JP4176294B2 - Induction heating roller device - Google Patents

Induction heating roller device Download PDF

Info

Publication number
JP4176294B2
JP4176294B2 JP2000253783A JP2000253783A JP4176294B2 JP 4176294 B2 JP4176294 B2 JP 4176294B2 JP 2000253783 A JP2000253783 A JP 2000253783A JP 2000253783 A JP2000253783 A JP 2000253783A JP 4176294 B2 JP4176294 B2 JP 4176294B2
Authority
JP
Japan
Prior art keywords
phase
induction coil
induction
roller
heat generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000253783A
Other languages
Japanese (ja)
Other versions
JP2002075626A (en
Inventor
徹 外村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuden Co Ltd Kyoto
Original Assignee
Tokuden Co Ltd Kyoto
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuden Co Ltd Kyoto filed Critical Tokuden Co Ltd Kyoto
Priority to JP2000253783A priority Critical patent/JP4176294B2/en
Publication of JP2002075626A publication Critical patent/JP2002075626A/en
Application granted granted Critical
Publication of JP4176294B2 publication Critical patent/JP4176294B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Fixing For Electrophotography (AREA)
  • General Induction Heating (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は誘導発熱ローラ装置に関する。
【0002】
【従来の技術】
周知のように誘導発熱ローラ装置は、回転するローラの内部に、鉄心と、これに巻装された誘導コイルとからなる誘導発熱機構を備えている。この構成の一例を図1によって説明すると、1はローラで、これに連なるジャーナル2が架台3に対して軸受4によって回転可能に支持され、図示しない回転源によって回転駆動される。5はローラ1の肉厚部分に形成されてあるジャケット室で、内部に気液二相の熱媒体が封入されてある。
【0003】
ローラ1の中空内部には、誘導コイル61〜63とこれが巻装されてある鉄心7とによって構成されている誘導発熱機構8が設置される。9は誘導発熱機構8を支持する支持ロッドで、これは軸受10を介してジャーナル11の内部に支持されている。12は誘導コイル5のリード線で、支持ロッド9内を通って外部に導出され、外部の三相交流電源13に接続されている。
【0004】
ところで誘導コイルの励磁に三相電源を利用することが行われている。これは三相電源が身近にあることに基づくものである。しかし対称の三相電圧を誘導コイルに印加した場合、その誘導コイルと対峙するローラ部分に磁気流れが生じ、そのためにローラを通る磁束が不均一となることがある。
【0005】
これを説明すると、図4に示すように、誘導コイル61〜63を用意し、これをローラ1の内部に配置して、各誘導コイルに三相電圧を印加する。なおこのままでもよいが、この構成では相電圧の位相差は120度であるので、この位相差を小さくして、隣合う誘導コイルの間に対峠するローラ部分の表面温度が、誘導コイルに対峠する個所より極端に低くならないようにするため、図2に示すようにU,V,W相を180度移相してX,Y,Z相とし、そのうちのV相を180度移相したY相と、U,W相とを利用すると、U,Y,W相の位相差は60度となる。
【0006】
この場合U相に対してY相は60度進みの位相となり、またY相に対してW相は60度進みの位相となる。U,Y,W相にそれぞれ誘導コイル61,62,63を接続し、ローラ1を誘導発熱させると、たとえばU相を基準にすると、誘導コイル61に対峙するローラ部分から、これより進み位相のY相の誘導コイル62に対峙するローラ部分に向かって多くの磁束が流れるようになる。同様に誘導コイル62に対峙するローラ部分から、Y相より進み位相のW相の誘導コイル63に対峙するローラ部分に向かって多くの磁束が流れるようになる。このような現象を磁気流れと呼んでいる。
【0007】
すなわち図4に示すように、誘導コイル63から誘導コイル61に向かって磁束が流れる結果、発熱分布曲線Aは誘導コイル61に対峙する部分が高く、誘導コイル62,63に対峙する部分にしたがって次第に低くなる傾向を示す。したがってこのような磁気流れ現象が発生すると、各誘導コイルにそれぞれ等しい電力を供給しても、各誘導コイルに対峙しているローラ部分の表面温度は不均一となり、表面温度分布を平滑化することができないようになる。
【0008】
【発明が解決しようとする課題】
本発明は、多相交流電源により、ローラ内部の誘導コイルを励磁するに際し、相電圧の位相の進み方向、または遅れ方向にしたがって発生する磁気流れによるローラの発熱量の不均一化を改善することを目的とする。
【0009】
【課題を解決するための手段】
本発明は、ローラの内部にあって、ローラの軸方向に沿って第1、第2、第3と順次直列に並んで配置された、誘導発熱機構のための誘導コイルのうち、第1ないし第3の誘導コイルを励磁する第1相、第2相、第3相を有する三相交流電源とからなる誘導発熱ローラ装置において、第1の誘導コイルの一端と第1の誘導コイルに隣接する側の前記第2の誘導コイルの一端並びに第3の誘導コイルの前記第2の誘導コイルに隣接する反対側の一端とを結線するとともに、前記第2の誘導コイルの他端を前記三相交流電源の第2相に接続し、前記第1の誘導コイルの他端と前記第3の誘導コイルの他端に接続する前記三相交流電源の第1相と第3相を所定の時間毎に切り替える制御手段を設けたことを特徴とする。
【0010】
第1の誘導コイルの他端に三相交流電源の第1相を、第3の誘導コイルの他端に三相交流電源の第3相を接続した第1の印加状態では、磁気流れによって一方の端部にある第3の誘導コイルに対峠するローラ部分の発熱量が最も多く、他方の端部にある第1の誘導コイルに対峠するローラ部分の発熱量が最も少ない。この状態を所定の時間続けたのち、第1の誘導コイルの他端に三相交流電源の第3相を、第3の誘導コイルの他端に三相交流電源の第1相を接続した第2の印加状態に切り替える。これにより各誘導コイルの発熱量の大小関係は逆転する。
【0011】
この第2の印加状態を所定の時間にわたって継続する。そのあと再び第1の印加状態に切り替わる。以下これを繰り返す。その結果ローラ部分の発熱量は、第1の印加状態時の発熱量と第2の印加状態時の発熱量との平均値となる。これによりローラの軸方向に沿ってほぼ均一となり、したがってローラの表面温度が平均化するようになる。
【0012】
【発明の実施の形態】
本発明の実施態様を図2によって説明する。図2はU,V,W相の三相線路をスター結線し、また3個の誘導コイル61,62,63を使用した場合の例を示している。そしてU,W相と、U,V,W相を180度移相して得たX,Y,Z相のうちのY相とを利用する。このU,Y,W相の各線路に誘導コイル61〜63を接続する。またローラ1の内部に図1、図3に示すように誘導コイル61から誘導コイル63まで順次直列に並べて配置する。
【0013】
15は第1の印加状態と第2の印加状態とを交互に切り替えるべく制御する制御装置で、ここでは6個の切替スイッチSによって構成されている。各切替スイッチSはそれぞれa接点とb接点とを備えている。今各切替スイッチSが図のようにa接点を閉じた状態にあるときは、誘導コイル61〜63にはU相、Y相、W相の電圧がそれぞれ印加される(第1の印加状態)。
【0014】
これによりローラは誘導発熱するが、磁気流れによって誘導コイル61に対峠するローラ部分の発熱量が最も多く、誘導コイル63に対峠するローラ部分の発熱量が最も低くなる(図4の発熱分布曲線Aを参照。)。この状態を所定時間、具体的にはローラの発熱分布のむらに基づく熱膨張差によっても、ローラ直径の変化が使用上影響のない程度の発熱時間(たとえば数分以内)を経過したのち、切替スイッチSをa接点からb接点に切り替える。これにより各相の位相の進み関係が逆転し、誘導コイル61〜63にはW相、Y相、U相の電圧がそれぞれ印加される(第2の印加状態)。
【0015】
これによってもローラの誘導発熱は継続されるが、この状態では、磁気流れによって第1の状態とは逆に、誘導コイル63に対峠するローラ部分の発熱量が最も多く、誘導コイル61に対峠するローラ部分の発熱量が最も低くなる(図4の発熱分布曲線Bを参照。)。この状態を所定時間、すなわち前記した程度の時間を経過したのち、再び切替スイッチSをb接点からa接点に切り替える。以下これを繰り返す。
【0016】
このように第1および第2の印加状態を交互に繰り返すと、誘導コイル61〜63に対峠するローラ部分の発熱量は、第1の印加状態時の発熱量と、第2の印加状態時の発熱量との平均値に匹敵する値を呈するようになる(図4の発熱分布曲線Cを参照。)。この結果ローラの表面温度は、磁気流れによる発熱量の不均衡に基づく影響は回避され、より均一化されるようになる。
【0018】
【発明の効果】
以上説明したように本発明によれば、誘導コイルを三相交流電源によって励磁する場合における、位相の進み、遅れによる磁気流れに基づくローラの発熱量の不均衡を解消することができ、したがってローラの表面温度を磁気流れに影響されることなく均一化できるといった効果を奏する。
【図面の簡単な説明】
【図1】本発明の実施態様を示す断面図である。
【図2】誘導コイルの地形図である。
【図3】本発明の実施態様を示す配線図である。
【図4】誘導コイルと発熱量との関係を示す説明図である。
【符号の説明】
1 ローラ
61 誘導コイル
62 誘導コイル
63 誘導コイル
8 誘導発熱機構
15 制御装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an induction heat roller device.
[0002]
[Prior art]
As is well known, the induction heating roller device includes an induction heating mechanism including an iron core and an induction coil wound around the inside of a rotating roller. An example of this configuration will be described with reference to FIG. 1. Reference numeral 1 denotes a roller, and a journal 2 connected thereto is rotatably supported by a bearing 4 with respect to a gantry 3 and is driven to rotate by a rotation source (not shown). Reference numeral 5 denotes a jacket chamber formed in the thick portion of the roller 1, in which a gas-liquid two-phase heat medium is enclosed.
[0003]
In the hollow interior of the roller 1, an induction heating mechanism 8 configured by induction coils 61 to 63 and an iron core 7 around which the induction coils 61 to 63 are wound is installed. Reference numeral 9 denotes a support rod that supports the induction heat generating mechanism 8, and this is supported inside the journal 11 via a bearing 10. A lead wire 12 of the induction coil 5 is led out through the support rod 9 and connected to an external three-phase AC power source 13.
[0004]
By the way, a three-phase power source is used for exciting the induction coil. This is based on the fact that the three-phase power supply is familiar. However, when a symmetrical three-phase voltage is applied to the induction coil, a magnetic flow is generated in the roller portion facing the induction coil, and the magnetic flux passing through the roller may be non-uniform.
[0005]
Explaining this, as shown in FIG. 4, induction coils 61 to 63 are prepared, arranged inside the roller 1, and a three-phase voltage is applied to each induction coil. In this configuration, since the phase difference of the phase voltage is 120 degrees, the surface temperature of the roller portion facing between the adjacent induction coils is reduced with respect to the induction coil. As shown in FIG. 2, the U, V, and W phases are shifted by 180 degrees to form X, Y, and Z phases, and the V phase is shifted by 180 degrees in order to prevent it from becoming extremely lower than the wrinkled part. When the Y phase and the U and W phases are used, the phase difference between the U, Y, and W phases is 60 degrees.
[0006]
In this case, the Y phase is a phase advanced by 60 degrees relative to the U phase, and the W phase is a phase advanced by 60 degrees relative to the Y phase. When induction coils 61, 62, and 63 are connected to the U, Y, and W phases, respectively, and the roller 1 is inductively heated, for example, when the U phase is used as a reference, the phase of the leading phase is further increased from the roller portion facing the induction coil 61. A large amount of magnetic flux flows toward the roller portion facing the Y-phase induction coil 62. Similarly, a large amount of magnetic flux flows from the roller portion facing the induction coil 62 toward the roller portion facing the W-phase induction coil 63 that is advanced from the Y phase. Such a phenomenon is called magnetic flow.
[0007]
That is, as shown in FIG. 4, as a result of the magnetic flux flowing from the induction coil 63 toward the induction coil 61, the heat generation distribution curve A has a high portion facing the induction coil 61, and gradually increases according to the portions facing the induction coils 62 and 63. Shows a tendency to lower. Therefore, when such a magnetic flow phenomenon occurs, even when the same power is supplied to each induction coil, the surface temperature of the roller portion facing each induction coil becomes non-uniform, and the surface temperature distribution is smoothed. Will not be able to.
[0008]
[Problems to be solved by the invention]
The present invention improves the non-uniformity of heat generation of a roller due to a magnetic flow generated according to a phase advance direction or a delay direction of a phase voltage when exciting an induction coil inside the roller by a multiphase AC power source. With the goal.
[0009]
[Means for Solving the Problems]
The present invention, in the interior of the roller, first along the axial direction of the roller, the second, being arranged in sequential series with the third, of the induction coil for induction heating mechanism, to the first free In an induction heating roller device comprising a three-phase AC power source having a first phase, a second phase, and a third phase for exciting a third induction coil, adjacent to one end of the first induction coil and the first induction coil One end of the second induction coil on the side and one end of the third induction coil opposite to the second induction coil are connected to each other, and the other end of the second induction coil is connected to the three-phase alternating current Connect to the second phase of the power supply, and connect the first phase and the third phase of the three-phase AC power source connected to the other end of the first induction coil and the other end of the third induction coil at predetermined time intervals. A control means for switching is provided .
[0010]
In the first application state in which the first phase of the three-phase AC power supply is connected to the other end of the first induction coil and the third phase of the three-phase AC power supply is connected to the other end of the third induction coil, The roller portion facing the third induction coil at the end of the roller has the largest amount of heat generation, and the roller portion facing the first induction coil at the other end has the least amount of heat generation. After this state is continued for a predetermined time , the third phase of the three-phase AC power source is connected to the other end of the first induction coil, and the first phase of the three-phase AC power source is connected to the other end of the third induction coil . Switch to 2 application state. This reverses the magnitude relationship between the heat generation amounts of the induction coils.
[0011]
This second application state is continued for a predetermined time. After that, it switches to the first application state again. This is repeated below. As a result, the heat generation amount of the roller portion is an average value of the heat generation amount in the first application state and the heat generation amount in the second application state. This makes it almost uniform along the axial direction of the roller, so that the surface temperature of the roller is averaged.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to FIG. FIG. 2 shows an example in which U-phase, V-phase, and W-phase three-phase lines are star-connected and three induction coils 61, 62, and 63 are used. Then, the U and W phases and the Y phase of the X, Y and Z phases obtained by shifting the U, V and W phases by 180 degrees are used. Induction coils 61 to 63 are connected to the U, Y, and W phase lines. Further, as shown in FIGS. 1 and 3, the induction coil 61 to the induction coil 63 are sequentially arranged in series inside the roller 1.
[0013]
Reference numeral 15 denotes a control device that performs control so as to alternately switch between the first application state and the second application state, and is constituted by six changeover switches S here. Each changeover switch S has an a contact and a b contact. When each changeover switch S is in a state in which the contact a is closed as shown in the figure, U-phase, Y-phase, and W-phase voltages are respectively applied to the induction coils 61 to 63 (first application state). .
[0014]
As a result, the roller generates induction heat, but due to the magnetic flow, the heat generation amount of the roller portion facing the induction coil 61 is the largest, and the heat generation amount of the roller portion facing the induction coil 63 is the lowest (the heat generation distribution in FIG. 4). (See curve A). After this state has passed for a predetermined period of time, more specifically, due to a difference in thermal expansion based on unevenness in the heat distribution of the roller , a changeover switch after a heat generation time (for example, within a few minutes) that does not affect the use of the roller diameter has been affected. S is switched from contact a to contact b. As a result, the phase advance relationship of each phase is reversed, and W-phase, Y-phase, and U-phase voltages are respectively applied to the induction coils 61 to 63 (second application state).
[0015]
This also continues the induction heat generation of the roller, but in this state, the heat generated in the roller portion facing the induction coil 63 is the largest due to the magnetic flow, contrary to the first state. The amount of heat generated at the wrinkling roller portion is the lowest (see heat generation distribution curve B in FIG. 4). After this state has passed for a predetermined time, that is, the time described above, the changeover switch S is again switched from the b contact to the a contact. This is repeated below.
[0016]
As described above, when the first and second application states are alternately repeated, the heat generation amount of the roller portion facing the induction coils 61 to 63 becomes the heat generation amount in the first application state and the heat generation amount in the second application state. A value comparable to the average value of the calorific value of No. 2 is obtained (see the exothermic distribution curve C in FIG. 4). As a result, the surface temperature of the roller can be made more uniform by avoiding the influence due to the imbalance of the amount of heat generated by the magnetic flow.
[0018]
【The invention's effect】
As described above, according to the present invention, when the induction coil is excited by the three-phase AC power supply, it is possible to eliminate the imbalance of the heat generation amount of the roller based on the magnetic flow due to the phase advance and delay, and thus the roller. The surface temperature can be made uniform without being affected by the magnetic flow.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an embodiment of the present invention.
FIG. 2 is a topographic map of an induction coil.
FIG. 3 is a wiring diagram showing an embodiment of the present invention.
FIG. 4 is an explanatory diagram showing a relationship between an induction coil and a heat generation amount.
[Explanation of symbols]
1 Roller 61 Induction Coil 62 Induction Coil 63 Induction Coil 8 Induction Heating Mechanism 15 Control Device

Claims (1)

回転するローラと、前記ローラの中空内部にあって、前記ローラの軸方向に沿って第1、第2、第3と順次直列に並んで配置された、誘導発熱機構のための誘導コイルと、前記第1ないし第3の誘導コイルを励磁する第1相、第2相、第3相を有する三相交流電源とからなる誘導発熱ローラ装置において、第1の誘導コイルの一端と第1の誘導コイルに隣接する側の前記第2の誘導コイルの一端並びに第3の誘導コイルの前記第2の誘導コイルに隣接する反対側の一端とを結線するとともに、前記第2の誘導コイルの他端を前記三相交流電源の第2相に接続し、前記第1の誘導コイルの他端と前記第3の誘導コイルの他端に接続する前記三相交流電源の第1相と第3相を所定の時間毎に切り替える制御手段を設けたことを特徴とする誘導発熱ローラ装置。A rotating roller, and an induction coil for the induction heating mechanism, which is disposed inside the hollow of the roller and is arranged in series with the first, second, and third sequentially along the axial direction of the roller; In the induction heat roller apparatus comprising a three-phase AC power source having a first phase, a second phase, and a third phase for exciting the first to third induction coils, one end of the first induction coil and the first induction One end of the second induction coil adjacent to the coil and the other end of the third induction coil adjacent to the second induction coil are connected, and the other end of the second induction coil is connected to the other end of the second induction coil. A first phase and a third phase of the three-phase AC power source connected to the second phase of the three-phase AC power source and connected to the other end of the first induction coil and the other end of the third induction coil are predetermined. induction heating, characterized in that a control means for switching every time Over La apparatus.
JP2000253783A 2000-08-24 2000-08-24 Induction heating roller device Expired - Fee Related JP4176294B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000253783A JP4176294B2 (en) 2000-08-24 2000-08-24 Induction heating roller device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000253783A JP4176294B2 (en) 2000-08-24 2000-08-24 Induction heating roller device

Publications (2)

Publication Number Publication Date
JP2002075626A JP2002075626A (en) 2002-03-15
JP4176294B2 true JP4176294B2 (en) 2008-11-05

Family

ID=18742825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000253783A Expired - Fee Related JP4176294B2 (en) 2000-08-24 2000-08-24 Induction heating roller device

Country Status (1)

Country Link
JP (1) JP4176294B2 (en)

Also Published As

Publication number Publication date
JP2002075626A (en) 2002-03-15

Similar Documents

Publication Publication Date Title
JP2010533475A (en) MP-TII machine
KR101923226B1 (en) Superheated steam generator
JP6495704B2 (en) Induction heating system
JP4176294B2 (en) Induction heating roller device
JP4215941B2 (en) Induction heating roller device
JP2001052850A (en) Induction-heating roller device
JP4553463B2 (en) Induction heating roller device
JP5438372B2 (en) Induction heating roller device
JPH07243783A (en) Double tube structural heat pipe and roll employing said heat pipe
JP3693708B2 (en) Induction heating roller device
JP2004509599A (en) Electric machine
JP2736573B2 (en) Induction heating roller device
JP2736571B2 (en) Induction heating roller device
JPH06267651A (en) Induction heating roller device
JP3798240B2 (en) Induction heating roller device
JPH03241688A (en) Induction heating roll device
JP2686533B2 (en) Induction heating roller device
JP4080188B2 (en) Induction heating roller equipment
JP4071159B2 (en) Induction heating roller device
JP3831852B2 (en) Compressor drive unit
JP2011187321A (en) Induction heat generating device
JP4275305B2 (en) Induction heating roller device
JP2001297867A (en) Induction heat generation roller equipment
JP3936240B2 (en) Induction heating roller equipment
JP3887472B2 (en) Squirrel-cage induction motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080820

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4176294

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140829

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees