JP2011187321A - Induction heat generating device - Google Patents

Induction heat generating device Download PDF

Info

Publication number
JP2011187321A
JP2011187321A JP2010051775A JP2010051775A JP2011187321A JP 2011187321 A JP2011187321 A JP 2011187321A JP 2010051775 A JP2010051775 A JP 2010051775A JP 2010051775 A JP2010051775 A JP 2010051775A JP 2011187321 A JP2011187321 A JP 2011187321A
Authority
JP
Japan
Prior art keywords
induction coil
induction
phase power
power source
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010051775A
Other languages
Japanese (ja)
Other versions
JP5522672B2 (en
Inventor
Toru Tonomura
徹 外村
Yasuhiro Fujimoto
泰広 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuden Co Ltd Kyoto
Original Assignee
Tokuden Co Ltd Kyoto
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuden Co Ltd Kyoto filed Critical Tokuden Co Ltd Kyoto
Priority to JP2010051775A priority Critical patent/JP5522672B2/en
Publication of JP2011187321A publication Critical patent/JP2011187321A/en
Application granted granted Critical
Publication of JP5522672B2 publication Critical patent/JP5522672B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • General Induction Heating (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable an induction heat generating device, having each induction coil connected in series to a three-phase AC power source and so aligned as to have voltages with a phase difference of 30° impressed, thereby individually controlling currents made to flow in the induction coils located at either end of the alignment. <P>SOLUTION: Six induction coils are so arranged that the induction coil a, the induction coil e, and the other end of the induction coil c are commonly connected in order of alignment in a lateral direction, an end of the induction coil a and the other end of the induction coil b are connected to connect with an Eu-phase power source, an end of the induction coil b and an end of the induction coil c as well as the other end of the induction coil d are connected to connect to an Ew-phase power source, an end of the induction coil d and an end of the induction coil e are connected to connect to an Ev-phase power source, an end of the induction coil f is connected to the Eu-phase power source through a current control means 12, the other end thereof is connected to the Ev-phase power source, one end of a piece of induction coil h is connected to the Eu-phase power source through a current control means 13, the other end thereof is connected to the Ev-phase power source, and the induction coil h is aligned at a front step of the induction coil a. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、誘導発熱装置に関するものである。   The present invention relates to an induction heating device.

誘導発熱装置の一つとして、誘導発熱ローラ装置がある。図5はこのような誘導発熱ローラ装置の一例の構成を示すもので、ローラ1は、機台2に対して軸受3によって回転可能に支持され、図示しないモータなどによって回転駆動される。4はローラ1の肉厚部分に形成されてあるジャケット室で、内部に気液二相の熱媒体が封入されてある。 As one of the induction heating devices, there is an induction heating roller device. FIG. 5 shows an example of the structure of such an induction heating roller device. The roller 1 is rotatably supported by a bearing 3 with respect to a machine base 2 and is driven to rotate by a motor (not shown). Reference numeral 4 denotes a jacket chamber formed in the thick portion of the roller 1, in which a gas-liquid two-phase heat medium is enclosed.

ローラ1の中空内部には、鉄心6に巻装した、この例では6個の誘導コイル5からなる誘導発熱機構7が配置され、各誘導コイル5はローラ1の軸心方向にほぼローラ1の端部から端部にまたがって並べられている。8は各誘導コイル5間に介在している磁性円板、9は誘導発熱機構7を支持する支持ロッドで、これは軸受10を介してローラ1に連なるジャーナル11の内部に支持されている。5aは誘導コイル5のリード線で、支持ロッド9内を通って外部に導出され、外部の交流電源に接続されている。   In this example, an induction heating mechanism 7 comprising six induction coils 5 wound around an iron core 6 is disposed inside the hollow of the roller 1, and each induction coil 5 is substantially in the axial direction of the roller 1. They are arranged from end to end. Reference numeral 8 denotes a magnetic disk interposed between the induction coils 5, and 9 denotes a support rod for supporting the induction heat generating mechanism 7, which is supported inside a journal 11 connected to the roller 1 via a bearing 10. Reference numeral 5a denotes a lead wire of the induction coil 5, which is led out through the support rod 9 and connected to an external AC power source.

このように構成した誘導発熱ローラ装置では、各誘導コイル5に交流電流を通流すると交番磁束が発生し、この交番磁束によりローラ1に誘導電流が発生し、その誘導電流でローラ1はジュール発熱し、その熱でローラ1の表面に当接して搬送する帯状の被処理物を熱処理する。この場合、被処理物を均一に熱処理する必要があるが、誘導コイルによる磁束量に伴う発熱は、一つ誘導コイルの長手方向の中央部で多く、端部にいくほど少なくなる山形の分布となる。   In the induction heating roller device configured as described above, when an alternating current is passed through each induction coil 5, an alternating magnetic flux is generated. The alternating magnetic flux generates an induced current in the roller 1, and the roller 1 generates Joule heat by the induced current. Then, the belt-shaped workpiece to be conveyed in contact with the surface of the roller 1 with the heat is heat-treated. In this case, it is necessary to uniformly heat the object to be processed, but the heat generation due to the amount of magnetic flux by the induction coil increases in the central portion in the longitudinal direction of one induction coil, and the distribution of the mountain shape decreases toward the end. Become.

そこで、多くの誘導コイルを並べ、各誘導コイルを単相の交流電源にそれぞれ並列に接続し、各誘導コイルで発生する磁束の方向を同一にすると、各誘導コイルで発生する発熱量の多い山の頂部の間隔を縮めることができる。これによりローラ1の長手方向における温度の均一化を図り、加えてジャケット室4の内部に密封した気液二相の熱媒体の潜熱の移動でより一層その温度の均一化を図っている。 Therefore, if a large number of induction coils are arranged, each induction coil is connected in parallel to a single-phase AC power source, and the direction of the magnetic flux generated by each induction coil is the same, a mountain with a large amount of heat generated by each induction coil. The space | interval of the top part of can be shortened. Thereby, the temperature in the longitudinal direction of the roller 1 is made uniform, and in addition, the temperature is made more uniform by the movement of the latent heat of the gas-liquid two-phase heat medium sealed in the jacket chamber 4.

ところで、誘導コイル、特に複数の誘導コイルを用いる誘導発熱ローラ装置や複数の誘導発熱ローラ装置を用いる場合においては、その誘導コイルに印加する電源として、使い勝手のよい電力会社から一般に供給されてくる三相交流電源を利用することが望まれている。しかし、三相交流電源では、周知のように三相各相Eu、Ev、Ewの電源電圧には120度の位相差があり、この位相差で各誘導コイルを配列しても磁束の山の発生時点が大きく異なり前述の単相の交流電源を用いたときのような均一性は得られない。   By the way, in the case of using an induction coil, particularly an induction heat roller device using a plurality of induction coils or a plurality of induction heat roller devices, as a power source to be applied to the induction coil, it is generally supplied from a convenient power company. It is desired to use a phase AC power source. However, in a three-phase AC power source, as is well known, there is a phase difference of 120 degrees in the power supply voltage of each of the three-phase phases Eu, Ev, and Ew. The generation time is greatly different, and the uniformity as in the case of using the above-described single-phase AC power source cannot be obtained.

そこで、この位相差を小さくすることが考えられる。そのために、6個の誘導コイルを用い、それを3個づつに分け、その一つをデルタに接続して三相各相Eu、Ev、Ewの電源に接続(デルタ結線)し、残りの一つをスターに接続して三相各相Eu、Ev、Ewの電源に接続(スター結線)する。そして、スター結線した誘導コイルとデルタ結線した誘導コイルとを交互に配列すると各誘導コイルに位相差30度の電圧を印加することができる。 Therefore, it is conceivable to reduce this phase difference. For that purpose, six induction coils are used, divided into three, one of which is connected to the delta and connected to the power supply of each of the three-phase Eu, Ev, Ew (delta connection), and the remaining one Are connected to the star and connected to the power sources of the three-phase phases Eu, Ev, Ew (star connection). Then, when the star-connected induction coils and the delta-connected induction coils are alternately arranged, a voltage having a phase difference of 30 degrees can be applied to each induction coil.

しかし、スター結線した誘導コイルとデルタ結線した誘導コイルとを交互に配列するといっても、上記のような誘導発熱装置では、任意の時点において6個の誘導コイルが発生する磁束の向を同一とする必要がある。図6は、任意の時点において6個の誘導コイルが発生する磁束の向を同一とする配線を示すもので、a〜fは6個の誘導コイルでa〜fは横方向の配列順を示している。誘導コイルaは一端(以下、図5における左端を言う。)をEu相電源に他端(以下、図5における右端を言う)を中性点Nに接続し、誘導コイルaの隣の誘導コイルbは一端をEw相電源に、他端をとEu相電源に接続され、Eu相電源に接続している端部は誘導コイルaに対して逆転、つまり極性を反転しており、この反転によって磁束の向が同一となる。 However, even though the induction coil that is star-connected and the induction coil that is delta-connected are alternately arranged, in the induction heating device as described above, the direction of the magnetic flux generated by the six induction coils at the same time is the same. There is a need to. FIG. 6 shows wirings in which the directions of magnetic fluxes generated by six induction coils at the same time are the same, a to f are six induction coils, and a to f are horizontal arrangement orders. ing. The induction coil a has one end (hereinafter referred to as the left end in FIG. 5) connected to the Eu phase power source and the other end (hereinafter referred to as the right end in FIG. 5) to the neutral point N, and the induction coil adjacent to the induction coil a. b has one end connected to the Ew-phase power supply and the other end connected to the Eu-phase power supply, and the end connected to the Eu-phase power supply is reversed with respect to the induction coil a, that is, the polarity is reversed. The direction of the magnetic flux is the same.

以下同様に、誘導コイルcは一端を誘導コイルbと同様にEw相電源に他端を中性点Nに接続し、誘導コイルdは一端をEv相電源に、他端をEw相電源に接続され、誘導コイルeは一端を誘導コイルdと同様にEv相電源に他端を中性点に接続し、誘導コイルfは一端をEu相電源に接続し、他端をEv相電源に接続されている。このようにして6個の誘導コイルをaからfの順に配列すると任意の時点において6個の誘導コイルが発生する磁束の向を同一とし、図7のベクトルで示すように隣り合う誘導コイルに印加する電圧の位相差を30度とすることができる。 Similarly, the induction coil c has one end connected to the Ew phase power source and the other end connected to the neutral point N in the same manner as the induction coil b. The induction coil d has one end connected to the Ev phase power source and the other end connected to the Ew phase power source. The induction coil e has one end connected to the Ev-phase power source in the same manner as the induction coil d, and the other end connected to the neutral point. The induction coil f has one end connected to the Eu-phase power source and the other end connected to the Ev-phase power source. ing. When the six induction coils are arranged in this order from a to f, the direction of the magnetic flux generated by the six induction coils at the same time is made the same and applied to adjacent induction coils as shown by the vector in FIG. The phase difference of the applied voltage can be set to 30 degrees.

そして、図7に示すベクトル図で理解されるように、誘導コイルを増加する場合には、図7の点線で示す部分に増加する誘導コイルを配置すればよい(すべての点線部分に誘導コイルを配置すれば12個の誘導コイルに位相差を30度の電圧を印加することができる。)。また、1個の誘導コイルを追加することも可能である。その場合の例を図4に示す。図4に示す例ではEu相電源と中性点Nに接続した誘導コイルgが増加分であり、この誘導コイルgは誘導コイルfの次に配置される。 Then, as can be understood from the vector diagram shown in FIG. 7, when increasing the number of induction coils, it is only necessary to arrange the induction coils to be increased in the portions indicated by the dotted lines in FIG. If arranged, a voltage with a phase difference of 30 degrees can be applied to 12 induction coils). It is also possible to add one induction coil. An example in that case is shown in FIG. In the example shown in FIG. 4, the induction coil g connected to the Eu phase power source and the neutral point N is an increase, and this induction coil g is arranged next to the induction coil f.

特開2002−83675号公報JP 2002-83675 A

ところで、誘導発熱装置の被発熱体であるローラに要求される特性はローラ表面の均一温度分布であるが、ローラの両端部には被処理物がかからない無効長部分があり、この無効長部分は熱が奪われないために温度が上昇する場合や低下する場合があり、この温度変化は被処理物の熱処理に悪影響するため、ローラの両端部に位置する誘導コイルに流す電流を制御する必要がある。しかし、前記のような三相交流電源に各誘導コイルを直接接続して位相差30度の電圧を印加できるように配列した構成では、多相変圧器を必要としない大きいメリットがあるが、ローラの両端部に位置する誘導コイルに流す電流を個別に制御することができないという問題があった。   By the way, the characteristic required for the roller that is the heat generating body of the induction heat generating device is a uniform temperature distribution on the roller surface, but there is an invalid length portion where the workpiece is not applied to both ends of the roller. The temperature may rise or fall because heat is not taken away, and this temperature change adversely affects the heat treatment of the workpiece, so it is necessary to control the current flowing through the induction coils located at both ends of the roller. is there. However, in the configuration in which each induction coil is directly connected to the three-phase AC power source as described above so that a voltage with a phase difference of 30 degrees can be applied, there is a great merit that a multi-phase transformer is not required. There is a problem in that the currents flowing through the induction coils located at both ends of each cannot be individually controlled.

発明が解決しようとする課題は、三相交流電源に各誘導コイルを直接接続して位相差30度の電圧を印加できるように配列した誘導発熱装置において、その配列の両端部に位置する誘導コイルに流す電流を個別に制御できるようにする点にある。 The problem to be solved by the invention is an induction heating device arranged such that each induction coil is directly connected to a three-phase AC power supply and a voltage having a phase difference of 30 degrees can be applied, and the induction coils located at both ends of the arrangement It is in the point which makes it possible to control individually the electric current which flows into.

本発明は、6x(ただし、xは1以上の整数)+1個の誘導コイルを横方向に配列し、各誘導コイルにEu相電源、Ev相電源、Ew相電源を有する三相交電源から電力を供給してなる誘導発熱装置において、前記6個の誘導コイルを、横方向の配列順に誘導コイルa、誘導コイルb、誘導コイルc、誘導コイルd、誘導コイルe、誘導コイルfとし、誘導コイルaと誘導コイルeおよび誘導コイルcの他端を共通に接続し、誘導コイルaの一端と誘導コイルbの他端とを接続して前記Eu相電源に、誘導コイルbの一端と誘導コイルcの一端および誘導コイルdの他端を接続して前記Ew相電源に、誘導コイルdの一端と誘導コイルeの一端を接続して前記Ev相電源に、誘導コイルfの一端を、電流制御手段を介して前記Eu相電源に接続し、他端を前記Ev相電源にそれぞれ接続し、前記1個の誘導コイルの一端を、電流制御手段を介して前記Eu相電源に接続し、他端を前記Ev相電源に接続して、前記1個の誘導コイルを前記誘導コイルaの前段に配置したことを特徴とする。 In the present invention, 6x (where x is an integer of 1 or more) + 1 induction coil is arranged in the horizontal direction, and each induction coil receives power from a three-phase AC power supply having an Eu phase power supply, an Ev phase power supply, and an Ew phase power supply. In the induction heating apparatus to be supplied, the six induction coils are an induction coil a, an induction coil b, an induction coil c, an induction coil d, an induction coil e, and an induction coil f in the order of arrangement in the horizontal direction. And the other end of the induction coil e and the induction coil c are connected in common, one end of the induction coil a and the other end of the induction coil b are connected to the Eu phase power source, and one end of the induction coil b and the induction coil c One end and the other end of the induction coil d are connected to the Ew phase power source, one end of the induction coil d and one end of the induction coil e are connected to the Ev phase power source, one end of the induction coil f is connected to the current control means. Connected to the Eu phase power supply via And connecting the other end to the Ev phase power source, connecting one end of the one induction coil to the Eu phase power source via a current control means, and connecting the other end to the Ev phase power source, The one induction coil is arranged in front of the induction coil a.

本発明は、横方向に6x(ただし、xは1以上の整数)+1個の誘導コイルを配列した各誘導コイルを三相交流電源にそのまま接続するので、従来と同様の多相変圧器を必要としない大きいメリットがあるばかりでなく、両側の端部に位置する誘導コイルは、三相交流電源の同一相間の電圧を印加するので、中間部に位置する誘導コイルに影響を与えることなく、個別に電流を制御することができる。 In the present invention, each induction coil in which 6x (where x is an integer of 1 or more) + 1 induction coil is arranged in the lateral direction is directly connected to a three-phase AC power source, so that a multi-phase transformer similar to the conventional one is required. Not only has a great merit, but also the induction coils located at the ends of both sides apply the voltage between the same phase of the three-phase AC power supply, so it does not affect the induction coil located in the middle part individually. The current can be controlled.

本発明の実施例に係る誘導コイルの結線図である。It is a connection diagram of the induction coil which concerns on the Example of this invention. 図1に示す誘導コイルの配線図である。It is a wiring diagram of the induction coil shown in FIG. 本発明の実施例に係る誘導発熱装置の断面図である。It is sectional drawing of the induction heating apparatus which concerns on the Example of this invention. 従来の誘導コイルの結線図である。It is a connection diagram of the conventional induction coil. 誘導発熱ローラ装置の断面図である。It is sectional drawing of an induction heating roller apparatus. 従来の誘導コイルの結線図である。It is a connection diagram of the conventional induction coil. スター・デルタ結線における電圧ベクトル図である。It is a voltage vector figure in a star delta connection.

本発明の実施例に係る誘導発熱装置について、図1および図2を参照して説明する。なお、三相交流の配線系統の各配線をEu相電源、Ev相電源、Ew相電源という。図1は三相交流電源と誘導コイルの結線状態を示し、図2はその誘導コイルを横方向に配列した配線状態を示すもので、この図1および図2において、12、13、14はサイリスタや可飽和リアクトルなどの電流制御手段、15はローラなどの誘導発熱体、a〜fおよびhは誘導コイルである。 An induction heating apparatus according to an embodiment of the present invention will be described with reference to FIGS. 1 and 2. Each wiring of the three-phase AC wiring system is referred to as an Eu phase power source, an Ev phase power source, and an Ew phase power source. FIG. 1 shows a connection state between a three-phase AC power source and an induction coil, and FIG. 2 shows a wiring state in which the induction coils are arranged in the horizontal direction. In FIGS. 1 and 2, reference numerals 12, 13, and 14 denote thyristors. And current control means such as a saturable reactor, 15 is an induction heating element such as a roller, and a to f and h are induction coils.

誘導コイルa〜誘導コイルfの6個の誘導コイルは、電流制御手段12、13、14を除けば図6に示す三相交流電源との接続状態と同じである。そして誘導コイルhはEu相電源とEv相電源間に接続されている。 Except for the current control means 12, 13, and 14, the six induction coils of the induction coil a to the induction coil f are the same as the connection state with the three-phase AC power source shown in FIG. The induction coil h is connected between the Eu phase power source and the Ev phase power source.

そして、本実施例では、図2に示すように誘導発熱体15の幅方向に沿って、誘導コイルh、誘導コイルa、誘導コイルb、誘導コイルc、誘導コイルd、誘導コイルe、誘導コイルfと順に一列(複数列であっても良い。)に配列されている。以下、この配列状態で各誘導コイルの図示左側端部を一端と言い、右側端部を他端と言う。誘導発熱体15の一方の端部に位置する誘導コイルhは、一端が電流制御手段13を介してEu相電源に接続され、他端はEv相電源に接続されている。また、他方の端部に位置する誘導コイルfは、一端が電流制御手段12を介してEu相電源に接続され、他端をEv相電源に接続されている。つまり、誘導コイルhと誘導コイルfは逆並列にEu相電源とEv相電源に接続されている。この接続により中間部に位置する他の誘導コイルa〜eに通流する電流に影響を与えることなく個別に制御することができる。なお、誘導コイルhと誘導コイルfに通流する電流を同じくする場合には、電流制御手段12と13を一つとすることができる。 In this embodiment, the induction coil h, induction coil a, induction coil b, induction coil c, induction coil d, induction coil e, induction coil along the width direction of the induction heating element 15 as shown in FIG. They are arranged in a row (may be a plurality of rows) in order with f. Hereinafter, the left end portion of each induction coil in the arrangement state is referred to as one end, and the right end portion is referred to as the other end. One end of the induction coil h located at one end of the induction heating element 15 is connected to the Eu phase power supply via the current control means 13, and the other end is connected to the Ev phase power supply. The induction coil f located at the other end has one end connected to the Eu phase power supply via the current control means 12 and the other end connected to the Ev phase power supply. That is, the induction coil h and the induction coil f are connected to the Eu phase power source and the Ev phase power source in antiparallel. This connection allows individual control without affecting the current flowing through the other induction coils a to e located in the intermediate portion. When the currents flowing through the induction coil h and the induction coil f are the same, the current control means 12 and 13 can be made one.

誘導発熱体15の中間部に位置する誘導コイルa〜eは、誘導コイルaと誘導コイルeおよび誘導コイルcの他端を共通に接続し、誘導コイルaの一端と誘導コイルbの他端とを接続して電流制御手段14aを介してEu相電源に接続する。その誘導コイルbの一端と誘導コイルcの一端および誘導コイルdの他端を接続して電流制御手段14cを介してEw相電源に接続する。その誘導コイルdの一端と誘導コイルeの一端を接続して電流制御手段14bを介してEv相電源に接続する。   The induction coils a to e located in the middle part of the induction heating element 15 connect the other ends of the induction coil a, the induction coil e, and the induction coil c in common, and one end of the induction coil a and the other end of the induction coil b. And connected to the Eu phase power supply via the current control means 14a. One end of the induction coil b, one end of the induction coil c, and the other end of the induction coil d are connected and connected to the Ew phase power supply via the current control means 14c. One end of the induction coil d and one end of the induction coil e are connected and connected to the Ev phase power supply through the current control means 14b.

このように各誘導コイルを配線することにより、図1から明らかなように誘導コイルhに印加する電圧とその隣に位置する誘導コイルaに印加する電圧との位相差を30度とすることができる。また、誘導コイルhと誘導コイルfに通流する電流を制御しても、他の誘導コイルa〜eに通流する電流に大きな影響を与えることはない。このことは誘導コイルhと誘導コイルfに通流する電流を制御することとは別に、他の誘導コイルa〜eに通流する電流を制御することもできる。すなわち、誘導発熱体15の中間部分の温度を所定の温度に制御し、誘導発熱体15の両側の端部の温度をその所定の温度に対し高温または低温とすることができる。 By wiring each induction coil in this way, the phase difference between the voltage applied to the induction coil h and the voltage applied to the induction coil a located adjacent thereto can be set to 30 degrees as is apparent from FIG. it can. Further, controlling the current flowing through the induction coil h and the induction coil f does not significantly affect the current flowing through the other induction coils a to e. In addition to controlling the current flowing through the induction coil h and the induction coil f, this can also control the current flowing through the other induction coils a to e. That is, the temperature of the intermediate portion of the induction heating element 15 can be controlled to a predetermined temperature, and the temperatures of the end portions on both sides of the induction heating element 15 can be set higher or lower than the predetermined temperature.

誘導発熱体15は、図5に示す誘導コイルの列をローラの中空内部に設置するものに限らず、板状や棒状であっても、また、図3に示すような内部に熱処理物を収納するローラの外周に設置するものであってもよい。この図3において、16は容器状のローラ本体、17はモータなどに連結される回転軸、18はインボリュウトコアなどの薄い珪素鋼板を筒状に積層した磁束通路筒である。ローラ本体16は回転軸17を固定した反対側は開口し、その開口は内部に熱処理物を収納して蓋16aで閉塞される。図2に示す誘導コイルh、a〜fの列はローラ本体16の外周を囲繞し、その外周を磁束通路筒18が囲繞する。すなわち、誘導コイルh、a〜fで発生した磁束はローラ本体16および磁束通路筒18を流れ、ローラ本体16は誘導発熱する。 The induction heating element 15 is not limited to the one in which the array of induction coils shown in FIG. 5 is installed in the hollow interior of the roller, but may be a plate shape or a rod shape, and the heat treatment material is accommodated in the inside as shown in FIG. It may be installed on the outer periphery of the roller. In FIG. 3, 16 is a container-shaped roller body, 17 is a rotating shaft connected to a motor or the like, and 18 is a magnetic flux passage cylinder in which thin silicon steel plates such as an involute core are laminated in a cylindrical shape. The roller body 16 has an opening on the opposite side to which the rotating shaft 17 is fixed, and the opening accommodates a heat treatment product therein and is closed with a lid 16a. The row of the induction coils h and a to f shown in FIG. 2 surrounds the outer periphery of the roller body 16, and the magnetic flux passage cylinder 18 surrounds the outer periphery. That is, the magnetic flux generated by the induction coils h and a to f flows through the roller body 16 and the magnetic flux passage cylinder 18, and the roller body 16 generates induction heat.

以上の例は、三相交流電源にスターおよびデルタ結線した誘導コイル6個に1個の誘導コイルを追加し、誘導コイル列の両側の端部に位置する誘導コイルに流れる電流を、その誘導コイル列の中間部に位置する誘導コイルに流す電流とは切り離して制御できるようにするものであるが、この6個の誘導コイルの数は6個に限られるものではなく、6個の整数倍としてもよい。たとえば、12個の誘導コイルを配列し、1個の誘導コイルを追加する場合には、6個づつスターおよびデルタ結線に結線、つまり図1に示す点線部分のすべてに誘導コイルを挿入すればよい。この場合、図2に示す誘導コイルの配列を繰り返したものと等価となる。 In the above example, one induction coil is added to six induction coils connected in a star and delta connection to a three-phase AC power source, and the current flowing through the induction coils located at both ends of the induction coil array is converted into the induction coil. The current flowing in the induction coil located in the middle of the row is controlled separately from the current, but the number of the six induction coils is not limited to six, and is an integral multiple of six. Also good. For example, when twelve induction coils are arranged and one induction coil is added, the induction coils may be inserted into all six star and delta connections, that is, all the dotted lines shown in FIG. . In this case, this is equivalent to a repetition of the arrangement of induction coils shown in FIG.

a〜f、h 誘導コイル
Eu、Ev、Ew 三相交流の各相電源
12、13、14 電流制御手段
15 誘導発熱体
a to f, h Inductive coils Eu, Ev, Ew Three-phase AC power sources 12, 13, 14 Current control means 15 Induction heating element

Claims (4)

6x(ただし、xは1以上の整数)+1個の誘導コイルを横方向に配列し、各誘導コイルにEu相電源、Ev相電源、Ew相電源を有する三相交電源から電力を供給してなる誘導発熱装置において、前記6個の誘導コイルを、横方向の配列順に誘導コイルa、誘導コイルb、誘導コイルc、誘導コイルd、誘導コイルe、誘導コイルfとし、誘導コイルaと誘導コイルeおよび誘導コイルcの他端を共通に接続し、誘導コイルaの一端と誘導コイルbの他端とを接続して前記Eu相電源に、誘導コイルbの一端と誘導コイルcの一端および誘導コイルdの他端を接続して前記Ew相電源に、誘導コイルdの一端と誘導コイルeの一端を接続して前記Ev相電源に、誘導コイルfの一端を、電流制御手段を介して前記Eu相電源に接続し、他端を前記Ev相電源にそれぞれ接続し、前記1個の誘導コイルの一端を、電流制御手段を介して前記Eu相電源に接続し、他端を前記Ev相電源に接続して、前記1個の誘導コイルを前記誘導コイルaの前段に配置したことを特徴とする誘導発熱装置。 6x (where x is an integer equal to or greater than 1) + 1 induction coil is arranged in the horizontal direction, and each induction coil is supplied with power from a three-phase AC power supply having an Eu phase power supply, an Ev phase power supply, and an Ew phase power supply. In the induction heating device, the six induction coils are an induction coil a, an induction coil b, an induction coil c, an induction coil d, an induction coil e, and an induction coil f in the order of arrangement in the horizontal direction, and the induction coil a and the induction coil e. And the other end of the induction coil c are connected in common, one end of the induction coil a and the other end of the induction coil b are connected to the Eu phase power source, one end of the induction coil b, one end of the induction coil c, and the induction coil The other end of d is connected to the Ew phase power source, one end of the induction coil d and one end of the induction coil e are connected to the Ev phase power source, and one end of the induction coil f is connected to the Eu via the current control means. Connect to the phase power supply and connect the other end The one induction coil is connected to the Ev phase power supply, one end of the one induction coil is connected to the Eu phase power supply via a current control means, and the other end is connected to the Ev phase power supply, and the one induction coil is connected. An induction heating device, wherein a coil is disposed in front of the induction coil a. 前記誘導コイルaの一端と誘導コイルbの他端との接続点とEu相電源との間、誘導コイルdの一端と誘導コイルeの一端との接続点とEv相電源に接続される誘導コイルfの他端と誘導コイルhの他端との接続点の間、誘導コイルbの一端と誘導コイルcの一端および誘導コイルdの他端の接続点とEw相電源との間にそれぞれ電流制御手段を挿入したことを特徴とする請求項1に記載の誘導発熱装置。 An induction coil connected between a connection point between one end of the induction coil a and the other end of the induction coil b and the Eu phase power supply, a connection point between one end of the induction coil d and one end of the induction coil e, and an Ev phase power supply. Current control is performed between the connection point between the other end of f and the other end of the induction coil h, between one end of the induction coil b and one end of the induction coil c, and the connection point between the other end of the induction coil d and the Ew phase power supply. 2. The induction heating device according to claim 1, wherein means are inserted. 誘導発熱体が中空内に複数の誘導コイルを配列したローラであることを特徴とする請求項1又は請求項2に記載の誘導発熱装置。 The induction heating device according to claim 1 or 2, wherein the induction heating element is a roller in which a plurality of induction coils are arranged in a hollow space. 誘導発熱体が複数の誘導コイルを配列した中空内に配置した披処理物を内部に収納するローラであることを特徴とする請求項1又は請求項2に記載の誘導発熱装置。 The induction heating device according to claim 1 or 2, wherein the induction heating element is a roller that accommodates an article to be processed arranged in a hollow in which a plurality of induction coils are arranged.
JP2010051775A 2010-03-09 2010-03-09 Induction heating device Active JP5522672B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010051775A JP5522672B2 (en) 2010-03-09 2010-03-09 Induction heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010051775A JP5522672B2 (en) 2010-03-09 2010-03-09 Induction heating device

Publications (2)

Publication Number Publication Date
JP2011187321A true JP2011187321A (en) 2011-09-22
JP5522672B2 JP5522672B2 (en) 2014-06-18

Family

ID=44793375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010051775A Active JP5522672B2 (en) 2010-03-09 2010-03-09 Induction heating device

Country Status (1)

Country Link
JP (1) JP5522672B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013160461A (en) * 2012-02-06 2013-08-19 Tokuden Co Ltd Powder and granular material heating device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01265486A (en) * 1988-04-15 1989-10-23 Tokuden Co Ltd Induction heat generation roller device
JPH097754A (en) * 1995-06-14 1997-01-10 Tokuden Co Ltd Induction heating roller device
JP2002083675A (en) * 2000-07-06 2002-03-22 Tokuden Co Ltd Induction-heat generating roller apparatus
JP2002170656A (en) * 2000-11-29 2002-06-14 Tokuden Co Ltd Induction heating roller device
JP2002246162A (en) * 2001-02-22 2002-08-30 Tokuden Co Ltd Induction heating roller device
JP2002319477A (en) * 2001-04-23 2002-10-31 Tokuden Co Ltd Induction heating roller equipment
JP2005108474A (en) * 2003-09-29 2005-04-21 Tokuden Co Ltd Induction heating roller device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01265486A (en) * 1988-04-15 1989-10-23 Tokuden Co Ltd Induction heat generation roller device
JPH097754A (en) * 1995-06-14 1997-01-10 Tokuden Co Ltd Induction heating roller device
JP2002083675A (en) * 2000-07-06 2002-03-22 Tokuden Co Ltd Induction-heat generating roller apparatus
JP2002170656A (en) * 2000-11-29 2002-06-14 Tokuden Co Ltd Induction heating roller device
JP2002246162A (en) * 2001-02-22 2002-08-30 Tokuden Co Ltd Induction heating roller device
JP2002319477A (en) * 2001-04-23 2002-10-31 Tokuden Co Ltd Induction heating roller equipment
JP2005108474A (en) * 2003-09-29 2005-04-21 Tokuden Co Ltd Induction heating roller device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013160461A (en) * 2012-02-06 2013-08-19 Tokuden Co Ltd Powder and granular material heating device

Also Published As

Publication number Publication date
JP5522672B2 (en) 2014-06-18

Similar Documents

Publication Publication Date Title
US20120138599A1 (en) Semiconductor substrate heat treatment apparatus
JP2015154582A (en) Stator for three-phase rotary electric machine
US20130000795A1 (en) Amorphous Core Annealing Method
JP6495704B2 (en) Induction heating system
JP5522672B2 (en) Induction heating device
CN109716625A (en) A kind of brushless motor system including rotor, stator and power electronic equipment
WO2022020382A1 (en) Magnetohydrodynamic pump for molten salts and method of operating
JP2013223297A (en) Rotary electric machine
JP4215941B2 (en) Induction heating roller device
JP6976038B2 (en) Manufacturing method of magnetic member of rotating machine
JP2001052850A (en) Induction-heating roller device
JP2009270595A (en) Magnetic bearing device
KR101184133B1 (en) Induction heating unit
JP6162473B2 (en) Fluid heating device
JP4553463B2 (en) Induction heating roller device
JP2013160461A (en) Powder and granular material heating device
US10443889B2 (en) Super-high-efficiency induction hot water heater
JP3693708B2 (en) Induction heating roller device
JP2014192040A (en) Electric heating device
JPH04306588A (en) Induction heat emitting roller device
KR101309385B1 (en) Induction heating device
JP6043608B2 (en) Fluid heating device
JP4176294B2 (en) Induction heating roller device
JP5476042B2 (en) Heating device
JP2011049178A (en) Induction heating roller device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140402

R150 Certificate of patent or registration of utility model

Ref document number: 5522672

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250