JP4178454B2 - Gate drive circuit for power semiconductor device - Google Patents

Gate drive circuit for power semiconductor device Download PDF

Info

Publication number
JP4178454B2
JP4178454B2 JP2003000415A JP2003000415A JP4178454B2 JP 4178454 B2 JP4178454 B2 JP 4178454B2 JP 2003000415 A JP2003000415 A JP 2003000415A JP 2003000415 A JP2003000415 A JP 2003000415A JP 4178454 B2 JP4178454 B2 JP 4178454B2
Authority
JP
Japan
Prior art keywords
gate
power semiconductor
igbt
drive circuit
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003000415A
Other languages
Japanese (ja)
Other versions
JP2004215415A (en
Inventor
壮章 田畑
清明 笹川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2003000415A priority Critical patent/JP4178454B2/en
Publication of JP2004215415A publication Critical patent/JP2004215415A/en
Application granted granted Critical
Publication of JP4178454B2 publication Critical patent/JP4178454B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Power Conversion In General (AREA)
  • Inverter Devices (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、複数の素子で構成される電力変換装置において、1素子または複数素子が寿命や事故等によりゲートが短絡したときに、装置を停止することなく継続運転を可能にする電力用半導体素子のゲート駆動に関する。
【0002】
【従来の技術】
図15に、IGBT(絶縁ゲートバイポーラトランジスタ)を用いた電力変換装置の一般的な例を示す。これは、IGBTを直列または並列に構成して直流電源Edに接続することで、出力端子に接続された負荷Lに、任意の電力を供給するものである。
図16に、IGBTの駆動回路(ゲート駆動回路)の一般的な例を示す。
ゲート駆動回路GDUは、図示されない制御装置から与えられるオン,オフ信号に同期して、IGBTのゲート・エミッタ間に順電圧Vonを与えることによってオンさせ、逆電圧Voffを与えることでオフさせる。IGBTが正常な場合には、IGBTのゲート・エミッタ間の電圧VGEは、VonまたはVoffまで充電されることになる。
【0003】
ところで、負荷Lに供給する電力容量を大きくしたい場合、電力変換装置を構成する各IGBTの容量を大きくする必要があり、IGBT単体の容量から複数素子を並列に接続して構成することで大容量化が可能となり、大容量の電力変換装置を提供することができる。図17に、大容量化したIGBTの内部等価回路を示す。ここでは、IGBT素子Q1〜Qnを、複数個並列に接続して構成している。
【0004】
ただし、Q1〜Qnには図18(a)に示すように、ゲート・エミッタ間入力容量Cgeがそれぞれ存在する。また、Q1〜Qnの特性にばらつきがあるため、Q1〜Qnのスイッチング時間にばらつきが生じる。さらに、各チップ間の入力容量Cgeとゲート配線に存在する寄生インダクタンスLgsの影響によって、図18(b)に示すような共振電流Igrが発生する。これらを防止するため、各チップのゲート端子に図17のように抵抗Rg1〜Rgnを接続し、スイッチング時間のばらつきと入力容量間の共振電流Igrを抑制して使用する。
【0005】
上記のように複数の素子を並列接続する場合、IGBTの寿命や事故により1チップまたは複数チップが破壊すると、ゲート・エミッタ間のインピーダンスが短絡する。図19に1つのチップQnが短絡した場合を示す。このとき、制御装置から与えられるオン信号により、GDUがIGBTのゲートを充電させるように動作した場合、IGBTのゲートに印加される電圧VGEは次の(1)式で示すようになる。
VGE=[Rgn/(Rgon+Rgn)]・Von …(1)
【0006】
このような場合、その他のIGBTチップは、ゲート電圧が規定の電圧Vonまで充電しなくなり、コレクタ・エミッタ間の電圧が図20のようにVCE1→VCE2に上昇して、IGBTの導通損失が増大することとなり、最終的には熱暴走により素子が破壊することがあり、大事故につながる可能性がある。そのため、破壊した素子に流入する電流を抑制するもの(特許文献1参照)、または駆動回路を遮断(オフ)するもの(特許文献2参照)などがある。しかし、これらは複数素子を並列接続したものに対処するものではない。
これに対し、複数素子に対処するものもあるが(特許文献3参照)、これは単に素子の異常を検出するにとどまるもので、検出後の処理については何も記載されていない。
【0007】
【特許文献1】
特開平10−209831号公報(第3−4頁、図1)
【特許文献2】
特開平10−070832号公報(第3頁、図2)
【特許文献3】
特開2002−222920号公報(第3−4頁、図1)
【0008】
【発明が解決しようとする課題】
したがって、この発明の課題は、複数素子が並列接続されたIGBT等の電力用半導体素子の、1つまたは複数のチップのゲートのインピーダンスが短絡した場合でも、その他の素子に影響を与えることなくその動作を保証(継続)できるようにすることにある。
【0009】
【課題を解決するための手段】
このような課題を解決するため、請求項1の発明では、電力変換装置の各アームに複数個並列に接続して用いられる電力用半導体素子のゲート駆動回路において、
前記各アーム毎に電力用半導体素子のゲートに流れる電流を検出する検出手段と、ゲートに流す電流を増加させる電流増加手段とを設け、一定値以上のゲート電流が流れたら対応する電力用半導体素子のゲート配線を積極的に溶断することを特徴とする。
この請求項1の発明においては、前記ゲートに流す電流を増加させるのは、電力用半導体素子の過渡状態が終了した後の定常状態時とすることができる(請求項2の発明)。
【0010】
【発明の実施の形態】
図1はこの発明の第1の原理構成図である。
これは、各チップのゲート線に、1つのチップが短絡したとき流れる電流によって溶断するように、その断面積や材料を選択した電線L1〜Lnを用いるようにしたものである。
図1の作用について、図2,図3を参照して説明する。
まず、全IGBT素子Q1〜Qnが正常な場合は、オン,オフ信号が入ったときにゲート・エミッタ間を充電する電流が流れた後の定常状態では、各IGBTのゲート電流は次式のように0となる。
Ig=Ig1=Ig2=……=Ign=0 (2)
【0011】
図1において、或るチップQnが寿命や故障等により、図2に示すようにゲート・エミッタ間のインピーダンスが短絡した場合、Qnには次の(3)式で示す電流が常時流れることとなる。
Ign=Voff/(Rgoff+Rgn) (3)
そこで、電線L1〜Lnとして、上記(3)式で示す電流が流れたら溶断するような断面積,材料の電線を選定しておく。これにより、Ignの電流が流れた場合、すなわち1つのチップのゲートが短絡した場合、そのチップのゲート配線は溶断し、ゲート駆動回路GDUとの接続が図3のように切り離される。ゲート配線が切り離されたチップは、ゲートが短絡しているため、オン,オフ信号に関係なくオフを継続する。また、ゲートが短絡したチップのゲート配線を溶断していれば、その他のチップはオン,オフ信号に同期して、IGBTのゲート電圧をGDUによりVonまたはVoffまで充電することができ、正常時と同様にIGBTを駆動することができる。
【0012】
図4にこの発明の第2の原理構成を示す。
これは、ゲート配線を切り離す手段として、各素子のゲート配線にヒューズF1〜Fnを挿入したものである。このヒューズF1〜Fnは図1の電線L1〜Lnと同等の機能を有するので、図4の作用を説明する図5,図6も図2,図3の説明とほとんど同様となる。
【0013】
図7にこの発明の実施の形態を示す。
この例は、ゲート配線を切り離すために、ゲート電流を検出するためのゲート両端電圧VGEを基準電圧Vrefと比較するコンパレータCmpと、このCmpの出力とオフ信号をアンド回路ANDに入力し、このAND回路の出力に応じてIGBTをオフさせる電圧Voffの電圧を上昇させる回路(図示省略)に接続したものである。
【0014】
その動作について説明する。
電流Ignが流れると、Cmpは図8に示すようにIgnを検出し、オフ信号入力後の定常状態のときに、直流電圧Voffを上昇させる。Voffが上昇すると、Ignが増大する(図9参照)。すなわち、VoffをVoff1まで上昇させたとすると、この時流れる電流Ign1は次の(4)式で示す値となる。
Ign1=Voff1/(Rgoff+Rgn) (4)
ここで、ゲート配線をIgn1が流れたときに溶断できるようにしておく。そうすれば、1チップのゲートが短絡した場合にそのチップのゲート配線は溶断し、GDUとの配線が切り離される。ゲート配線が切り離されたチップはゲートが短絡しているため、オン,オフ信号に関係なくオフを継続する(図10参照)。
【0015】
図11にこの発明のの実施の形態を示す。
図7では、チップのゲート配線を積極的に溶断するに当たり電圧を上昇させるようにしたが、こうする代わりにゲート抵抗RgoffをRgoff=Rgoff1+Rgoff2として、そのRgoffの両端の電圧をコンパレータCmpで検出し(図12参照)、その値が所定値以上になったらオフ信号とのAND回路を介してスイッチSを閉じ、Rgoff=Rgoff1としてゲート電流IgnをIgn1に増加させ(図13参照)、ゲートが短絡したチップのゲート配線を溶断してGDUから切り離すことで(図14参照)、図7と同様の動作を可能にするものである。
【0016】
【発明の効果】
この発明によれば、大容量化するために複数並列に接続された電力用半導体素子を駆動する場合、寿命や事故により1チップまたは複数チップのゲートインピーダンスが短絡した場合でも、その他の素子に影響を与えることなくその動作を保証し得るという利点がもたらされる。電力変換装置を継続運転できるため、運転を停止させるものに比べて装置の信頼性が向上する。
【図面の簡単な説明】
【図1】 この発明の第1の原理構成
【図2】 図1の短絡時説明図
【図3】 図1の溶断動作説明図
【図4】 この発明の第2の原理構成
【図5】 図4の短絡,溶断動作説明図
【図6】 図4の溶断時説明図
【図7】 この発明の実施の形態を示す回路図
【図8】 図7の短絡時説明図
【図9】 図7の電流増大時説明図
【図10】 図7の溶断時説明図
【図11】 この発明のの実施の形態を示す回路図
【図12】 図11の短絡時説明図
【図13】 図11の電流増大時説明図
【図14】 図11の溶断時説明図
【図15】 一般的な電力変換装置の回路構成図
【図16】 一般的なIGBT駆動回路図
【図17】 大容量化したIGBTの構成例図
【図18】 IGBTの入力容量,共振電流説明図
【図19】 IGBT短絡時の説明図
【図20】 IGBTのコレクタ・エミッタ間電圧特性の説明図
【符号の説明】
L1〜Ln…電線(ゲート配線)、F1〜Fn…ヒューズ、Q1〜Qn…IGBT(絶縁ゲート形バイポーラトランジスタ)、Rg1〜Rgn…ゲート抵抗、Rgon…オン抵抗、Rgoff…オフ抵抗、Ig1〜Ign…ゲート電流、GDU…ゲート駆動回路、Cmp…コンパレータ、AND…アンド回路、S…スイッチ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a power semiconductor device that enables continuous operation without stopping the device when a gate is short-circuited due to a lifetime or an accident in one or more devices in a power conversion device including a plurality of devices. It is related with the gate drive.
[0002]
[Prior art]
FIG. 15 shows a general example of a power conversion device using an IGBT (insulated gate bipolar transistor). This is to supply arbitrary power to the load L connected to the output terminal by configuring the IGBTs in series or in parallel and connecting them to the DC power supply Ed.
FIG. 16 shows a general example of an IGBT drive circuit (gate drive circuit).
The gate drive circuit GDU is turned on by applying a forward voltage Von between the gate and emitter of the IGBT in synchronization with an on / off signal given from a control device (not shown), and turned off by applying a reverse voltage Voff. When the IGBT is normal, the voltage VGE between the gate and the emitter of the IGBT is charged to Von or Voff.
[0003]
By the way, when it is desired to increase the power capacity to be supplied to the load L, it is necessary to increase the capacity of each IGBT constituting the power converter, and the capacity can be increased by connecting a plurality of elements in parallel from the capacity of the single IGBT. And a large-capacity power conversion device can be provided. FIG. 17 shows an internal equivalent circuit of the IGBT having a large capacity. Here, a plurality of IGBT elements Q1 to Qn are connected in parallel.
[0004]
However, as shown in FIG. 18A, each of Q1 to Qn has a gate-emitter input capacitance Cge. Further, since the characteristics of Q1 to Qn are varied, the switching times of Q1 to Qn are varied. Further, a resonance current Igr as shown in FIG. 18B is generated due to the influence of the input capacitance Cge between the chips and the parasitic inductance Lgs existing in the gate wiring. In order to prevent these, resistors Rg1 to Rgn are connected to the gate terminals of each chip as shown in FIG. 17, and the switching current variation and the resonance current Igr between the input capacitors are suppressed.
[0005]
When a plurality of elements are connected in parallel as described above, when one chip or a plurality of chips are destroyed due to the lifetime of the IGBT or an accident, the impedance between the gate and the emitter is short-circuited. FIG. 19 shows a case where one chip Qn is short-circuited. At this time, when the GDU operates to charge the gate of the IGBT by an ON signal given from the control device, the voltage VGE applied to the gate of the IGBT is expressed by the following equation (1).
VGE = [Rgn / (Rgon + Rgn)] · Von (1)
[0006]
In such a case, the other IGBT chips do not charge the gate voltage to the specified voltage Von, the collector-emitter voltage increases from VCE1 to VCE2 as shown in FIG. 20, and the IGBT conduction loss increases. Eventually, the device may be destroyed by thermal runaway, which may lead to a major accident. For this reason, there are devices that suppress the current flowing into the destroyed element (see Patent Document 1), and devices that shut off (turn off) the drive circuit (see Patent Document 2). However, these do not deal with a case where a plurality of elements are connected in parallel.
On the other hand, there are some that deal with a plurality of elements (see Patent Document 3), but this is merely to detect an abnormality of the element, and nothing is described about the processing after the detection.
[0007]
[Patent Document 1]
Japanese Patent Laid-Open No. 10-209831 (page 3-4, FIG. 1)
[Patent Document 2]
Japanese Patent Laid-Open No. 10-070832 (page 3, FIG. 2)
[Patent Document 3]
JP 2002-222920 A (page 3-4, FIG. 1)
[0008]
[Problems to be solved by the invention]
Therefore, even if the gate impedance of one or a plurality of chips of a power semiconductor element such as an IGBT in which a plurality of elements are connected in parallel is short-circuited, the problem of the present invention is that the other elements are not affected. The purpose is to guarantee (continue) the operation.
[0009]
[Means for Solving the Problems]
In order to solve such a problem, in the invention of claim 1, in a gate drive circuit of a power semiconductor element used in parallel connected to each arm of the power converter,
A detecting means for detecting the current flowing through the gate of the power semiconductor element for each arm and a current increasing means for increasing the current flowing through the gate are provided, and the corresponding power semiconductor element when a gate current of a certain value or more flows. The gate wiring is actively fused .
In the first aspect of the present invention, the current flowing through the gate can be increased during the steady state after the transient state of the power semiconductor element is completed (the second aspect of the invention).
[0010]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a block diagram showing the first principle of the present invention.
In this case, electric wires L1 to Ln whose cross-sectional areas and materials are selected are used for the gate lines of each chip so that the current flows when one chip is short-circuited.
The operation of FIG. 1 will be described with reference to FIGS.
First, when all the IGBT elements Q1 to Qn are normal, the gate current of each IGBT is expressed by the following equation in a steady state after a current for charging between the gate and the emitter flows when an on / off signal is input. 0.
Ig = Ig1 = Ig2 = ...... = Ign = 0 (2)
[0011]
In FIG. 1, when a certain chip Qn has a short-circuited gate-emitter impedance as shown in FIG. 2 due to its life or failure, the current shown in the following equation (3) always flows through Qn. .
Ign = Voff / (Rgoff + Rgn) (3)
Therefore, as the electric wires L1 to Ln, an electric wire having a cross-sectional area and a material that melts when the current shown by the above expression (3) flows is selected. Thereby, when an Ign current flows, that is, when the gate of one chip is short-circuited, the gate wiring of the chip is melted and the connection with the gate drive circuit GDU is disconnected as shown in FIG. The chip from which the gate wiring has been separated continues to be turned off regardless of the on / off signal because the gate is short-circuited. In addition, if the gate wiring of the chip whose gate is short-circuited is blown, other chips can charge the gate voltage of the IGBT to Von or Voff by GDU in synchronization with the on / off signal. Similarly, the IGBT can be driven.
[0012]
FIG. 4 shows a second principle configuration of the present invention.
This is one in which fuses F1 to Fn are inserted into the gate wiring of each element as means for separating the gate wiring. Since the fuses F1 to Fn have functions equivalent to those of the electric wires L1 to Ln in FIG. 1, FIGS. 5 and 6 for explaining the operation of FIG. 4 are almost the same as those in FIGS.
[0013]
FIG. 7 shows an embodiment of the present invention.
In this example, in order to cut off the gate wiring, a comparator Cmp for comparing the gate end-to-gate voltage VGE for detecting a gate current with a reference voltage Vref, an output of the Cmp and an OFF signal are input to an AND circuit AND. This circuit is connected to a circuit (not shown) that raises the voltage Voff that turns off the IGBT according to the output of the circuit.
[0014]
The operation will be described.
When the current Ign flows, Cmp detects Ign as shown in FIG. 8 and raises the DC voltage Voff in the steady state after the OFF signal is input. As Voff increases, Ign increases (see FIG. 9). That is, if Voff is increased to Voff1, the current Ign1 flowing at this time is a value represented by the following equation (4).
Ign1 = Voff1 / (Rgoff + Rgn) (4)
Here, the gate wiring is made to be meltable when Ign1 flows. Then, when the gate of one chip is short-circuited, the gate wiring of the chip is melted and the wiring with the GDU is cut off. Since the gate of the chip from which the gate wiring is cut is short-circuited, the chip continues to be turned off regardless of the on / off signal (see FIG. 10).
[0015]
FIG. 11 shows another embodiment of the present invention.
In FIG. 7, the voltage is increased when the gate wiring of the chip is actively melted. Instead, the gate resistance Rgoff is Rgoff = Rgoff1 + Rgoff2, and the voltage at both ends of the Rgoff is detected by the comparator Cmp ( When the value exceeds a predetermined value, the switch S is closed via an AND circuit with an OFF signal, the gate current Ign is increased to Ign1 with Rgoff = Rgoff1 (see FIG. 13), and the gate is short-circuited. By cutting the gate wiring of the chip and disconnecting it from the GDU (see FIG. 14), the same operation as in FIG. 7 is enabled.
[0016]
【The invention's effect】
According to the present invention, when driving a plurality of power semiconductor elements connected in parallel to increase the capacity, even if the gate impedance of one chip or a plurality of chips is short-circuited due to a lifetime or an accident, other elements are affected. The advantage is that its operation can be guaranteed without giving Since the power conversion device can be continuously operated, the reliability of the device is improved as compared with the device that stops the operation.
[Brief description of the drawings]
[1] the first principles block diagram FIG. 2 short-circuit diagram of Figure 1 Figure 3 fusing operation explanatory diagram of Figure 1 Figure 4 second principle diagram Figure of the invention of the invention 5] Explanatory diagram of short circuit and fusing operation in FIG. 4 [FIG. 6] Explanatory diagram at the time of fusing in FIG. 4 [FIG. 7] Circuit diagram showing an embodiment of the present invention [FIG. FIG. 7 is an explanatory diagram at the time of current increase. FIG. 10 is an explanatory diagram at the time of fusing of FIG. 7. FIG. 11 is a circuit diagram showing another embodiment of the present invention. 11 is an explanatory diagram when current is increased. FIG. 14 is an explanatory diagram when fusing is shown in FIG. 11. FIG. 15 is a circuit configuration diagram of a general power converter. FIG. 16 is a general IGBT drive circuit diagram. FIG. 18 is a diagram illustrating an example of a configuration of a capacitive IGBT. FIG. 18 is an explanatory diagram of an IGBT input capacitance and resonance current. FIG. 19 is an explanatory diagram when an IGBT is short-circuited. Illustration of a collector-emitter voltage characteristics of BT DESCRIPTION OF SYMBOLS
L1 to Ln: Electric wire (gate wiring), F1 to Fn: Fuse, Q1 to Qn: IGBT (insulated gate bipolar transistor), Rg1 to Rgn: Gate resistance, Rgon: On resistance, Rgoff: Off resistance, Ig1 to Ign ... Gate current, GDU: gate drive circuit, Cmp: comparator, AND: AND circuit, S: switch.

Claims (2)

電力変換装置の各アームに複数個並列に接続して用いられる電力用半導体素子のゲート駆動回路において、
前記各アーム毎に電力用半導体素子のゲートに流れる電流を検出する検出手段と、ゲートに流す電流を増加させる電流増加手段とを設け、一定値以上のゲート電流が流れたら対応する電力用半導体素子のゲート配線を積極的に溶断することを特徴とする電力用半導体素子のゲート駆動回路。
In the gate drive circuit of the power semiconductor element used by connecting in parallel to each arm of the power converter,
A detecting means for detecting the current flowing through the gate of the power semiconductor element for each arm and a current increasing means for increasing the current flowing through the gate are provided, and the corresponding power semiconductor element when a gate current of a certain value or more flows. A gate drive circuit for a power semiconductor element, wherein the gate wiring is actively fused .
前記ゲートに流す電流を増加させるのは、電力用半導体素子の過渡状態が終了した後の定常状態時とすることを特徴とする請求項1に記載の電力用半導体素子のゲート駆動回路。 2. The gate drive circuit for a power semiconductor device according to claim 1, wherein the current flowing through the gate is increased in a steady state after the transient state of the power semiconductor device is finished .
JP2003000415A 2003-01-06 2003-01-06 Gate drive circuit for power semiconductor device Expired - Fee Related JP4178454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003000415A JP4178454B2 (en) 2003-01-06 2003-01-06 Gate drive circuit for power semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003000415A JP4178454B2 (en) 2003-01-06 2003-01-06 Gate drive circuit for power semiconductor device

Publications (2)

Publication Number Publication Date
JP2004215415A JP2004215415A (en) 2004-07-29
JP4178454B2 true JP4178454B2 (en) 2008-11-12

Family

ID=32818732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003000415A Expired - Fee Related JP4178454B2 (en) 2003-01-06 2003-01-06 Gate drive circuit for power semiconductor device

Country Status (1)

Country Link
JP (1) JP4178454B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10840903B2 (en) 2018-09-14 2020-11-17 Kabushiki Kaisha Toshiba Semiconductor module

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007274828A (en) 2006-03-31 2007-10-18 Denso Corp Drive circuit
JP5741605B2 (en) * 2013-02-04 2015-07-01 株式会社デンソー Electronic equipment
JP2020167612A (en) * 2019-03-29 2020-10-08 住友電装株式会社 Power supply control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10840903B2 (en) 2018-09-14 2020-11-17 Kabushiki Kaisha Toshiba Semiconductor module

Also Published As

Publication number Publication date
JP2004215415A (en) 2004-07-29

Similar Documents

Publication Publication Date Title
US9461457B2 (en) Driver for target switching element and control system for machine using the same
JP3008924B2 (en) Power element drive circuit
US9112344B2 (en) Driver for switching element and control system for rotary machine using the same
EP0680147B1 (en) Semiconductor power module and power conversion device
JP5761215B2 (en) Gate drive circuit
JP4284478B2 (en) Inverter device
JP4595670B2 (en) Driving device for voltage-driven switching element
US9461638B2 (en) Drive unit for switching element
JP6436028B2 (en) Power supply device and switch control method thereof
JP5915615B2 (en) Semiconductor control device, switching device, inverter and control system
JP6717186B2 (en) Inverter control circuit
JP2002076868A (en) Semiconductor module, protection circuit, and voltage converter
JP6061029B2 (en) Power converter
CN109756012A (en) Over-current judging device and the driving unit for using the over-current judging device
JP5673634B2 (en) Drive circuit for switching element to be driven
JP4178454B2 (en) Gate drive circuit for power semiconductor device
JP2003009508A (en) Power semiconductor device
JP2004129378A (en) Gate drive circuit for power semiconductor device
JP5776585B2 (en) Driving device for switching element
US10141834B2 (en) Multi-phase power conversion device control circuit
JPH10116552A (en) Switching device
US20220345125A1 (en) Circuit arrangement for controlling a plurality of semiconductor switches connected in parallel
KR0133530B1 (en) Driving circuit
CN108028612B (en) Inverter device for electric vehicle
JP2020054147A (en) Reverse connection protective circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080813

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees