JP4174187B2 - Contact material for vacuum valve and manufacturing method thereof - Google Patents

Contact material for vacuum valve and manufacturing method thereof Download PDF

Info

Publication number
JP4174187B2
JP4174187B2 JP2001076897A JP2001076897A JP4174187B2 JP 4174187 B2 JP4174187 B2 JP 4174187B2 JP 2001076897 A JP2001076897 A JP 2001076897A JP 2001076897 A JP2001076897 A JP 2001076897A JP 4174187 B2 JP4174187 B2 JP 4174187B2
Authority
JP
Japan
Prior art keywords
tic
contact material
infiltrant
vacuum valve
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001076897A
Other languages
Japanese (ja)
Other versions
JP2002279866A (en
Inventor
功 奥富
敦史 山本
貴史 草野
経世 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2001076897A priority Critical patent/JP4174187B2/en
Publication of JP2002279866A publication Critical patent/JP2002279866A/en
Application granted granted Critical
Publication of JP4174187B2 publication Critical patent/JP4174187B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、優れた低裁断特性と電流遮断特性とを兼ね備えた真空バルブ用接点材料とその製造方法関する。
【0002】
【従来の技術】
真空中でアークプラズマを拡散して電流を遮断する真空開閉機器には電流遮断特性および耐電圧特性といった基本的な特性に加えて、用途によっては、優れた低サージ特性を備えていることが望まれる。
【0003】
特に、真空開閉機器をモータや変圧器等の機器に適用する場合には、これらの機器の絶縁破壊防止の観点から、発生するサージを抑制する必要がある。サージ抑制には、真空開閉機器をサージ抑制装置と併用する方法と、真空開閉機器自体のサージ発生レベルを低減する方法とがある。
【0004】
真空開閉機器のサージ発生レベルの低減のためには、サージの主要因である電流裁断のレベルを低減する手法が用いられる。電流裁断のレベルを示す裁断電流値は、回路構成と真空開閉機器の遮断部用の真空バルブに用いられる接点材料とに依存する。回路構成の変更はできないとすると、裁断電流値は、実質上、接点材料によって決まる。
【0005】
優れた遮断特性を備えたCu−Cr系接点材料や耐電圧特性に優れたCu−W系接点材料は、いずれも裁断電流値が十分低くないため、モータや変圧器等のように回路のサージインピーダンスの高い機器に適用する場合には、サージ抑制装置を併用して用いている。
【0006】
一方、Ag−WC系接点材料は、優れた低裁断特性、すなわち低サージ特性を備えるが、遮断性能はCu−Cr系接点材料ほど高くない。
【0007】
【発明が解決しようとする課題】
低騒音でかつ遮断媒体にSFのような環境に影響を及ぼす物質を使用しない真空開閉機器の最大の利点は環境との調和性にある。しかしながら、前述したようにCu−Cr系接点材料を用いてサージ保護のためにサージ抑制装置を使用した場合、一般にサージ抑制装置には可燃性の油が含まれているため、その利点が損なわれてしまうという問題がある。
【0008】
Ag−WC系接点材料は、このような観点から開発された接点材料であり、低サージ特性を備えていることから、小容量の真空開閉機器に幅広く用いられている。しかしながら、大容量化が困難であるため適用範囲が限定される。また、遮断性能がCu−Cr系接点材料よりも劣るという問題もある。
【0009】
また、近年、低裁断特性に優れたCu−TiC系接点材料が開発されたが、電流遮断特性の安定化を図ることが困難であるという問題がある。
【0010】
本発明は、上記に鑑みてなされたものであり、その目的とするところは、低裁断特性を備えたCu−TiC系接点材料について電流遮断特性を向上させた真空バルブ用接点材料を提供することにある。
【0011】
本発明の別の目的は、上記真空バルブ用接点材料の製造方法を提供することにある。
【0013】
【課題を解決するための手段】
上記目的を達成するため、発明に係る真空バルブ用接点材料は、TiCを主成分とする成形体のTiC粒子の空隙にCuを主成分とする溶浸材の粒子を溶浸して製造されるCu−TiC系の真空バルブ用接点材料において、密度RaのTiCを主成分とする空隙率Xの成形体のTiC粒子の空隙に密度RbのCuを主成分とする溶浸材の粒子が溶浸した状態について、Rth=Ra・(1−X)+Rb・Xにより計算される理論密度Rthに対して98%以上の相対密度を有することを特徴とする。
【0014】
TiCは活性な金属Tiをわずかに含んでおり、TiC粒子の表面の金属Tiは酸素を吸着または酸素と結合する。このような酸素の吸着や結合が著しい部分はCuとの濡れ性が十分に得られない。十分な電流遮断特性を得るためには、このような欠陥を十分に低減する必要がある。
【0015】
本発明にあっては、上記の式による理論密度Rthに対して98%以上の密度を有する真空バルブ用接点材料としたことで、この欠陥が十分少なくなり、良好な電流遮断特性が得られるようにしている。
【0016】
このような高密度のCu−TiC系接点材料を得るためには、TiC粒子の表面にCr炭化物が形成された溶浸体から取り出すことが望ましい。Cr炭化物は、Cuとの濡れ性がTiCよりも良好であるので、十分な電流遮断特性を得ることができる。
【0017】
このTiC粒子の表面上のCr炭化物の厚さは0.5mm以上であることが望ましい。
【0018】
また、溶浸材を配置した側の面が接点表面となるように加工した場合、電流遮断特性に影響の最も大きい接点表面の密度を高めることができる。
【0019】
また、望ましくは、TiCの含有量を30〜45wt%(重量%)の範囲とすることにより、TiCの熱電子放出量とCuのイオン生成量とのバランスをアークの安定維持に適切な範囲とすることができ、接点材料の電流遮断特性を最適化することができる。
【0020】
本発明に係る真空バルブ用接点材料の製造方法は、TiCを主成分とする粉末を成形体とする成形工程と、この成形体の表面にCuを主成分とする溶浸材を配置し、成形体のTiC粒子の空隙に溶浸材の粒子を溶浸させ、TiC粒子の表面にCr炭化物を形成した溶浸体とする溶浸工程と、この溶浸体の溶浸材を配置した側の面から所定の深さ分だけ接点材料を取り出す加工工程と、を有することを特徴とする。
【0021】
本発明にあっては、溶浸工程により、少なくとも成形体の溶浸材を配置した側の表面近傍にあるTiC粒子の表面にはCr炭化物が形成され、溶浸材が成形体の内部へ浸入し易くなり、加工工程で、このように形成された溶浸体の溶浸材を配置した側の面から所定の深さ分だけ接点材料を取り出すようにしたことで、高密度の接点材料が得られるようにしている。
【0022】
上記のような組織的特徴を有する接点材料を製造する方法としては、Cuを主成分とする溶浸材にCr粒子を含ませておくことが最も有効である。このような製造方法により、溶浸工程で溶浸材に含まれるCrとTiC中の未結合のCとが反応し、TiC粒子の表面にCr炭化物が形成されることとなる。
【0023】
一方、成形体を構成する粉末にCr粒子を含ませておくことにより、溶浸時に成形体から溶解したCrとTiC中の未結合のCとが反応し、TiC粒子の表面にCr炭化物が形成されることとなる。
【0024】
また、成形体を構成する粉末にCu粒子を含ませておくことにより、このCu粒子を含む粉末が溶浸時に溶解し、Cuを主成分とする溶浸材の成形体へ浸入が容易になるので、溶浸性を高めることができる。
【0025】
また、TiC粒子の表面に厚さ0.5mm以上のCr炭化物を形成することが望ましく、接点材料を取り出すときの所定の深さは0.5mm以上であることが望ましい。
【0026】
また、接点材料の溶浸材を配置した側の面が真空バルブにセットしたときの接点表面となるように加工することにより、電流遮断特性に影響の最も大きい接点表面の密度を高めることができる。
【0027】
ところで、TiC粒子の表面における未結合Tiによるガスの吸着も溶浸するCuとTiC粒子の濡れ性を阻害する要因となる。
【0028】
そこで、溶浸直前に溶浸温度で脱ガス処理を行うことにより、ガスの吸着を防止するようにする。
【0029】
また、溶浸直後に溶浸材の融点まで5℃/min以下の冷却速度で冷却することにより、TiC粒子の表面のCr炭化物の生成に要する時間を長くすることが可能となり、Cr炭化物をより均一化して形成することができる。
【0030】
このような組織の接点材料を用いた真空バルブ、および上記製造方法により製造された接点材料を用いた真空バルブは、遮断時のガス放出が極めて少なく、安定して高い電流遮断特性を得ることができる。
【0031】
【発明の実施の形態】
以下、本発明の実施の形態について図面を用いて説明する。
【0032】
図1は、一実施の形態における複数のCu−TiC系接点材料について製造条件をまとめた表を示す図である。同図において、実施例1〜9は、本発明を適用したCu−TiC系接点材料であり、比較例1〜6は、実施例との特性比較のために用意した従来のCu−TiC接点材料である。
【0033】
製造条件は、TiC粒子をCr粒子または/およびCu粒子と混合することによりTiCを主成分とする粉末にする混合工程の条件と、混合した粉末を金属製の型に入れ圧力をかけて成形体とする成形工程の条件と、成形体の表面に溶浸材を配置し溶浸材の融点(ここでは1150℃)にて焼結することにより、成形体のTiC粒子の空隙に溶浸材の粒子を溶浸して溶浸体とする溶浸工程の条件と、溶浸体の溶浸材を配置した面の接点表面に対する向きを定めて加工する加工工程の条件とからなる。実施例1〜9、比較例1〜6は、それぞれこの一連の製造工程により製造した。
【0034】
混合工程では、実施例4にのみ粉末組成にTiC、Cuの他にCrを含めることとし、他の実施例、比較例にはCrを含めないこととした。
【0035】
溶浸工程では、実施例1、実施例2、比較例3にのみ溶浸材の組成にCrを含めることとし、他の実施例、比較例にはCrを含めないこととした。また、比較例3のみ溶浸直前の脱ガス処理を行わないこととした。さらに、溶浸後に溶浸材の融点(1050℃)まで冷却するときの冷却速度について、比較例4では10℃/min、実施例7、実施例8、比較例6では1℃/min、その他の実施例、比較例で5℃/minとした。
【0036】
図2は、各Cu−TiC系接点材料について図1の製造条件により製造された溶浸体の状態および電気特性を示す図である。
【0037】
溶浸体の状態の項目は、材料の組成とTiC粒子表面に形成されたCr炭化物の層の厚さ(mm)と密度とからなり、電気特性は、電流遮断特性と電流裁断特性とからなる。
【0038】
材料の理論密度Rth(g/cm)は、密度RaのTiCを主成分とする空隙率Xの成形体のTiC粒子の空隙に密度RbのCuを主成分とする溶浸材の粒子が完全に溶浸した状態について、
Rth=Ra・(1−X)+Rb・X
により計算される理論値である。
【0039】
材料の実測密度(g/cm)は、アルキメデス法により測定して調べた測定値であり、相対密度は、理論密度に対する実測密度の相対値(%)である。
【0040】
電流遮断特性は、前述の製造工程により製造された溶浸体の溶浸材を配置した側の面から所定の深さで直径50mmの接点材料を切取加工等によって取り出し、図3に示す真空バルブに組み込み、合成遮断試験により遮断特性評価を行って得た。評価方法は、低電流値(5kA)から徐々に遮断電流値を増大させ、最初に遮断に失敗した電流値を遮断電流値とした。図2の電流遮断特性では、実施例1の遮断電流値を1とした相対値で示し、1以上を良好と判断した。
【0041】
電流裁断特性は、上記と同様に図3に示す真空バルブを用いて評価を行った。評価方法は、電流値20Aを遮断する際の電流の落差(裁断電流)をデジタルオシロスコープを用いて500回繰返し測定し、裁断電流の最大値を評価結果とした。図2の電流裁断特性では、予め測定しておいたAg−WC系接点材料の裁断特性と同等の結果となった実施例9の裁断電流の最大値を1とした相対値で示し、1以下を良好と判断した。
【0042】
なお、図3は、Cu−TiC系接点材料が適用される真空バルブの構成を示す断面図であり、図4は、その接点部分および電極部分の拡大断面図である。1は遮断室、2は絶縁容器、3a,3bは封止金具、4a,4bは蓋体、5,6は導電棒、7,8は電極、9はベローズ、10,11はアークシールド、13a,13bはCu−TiC系接点材料である。接点材料13a,13bは、所定の間隔を挟んで対向して配置され、それぞれ電極8,7を介して導電棒6,5の先端に設けられる。
【0043】
次に、各実施例、各比較例について検討した結果を説明する。
【0044】
(実施例1,2および比較例1)前述した溶浸工程により、図5に示すように、成形体のTiC粒子21a〜21cの空隙にCuを主成分とする溶浸材の粒子22が溶浸したときのTiC粒子21a〜21cの表面にはCr炭化物23が形成される。このCr炭化物の層の厚さをパラメータとして、相対密度および電気特性を評価した。図1の溶浸材組成に示すように、TiC粒子表面のCr炭化物は溶浸材にCrを含くませておくことにより生成した。また、加工工程の条件に示すように、接点材料の向きは、いずれも溶浸体の溶浸材を配置した側の面が接点表面となるように加工した。
【0045】
図2に示すように、Cr炭化物の層の厚さは、実施例1が0.5mm、実施例2が2.0mm、比較例1が0である。層の厚さが0.5mm以上の実施例1,2では、ともに98%以上の相対密度が得られ、電流遮断特性はともに1.0以上、電流裁断特性はともに0.9といずれも良好であった。これに対し、層のない比較例1では、相対密度が92%と低く、電流遮断特性も0.3と不十分であった。
【0046】
(実施例3および比較例2)溶浸体から切取加工等によって取り出した接点材料を真空バルブに組み込んだときの接点材料の接点表面に対する向きを変えて相対密度および電気特性を評価した。図1の加工工程の条件に示すように、実施例3は、溶浸時に溶浸材を配置した側の溶浸体の面、すなわち溶浸材の浸入側の面が接点表面となるようにしたものであり、比較例2は、溶浸材を配置した側の溶浸体の面が接点裏面となるようにしたものである。ここで、接点表面とは、図3に示すように接点材料13a,13bが対向する面のことをいう。
【0047】
図2に示すように、実施例3では、相対密度が99%と高く、電流遮断特性は1.1、電流裁断特性は0.9といずれも十分である。これに対し、比較例2では、相対密度が97%と低く、電流遮断特性も0.7と不十分であった。
【0048】
(実施例4)TiC粒子表面のCr炭化物は、図1の実施例4に示すように混合粉末組成にCr粒子を含ませておくことによっても生成することができる。このときのCr炭化物の層の厚さは、図2に示すように7mmと非常に厚くなり、相対密度が98%と高く、電流遮断特性は1.0、電流裁断特性は0.9といずれも良好であった。
【0049】
(実施例5および比較例3)溶浸直前の溶浸温度での脱ガス処理の有無と相対密度および電気特性との相関性を調べた。図1の溶浸工程の条件に示すように、実施例5は脱ガス処理を行い、比較例3は脱ガス処理を行わなかったものである。
【0050】
図2に示すように、実施例5では、相対密度が99%と高く、電流遮断特性、電流裁断特性も十分である。これに対し、比較例3では、相対密度が97%と低く、電流遮断特性も0.7と不十分であった。
【0051】
(実施例6,7および比較例4)溶浸直後に、溶浸体を溶浸材の融点(ここでは1050℃)まで冷却するときの冷却速度をパラメータとして、相対密度および電気特性との相関関係を調べた。図1の溶浸工程の条件に示すように、実施例6は冷却速度を5℃/minとし、実施例7は1℃/min、比較例4は10℃/minとした。
【0052】
図2に示すように、実施例6,7では、相対密度がともに99%と高く、電流遮断特性はともに1.1、電流裁断特性はともに0.9といずれも十分な電気特性が得られた。これに対し、比較例4では、相対密度が95%と低く、電流遮断特性も0.5と不十分であった。
【0053】
上記各実施例1〜7は、図2の組成の欄に示すようにいずれもTiC含有量がほぼ40wt%(重量%)程度の接点材料であるので、電流裁断特性の指標はいずれも0.9となり、Ag−WC系接点材料よりも若干優れていることが分かる。次に、接点材料のCu/TiC比を変化させた場合について説明する。
【0054】
(実施例8,9および比較例5,6)成形工程での成形圧力の制御により接点材料のCu/TiC比を変化させ、相対密度および電気特性との相関関係を調べた。図2の組成の欄に示すように、実施例8のTiC含有量は44.5wt%、実施例9のTiC含有量は29.7wt%といずれもほぼ30〜45wt%の範囲とし、比較例5では50wt%、比較例6では26.3wt%とした。
【0055】
実施例8,9は、ともに相対密度が99%と高く、電流裁断特性はともに1.0以下でありAg−WCと同様またはそれ以上に優れていることが分かる。一方、これらに対してTiC含有量を多くした比較例5、TiC含有量を少なくした比較例6は、いずれも電流裁断特性が1.0をはるかに超えており劣っている。これは、TiCの熱電子放出量とCuのイオン生成量とのバランスが適切な範囲にないためである。
【0056】
【発明の効果】
以上説明したように、本発明に係る真空バルブ用接点材料は、密度RaのTiCを主成分とする空隙率Xの成形体のTiC粒子の空隙に密度RbのCuを主成分とする溶浸材の粒子が溶浸した状態について、Rth=Ra・(1−X)+Rb・Xの式による理論密度Rthに対して98%以上の密度を有する真空バルブ用接点材料としたことで、良好な電流遮断特性を得ることができる。
【0057】
また、本発明に係る真空バルブ用接点材料の製造方法によれば、Cuを主成分とする溶浸材にCr粒子を含ませておくか、あるいは成形体を構成する粉末にCr粒子を含ませておくことにより、成形体の表面に溶浸材を配置して溶浸させたときにTiC粒子の表面にCr炭化物が形成され、溶浸体の溶浸材を配置した側の面から所定の深さ分だけ接点材料を取り出すようにしたことで、高密度の接点材料を得ることができる。
【図面の簡単な説明】
【図1】一実施の形態における複数のCu−TiC系接点材料についての製造条件をまとめた表を示す図である。
【図2】各Cu−TiC系接点材料についての溶浸体状態および電気特性を示す図である。
【図3】Cu−TiC系接点材料が適用される真空バルブの構成を示す断面図である。
【図4】上記真空バルブの接点部分および電極部分の拡大断面図である。
【図5】TiC粒子表面にCr炭化物が形成されている状態を示す図である。
【符号の説明】
1 遮断室
2 絶縁容器
3a,3b 封止金具
4a,4b 蓋体
5,6 導電棒
7,8 電極
9 ベローズ
10,11 アークシールド
13a,13b Cu−TiC系接点材料
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a superior low chopping characteristic and current interruption characteristic and the contact material for a vacuum valve having both a manufacturing method thereof.
[0002]
[Prior art]
In addition to basic characteristics such as current interruption characteristics and withstand voltage characteristics, vacuum switchgear that interrupts current by diffusing arc plasma in vacuum should have excellent low surge characteristics depending on the application. It is.
[0003]
In particular, when the vacuum switching device is applied to a device such as a motor or a transformer, it is necessary to suppress the generated surge from the viewpoint of preventing dielectric breakdown of these devices. For surge suppression, there are a method of using a vacuum switchgear together with a surge suppressor and a method of reducing the surge generation level of the vacuum switchgear itself.
[0004]
In order to reduce the surge generation level of the vacuum switchgear, a technique for reducing the level of current cutting that is the main cause of surge is used. The cutting current value indicating the level of current cutting depends on the circuit configuration and the contact material used for the vacuum valve for the cutoff part of the vacuum switching device. If the circuit configuration cannot be changed, the cutting current value is substantially determined by the contact material.
[0005]
Cu-Cr-based contact materials with excellent breaking characteristics and Cu-W-based contact materials with excellent withstand voltage characteristics are not sufficiently low in cutting current, so circuit surges such as motors and transformers When applied to equipment with high impedance, a surge suppressor is used in combination.
[0006]
On the other hand, the Ag-WC-based contact material has excellent low cutting characteristics, that is, low surge characteristics, but the interruption performance is not as high as that of the Cu-Cr-based contact material.
[0007]
[Problems to be solved by the invention]
The greatest advantage of the vacuum switchgear that is low noise and does not use an environmentally affecting substance such as SF 6 as the blocking medium is its harmony with the environment. However, as described above, when a surge suppression device is used for surge protection using a Cu—Cr-based contact material, the surge suppression device generally contains flammable oil, so the advantages are impaired. There is a problem that it ends up.
[0008]
The Ag-WC-based contact material is a contact material developed from such a viewpoint, and has low surge characteristics, so that it is widely used in small-capacity vacuum switching devices. However, since it is difficult to increase the capacity, the application range is limited. Moreover, there also exists a problem that interruption | blocking performance is inferior to a Cu-Cr type | system | group contact material.
[0009]
In recent years, a Cu—TiC contact material excellent in low cutting characteristics has been developed, but there is a problem that it is difficult to stabilize the current interruption characteristics.
[0010]
The present invention has been made in view of the above, and an object of the present invention is to provide a contact material for a vacuum valve with improved current interruption characteristics for a Cu-TiC-based contact material having low cutting characteristics. It is in.
[0011]
Another object of the present invention is to provide a method for producing the above contact material for a vacuum valve.
[0013]
[Means for Solving the Problems]
In order to achieve the above object, the contact material for a vacuum valve according to the present invention is manufactured by infiltrating particles of an infiltrant containing Cu as a main component into the voids of TiC particles of a molded product containing TiC as a main component. In a Cu-TiC-based vacuum valve contact material, particles of an infiltrant containing Cu of density Rb as a main component are infiltrated into the voids of TiC particles of a molded body having porosity X as a main component of TiC having a density of Ra. In this state, it has a relative density of 98% or more with respect to the theoretical density Rth calculated by Rth = Ra · (1−X) + Rb · X.
[0014]
TiC contains a small amount of active metal Ti, and the metal Ti on the surface of the TiC particles adsorbs or binds oxygen. Such a portion where oxygen is adsorbed or bonded is not sufficiently wettable with Cu. In order to obtain sufficient current interruption characteristics, it is necessary to sufficiently reduce such defects.
[0015]
In the present invention, since the contact material for vacuum valves has a density of 98% or more with respect to the theoretical density Rth according to the above formula, this defect is sufficiently reduced, and good current interruption characteristics can be obtained. I have to.
[0016]
Thus in order to obtain the high density of the Cu-TiC-based contact material, it is desirable to take out from the infiltrated body Cr carbide is formed on the surface of T iC particles. Since Cr carbide has better wettability with Cu than TiC, sufficient current interruption characteristics can be obtained.
[0017]
The thickness of the Cr carbide on the surface of the TiC particles is desirably 0.5mm or more.
[0018]
Also, if the side surface which is arranged dissolved Hitazai was processed so that the contact surface, it is possible to increase the density of the largest contact surface of the impact on the current interrupting characteristics.
[0019]
Desirably , the content of TiC is in the range of 30 to 45 wt% (weight%), so that the balance between the amount of TiC thermoelectrons emitted and the amount of Cu ions generated is in an appropriate range for maintaining stable arcs. And the current interruption characteristics of the contact material can be optimized.
[0020]
The method for producing a contact material for a vacuum valve according to the present invention includes a molding step in which a powder mainly composed of TiC is formed as a molded body, and an infiltrant having Cu as a main component is disposed on the surface of the molded body. An infiltration process in which particles of the infiltrant are infiltrated into the voids of the TiC particles of the body to form an infiltrant in which Cr carbide is formed on the surface of the TiC particles, and on the side where the infiltrant of the infiltrant is disposed And a processing step of taking out the contact material by a predetermined depth from the surface.
[0021]
In the present invention, Cr carbide is formed on the surface of the TiC particles in the vicinity of the surface on the side where the infiltrant of the molded body is disposed by the infiltration process, and the infiltrant enters the inside of the molded body. The contact material is taken out by a predetermined depth from the surface on which the infiltrant of the infiltrated body thus formed is arranged in the processing step, so that a high-density contact material can be obtained. I try to get it.
[0022]
As a method for producing a contact material having a tissue characteristics such as described above, it is most effective to moistened with Cr particles infiltrant composed mainly of C u. By such a manufacturing method, Cr contained in the infiltrating material in the infiltration step reacts with unbonded C in TiC, and Cr carbide is formed on the surface of the TiC particles.
[0023]
On the other hand, when made to contain the Cr particles in powder constituting the formed configuration, and Cr dissolved from the shaped body and a C unbound in the TiC reacts during infiltration, the Cr carbide in the surface of the TiC particles formed Will be.
[0024]
Further, by previously moistened with Cu particles in powder constituting the formed configuration, powder containing the Cu particles are dissolved during infiltration, infiltration is facilitated to the molded body of infiltrant mainly containing Cu Therefore, infiltration property can be improved.
[0025]
Further, it is desirable to form the thickness of 0.5mm or more Cr carbide on the surface of the TiC particles, a predetermined depth when retrieving contact point material is desirably 0.5mm or more.
[0026]
Also , by processing so that the surface of the contact material on which the infiltrant is placed becomes the contact surface when it is set in the vacuum valve, the density of the contact surface that has the greatest effect on the current interruption characteristics can be increased. .
[0027]
By the way, gas adsorption by unbound Ti on the surface of TiC particles is also a factor that impedes the wettability of Cu and TiC particles to be infiltrated.
[0028]
Therefore, by performing the degassing process at infiltration temperature immediately before immersion solvent, so as to prevent the adsorption of gases.
[0029]
Further, by cooling at the melting point to 5 ° C. / min or less a cooling rate of infiltrant immediately after immersion solvent, it is possible to lengthen the time required to generate the Cr carbide on the surface of the TiC particles, and more of Cr carbide It can be formed uniformly.
[0030]
Such tissues vacuum valve using the contact material, and the manufacturing process vacuum valve using the contact material produced by the gas discharge is extremely small at the time of blocking, stably obtain a high current interruption characteristic be able to.
[0031]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0032]
FIG. 1 is a diagram showing a table summarizing manufacturing conditions for a plurality of Cu—TiC-based contact materials according to an embodiment. In the figure, Examples 1 to 9 are Cu-TiC contact materials to which the present invention is applied, and Comparative Examples 1 to 6 are conventional Cu-TiC contact materials prepared for characteristic comparison with Examples. It is.
[0033]
The production conditions are as follows: the mixing process conditions for mixing TiC particles with Cr particles and / or Cu particles to make the powder mainly composed of TiC, and putting the mixed powder into a metal mold and applying pressure to the molded body By placing the infiltrant on the surface of the compact and sintering at the melting point of the infiltrant (here, 1150 ° C.), the infiltrant is placed in the voids of the TiC particles of the compact. It consists of the conditions of the infiltration process which infiltrate particle | grains to make an infiltrant, and the conditions of the process of processing which determines the direction with respect to the contact surface of the surface which has arrange | positioned the infiltrant of an infiltrant. Examples 1 to 9 and Comparative Examples 1 to 6 were each produced by this series of production steps.
[0034]
In the mixing step, Cr was included in the powder composition only in Example 4 in addition to TiC and Cu, and Cr was not included in other examples and comparative examples.
[0035]
In the infiltration process, Cr was included in the composition of the infiltrant only in Example 1, Example 2, and Comparative Example 3, and Cr was not included in the other Examples and Comparative Examples. Moreover, only the comparative example 3 decided not to perform the degassing process just before infiltration. Furthermore, the cooling rate when cooling to the melting point (1050 ° C.) of the infiltrant after infiltration is 10 ° C./min in Comparative Example 4, 1 ° C./min in Examples 7, 8 and 6, and others. In Examples and Comparative Examples, the temperature was set to 5 ° C./min.
[0036]
FIG. 2 is a diagram showing the state and electrical characteristics of an infiltrated body manufactured under the manufacturing conditions of FIG. 1 for each Cu—TiC-based contact material.
[0037]
The item of the infiltrated state is composed of the material composition and the thickness (mm) and density of the Cr carbide layer formed on the surface of the TiC particles, and the electrical characteristics are composed of the current interruption characteristic and the current cutting characteristic. .
[0038]
The theoretical density Rth (g / cm 3 ) of the material is such that the particles of the infiltrant containing Cu of the density Rb as the main component are completely formed in the voids of the TiC particles of the molded body having the porosity X of the TiC having the density Ra. About the state infiltrated into
Rth = Ra · (1-X) + Rb · X
Is a theoretical value calculated by
[0039]
The actual density (g / cm 3 ) of the material is a measured value measured by the Archimedes method, and the relative density is a relative value (%) of the actual density with respect to the theoretical density.
[0040]
The current interrupting characteristic is obtained by taking out a contact material having a predetermined depth and a diameter of 50 mm from the surface of the infiltrant manufactured by the above-described manufacturing process on the side where the infiltrant is arranged, by cutting or the like, and performing the vacuum valve shown in FIG. It was obtained by conducting a blocking characteristic evaluation by a synthetic blocking test. In the evaluation method, the breaking current value was gradually increased from a low current value (5 kA), and the current value that failed to break first was taken as the breaking current value. In the current interruption characteristics of FIG. 2, the interruption current value of Example 1 is represented by a relative value, and 1 or more was judged to be good.
[0041]
The current cutting characteristics were evaluated using the vacuum valve shown in FIG. 3 as described above. In the evaluation method, a current drop (cutting current) when cutting off the current value 20A was repeatedly measured 500 times using a digital oscilloscope, and the maximum value of the cutting current was used as the evaluation result. The current cutting characteristics shown in FIG. 2 are expressed as relative values with the maximum value of the cutting current of Example 9 having a result equivalent to the cutting characteristics of the Ag-WC-based contact material measured in advance, being 1 or less. Was judged as good.
[0042]
FIG. 3 is a cross-sectional view showing a configuration of a vacuum valve to which a Cu—TiC-based contact material is applied, and FIG. 4 is an enlarged cross-sectional view of the contact portion and the electrode portion. 1 is a shut-off chamber, 2 is an insulating container, 3a and 3b are sealing fittings, 4a and 4b are lids, 5 and 6 are conductive rods, 7 and 8 are electrodes, 9 is bellows, 10 and 11 are arc shields, 13a , 13b are Cu-TiC-based contact materials. The contact materials 13a and 13b are arranged to face each other with a predetermined interval, and are provided at the tips of the conductive rods 6 and 5 via the electrodes 8 and 7, respectively.
[0043]
Next, the results of studying each example and each comparative example will be described.
[0044]
(Examples 1 and 2 and Comparative Example 1) Through the infiltration process described above, as shown in FIG. 5, particles 22 of the infiltrant containing Cu as a main component were dissolved in the voids of the TiC particles 21a to 21c of the molded body. Cr carbides 23 are formed on the surfaces of the TiC particles 21a to 21c when immersed. The relative density and electrical characteristics were evaluated using the thickness of the Cr carbide layer as a parameter. As shown in the infiltrant composition of FIG. 1, Cr carbide on the surface of the TiC particles was generated by including Cr in the infiltrant. In addition, as shown in the conditions of the processing step, the contact material was processed so that the surface on the side where the infiltrant of the infiltrated body was disposed was the contact surface.
[0045]
As shown in FIG. 2, the thickness of the Cr carbide layer is 0.5 mm in Example 1, 2.0 mm in Example 2, and 0 in Comparative Example 1. In Examples 1 and 2 having a layer thickness of 0.5 mm or more, a relative density of 98% or more was obtained in both cases, the current interruption characteristics were both 1.0 or more, and the current cutting characteristics were both 0.9, both good. Met. On the other hand, in Comparative Example 1 having no layer, the relative density was as low as 92% and the current interruption characteristics were insufficient at 0.3.
[0046]
Example 3 and Comparative Example 2 Relative density and electrical characteristics were evaluated by changing the orientation of the contact material with respect to the contact surface when the contact material taken out from the infiltrate by cutting or the like was incorporated in a vacuum valve. As shown in the conditions of the processing steps in FIG. 1, in Example 3, the surface of the infiltrant on the side where the infiltrant is placed at the time of infiltration, that is, the surface on the infiltration side of the infiltrant becomes the contact surface. In Comparative Example 2, the surface of the infiltrant on the side where the infiltrant is disposed is the contact back surface. Here, the contact surface means a surface on which the contact materials 13a and 13b face each other as shown in FIG.
[0047]
As shown in FIG. 2, in Example 3, the relative density is as high as 99%, the current interruption characteristic is 1.1, and the current cutting characteristic is 0.9. On the other hand, in Comparative Example 2, the relative density was as low as 97%, and the current interruption characteristic was insufficient at 0.7.
[0048]
(Example 4) Cr carbide on the surface of TiC particles can also be produced by including Cr particles in the mixed powder composition as shown in Example 4 of FIG. At this time, the thickness of the Cr carbide layer is 7 mm as shown in FIG. 2, the relative density is as high as 98%, the current interruption characteristic is 1.0, and the current cutting characteristic is 0.9. Was also good.
[0049]
Example 5 and Comparative Example 3 The correlation between the presence / absence of degassing treatment at the infiltration temperature immediately before infiltration, the relative density, and the electrical characteristics was examined. As shown in the conditions of the infiltration step of FIG. 1, Example 5 was obtained by performing degassing treatment, and Comparative Example 3 was obtained by not performing degassing treatment.
[0050]
As shown in FIG. 2, in Example 5, the relative density is as high as 99%, and the current interruption characteristics and the current cutting characteristics are sufficient. On the other hand, in Comparative Example 3, the relative density was as low as 97%, and the current interruption characteristic was insufficient at 0.7.
[0051]
Examples 6 and 7 and Comparative Example 4 Immediately after infiltration, the cooling rate when cooling the infiltrate to the melting point of the infiltrant (here, 1050 ° C.) was used as a parameter, and the correlation with the relative density and electrical characteristics. I investigated the relationship. As shown in the conditions of the infiltration step in FIG. 1, in Example 6, the cooling rate was 5 ° C./min, Example 7 was 1 ° C./min, and Comparative Example 4 was 10 ° C./min.
[0052]
As shown in FIG. 2, in Examples 6 and 7, both of the relative densities are as high as 99%, the current interruption characteristics are both 1.1, and the current cutting characteristics are both 0.9. It was. On the other hand, in Comparative Example 4, the relative density was as low as 95% and the current interruption characteristics were insufficient at 0.5.
[0053]
Each of Examples 1 to 7 is a contact material having a TiC content of about 40 wt% (weight%) as shown in the composition column of FIG. It can be seen that it is 9 and is slightly better than the Ag-WC contact material. Next, a case where the Cu / TiC ratio of the contact material is changed will be described.
[0054]
(Examples 8 and 9 and Comparative Examples 5 and 6) The Cu / TiC ratio of the contact material was changed by controlling the molding pressure in the molding process, and the correlation with the relative density and electrical characteristics was examined. As shown in the column of the composition in FIG. 2, the TiC content of Example 8 was 44.5 wt%, and the TiC content of Example 9 was 29.7 wt%, both in the range of about 30 to 45 wt%. 5 was 50 wt%, and Comparative Example 6 was 26.3 wt%.
[0055]
In both Examples 8 and 9, the relative density is as high as 99%, and the current cutting characteristics are both 1.0 or less, and it can be seen that it is similar to or better than Ag-WC. On the other hand, Comparative Example 5 in which the TiC content was increased and Comparative Example 6 in which the TiC content was decreased were both inferior because the current cutting characteristics far exceeded 1.0. This is because the balance between the amount of TiC thermionic emission and the amount of Cu ions produced is not in an appropriate range.
[0056]
【The invention's effect】
As described above, the contact material for a vacuum valve according to the present invention is an infiltrant whose main component is Cu having a density Rb in the voids of TiC particles of a molded body having a porosity X, the main component being TiC having a density Ra. As a vacuum valve contact material having a density of 98% or more with respect to the theoretical density Rth according to the formula Rth = Ra · (1−X) + Rb · X A blocking characteristic can be obtained.
[0057]
Further, according to the method for manufacturing a contact material for a vacuum valve according to the present invention, Cr particles are contained in the infiltrant containing Cu as a main component, or Cr particles are contained in the powder constituting the compact. Thus, when an infiltrant is placed on the surface of the molded body and infiltrated, Cr carbide is formed on the surface of the TiC particles, and a predetermined surface is formed from the surface of the infiltrant on which the infiltrant is placed. By taking out the contact material by the depth, a high-density contact material can be obtained.
[Brief description of the drawings]
FIG. 1 is a diagram showing a table summarizing manufacturing conditions for a plurality of Cu—TiC-based contact materials in an embodiment.
FIG. 2 is a diagram showing an infiltrated state and electrical characteristics of each Cu—TiC-based contact material.
FIG. 3 is a cross-sectional view showing a configuration of a vacuum valve to which a Cu—TiC-based contact material is applied.
FIG. 4 is an enlarged cross-sectional view of a contact portion and an electrode portion of the vacuum valve.
FIG. 5 is a diagram showing a state in which Cr carbide is formed on the surface of TiC particles.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Shut-off chamber 2 Insulation container 3a, 3b Sealing metal fittings 4a, 4b Cover body 5, 6 Conductive rod 7, 8 Electrode 9 Bellows 10, 11 Arc shield 13a, 13b Cu-TiC system contact material

Claims (9)

TiCを主成分とする成形体のTiC粒子の空隙にCuを主成分とする溶浸材の粒子を溶浸して製造されるCu−TiC系の真空バルブ用接点材料において、
密度RaのTiCを主成分とする空隙率Xの成形体のTiC粒子の空隙に密度RbのCuを主成分とする溶浸材の粒子が溶浸した状態について、
Rth=Ra・(1−X)+Rb・X
により計算される理論密度Rthに対して98%以上の相対密度を有し、
前記TiC粒子の表面にはCr炭化物の層が形成されていることを特徴とする真空バルブ用接点材料。
In a contact material for a Cu-TiC-based vacuum valve manufactured by infiltrating particles of an infiltrant containing Cu as a main component into the voids of TiC particles of a molded product containing TiC as a main component,
About the state where the particles of the infiltrating material mainly containing Cu of density Rb infiltrated into the voids of the TiC particles of the compact body of porosity X having the density Ra Ti as a main component,
Rth = Ra · (1-X) + Rb · X
Having a relative density of 98% or more with respect to the theoretical density Rth calculated by:
A contact material for a vacuum valve, characterized in that a Cr carbide layer is formed on the surface of the TiC particles.
前記Cr炭化物は、厚さが0.5mm以上であることを特徴とする請求項1記載の真空バルブ用接点材料。  The contact material for a vacuum valve according to claim 1, wherein the Cr carbide has a thickness of 0.5 mm or more. 溶浸材を配置した側の面が接点表面となるように加工されたことを特徴とする請求項1又は2に記載の真空バルブ用接点材料。  The contact material for a vacuum valve according to claim 1 or 2, wherein the surface on which the infiltrant is disposed is processed so as to be a contact surface. TiCの含有量を30〜45wt%の範囲としたことを特徴とする請求項1乃至3のいずれかに記載の真空バルブ用接点材料。  The contact material for a vacuum valve according to any one of claims 1 to 3, wherein the content of TiC is in the range of 30 to 45 wt%. TiCを主成分とする粉末を成形体とする成形工程と、
この成形体の表面にCuを主成分とする溶浸材を配置し、成形体のTiC粒子の空隙に溶浸材の粒子を溶浸させ、TiC粒子の表面にCr炭化物の層を形成した溶浸体とする溶浸工程と、
この溶浸体の溶浸材を配置した側の面から所定の深さ分だけ接点材料を取り出す加工工程と、
を有することを特徴とする真空バルブ用接点材料の製造方法。
A molding step using a powder mainly composed of TiC as a molded body;
An infiltrant containing Cu as a main component is disposed on the surface of the molded body, and particles of the infiltrant are infiltrated into the voids of the TiC particles of the molded body to form a Cr carbide layer on the surface of the TiC particles. An infiltration process to be immersed,
A processing step of taking out the contact material by a predetermined depth from the surface on which the infiltrant of the infiltrant is disposed,
A method for producing a contact material for a vacuum valve, comprising:
前記溶浸工程は、TiC粒子の表面に厚さ0.5mm以上のCr炭化物の層を形成することを特徴とする請求項5記載の真空バルブ用接点材料の製造方法。6. The method of manufacturing a contact material for a vacuum valve according to claim 5, wherein the infiltration step forms a Cr carbide layer having a thickness of 0.5 mm or more on the surface of the TiC particles. 前記所定の深さは、0.5mm以上であることを特徴とする請求項5又は6に記載の真空バルブ用接点材料の製造方法。  The said predetermined depth is 0.5 mm or more, The manufacturing method of the contact material for vacuum valves of Claim 5 or 6 characterized by the above-mentioned. 前記加工工程は、接点材料の溶浸材を配置した側の面が接点表面となるように加工する工程を有することを特徴とする請求項5乃至7のいずれかに記載の真空バルブ用接点材料の製造方法。  The contact material for a vacuum valve according to any one of claims 5 to 7, wherein the processing step includes a step of processing so that a surface of the contact material on which the infiltrant is disposed becomes a contact surface. Manufacturing method. 前記溶浸工程は、溶浸直後に溶浸材の融点まで5℃/min以下の冷却速度で冷却する工程を有することを特徴とする請求項5乃至8のいずれかに記載の真空バルブ用接点材料の製造方法。  9. The vacuum valve contact according to claim 5, wherein the infiltration step includes a step of cooling at a cooling rate of 5 [deg.] C./min or less immediately after infiltration to a melting point of the infiltrant. Material manufacturing method.
JP2001076897A 2001-03-16 2001-03-16 Contact material for vacuum valve and manufacturing method thereof Expired - Lifetime JP4174187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001076897A JP4174187B2 (en) 2001-03-16 2001-03-16 Contact material for vacuum valve and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001076897A JP4174187B2 (en) 2001-03-16 2001-03-16 Contact material for vacuum valve and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002279866A JP2002279866A (en) 2002-09-27
JP4174187B2 true JP4174187B2 (en) 2008-10-29

Family

ID=18933748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001076897A Expired - Lifetime JP4174187B2 (en) 2001-03-16 2001-03-16 Contact material for vacuum valve and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4174187B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104064253A (en) * 2014-06-20 2014-09-24 哈尔滨东大高新材料股份有限公司 Copper-based contact material applied to lower-voltage apparatus and preparation method of copper-based contact material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104064253A (en) * 2014-06-20 2014-09-24 哈尔滨东大高新材料股份有限公司 Copper-based contact material applied to lower-voltage apparatus and preparation method of copper-based contact material

Also Published As

Publication number Publication date
JP2002279866A (en) 2002-09-27

Similar Documents

Publication Publication Date Title
Rieder et al. The influence of composition and Cr particle size of Cu/Cr contacts on chopping current, contact resistance, and breakdown voltage in vacuum interrupters
KR920007749B1 (en) Contact forming material for a vacuum interrupter
US4551596A (en) Surge-absorberless vacuum circuit interrupter
JP4174187B2 (en) Contact material for vacuum valve and manufacturing method thereof
US6303076B1 (en) Contact material for contacts for vacuum interrupter and method of manufacturing the contact
JPH06228704A (en) Contact material for vacuum bulb and its production
JP2007066753A (en) Contact material for vacuum valve, and manufacturing method therefor
JP4209183B2 (en) Contact material for vacuum valves
JP3790055B2 (en) Contact material for vacuum valves
JP2006032036A (en) Contact material for vacuum valve
JP2002088437A (en) Contact material for vacuum valve and its production method
JP2003331698A (en) Electrode for vacuum circuit breaker and manufacturing method therefor
JP2002208335A (en) Vacuum bulb contact point and its manufacturing method
JP2003226904A (en) Contact material for vacuum valve, manufacturing method thereof, and vacuum valve
JP3150516B2 (en) Contact material for vacuum valve
JPH04132127A (en) Contact point for vacuum bulb
JP2904448B2 (en) Contact material for vacuum valve
JPH10106802A (en) Power resistor and its manufacture
JP3859393B2 (en) Method for manufacturing vacuum valve contact material
JPH076671A (en) Contact material and manufacture thereof for vacuum valve
JP2001076595A (en) Contact point material for vacuum valve and its manufacturing method
JPH0822734A (en) Manufacture of contact material for vacuum valve
JP2006302613A (en) Contact material for vacuum valve and its manufacturing method
JP2653467B2 (en) Manufacturing method of contact alloy for vacuum valve
JPH04206122A (en) Vacuum value

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080818

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4174187

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 5

EXPY Cancellation because of completion of term