of such a fuel cell is about 1V, in general, one fuel cell stack is formed by connecting several hundred cells in series and used at a high voltage (for example, 260V). At this time, if the power generation of the fuel cell is continued with one cell in an extremely low voltage state (for example, a state of 0.5 V), the malfunctioning cell corrodes and the output voltage of the entire fuel cell is lowered. Or damage the fuel cell. Therefore, during operation of the fuel cell, the cell voltage is measured and monitored while scanning each cell constituting the fuel cell stack one by one or a plurality of cells sequentially. In other words, if one or more cells are damaged during operation of the fuel cell, the voltage of the corresponding cell is significantly reduced. Therefore, if the cell voltage is constantly measured and monitored, the occurrence of an abnormal cell is immediately observed. Therefore, it is possible to immediately stop the operation of the fuel cell and prevent the damage from expanding due to the detection delay of the abnormality.

そのため、燃料電池のセル電圧を測定する技術は従来より種々報告されている。図5は従来の電池電圧測定回路としての入力回路を示す図である。図5に示すように、燃料電池を構成するセルを複数のセル群に分割し、各セル群のうち、例えば第1ステージのスイッチS31,S32,S33,S34を同時にONにすると、第1ステージのセルC31,C32,C33の電圧が、それぞれ、入力回路30の差動増幅器D31,D32,D33によって検出されて、図示しないCPU(central processing unit)のA/D変換器へ送信され、CPUによって各セルの電圧が測定・監視される。次に、第1ステージのスイッチS31,S32,S33,S34を同時にOFFすると共に、第2ステージのスイッチS35,S36,S37,S38を同時にONすると、第2ステージのセルC34,C35,C36の電圧が、それぞれ、差動増幅器D31,D32,D33によって検出されて、図示しないCPUのA/D変換器へ送信され、CPUによって各セルの電圧が測定・監視される。このようにして、各ステージのスイッチ群を順次にON/OFFしながら群ごとにスキャンして行くと、燃料電池を構成する全てのセルの電圧を測定することができる。   For this reason, various techniques for measuring the cell voltage of a fuel cell have been reported. FIG. 5 is a diagram showing an input circuit as a conventional battery voltage measuring circuit. As shown in FIG. 5, when the cells constituting the fuel cell are divided into a plurality of cell groups and, for example, the switches S31, S32, S33, and S34 of the first stage are simultaneously turned on in each cell group, the first stage Are detected by differential amplifiers D31, D32, and D33 of the input circuit 30 and transmitted to an A / D converter of a CPU (central processing unit) (not shown). The voltage of each cell is measured and monitored. Next, when the switches S31, S32, S33, and S34 of the first stage are simultaneously turned OFF and the switches S35, S36, S37, and S38 of the second stage are simultaneously turned ON, the voltages of the cells C34, C35, and C36 of the second stage are turned on. Are detected by the differential amplifiers D31, D32, and D33 and transmitted to an A / D converter of a CPU (not shown), and the voltage of each cell is measured and monitored by the CPU. In this way, when scanning is performed for each group while the switch groups of each stage are sequentially turned ON / OFF, the voltages of all the cells constituting the fuel cell can be measured.

図6は、図5に示す入力回路におけるセルごとの測定電圧の極性を示す説明図である。すなわち、前記したように各ステージのセル群を順次スキャンして行くと、図6に示すように、いずれのステージにおいても各セルの電圧極性は同じ極性で各差動増幅器D31,D32,D33へ入力される。このため各差動増幅器D31,D32,D33は単電源(つまり、一方がグランドGNDで他方がプラス電源となるような一方向電源)を使用することができるので、差動増幅器D31,D32,D33の構成が簡素化される。なお、入力回路30の各ラインに構成されているフィルタF31,F32,F33はノイズを除去するための素子であり、バッファB31,B32,B33は各セルの検出電圧の波形を整形するための素子である。   FIG. 6 is an explanatory diagram showing the polarity of the measurement voltage for each cell in the input circuit shown in FIG. That is, when the cell group of each stage is sequentially scanned as described above, as shown in FIG. 6, the voltage polarity of each cell is the same polarity in any stage and is supplied to each differential amplifier D31, D32, D33. Entered. Therefore, each of the differential amplifiers D31, D32, D33 can use a single power supply (that is, a unidirectional power supply in which one is a ground GND and the other is a positive power supply), and therefore the differential amplifiers D31, D32, D33. The configuration is simplified. The filters F31, F32, and F33 formed on each line of the input circuit 30 are elements for removing noise, and the buffers B31, B32, and B33 are elements for shaping the waveform of the detection voltage of each cell. It is.

また、セルが多数直列に接続された組電池において、例えば、1組5個の複数セルに対応してそれらのセルごとにコンデンサを並列接続し、各セルに対応するスイッチを順次切り替えてゆくことによって各セルの電圧を対応するコンデンサに印加させ、各コンデンサの電圧を測定することによって組電池の全てのセル電圧の測定を行う、いわゆるフライングキャパシタ方式による組電池の電圧検出回路の技術が開示されている。この技術によれば回路構成を簡素化することができる(例えば、特許文献1参照)。さらに、複数の単電池が直列に接続されている組電池において、複数の切替手段を用いて単電池の電圧を順次測定して行く技術も開示されている。この技術によれば比較的簡単な構成で高精度に単電池の電圧を測定することができる(例えば、特許文献2参照)。
特開平2002−156392号公報(段落番号0051〜0058、及び図1参照) 特開平11−237455号公報(段落番号0018〜0024及び図1、図2参照)
Also, in a battery pack in which a large number of cells are connected in series, for example, a capacitor is connected in parallel for each cell corresponding to a plurality of five cells, and switches corresponding to each cell are sequentially switched. A voltage detection circuit technique for an assembled battery using a so-called flying capacitor method is disclosed, in which the voltage of each cell is applied to a corresponding capacitor and the voltage of each capacitor is measured to measure all cell voltages of the assembled battery. ing. According to this technique, the circuit configuration can be simplified (for example, see Patent Document 1). Furthermore, a technique is also disclosed in which, in an assembled battery in which a plurality of unit cells are connected in series, the voltage of the unit cells is sequentially measured using a plurality of switching means. According to this technique, the voltage of a single cell can be measured with high accuracy with a relatively simple configuration (see, for example, Patent Document 2).
JP-A-2002-156392 (see paragraph numbers 0051 to 0058 and FIG. 1) JP-A-11-237455 (see paragraph numbers 0018 to 0024 and FIGS. 1 and 2)

しかしながら、前記の図5に示すような入力回路では、多数のセルが直列に接続されているので、各セルの電圧を個別に測定するためにはセル数以上の個数のスイッチが必要となる。具体的には、各ステージの境界位置に存在するセルは前ステージのセルのラインをOFFにして次ステージのラインをONにするために2個のスイッチが必要となる。例えば、第2ステージの一方の境界位置に存在するセルC34はスイッチS34,S35の2個のスイッチが必要となり、第2ステージの他方の境界位置に存在するセルC36はスイッチS38,S39の2個のスイッチが必要となる。このことから、例えば、180個のセルが直列に接続されていて、3個のセルが1ステージで組み合わされている場合は、スイッチの個数は、181個にとどまらず、181+180÷3−1=240個も必要となる。このようなスイッチは通常は高耐圧用のフォトMOSスイッチを使用しているため、使用するスイッチ数が多くなれば、それだけ材料コストが嵩む結果となる。なお、1ステージのセル数を多くすれば、各ステージの境界位置に存在するセルに対応するスイッチ数を減らすことができるので、全体のスイッチ数を若干減少させることができる。しかし、1ステージのセル数を多くすれば、入力回路30のフィルタ、バッファ、差動増幅器などが増加してしまうので、結果として、入力回路すなわち電池電圧測定回路の材料費を高くしてしまう要因となる。   However, in the input circuit as shown in FIG. 5, since a large number of cells are connected in series, more switches than the number of cells are required to measure the voltage of each cell individually. Specifically, a cell existing at the boundary position of each stage requires two switches in order to turn off the cell line of the previous stage and turn on the line of the next stage. For example, the cell C34 existing at one boundary position of the second stage requires two switches S34 and S35, and the cell C36 existing at the other boundary position of the second stage is two switches S38 and S39. Switch is required. From this, for example, when 180 cells are connected in series and three cells are combined in one stage, the number of switches is not limited to 181 but 181 + 180 ÷ 3-1 = 240 are also required. Since such a switch normally uses a high-breakdown-voltage photoMOS switch, the more the number of switches used, the higher the material cost. If the number of cells in one stage is increased, the number of switches corresponding to the cells existing at the boundary position of each stage can be reduced, so that the total number of switches can be slightly reduced. However, if the number of cells in one stage is increased, the number of filters, buffers, differential amplifiers, etc. in the input circuit 30 will increase, resulting in an increase in the material cost of the input circuit, that is, the battery voltage measurement circuit. It becomes.

また、前記の特許文献1に開示された組電池の電圧検出回路は、スイッチによる回路構成は簡素化されるものの、各セルの電圧を印加するためのコンデンサをわざわざ設けなければならないので、結果としてコストアップの要因となる。さらに、前記の特許文献2に開示された組電池の電圧検出回路においても、切替手段の回路構成が複雑になるなどの問題がある。   In addition, the assembled battery voltage detection circuit disclosed in the above-mentioned Patent Document 1 requires a capacitor for applying the voltage of each cell, although the circuit configuration by the switch is simplified. This will increase costs. Further, the assembled battery voltage detection circuit disclosed in Patent Document 2 also has problems such as a complicated circuit configuration of the switching means.

本発明は、以上のような問題点に鑑みてなされたものであり、複数のセル電圧を同時に測定するときに、スイッチの個数を可能な限り削減して簡単な回路構成で効率的な測定を廉価に実現することができるような電池電圧測定回路を提供することを目的とする。   The present invention has been made in view of the above problems, and when measuring a plurality of cell voltages at the same time, the number of switches is reduced as much as possible to perform efficient measurement with a simple circuit configuration. An object of the present invention is to provide a battery voltage measurement circuit that can be realized at low cost.

本発明の電池電圧測定回路は、前記の目的を達成するために創案されたものであり、複数のセルが直列に接続された組電池のセル群をスキャンしながらセル群ごとに各セルの電圧を測定する電池電圧測定回路であって、各セルの電圧を出力する各信号ラインのそれぞれに直列に接続された複数の開閉手段と、セル群の両側の境界位置に存在する2系統の信号ラインを選択的に切り替えて接地させる切替手段と、セル群ごとの各セルに対応する各信号ラインに個別に接続されて各セルの電圧を検出する複数の電圧検出手段とを備える構成を採っている。このとき、切替手段の切替操作によって2系統の信号ラインのうち,いずれかの信号ラインが接地されるごとに、電圧検出手段は常に同一極性のセル電圧を検出することができる。   The battery voltage measurement circuit of the present invention was created to achieve the above-described object, and scans the cell group of the assembled battery in which a plurality of cells are connected in series, and the voltage of each cell group. Battery voltage measuring circuit for measuring a plurality of open / close means connected in series to each signal line for outputting the voltage of each cell, and two signal lines existing at the boundary positions on both sides of the cell group And a plurality of voltage detecting means for detecting the voltage of each cell individually connected to each signal line corresponding to each cell of each cell group. . At this time, each time one of the two signal lines is grounded by the switching operation of the switching means, the voltage detection means can always detect a cell voltage having the same polarity.

このような回路構成によって、セル群の両側の境界位置に存在する2系統の信号ラインに接続されるそれぞれの開閉手段は、隣接するセル群のとなり合う2個のセルで1個に共有化されるので、電池電圧測定回路におけるトータルの開閉手段の個数を必要最小限に低減させることができる。さらに、開閉手段を共有化したことによって、隣接するセル群の各セルの電圧を検出するとき、電圧検出手段に入力されるセル電圧は転極して(つまり、正極と負極が反転して)入力される。しかし、測定されるセル群が切り替わるごとにグランドに接続される信号ラインも切り替えられるので、見かけ上は、電圧検出手段には常に同一極性のセル電圧が入力されることになる。この結果、電圧検出手段を一方向電源の単電源で動作させることができる。   With such a circuit configuration, each switching means connected to the two signal lines existing at the boundary positions on both sides of the cell group is shared by two adjacent cells of the adjacent cell group. Therefore, the total number of switching means in the battery voltage measurement circuit can be reduced to the minimum necessary. Further, by sharing the opening / closing means, when detecting the voltage of each cell in the adjacent cell group, the cell voltage input to the voltage detecting means is reversed (that is, the positive electrode and the negative electrode are reversed). Entered. However, each time the cell group to be measured is switched, the signal line connected to the ground is also switched, so that apparently the cell voltage having the same polarity is always input to the voltage detection means. As a result, the voltage detecting means can be operated with a single power source of a unidirectional power source.

本発明の電池電圧測定回路によれば、セル電圧を測定するセル群ごとに隣接するセルの電圧極性を反転させることによって、各セル間のスイッチを共通化して部品点数を削減することができ、しかも、セル電圧の極性が反転しても、接地される信号ラインを切り替えることによって同一極性のセル電圧を検出することができるので、一方向電圧の単電源を用いて電圧測定を行うことが可能となる。その結果、単電源で動作するデバイス(例えば、差動増幅器など)を使用することができるので、電池電圧測定回路の材料費を大幅に低減させることができる。また、測定するセル群の極性が反転するごとに、そのセル群の両側の信号ラインが交互にグランドへ切り替え接続されるので、信号ラインのグランド切り替えを行わない場合に比べて、一度にスキャンできるセル数を2倍に増やすことができる。この結果、多チャンネルをより高速にスキャンすることができるので、燃料電池のように多数のセルが直列に接続されたセル群のセル電圧測定をより高速に行うことができる。   According to the battery voltage measuring circuit of the present invention, by inverting the voltage polarity of adjacent cells for each cell group for measuring the cell voltage, it is possible to reduce the number of parts by sharing a switch between the cells, Moreover, even if the polarity of the cell voltage is reversed, the cell voltage with the same polarity can be detected by switching the grounded signal line, so that voltage measurement can be performed using a single power supply with a unidirectional voltage. It becomes. As a result, since a device (for example, a differential amplifier) that operates with a single power source can be used, the material cost of the battery voltage measurement circuit can be significantly reduced. In addition, every time the polarity of the cell group to be measured is inverted, the signal lines on both sides of the cell group are alternately switched and connected to the ground, so that scanning can be performed at a time compared to when the signal lines are not switched to the ground. The number of cells can be doubled. As a result, since multiple channels can be scanned at a higher speed, the cell voltage measurement of a cell group in which a large number of cells are connected in series like a fuel cell can be performed at a higher speed.

《発明の概要》
本発明の電池電圧測定回路は、多数のセルが直列に接続された燃料電池において、複数のセルを一括測定する各ステージの境界位置にあるセルの信号ラインに設けたスイッチを共有化して1個にまとめることによって、全体のスイッチ数を削減する。さらに、スイッチを共有化して前ステージのセル群と次ステージのセル群のスキャンによってセルの逆電圧が入力回路の差動増幅器に入力されても、基準電位(グランド電位)が常に負電位の信号ラインとなるように、各ステージの境界位置にあるセルの負電位の信号ラインにスイッチを設けてグランドGNDに接続する。そして、測定ステージが切り替わるごとに、これらのスイッチを切り替えて負電位の信号ラインをグランドに落とすようにする。つまり、1検出ステップである1ステージのセル群の両端の信号ラインに切替スイッチを設け、セル群をスキャンするステージ(つまり、セル群)が切り替わるたびに、これらのスイッチをON/OFF切り替えすることにより、両端の信号ラインを交互にグランドGNDに接続させるようにする。
<< Summary of Invention >>
The battery voltage measuring circuit of the present invention is a fuel cell in which a large number of cells are connected in series, and one switch is provided by sharing a switch provided in a cell signal line at the boundary position of each stage for measuring a plurality of cells at once. To reduce the total number of switches. Furthermore, even if the switch is shared and the reverse voltage of the cell is input to the differential amplifier of the input circuit by scanning the previous stage cell group and the next stage cell group, the reference potential (ground potential) is always a negative potential signal. A switch is provided in the signal line of the negative potential of the cell at the boundary position of each stage so as to be a line, and connected to the ground GND. Each time the measurement stage is switched, these switches are switched to drop the negative potential signal line to the ground. That is, a switch is provided on the signal lines at both ends of one stage cell group, which is one detection step, and these switches are turned ON / OFF each time the stage for scanning the cell group (that is, the cell group) is switched. Thus, the signal lines at both ends are alternately connected to the ground GND.

これによって、いずれのステージのセル群をスキャンしても、入力回路の差動増幅器においては、測定基準となる作動増幅器の−入力端子が基準電位(グランド電位)として決定される。したがって、差動増幅器は、正負の両電源を必要とすることなく、単電源で正常動作を実現することができる。その結果、電池電圧測定回路全体のスイッチ数を削減することができると共に、差動増幅器の構成を簡素化することができる。さらに、1ステージのセル群の両端の信号ラインに切替スイッチを設けることによって、セル電圧を検出する信号ラインが断線しても、電圧検出が不能となるセル数を最小限に食い止めることができる。   Thus, regardless of which stage cell group is scanned, in the differential amplifier of the input circuit, the negative input terminal of the operational amplifier serving as the measurement reference is determined as the reference potential (ground potential). Therefore, the differential amplifier can achieve normal operation with a single power supply without requiring both positive and negative power supplies. As a result, the number of switches in the entire battery voltage measuring circuit can be reduced, and the configuration of the differential amplifier can be simplified. Furthermore, by providing a changeover switch on the signal lines at both ends of the one-stage cell group, even if the signal line for detecting the cell voltage is disconnected, the number of cells in which voltage detection is impossible can be minimized.

《発明の実施の形態》
以下、図面を参照しながら、本発明の電池電圧測定回路について詳細に説明する。燃料電池の個別セルの電圧測定など、多数のセルが直列に接続された燃料電池のセル電圧を測定する場合は、複数のセルからなるセル群に分けて各セル群を1ステージとし、それぞれのステージごとのセル群における個別セルの電圧を一括測定し次のステージのセル群にスキャンして行くという測定方法が効率的である。このとき、セル群における各セルの電圧測定入力端子(つまり、信号ライン)にスイッチを設け、1ステージごとに対応するスイッチ群を一括してON/OFFすることによって測定ステージを順次スキャンして行くことができる。また、このとき、各ステージの境界位置にあるセルの信号ラインに設けるスイッチは、前ステージ用のスイッチと次ステージ用のスイッチというように個別に設けるのではなく、共通のスイッチとする。つまり、前ステージのセル群のスキャンから次ステージのセル群のスキャンに切り替わっても、境界位置にあるセルの信号ラインに設けられたスイッチはONのままとしておく。このような構成にすればスイッチ数を削減することができるので、以下、このような構成を背景にして本発明における電池電圧測定回路の実施形態の説明を行う。
<< Embodiment of the Invention >>
Hereinafter, the battery voltage measurement circuit of the present invention will be described in detail with reference to the drawings. When measuring the cell voltage of a fuel cell in which a large number of cells are connected in series, such as the voltage measurement of individual cells of a fuel cell, each cell group is divided into cell groups consisting of a plurality of cells, An efficient measurement method is to measure the voltages of individual cells in a cell group for each stage and scan to the cell group of the next stage. At this time, a switch is provided at a voltage measurement input terminal (that is, a signal line) of each cell in the cell group, and the measurement stage is sequentially scanned by collectively turning on / off the corresponding switch group for each stage. be able to. At this time, the switches provided in the signal line of the cell at the boundary position of each stage are not provided separately, such as the switch for the previous stage and the switch for the next stage, but a common switch. That is, even when the scan of the cell group of the previous stage is switched to the scan of the cell group of the next stage, the switch provided in the signal line of the cell at the boundary position is kept ON. With such a configuration, the number of switches can be reduced. Therefore, an embodiment of the battery voltage measuring circuit according to the present invention will be described below with such a configuration as a background.

本発明に係る電池電圧測定回路を説明する前に、本発明の背景になる回路について説明を行う。図1は、本発明の前提条件となる、各ステージの境界位置におけるセルの信号ラインに設けたスイッチを共有化した入力回路の主要部を示す回路図である。この入力回路10は、電池電圧測定回路として電圧検出値を読み取るCPUのA/D変換器に接続されている。
図1では、説明の便宜上3セルを1ステージのセル群として、各ステージのセル群をスキャンしながら各セルの電圧を測定する形態について説明する。しかし、各ステージにおけるセル群のセル数は3個に限定されるものではなく、1ステージのセル群をもっと多くのセル数で構成してもよい。当然のことながら、1ステージのセル群におけるセル数を多くすれば全セルの測定時間は短縮化される。
Before describing the battery voltage measuring circuit according to the present invention, the circuit as the background of the present invention will be described. FIG. 1 is a circuit diagram showing a main part of an input circuit which shares a switch provided in a signal line of a cell at a boundary position of each stage, which is a precondition for the present invention. The input circuit 10 is connected to an A / D converter of a CPU that reads a voltage detection value as a battery voltage measurement circuit.
In FIG. 1, for convenience of explanation, a mode will be described in which three cells are used as one stage cell group, and the voltage of each cell is measured while scanning the cell group of each stage. However, the number of cells in the cell group in each stage is not limited to three, and the cell group in one stage may be configured with a larger number of cells. Naturally, if the number of cells in one stage cell group is increased, the measurement time of all cells is shortened.

図1において、入力回路10は、多数のセルが直列に接続された燃料電池における一部のセルC1〜C9が直列に接続され、各セルC1〜C9は、セルC1,C2,C3が第1ステージ、セルC4,C5,C6が第2ステージ、セルC7,C8,C9が第3ステージというように、同時に測定されるセル群がステージごとに構成されている。また、各セルC1〜C9の電圧測定端子であるそれぞれの信号ラインには、それぞれ、スイッチ(開閉手段)S1〜S10が接続されている。このとき、第1ステージの最後のセルC3と第2ステージの最初のセルC4の信号ラインには共通のスイッチS4が設けられている。同様にして、第2ステージの最後のセルC6と第3ステージの最初のセルC7の信号ラインには共通のスイッチS7が設けられている。また、第1ステージの最初のセルC1の負極の信号ラインはグランドGNDに接続されている。なお、スイッチS1〜S10は、燃料電池の直列セル数によって発生する最大電圧(例えば、200セルの直列接続で260V)に耐えられるような耐圧のフォトMOSスイッチを用いることができる。   In FIG. 1, an input circuit 10 includes a part of cells C1 to C9 connected in series in a fuel cell in which a number of cells are connected in series. Each of the cells C1 to C9 includes cells C1, C2, and C3 that are first. The stage, cells C4, C5, and C6 are the second stage, and cells C7, C8, and C9 are the third stage, and a group of cells that are simultaneously measured is configured for each stage. Further, switches (opening / closing means) S1 to S10 are connected to the respective signal lines which are voltage measuring terminals of the cells C1 to C9. At this time, a common switch S4 is provided for the signal lines of the last cell C3 of the first stage and the first cell C4 of the second stage. Similarly, a common switch S7 is provided in the signal line of the last cell C6 of the second stage and the first cell C7 of the third stage. The negative signal line of the first cell C1 in the first stage is connected to the ground GND. Note that the switches S1 to S10 may be a photo MOS switch having a withstand voltage capable of withstanding the maximum voltage generated by the number of series cells of the fuel cell (for example, 260V when 200 cells are connected in series).

さらに、各ステージのセル群の電圧を取り込むための入力回路10には、ステージごとのセル群の信号ラインが接続され、各スイッチS1〜S10をON/OFFしたときのノイズや各信号ラインで誘導されたノイズを除去するためのフィルタF1,F2,F3と、それらのフィルタF1,F2,F3に直列接続され、各セルの検出電圧信号の立ち上がり波形や立ち下り波形の不揃いを整形するバッファB1,B2,B3と、各セルC1〜C9の負電圧と正電圧を入力して各セルC1〜C9の電圧を検出し、その検出電圧を図示しないCPUのA/D変換器へ出力する各差動増幅器(電圧検出手段)D1,D2,D3と、各差動増幅器D1,D2,D3のオフセット電圧を調整するための抵抗Rとを備えた構成となっている。なお、各バッファB1,B2,B3の出力と各差動増幅器D1,D2,D3の+入力端子との間に設けた抵抗rは、各差動増幅器D1,D2,D3の+入力端子の信号レベルを調整するための抵抗である。   Furthermore, the signal lines of the cell groups for each stage are connected to the input circuit 10 for taking in the voltages of the cell groups of each stage, and are induced by noise and each signal line when the switches S1 to S10 are turned on / off. Filters F1, F2, and F3 for removing generated noise, and buffers B1 that are connected in series to these filters F1, F2, and F3, and shape irregularities of rising waveforms and falling waveforms of detection voltage signals of the cells. B2 and B3 and the negative voltage and the positive voltage of each cell C1 to C9 are input to detect the voltage of each cell C1 to C9, and each differential is output to the A / D converter of the CPU (not shown). The amplifier (voltage detection means) D1, D2, D3 and a resistor R for adjusting the offset voltage of each differential amplifier D1, D2, D3 are provided. A resistor r provided between the output of each buffer B1, B2, B3 and the + input terminal of each differential amplifier D1, D2, D3 is a signal at the + input terminal of each differential amplifier D1, D2, D3. It is a resistance for adjusting the level.

次に、図1に示す入力回路10によって各セルC1〜C9の電圧を測定する動作について説明する。図1に示す入力回路の例では、スイッチS1〜S4を同時にONにすると、第1ステージのセルC1,C2,C3の電圧が同時に測定される。すなわち、セルC1の負極の電位がグランドGNDとなって差動増幅器D1の−入力端子に入力され、セルC1の正極の電位がフィルタF1とバッファB1を経由して差動増幅器D1の+入力端子に入力される。これによって、差動増幅器D1の出力端子にはセルC1の負極の電位とセルC1の正極の電位との差であるセルC1の電圧が出力される。   Next, an operation for measuring the voltages of the cells C1 to C9 by the input circuit 10 shown in FIG. 1 will be described. In the example of the input circuit shown in FIG. 1, when the switches S1 to S4 are simultaneously turned on, the voltages of the cells C1, C2, and C3 in the first stage are measured simultaneously. That is, the negative electrode potential of the cell C1 becomes the ground GND and is input to the negative input terminal of the differential amplifier D1, and the positive electrode potential of the cell C1 passes through the filter F1 and the buffer B1 to the positive input terminal of the differential amplifier D1. Is input. As a result, the voltage of the cell C1, which is the difference between the negative potential of the cell C1 and the positive potential of the cell C1, is output to the output terminal of the differential amplifier D1.

同様にして、セルC2の負極の電位がフィルタF1とバッファB1を経由して差動増幅器D2の−入力端子に入力され、セルC2の正極の電位がフィルタF2とバッファB2を経由して差動増幅器D2の+入力端子に入力される。これによって、差動増幅器D2の出力端子にはセルC2の負極の電位とセルC2の正極の電位との差であるセルC2の電圧が出力される。さらに同様にして、セルC3の負極の電位がフィルタF2とバッファB2を経由して差動増幅器D3の−入力端子に入力され、セルC3の正極の電位がフィルタF3とバッファB3を経由して差動増幅器D3の+入力端子に入力される。   Similarly, the negative potential of the cell C2 is input to the negative input terminal of the differential amplifier D2 via the filter F1 and the buffer B1, and the positive potential of the cell C2 is differentially changed via the filter F2 and the buffer B2. The signal is input to the + input terminal of the amplifier D2. As a result, the voltage of the cell C2, which is the difference between the negative potential of the cell C2 and the positive potential of the cell C2, is output to the output terminal of the differential amplifier D2. Similarly, the negative potential of the cell C3 is input to the negative input terminal of the differential amplifier D3 via the filter F2 and the buffer B2, and the positive potential of the cell C3 is changed via the filter F3 and the buffer B3. Input to the positive input terminal of the dynamic amplifier D3.

これによって、差動増幅器D3の出力端子にはセルC3の負極の電位とセルC3の正極の電位との差であるセルC3の電圧が出力される。このようにして、第1ステージのセルC1,C2,C3の電圧が差動増幅器D1,D2,D3で同時に測定されて図示しないCPUに取り込まれる。以下、このようにして、セルC1の電圧が差動増幅器D1によって測定され、セルC2の電圧が差動増幅器D2によって測定され、セルC3の電圧が差動増幅器D3によって測定される(以下、セルC1→差動増幅器D1、セルC2→差動増幅器D2、セルC3→差動増幅器D3と表現する)という測定順序を順方向測定と呼ぶことにする。   As a result, the voltage of the cell C3, which is the difference between the negative potential of the cell C3 and the positive potential of the cell C3, is output to the output terminal of the differential amplifier D3. In this way, the voltages of the cells C1, C2, and C3 in the first stage are simultaneously measured by the differential amplifiers D1, D2, and D3 and taken into a CPU (not shown). Hereinafter, in this way, the voltage of the cell C1 is measured by the differential amplifier D1, the voltage of the cell C2 is measured by the differential amplifier D2, and the voltage of the cell C3 is measured by the differential amplifier D3 (hereinafter referred to as the cell). The measurement order of C1 → differential amplifier D1, cell C2 → differential amplifier D2, and cell C3 → differential amplifier D3) will be referred to as forward measurement.

次に、第1ステージのセルC1,C2,C3の電圧測定を終了して、第2ステージのセルC4,C5,C6の電圧測定を開始するときに、スイッチS4をオンのままにして、スイッチS1〜S3を同時にOFFしてスイッチS5〜S7を同時にONする。すなわち、第1ステージのセル群から第2ステージにセル群に測定が切り替わるときには、第1ステージの最後のセルC3と第2ステージの最初のセルC4との共通信号ラインにある共通のスイッチS4はONのままの状態となる。このようなスイッチのON/OFF操作によって、第2ステージのセル群は、セルC4の電圧が差動増幅器D3によって測定され、セルC5の電圧が差動増幅器D2によって測定され、セルC6の電圧が差動増幅器D1によって測定されるというように、第1ステージの場合とは差動増幅器の対応順序が逆となる。以下、このような測定順序(つまり、セルC4→差動増幅器D3、セルC5→差動増幅器D2、セルC6→差動増幅器D1)を逆方向測定と呼ぶことにする。   Next, when the voltage measurement of the first stage cells C1, C2, and C3 is finished and the voltage measurement of the second stage cells C4, C5, and C6 is started, the switch S4 is kept on, S1 to S3 are turned off at the same time, and switches S5 to S7 are turned on at the same time. That is, when the measurement is switched from the cell group of the first stage to the cell group of the second stage, the common switch S4 in the common signal line of the last cell C3 of the first stage and the first cell C4 of the second stage is It remains in the ON state. As a result of the ON / OFF operation of the switches, in the second stage cell group, the voltage of the cell C4 is measured by the differential amplifier D3, the voltage of the cell C5 is measured by the differential amplifier D2, and the voltage of the cell C6 is As measured by the differential amplifier D1, the corresponding order of the differential amplifiers is reversed from that of the first stage. Hereinafter, such a measurement order (that is, cell C4 → differential amplifier D3, cell C5 → differential amplifier D2, cell C6 → differential amplifier D1) will be referred to as backward measurement.

第2ステージのセルC4,C5,C6の測定についてさらに詳しく説明する。第1ステージのセルC1,C2,C3の電圧測定が終了すると、スイッチS1〜S3を同時にOFFにし、スイッチ4をONのままにして、スイッチS5〜S7を同時にONにして第2ステージのセルC4,C5,C6の測定が開始される。これによって、セルC4の負極の電位がフィルタF3とバッファB3を経由して差動増幅器D3の+入力端子に入力され、セルC4の正極の電位がフィルタF2とバッファB2を経由して差動増幅器D3の−入力端子に入力される。これによって、差動増幅器D3の出力端子にはセルC4の負極の電位とセルC4の正極の電位との差であるセルC4の電圧が出力される。   The measurement of the second stage cells C4, C5, and C6 will be described in more detail. When the voltage measurement of the first stage cells C1, C2, and C3 is completed, the switches S1 to S3 are simultaneously turned off, the switch 4 is kept on, the switches S5 to S7 are simultaneously turned on, and the second stage cell C4 is turned on. , C5 and C6 are started. As a result, the negative potential of the cell C4 is input to the positive input terminal of the differential amplifier D3 via the filter F3 and the buffer B3, and the positive potential of the cell C4 is input to the differential amplifier via the filter F2 and the buffer B2. It is input to the negative input terminal of D3. As a result, the voltage of the cell C4, which is the difference between the negative potential of the cell C4 and the positive potential of the cell C4, is output to the output terminal of the differential amplifier D3.

同様にして、セルC5の負極の電位がフィルタF2とバッファB2を経由して差動増幅器D2の+入力端子に入力され、セルC5の正極の電位がフィルタF1とバッファB1を経由して差動増幅器D2の−入力端子に入力される。これによって、差動増幅器D2の出力端子にはセルC5の負極の電位とセルC5の正極の電位との差であるセルC5の電圧が出力される。さらに同様にして、セルC6の負極の電位がフィルタF1とバッファB1を経由して差動増幅器D1の+入力端子に入力され、セルC6の正極の電位がグランドGNDとなって差動増幅器D1の−入力端子に入力される。これによって、差動増幅器D1の出力端子にはセルC6の負極の電位とセルC6の正極の電位との差であるセルC6の電圧が出力される。このようにして、第2ステージのセルC4,C5,C6の電圧が差動増幅器D3,D2,D1で同時に測定されて図示しないCPUに取り込まれる。つまり、第2ステージでは、セルC4→差動増幅器D3、セルC5→差動増幅器D2、セルC6→差動増幅器D1というような逆方向測定が行われる。   Similarly, the negative potential of the cell C5 is input to the positive input terminal of the differential amplifier D2 via the filter F2 and the buffer B2, and the positive potential of the cell C5 is differentially transmitted via the filter F1 and the buffer B1. The signal is input to the negative input terminal of the amplifier D2. As a result, the voltage of the cell C5, which is the difference between the negative potential of the cell C5 and the positive potential of the cell C5, is output to the output terminal of the differential amplifier D2. Similarly, the negative potential of the cell C6 is input to the positive input terminal of the differential amplifier D1 via the filter F1 and the buffer B1, and the positive potential of the cell C6 becomes the ground GND. -Input to the input terminal. As a result, the voltage of the cell C6, which is the difference between the negative potential of the cell C6 and the positive potential of the cell C6, is output to the output terminal of the differential amplifier D1. In this way, the voltages of the second stage cells C4, C5 and C6 are simultaneously measured by the differential amplifiers D3, D2 and D1 and taken into a CPU (not shown). That is, in the second stage, reverse measurement is performed such as cell C4 → differential amplifier D3, cell C5 → differential amplifier D2, and cell C6 → differential amplifier D1.

さらに、第2ステージのセルC4,C5,C6の電圧測定が終了すると、スイッチS4〜S6を同時にOFFにし、スイッチ7をONのままにして、スイッチS8〜S10を同時にONにして第3ステージのセルC7,C8,C9の測定が開始される。第3ステージでは、セルC7→差動増幅器D1、セルC8→差動増幅器D2、セルC9→差動増幅器D3というように、第1ステージと同じ順方向測定が行われる。このようにして、第3ステージのセルC7,C8,C9の電圧が差動増幅器D1,D2,D3で同時に測定されて図示しないCPUに取り込まれる。   Further, when the voltage measurement of the second stage cells C4, C5, C6 is completed, the switches S4 to S6 are simultaneously turned off, the switch 7 is kept on, and the switches S8 to S10 are simultaneously turned on to turn on the third stage. Measurement of the cells C7, C8, C9 is started. In the third stage, the same forward measurement as in the first stage is performed, such as cell C7 → differential amplifier D1, cell C8 → differential amplifier D2, and cell C9 → differential amplifier D3. In this way, the voltages of the third stage cells C7, C8, and C9 are simultaneously measured by the differential amplifiers D1, D2, and D3, and are taken into the CPU (not shown).

以上述べたように、図1に示す入力回路10によって各セルC1〜C9の電圧を測定する場合は、各ステージの境界位置にあるスイッチが共有化されるので、図5に示したような従来の入力回路30に比べて合計スイッチ数を削減することができる。例えば、180個のセルが直列に接続されていて、3個のセルが1ステージのセル群として組み合わされている場合は、図5に示す従来の入力回路30では、スイッチの個数は240個必要となったが、図1に示す入力回路10の場合のスイッチの個数は181個にすることができる。つまり、従来よりスイッチを59個減らすことができる。言い換えれば、おおよそ測定ステージの数だけスイッチ数を削減することができる。   As described above, when the voltages of the cells C1 to C9 are measured by the input circuit 10 shown in FIG. 1, the switch at the boundary position of each stage is shared, so that the conventional circuit as shown in FIG. The total number of switches can be reduced as compared with the input circuit 30. For example, if 180 cells are connected in series and 3 cells are combined as a single-stage cell group, the conventional input circuit 30 shown in FIG. 5 requires 240 switches. However, the number of switches in the case of the input circuit 10 shown in FIG. That is, 59 switches can be reduced compared to the prior art. In other words, the number of switches can be reduced by approximately the number of measurement stages.

なお、本発明とは直接関係ないが、図1に示す入力回路10による測定で、差動増幅器D1,D2,D3の出力信号(つまり、各セルの検出電圧)が入力されるCPUのA/D変換器に入力される電圧が負側になるとA/D変換器に対する仕様がより厳しくなる。そのため、オフセット電圧を切り替えることによってこのような状態を避けることができる。例えば、セルCの起電力が燃料電池の場合のように0V〜1.3V程度の値であるとすると、図1の例で順方向測定時のオフセット電圧を+1V、逆方向測定時のオフセット電圧を+5Vにすると、A/D変換器に入力される電圧が+1V〜+5Vの範囲に収まることになり、A/D変換器の仕様をより緩やかなものにすることができる。   Although not directly related to the present invention, the A / of the CPU to which the output signals of the differential amplifiers D1, D2, and D3 (that is, the detection voltages of the respective cells) are input as measured by the input circuit 10 shown in FIG. When the voltage input to the D converter becomes negative, the specifications for the A / D converter become stricter. Therefore, such a state can be avoided by switching the offset voltage. For example, assuming that the electromotive force of the cell C is about 0 V to 1.3 V as in the case of a fuel cell, the offset voltage at the time of forward measurement is +1 V and the offset voltage at the time of backward measurement in the example of FIG. When + is set to + 5V, the voltage input to the A / D converter falls within the range of + 1V to + 5V, and the specification of the A / D converter can be made more gradual.

次に、ステージごとに各差動増幅器D1,D2,D3に取り込まれる各セルの電圧極性について図に示して説明する。図2は、図1に示す入力回路10におけるセルごとの測定電圧の極性を示す説明図である。すなわち、図1に示すような入力回路10で各ステージのスイッチ群をON/OFFして各セル群の電圧を測定して行くと、図2に示すような極性でステージごとの各セルの検出電圧がそれぞれの差動増幅器D1,D2,D3へ入力される。すなわち、図2に示すように、第1ステージ、第3ステージというように奇数番目の測定ステージは、最も電位の低い側のセル(C1,C7など)の負極がグランドGNDに接続された状態で順方向の各セル(C1,C2,C3)の電圧が各差動増幅器D1,D2,D3に入力される。しかし、第2ステージなどのように偶数番目の測定ステージでは、最も電位の高い側のセル(C6など)の正極がグランドに接続された状態で逆方向の各セル(C6,C5,C4)が各差動増幅器D1,D2,D3に入力される。   Next, the voltage polarity of each cell taken into each differential amplifier D1, D2, D3 for each stage will be described with reference to the drawings. FIG. 2 is an explanatory diagram showing the polarity of the measurement voltage for each cell in the input circuit 10 shown in FIG. That is, when the voltage of each cell group is measured by turning on / off the switch group of each stage with the input circuit 10 as shown in FIG. 1, the detection of each cell for each stage with the polarity as shown in FIG. The voltage is input to each differential amplifier D1, D2, D3. That is, as shown in FIG. 2, the odd-numbered measurement stages such as the first stage and the third stage are in a state where the negative electrode of the cell (C1, C7, etc.) having the lowest potential is connected to the ground GND. The voltage of each cell (C1, C2, C3) in the forward direction is input to each differential amplifier D1, D2, D3. However, in the even-numbered measurement stage such as the second stage, each cell (C6, C5, C4) in the reverse direction is connected with the positive electrode of the cell having the highest potential (C6, etc.) connected to the ground. Input to each differential amplifier D1, D2, D3.

図2からわかるように、奇数番目のステージと偶数番目のステージでは各差動増幅器D1,D2,D3に入力される電圧の極性は逆極性となる。このため、偶数番目のステージのセル群を測定する場合と奇数番目のステージのセル群を測定する場合では、各差動増幅器D1,D2,D3に印加する電源電圧は逆極性にしなければならない。例えば、各差動増幅器D1,D2,D3は、奇数番目のステージのセル群を測定する場合は0〜+5Vの電源が必要となるが、偶数番目のステージのセル群を測定する場合は0〜−5Vの電源が必要となる。つまり、各差動増幅器D1,D2,D3は、燃料電池の全セルを測定するためには正負両方の電源(つまり、両電源)が必要となる。そのため、図1に示す入力回路10における電源回路(図示せず)が複雑になり、単電源のものより価格の高い両電源用の差動増幅器を用いなければならない。   As can be seen from FIG. 2, the polarities of the voltages input to the differential amplifiers D1, D2, and D3 are opposite in the odd-numbered stage and the even-numbered stage. Therefore, when measuring even-numbered stage cell groups and when measuring odd-numbered stage cell groups, the power supply voltages applied to the differential amplifiers D1, D2, and D3 must have opposite polarities. For example, each of the differential amplifiers D1, D2, and D3 requires a power supply of 0 to +5 V when measuring an odd-numbered stage cell group, but is 0 when measuring an even-numbered stage cell group. A -5V power supply is required. That is, each differential amplifier D1, D2, D3 requires both positive and negative power supplies (that is, both power supplies) in order to measure all the cells of the fuel cell. Therefore, the power supply circuit (not shown) in the input circuit 10 shown in FIG. 1 becomes complicated, and a differential amplifier for both power supplies that is more expensive than that of a single power supply must be used.

さらに、図1に示す入力回路では、各差動増幅器D1,D2,D3の電源電圧はデバイスの定格で規定されているため、その電源電圧の範囲内で収まるように一度でスキャンできるチャネル数(つまり、セル数)は決定されてしまう。例えば、差動増幅器D1,D2,D3の定格電圧が20Vmaxであって、セル電圧が2セル1組で3Vとすると、一度でスキャンできるセル数は、20V÷2÷3V≒3セルとなる。つまり、一度でスキャンできるセル数は3セルに決められてしまうので、測定時間を速めるために1ステージのセル数を増やすことが出来ない。また、図1に示す入力回路10では、各ステージの共通の信号ラインのうちグランドに接続された信号ラインが断線などによって故障すると、例えば、第1ステージと第2ステージの共通のスイッチS4の信号ラインが断線などによって故障すると、第1ステージのセルC1,C2,C3と第2のステージのセルC4,C5,C6の6個のセルの電圧測定が不可能になってしまう。   Further, in the input circuit shown in FIG. 1, since the power supply voltage of each differential amplifier D1, D2, D3 is defined by the device rating, the number of channels that can be scanned at one time (within the range of the power supply voltage ( That is, the number of cells) is determined. For example, if the rated voltage of the differential amplifiers D1, D2, and D3 is 20Vmax and the cell voltage is 3V for one set of two cells, the number of cells that can be scanned at one time is 20V ÷ 2 ÷ 3V≈3 cells. That is, since the number of cells that can be scanned at one time is determined to be 3 cells, the number of cells in one stage cannot be increased in order to speed up the measurement time. In the input circuit 10 shown in FIG. 1, when a signal line connected to the ground among the common signal lines of each stage is broken due to disconnection or the like, for example, the signal of the switch S4 common to the first stage and the second stage If the line breaks due to disconnection or the like, it becomes impossible to measure the voltages of the six cells of the first stage cells C1, C2, and C3 and the second stage cells C4, C5, and C6.

本発明に係る入力回路では、図1のようにスイッチ数を低減させると共に、いずれのステージをスキャンしても、入力回路10の測定基準となる差動増幅器に入力されるセルの負電圧が基準電位(グランド電位)となるように、スイッチによってグランドGNDに接続する信号ラインを切り替えるようにする。このようにすることによって、差動増幅器は、いずれのステージにおいても同一極性のセル電圧を検出するので、単電源で動作する差動増幅器が使用することが可能となる。その結果、入力回路すなわち電池電圧測定回路の一層のコストダウンを図ることができる。また、各ステージ間の共通の信号ラインが断線などによって故障しても、2ステージ分の全セルの測定が不可能とならないようにして、最小限のセルだけの測定不能に留めることができる。   In the input circuit according to the present invention, the number of switches is reduced as shown in FIG. 1, and the negative voltage of the cell input to the differential amplifier serving as the measurement reference of the input circuit 10 is the reference regardless of which stage is scanned. A signal line connected to the ground GND is switched by a switch so that the potential (ground potential) is obtained. By doing so, the differential amplifier detects a cell voltage having the same polarity at any stage, so that a differential amplifier operating with a single power supply can be used. As a result, the cost of the input circuit, that is, the battery voltage measuring circuit can be further reduced. Further, even if a common signal line between the stages breaks due to disconnection or the like, it is possible to prevent measurement of all cells for two stages from being impossible and measurement of only a minimum number of cells.

図3は、本発明に係る入力回路を示す回路図である。つまり、図3に示す入力回路(電池電圧測定回路)10aは、図1に示す入力回路10に対して、入力回路10aへ入力される信号ラインのグランドGNDを切り替えるためのスイッチ(切替手段)S11,S12を追加したものである。他の構成要素は図1に示す入力回路10の構成と変わらないので、説明を省略する。なお、新たに追加されたスイッチS11及びスイッチS12は、スイッチS1〜S10と同様に、燃料電池の直列セル数によって発生する最大電圧(例えば、200セルの直列接続で260V)に耐えられるような耐圧のフォトMOSスイッチを用いることができる。   FIG. 3 is a circuit diagram showing an input circuit according to the present invention. That is, the input circuit (battery voltage measuring circuit) 10a shown in FIG. 3 switches (switching means) S11 for switching the ground GND of the signal line input to the input circuit 10a with respect to the input circuit 10 shown in FIG. , S12 is added. The other components are the same as the configuration of the input circuit 10 shown in FIG. Note that the newly added switches S11 and S12 have a breakdown voltage that can withstand the maximum voltage generated by the number of series cells of the fuel cell (for example, 260V in a series connection of 200 cells), similarly to the switches S1 to S10. The photo MOS switch can be used.

つまり、図3に示すように、差動増幅器D1の−入力端子へ入力される信号ライン(つまり、第1ステージのセルC1の負極の信号ライン)よりスイッチS11を介してグランドGNDに接続すると共に、差動増幅器D3の+入力端子へ入力される信号ライン(つまり、第1ステージのセルC3の正極と第2ステージのセルC4の負極の共通の信号ライン)よりスイッチS12を介してグランドGNDに接続する構成が新たに追加されている。   That is, as shown in FIG. 3, the signal line (that is, the negative signal line of the first stage cell C1) is connected to the ground GND via the switch S11 from the signal line input to the negative input terminal of the differential amplifier D1. The signal line input to the + input terminal of the differential amplifier D3 (that is, the common signal line of the positive electrode of the first stage cell C3 and the negative electrode of the second stage cell C4) is connected to the ground GND via the switch S12. A new connection configuration has been added.

このような回路構成にして、測定するステージが変わるごとにスイッチS11とスイッチS12のON/OFFを切り替えて交互に信号ラインをグランドGNDに接続するようにする。つまり、測定するステージが変わるごとにグランドGNDに接続されるスイッチS11,S12を交互に切り替えることによって、測定するステージごとに入力されるセル電圧の基準電位(つまり、グランド電位)が上下の差動増幅器に移動する。言い換えれば、測定するステージごとに入力されるセル電圧の基準電位(つまり、グランド電位)が差動増幅器D1の−入力端子と差動増幅器D3の+入力端子との間を移動する。   With such a circuit configuration, each time the stage to be measured is changed, the switch S11 and the switch S12 are switched ON / OFF so that the signal lines are alternately connected to the ground GND. In other words, by alternately switching the switches S11 and S12 connected to the ground GND every time the stage to be measured changes, the reference potential (that is, the ground potential) of the cell voltage input for each stage to be measured becomes the upper and lower differentials. Move to the amplifier. In other words, the reference potential (that is, the ground potential) of the cell voltage input for each stage to be measured moves between the negative input terminal of the differential amplifier D1 and the positive input terminal of the differential amplifier D3.

さらに詳しく説明すると、測定するステージが変わるごとに、差動増幅器D1,D2,D3に入力されるセル電圧が、セルC1→差動増幅器D1、セルC2→差動増幅器D2、セルC3→差動増幅器D3という順方向と、セルC4→差動増幅器D3、セルC5→差動増幅器D2、セルC6→差動増幅器D1という逆方向とに変わっても、常に測定基準となる側の差動増幅器の負電位がグランドGNDに接続させることになる。このようにして、差動増幅器D1,D2,D3のグランドGNDはセルの測定順序に合わせて規制されるので、結果的に、差動増幅器D1,D2,D3の電源は、基準電位(つまり、グランド電位)から一方の電位に印加される単一方向の電源(つまり、単電源)を利用することができる。   More specifically, each time the stage to be measured changes, the cell voltage input to the differential amplifiers D1, D2 and D3 changes from the cell C1 to the differential amplifier D1, the cell C2 to the differential amplifier D2, and the cell C3 to differential. Even if the forward direction of the amplifier D3 and the reverse direction of the cell C4 → the differential amplifier D3, the cell C5 → the differential amplifier D2, and the cell C6 → the differential amplifier D1 are changed, the differential amplifier on the side which is always the measurement reference is used. A negative potential is connected to the ground GND. In this way, the ground GND of the differential amplifiers D1, D2, and D3 is regulated in accordance with the cell measurement order. As a result, the power sources of the differential amplifiers D1, D2, and D3 are supplied with the reference potential (that is, A unidirectional power source (that is, a single power source) applied from the ground potential to one potential can be used.

図3に示す入力回路10aの動作についてさらに詳しく説明する。第1ステージのセルC1,C2,C3を測定するときは、スイッチS1,S2,S3,S4及びスイッチS11をONにする。これによって、セルC1→差動増幅器D1、セルC2→差動増幅器D2、セルC3→差動増幅器D3という順方向測定が行われ、グランド電位(基準電位)はスイッチS11によって差動増幅器D1の−入力端子に規制されるので、全ての差動増幅器D1,D2,D3は同一方向電位の単電源で動作を行うことができる。   The operation of the input circuit 10a shown in FIG. 3 will be described in more detail. When measuring the cells C1, C2, C3 in the first stage, the switches S1, S2, S3, S4 and the switch S11 are turned on. As a result, forward measurement of cell C1 → differential amplifier D1, cell C2 → differential amplifier D2, cell C3 → differential amplifier D3 is performed, and the ground potential (reference potential) is- Since it is regulated by the input terminal, all the differential amplifiers D1, D2 and D3 can be operated with a single power supply having the same direction potential.

次に、第1ステージのセルC1,C2,C3の電圧測定を終了して、第2ステージのセルC4,C5,C6の電圧測定が開始されると、まず、スイッチS11がOFFされてスイッチS12がONされる。これによって、グランドGNDに接続されるグランド電位(基準電位)の信号ラインは、差動増幅器D3の+入力端子に接続される信号ラインに切り替わる。さらに、スイッチS4をONのままにして、スイッチS1〜S3を同時にOFFにし、スイッチS5〜S7を同時にONにして第2ステージのセル群の測定を開始する。   Next, when the voltage measurement of the cells C1, C2, and C3 in the first stage is finished and the voltage measurement of the cells C4, C5, and C6 in the second stage is started, first, the switch S11 is turned off and the switch S12 is turned on. Is turned on. As a result, the signal line of the ground potential (reference potential) connected to the ground GND is switched to the signal line connected to the + input terminal of the differential amplifier D3. Further, the switch S4 is kept ON, the switches S1 to S3 are simultaneously turned OFF, the switches S5 to S7 are simultaneously turned ON, and the measurement of the second stage cell group is started.

このときは、セルC4→差動増幅器D3、セルC5→差動増幅器D2、セルC6→差動増幅器D1という逆方向測定が行われるが、グランド電位(基準電位)はスイッチS12によって差動増幅器D3の+入力端子に規制されるので、全ての差動増幅器D1,D2,D3は同一方向電位の単電源で動作を行うことができる。このようにして、測定ステージによって各差動増幅器D1,D2,D3に入力されるセル電圧の極性が変わっても、各差動増幅器D1,D2,D3は決められた基準電位のレベルから一方の電位の方向へ動作するので、各差動増幅器D1,D2,D3は単電源で十分に動作機能を実現することができる。   At this time, the reverse measurement of cell C4 → differential amplifier D3, cell C5 → differential amplifier D2, cell C6 → differential amplifier D1 is performed, but the ground potential (reference potential) is changed by the switch S12 to the differential amplifier D3. Therefore, all the differential amplifiers D1, D2, and D3 can be operated with a single power source having the same direction potential. In this way, even if the polarities of the cell voltages input to the differential amplifiers D1, D2, and D3 change depending on the measurement stage, the differential amplifiers D1, D2, and D3 have one of the predetermined reference potential levels. Since it operates in the direction of the potential, each differential amplifier D1, D2, D3 can sufficiently realize the operation function with a single power source.

図4は、各ステージのセル数を4セルとした場合の、本発明に係る入力回路の具体的な一実施例を示す回路図である。図4に示す入力回路10b(電池電圧測定回路)の例では、セル電圧測定用のスイッチS1〜S9及びグランド切り替え用のスイッチS11,S12を、燃料電池の全セル電圧に耐え得る耐圧のフォトMOSスイッチにした場合の例を示している。   FIG. 4 is a circuit diagram showing a specific example of the input circuit according to the present invention when the number of cells in each stage is four. In the example of the input circuit 10b (battery voltage measuring circuit) shown in FIG. 4, the cell voltage measuring switches S1 to S9 and the ground switching switches S11 and S12 are provided with a withstand voltage photoMOS capable of withstanding all the cell voltages of the fuel cell. An example of a switch is shown.

図4に示すように、ステージごとに4セルずつセル電圧を取得して行く。その際、共通に信号ラインを引き込む第1ステージと第2ステージの信号ラインには共通のスイッチ(フォトMOSスイッチ)S5が接続されているので、従来の入力回路に比べて、燃料電池を構成するステージ数とほぼ同数のフォトMOSスイッチを削減することができる。但し、その場合、差動増幅器D1,D2,D3,D4に入力されるセル電圧は、測定ステージが切り替わるごとに転極される。つまり、奇数番号のステージと偶数番号のステージが切り替わるごとに、差動増幅器D1,D2,D3,D4に入力されるセル電圧は正電位/負電位が逆に転極される。   As shown in FIG. 4, cell voltages are acquired for each stage by four cells. At that time, since the common switch (photo MOS switch) S5 is connected to the signal lines of the first stage and the second stage that draw the signal lines in common, the fuel cell is configured as compared with the conventional input circuit. As many photo MOS switches as the number of stages can be reduced. However, in that case, the cell voltage input to the differential amplifiers D1, D2, D3, and D4 is inverted every time the measurement stage is switched. That is, every time the odd-numbered stage and the even-numbered stage are switched, the cell voltages input to the differential amplifiers D1, D2, D3, and D4 are reversed in positive / negative potential.

したがって、通常であれば、各差動増幅器D1,D2,D3,D4の電源は転極に対応するために正負両方向の両電源が必要となるが、図4の回路構成では、測定ステージが切り替わるごとに、スイッチ(フォトMOSスイッチ)S11,S12の切替操作によってステージの境界位置の信号ラインが交互にグランド電位(基準電位)に接続される。すなわち、測定ステージが切り替わるごとに、各ステージの最初の信号ラインをスイッチ(フォトMOSスイッチ)S11,S12によって交互にグランドGNDに落としている。   Therefore, normally, the power sources of the differential amplifiers D1, D2, D3, and D4 require both power sources in both positive and negative directions to cope with the reversal. However, in the circuit configuration of FIG. 4, the measurement stage is switched. Each time the switch (photo MOS switch) S11, S12 is switched, the signal line at the boundary of the stage is alternately connected to the ground potential (reference potential). That is, every time the measurement stage is switched, the first signal line of each stage is alternately dropped to the ground GND by the switches (photo MOS switches) S11 and S12.

さらに詳しく説明すると、図4において、第1ステージのセルC1の負極の信号ラインにスイッチ(フォトMOSスイッチ)S11を設けてグランドGNDに落とすと共に、第2ステージのセルC5の負極の信号ラインにスイッチ(フォトMOSスイッチ)S12を設けてグランドGNDに落としている。これらのスイッチ(フォトMOSスイッチ)S11,S12のON/OFFを測定ステージの奇数/偶数によって交互に切り替えることによって、つまり、第1ステージのセル群を測定しているときはスイッチ(フォトMOSスイッチ)S11をONにし、第2ステージのセル群を測定しているときはスイッチ(フォトMOSスイッチ)S12をONにすることによって、各差動増幅器D1,D2,D3,D4にはステージの切り替えごとに異極性のセル電圧が入力されても、グランド電位(基準電位)は基準となる差動増幅器の基準入力端子に規制される。   More specifically, in FIG. 4, a switch (photo MOS switch) S11 is provided on the negative signal line of the first-stage cell C1 and dropped to the ground GND, and the switch is connected to the negative signal line of the second-stage cell C5. (Photo MOS switch) S12 is provided and dropped to the ground GND. By switching ON / OFF of these switches (photo MOS switches) S11 and S12 according to the odd / even number of the measurement stage, that is, when measuring the first stage cell group, the switch (photo MOS switch) When S11 is turned on and the second stage cell group is being measured, the switch (photo MOS switch) S12 is turned on, so that each differential amplifier D1, D2, D3, and D4 has each time the stage is switched. Even if a cell voltage of a different polarity is input, the ground potential (reference potential) is regulated by the reference input terminal of the differential amplifier serving as a reference.

このようにして、スイッチ(フォトMOSスイッチ)S11,S12によってグランドGNDを交互に切り替えることによって、ステージを切り替えるごとに交互に入力されるセル電圧の基準電位(グランド電位)が−/+に移動するため、各差動増幅器D1,D2,D3,D4に入力される電源は単一方向の単電源で間に合うことになる。そのため、各差動増幅器D1,D2,D3,D4のデバイス電源は両電源ではなく単電源でよいことになる。   In this way, by alternately switching the ground GND by the switches (photo MOS switches) S11 and S12, the reference potential (ground potential) of the cell voltage that is alternately input every time the stage is switched moves to − / +. Therefore, the power sources input to the differential amplifiers D1, D2, D3, and D4 are in time with a single power source in a single direction. Therefore, the device power supply of each differential amplifier D1, D2, D3, D4 may be a single power supply instead of a dual power supply.

この結果、一度にスキャンできるセル数は、グランドの切り替えを行わない場合に比べて2倍に増やすことができる。例えば、前記したように、図1に示すようなグランドの切り替えを行わない場合は、差動増幅器の定格電圧が20Vmaxであって、セル電圧が2セル1組で3Vとすると、一度でスキャンできるセル数は20V÷2÷3V≒3セルとなる。つまり、差動増幅器に両電源が必要なために一度でスキャンできるセル数は3個になってしまう。   As a result, the number of cells that can be scanned at a time can be increased by a factor of two compared to when the ground is not switched. For example, as described above, when the ground switching as shown in FIG. 1 is not performed, if the rated voltage of the differential amplifier is 20 Vmax and the cell voltage is 3 V for one set of two cells, scanning can be performed at one time. The number of cells is 20V ÷ 2 ÷ 3V≈3 cells. In other words, since the differential amplifier requires both power sources, the number of cells that can be scanned at one time is three.

一方、図3に示すようにグランドの切り替えを行う場合は、前記と同一条件の差動増幅器の定格電圧が20Vmaxで、セル電圧が2セル1組で3Vとすると、一度でスキャンできるセル数は20V÷3V≒6セルとなる。つまり、グランドの切り替えを行う場合は、グランドの切り替えを行わない場合に比べて一度にスキャンできるセル数を2倍に増やすことができるので、結果として、多チャンネルをより高速にスキャンして燃料電池のセル電圧を行うことができる。   On the other hand, when the ground is switched as shown in FIG. 3, if the rated voltage of the differential amplifier under the same conditions as described above is 20 Vmax and the cell voltage is 3 V for one set of two cells, the number of cells that can be scanned at one time is 20V ÷ 3V≈6 cells. In other words, when the ground is switched, the number of cells that can be scanned at a time can be doubled compared to when the ground is not switched. As a result, the fuel cell is scanned by scanning multiple channels at a higher speed. Cell voltage can be achieved.

さらに、図4で説明すると、グランドの切り替えを行わない場合は、スイッチ(フォトMOSスイッチ)S5の信号ラインが断線したときは、第1ステージのセルC1,C2,C3,C4と第2ステージのセルC5,C6,C7,C8の8個のセルの測定が不可能となる。しかし、スイッチ(フォトMOSスイッチ)S11,S12によってグランドGNDを交互に切り替えることによって、第2ステージのセルC4,C5,C6,C7,C8の個のセルのみが測定が不可能となる。このように、グランドの切り替えを行うことによって信号ラインの断線時における測定不可能なセル数を半分に削減することができる。 Further, referring to FIG. 4, when the ground is not switched, when the signal line of the switch (photo MOS switch) S5 is disconnected, the first stage cells C1, C2, C3, C4 and the second stage Measurement of eight cells C5, C6, C7, and C8 becomes impossible. However, by alternately switching the ground GND by the switches (photo MOS switches) S11 and S12, only the five cells C4, C5, C6, C7, and C8 in the second stage cannot be measured. Thus, by switching the ground, the number of cells that cannot be measured when the signal line is disconnected can be reduced by half.

以上説明したように、本発明に係る入力回路(電池電圧測定回路)によれば、セル電圧を測定するセル群ごとに隣接するセルの電圧極性を反転させるので、各セル間のスイッチを共通化して部品点数を削減することができ、しかも、セル電圧の極性が反転しても、接地される信号ラインを切り替えることによって同一極性のセル電圧を検出することができるので、一方向電圧の単電源を用いて電圧測定を行うことが可能となる。その結果、単電源で動作する差動増幅器を使用することができるので、入力回路の材料費を大幅に低減させることができる。また、測定するセル群の極性が反転するごとに、そのセル群の両側の信号ラインが交互にグランドへ切り替え接続されるので、信号ラインのグランド切り替えを行わない場合に比べて、一度にスキャンできるセル数を2倍に増やすことができる。この結果、多チャンネルをより高速にスキャンすることができるので、燃料電池のように多数のセルが直列に接続されたセル群のセル電圧測定をより高速に行うことができる。
以上に述べた実施の形態は、燃料電池の各セルをスキャンしながらセル電圧を測定する場合について説明したが、本発明に係る入力回路は燃料電池のセル電圧測定に限定されるものではなく、直列に接続されたあらゆる2次電池のセル電圧測定や、直列に接続された乾電池の単電池電圧測定などに適用することもできる。
As described above, according to the input circuit (battery voltage measurement circuit) according to the present invention, the voltage polarity of adjacent cells is inverted for each cell group for measuring the cell voltage. The number of parts can be reduced, and even if the polarity of the cell voltage is reversed, the cell voltage with the same polarity can be detected by switching the signal line to be grounded. It becomes possible to perform voltage measurement using. As a result, it is possible to use a differential amplifier that operates with a single power supply, so that the material cost of the input circuit can be greatly reduced. In addition, every time the polarity of the cell group to be measured is inverted, the signal lines on both sides of the cell group are alternately switched and connected to the ground, so that scanning can be performed at a time compared to when the signal lines are not switched to the ground. The number of cells can be doubled. As a result, since multiple channels can be scanned at a higher speed, the cell voltage measurement of a cell group in which a large number of cells are connected in series like a fuel cell can be performed at a higher speed.
In the embodiment described above, the case where the cell voltage is measured while scanning each cell of the fuel cell has been described. However, the input circuit according to the present invention is not limited to the cell voltage measurement of the fuel cell, The present invention can also be applied to cell voltage measurement of any secondary battery connected in series, or cell voltage measurement of dry batteries connected in series.

本発明の入力回路は、燃料電池のセルなど複数のセルが直列に接続された起電力素子の起電力を従来よりも少ない部品点数で検出・測定することができるので、燃料電池システムが用いられる広範囲な産業分野を中心に、各種の電池の電圧監視が必要な分野で広く利用することができる。   Since the input circuit of the present invention can detect and measure the electromotive force of an electromotive force element in which a plurality of cells such as fuel cell cells are connected in series with a smaller number of parts than conventional ones, a fuel cell system is used. It can be widely used in fields where voltage monitoring of various batteries is required, mainly in a wide range of industrial fields.

本発明の前提条件となる、各ステージの境界位置におけるセルの信号ラインに設けたスイッチを共有化した入力回路の主要部を示す回路図である。FIG. 2 is a circuit diagram showing a main part of an input circuit sharing a switch provided in a signal line of a cell at a boundary position of each stage, which is a precondition for the present invention. 図1に示す入力回路におけるセルごとの測定電圧の極性を示す説明図である。It is explanatory drawing which shows the polarity of the measurement voltage for every cell in the input circuit shown in FIG. 本発明に係る入力回路の主要部を示す回路図である。It is a circuit diagram which shows the principal part of the input circuit which concerns on this invention. 各ステージのセル数を4セルとした場合の、本発明に係る入力回路の具体的な一実施例を示す回路図である。It is a circuit diagram which shows one specific Example of the input circuit which concerns on this invention when the number of cells of each stage is 4 cells. 従来の入力回路の主要部を示す回路図である。It is a circuit diagram which shows the principal part of the conventional input circuit. 図5に示す入力回路におけるセルごとの測定電圧の極性を示す説明図である。It is explanatory drawing which shows the polarity of the measurement voltage for every cell in the input circuit shown in FIG.

符号の説明Explanation of symbols

10,10a、10b 入力回路
B1〜B5 バッファ
C1〜C9 セル
D1〜D4 差動増幅器(電圧検出手段)
F1〜F3 フィルタ
R、r 抵抗
S1〜S10 スイッチ(開閉手段)
S11〜S12 スイッチ(切替手段)
10, 10a, 10b Input circuit B1-B5 Buffer C1-C9 Cell D1-D4 Differential amplifier (voltage detection means)
F1 to F3 filter R, r resistance S1 to S10 switch (open / close means)
S11 to S12 switches (switching means)

Claims (4)

複数のセルが直列に接続された組電池のセル群をスキャンしながら前記セル群ごとに各セルの電圧を測定する電池電圧測定回路であって、
前記各セルの電圧を出力する各信号ラインのそれぞれに直列に接続され、前記セル群毎に開閉する複数の開閉手段と、
前記セル群の両側の境界位置に存在する2系統の両側信号ラインの何れかを接地させる切替手段と、
前記開閉手段が閉じたセル群の各セル電圧を検出する複数の電圧検出手段と、
を備え
前記切替手段は、前記電圧検出手段が検出する前記検出セル群が奇数番目であるか偶数番目であるかによって、前記両側信号ラインを交互に接地させ、
前記電圧検出手段は、前記両側信号ラインの何れかが接地されたときに前記各セル電圧を検出することを特徴とする電池電圧測定回路。
A battery voltage measuring circuit that measures the voltage of each cell for each cell group while scanning a group of cells of an assembled battery in which a plurality of cells are connected in series,
A plurality of opening / closing means connected in series to each signal line for outputting the voltage of each cell, and opening and closing for each cell group ;
Switching means for grounding one of the two signal lines on both sides existing at the boundary positions on both sides of the cell group;
A plurality of voltage detecting means for detecting each cell voltage of the cell group in which the opening / closing means is closed ;
Equipped with a,
The switching means alternately grounds the both-side signal lines depending on whether the detection cell group detected by the voltage detection means is odd or even.
The battery voltage measuring circuit , wherein the voltage detecting means detects each cell voltage when any one of the both-side signal lines is grounded .
記電圧検出手段は同一極性のセル電圧を検出することを特徴とする請求項1に記載の電池電圧測定回路。 Battery voltage measurement circuit according to claim 1 before Symbol voltage detection means and detects a cell voltage of the same polarity. 前記開閉手段及び前記切替手段は、前記組電池の電圧より高い耐圧を有するフォトMOSスイッチであることを特徴とする請求項1又は請求項に記載の電池電圧測定回路。 The switching means and the switching means, the battery voltage measurement circuit according to claim 1 or claim 2, characterized in that a photo-MOS switch having a breakdown voltage higher than the voltage of the battery pack. 前記組電池は燃料電池であることを特徴とする請求項1乃至請求項のいずれか1項に記載の電池電圧測定回路。 The battery voltage measuring circuit according to any one of claims 1 to 3 , wherein the assembled battery is a fuel cell.
JP2004347874A 2004-11-30 2004-11-30 Battery voltage measurement circuit Active JP4180560B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004347874A JP4180560B2 (en) 2004-11-30 2004-11-30 Battery voltage measurement circuit
US11/285,319 US7719284B2 (en) 2004-11-30 2005-11-23 Apparatus for measuring voltage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004347874A JP4180560B2 (en) 2004-11-30 2004-11-30 Battery voltage measurement circuit

Publications (2)

Publication Number Publication Date
JP2006153780A JP2006153780A (en) 2006-06-15
JP4180560B2 true JP4180560B2 (en) 2008-11-12

Family

ID=36632252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004347874A Active JP4180560B2 (en) 2004-11-30 2004-11-30 Battery voltage measurement circuit

Country Status (1)

Country Link
JP (1) JP4180560B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4883956B2 (en) * 2005-08-04 2012-02-22 日立オートモティブシステムズ株式会社 Battery cell voltage measuring device
JP4814815B2 (en) 2007-02-28 2011-11-16 本田技研工業株式会社 Cell voltage monitor failure determination device
JP5700756B2 (en) 2010-04-28 2015-04-15 矢崎総業株式会社 Voltage measurement device for multiple assembled batteries
JP2011237266A (en) * 2010-05-10 2011-11-24 Denso Corp Cell voltage detection device
JP2011247818A (en) * 2010-05-28 2011-12-08 Yazaki Corp Voltage measuring instrument for assembled battery
JP6624782B2 (en) * 2014-12-25 2019-12-25 ラピスセミコンダクタ株式会社 Semiconductor device and method of measuring battery voltage
KR101724500B1 (en) 2015-10-28 2017-04-07 현대자동차 주식회사 Fuel cell stack diagnostic system and diagnostic method thereof
JP6445673B2 (en) * 2017-12-28 2018-12-26 ラピスセミコンダクタ株式会社 Semiconductor device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3518318B2 (en) * 1998-03-06 2004-04-12 松下電器産業株式会社 Stacked voltage measurement device
JP3402583B2 (en) * 1998-10-20 2003-05-06 株式会社デンソー Battery cell voltage detector
JP4557407B2 (en) * 2000-10-31 2010-10-06 パナソニック株式会社 Laminate voltage measuring device
JP4210030B2 (en) * 2000-11-02 2009-01-14 パナソニック株式会社 Laminate voltage measuring device
JP3672183B2 (en) * 2000-11-20 2005-07-13 株式会社デンソー Battery voltage detector
JP2003240806A (en) * 2002-02-15 2003-08-27 Yazaki Corp Cell voltage measurement device for battery pack and its method
JP4083504B2 (en) * 2002-08-22 2008-04-30 株式会社ケーヒン Voltage monitoring device

Also Published As

Publication number Publication date
JP2006153780A (en) 2006-06-15

Similar Documents

Publication Publication Date Title
US7719284B2 (en) Apparatus for measuring voltage
US8587262B2 (en) Assembled battery monitoring apparatus, method for detecting wiring disconnection of assembled battery, and assembled battery system
JP4756301B2 (en) Driving method of flying capacitor type assembled battery voltage detection circuit
JP4589888B2 (en) Battery voltage measurement circuit and battery ECU
JP4180560B2 (en) Battery voltage measurement circuit
JP6477593B2 (en) Battery pack monitoring system
JP3672183B2 (en) Battery voltage detector
JP2006337130A (en) Flying capacitor type voltage measurement device
JP5310646B2 (en) Driving method of flying capacitor type assembled battery voltage detection circuit
WO2017104374A1 (en) Assembled battery monitoring system
JP4533357B2 (en) Voltage measuring device
JP2001289887A (en) Laminated voltage-measuring apparatus
JP2010243157A (en) Voltage detection device
JP4158352B2 (en) Battery voltage detector
JP4616875B2 (en) Voltage detector
JP2006197790A (en) Power supply apparatus
JP4571888B2 (en) Voltage measuring device and degradation determination method thereof
JP2010154441A (en) Apparatus and method for diagnosing fault of a/d input circuit
US9530338B2 (en) Driving circuit having built-in-self-test function
JP2006153758A (en) Contact detection method
JP2005091062A (en) Device for detecting voltage of assembled battery set
JP5368283B2 (en) Voltage detection circuit
JP4256837B2 (en) Voltage measuring device
JP6544681B2 (en) Battery voltage detector
JP6044502B2 (en) Battery voltage detection device and abnormality detection method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080827

R150 Certificate of patent or registration of utility model

Ref document number: 4180560

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250