JP4172878B2 - Method for forming biaxially stretched polyethylene terephthalate sheet - Google Patents

Method for forming biaxially stretched polyethylene terephthalate sheet Download PDF

Info

Publication number
JP4172878B2
JP4172878B2 JP16419299A JP16419299A JP4172878B2 JP 4172878 B2 JP4172878 B2 JP 4172878B2 JP 16419299 A JP16419299 A JP 16419299A JP 16419299 A JP16419299 A JP 16419299A JP 4172878 B2 JP4172878 B2 JP 4172878B2
Authority
JP
Japan
Prior art keywords
sheet
molding
pressure
forming
biaxially stretched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16419299A
Other languages
Japanese (ja)
Other versions
JP2000351153A (en
Inventor
弘 桑原
知史 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Aluminium Ekco Products Co Ltd
Original Assignee
Toyo Aluminium Ekco Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Aluminium Ekco Products Co Ltd filed Critical Toyo Aluminium Ekco Products Co Ltd
Priority to JP16419299A priority Critical patent/JP4172878B2/en
Publication of JP2000351153A publication Critical patent/JP2000351153A/en
Application granted granted Critical
Publication of JP4172878B2 publication Critical patent/JP4172878B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Description

【0001】
【発明の技術分野】
この発明は、二軸延伸ポリエチレンテレフタレートシートの成形方法に関する。
【0002】
【従来の技術】
従来、物理的に非常に強靱な二軸延伸ポリエチレンテレフタレート(以下、PETと略す)シートを熱盤圧空成形やプレス成形で成形することは工業的生産上非常に困難とされていたが、特公昭62−18339号公報には、成形時に成形温度(T)=220〜245℃、成形圧力(P)≧〔30+(220−T)/2〕kg/cm2 の条件で圧空成形する解決策が示されている。しかしながらこの条件は、実際成形圧力にすると約20〜40kg/cm2 という非常に高い圧空成形圧力をかけることにより成形を可能としている。
【0003】
【発明が解決しようとする課題】
上述の二軸延伸PETシートの成形方法においては、約20〜40kg/cm2 という非常に高い圧空成形圧力を必要とするため特殊な製造設備が必要となり、低コストのワンウェイ容器等の分野では実用化には至っていない。この発明の課題は、このように高い圧空成形圧力を必要とせず3.0〜4.5kg/cm2 という通常の熱盤圧空成形と同等の低い成形圧力で二軸延伸PETシートを成形する方法を提供することである。
【0004】
【課題の解決手段】
上記の課題を解決するため、この発明においては、ポリエチレンテレフタレート系樹脂を延伸配向および結晶化させて得られた延伸倍率が縦方向に2.5倍以上、横方向に2倍以上であって、結晶化度が38%以上、50%以下のシートを、
(a)シート加熱時間X(秒)とシート加熱温度Y(℃)との関係が、
Y≧220−1.5X
X≧1
(b)圧空成形圧力が3.0kg/cm2 以上、6.0kg/cm2 以下
の条件で成形するようにしたのである。
【0005】
また、特にY≧238−1.5Xとするのが好ましい。
【0006】
【実施の形態】
以下、この発明の実施形態を添付図面に基づいて説明する。図1にこの発明の成形方法で使用する熱盤圧空成形装置を示す。この装置は通常使用されている熱盤接触によるシート加熱式の圧空成形装置である。図1(イ) に示すように、シートSを挟んで成形型10と熱盤20が対向して配置され、シートSは矢印方向に間欠的に送られる。前記成形型10には複数のキャビティ11が設けられ、このキャビティ11の内面には給排気孔12が多数設けられている。一方熱盤20にもその表面21に開口する給排気孔22が多数設けられている。
【0007】
シートSの成形に際しては、図1(ロ) に示すように、熱盤20の給排気孔22から真空引きしてシートSを熱盤20に密着させヒータ23によって加熱する。このとき成形キャビティ11の給排気孔12から圧力気体を供給して密着作用を補助してもよい。次いで図1(ハ) に示すように、熱盤20の給排気孔22から圧力気体を供給して、軟化したシートSを成形型10のキャビティ11に押し付けて成形する。このとき、キャビティ11の給排気孔12から真空引きして成形性を高めることができる。最後に、図1(ニ) のように、キャビティ11の給排気孔12から圧力気体を排出して離型する。
【0008】
上記のように、シートSの加熱方法は、シート全体の均一加熱を必要とするため、熱盤による直接加熱方法が最も適している。間接加熱方法ではシートの加熱むらが発生しやすく、極端な場合、加熱不足の部分が成形中に破れてしまう。
【0009】
そして、下記式の範囲から選ばれた条件で成形を行なうことが肝要である。即ち、シート加熱時間X(秒)とシート加熱温度Y(℃)との関係が
Y≧220−1.5X
X≧1
この条件の範囲内で成形する限り、圧空成形圧力は最低3.0kg/cm2 と非常に低い圧力で十分成形可能となる。この成形方法により得られる成形品は、耐熱性(100℃以上で変形が始まるがそれ以上高温域でも大きく変形は進まず、230℃の高温でも溶けたり穴が空いたりすることは無い)、透明性、引張強度、衝撃強度、ガスバリア性、保香性等に優れた特性を示す。このシート加熱温度とシート加熱時間の条件が上記範囲を外れて下回れば十分成形ができず、細部の形状の再現性が不十分となる。
【0010】
また、特に下記式の範囲から選ばれた条件で成形を行なうと優れた成形品が得られる。即ち、シート加熱時間X(秒)とシート加熱温度Y(℃)との関係が
Y≧238−1.5X
X≧1
この条件の範囲内で成形する限り、圧空成形圧力は最低3.0kg/cm2 と非常に低い圧力で十分成形可能となる。さらにこの条件範囲で成形した場合、後述の実施例で示すとおり、160℃に加熱したシリコーンオイルバスに成形品を20分浸漬した場合の容積変化率が10%未満である耐熱性が非常に優れた成形品を得ることができる。この成形品は透明性、引張強度、衝撃強度、ガスバリア性、保香性等にも優れた特性を示す。このシート加熱温度とシート加熱時間の条件が上記範囲を外れて下回れば、成形は可能でも、成形品の耐熱性は大きく低下する。
【0011】
なお、上記の成形方法において、圧空成形時間は通常の汎用樹脂シートの成形と同様に数秒程度で成形可能であり、極端に長くしてもコストが掛かるだけで大きな効果は得られない。また圧空成形圧力が3kg/cm2 未満では成形が十分できない。さらに圧空成形圧を高くする分には問題は無いが、6kg/cm2 より高くすると、成形時の空気漏れ等が発生し易くなるため、成形機や金型の改造が必要となり設備コストが高くつき好ましくない。
【0012】
この発明で使用するPET樹脂は、単独重合およびPETの特徴を損なわない程度の共重合体(例えば85モル%以上PET単位を含んだ樹脂)であり、これを公知の二軸延伸結晶化ポリエステルフィルムの製造方法により二軸配向および結晶化させ、シート状に成膜したものである。なお、延伸結晶化させたPETシート(フィルムを含む)の結晶化度が38%未満では耐熱性が悪くなり、50%を越えると材料の伸びが悪く成形できないので好ましくない。結晶化度は以下の式に基づいて導かれたものである。
【0013】
結晶化度Xc=dc(d−da)/d(dc−da)
ここでda(完全非結晶時の密度)=1.335
dc(完全結晶時の密度)=1.501
d=サンプルの密度
また、これらの素材からなる二軸延伸PETシートは、必要に応じて帯電防止剤、防曇剤、界面活性剤、セラミックコート、アルミ蒸着やガラス繊維等のフィラー等有機物および無機物を添加することは任意である。さらに、この樹脂層に少なくとも1層のバリア層を設けることもできる。このバリア層の樹脂としては、ポリ塩化ビニリデン、エチレン−ビニルアルコール共重合体、各種ナイロン等があげられる。なお、二軸延伸PETシートの厚さは、通常70〜500μであり、特にこの発明の成形方法に適している厚みは150〜350μである。
【0014】
この発明において、上記範囲で任意の延伸倍率、結晶化度に調整した二軸延伸PETシート成形時のシート加熱温度は200〜245℃である。この温度が200℃未満では、樹脂が十分伸びず、圧空成形によって成形することは困難である。また、245℃より高い温度では、シートが溶融状態になり熱盤に付着してしまい成形できない。
【0015】
【実施例1】
2種の成形型を用い図2及び図3に示す容器を以下の成形条件により熱盤圧空成形した。
【0016】
成形条件は、金型温度60℃、成形圧力3.5kg/cm2 、圧空成形時間8秒であった。
【0017】
使用した材料は結晶化度40%の二軸延伸PETシート(ユニチカ社製エンブレット)でシートの厚みは250μであった。成形された容器の状態を目視で観察した結果を図4に示す。
【0018】
【実施例2】
実施例1で使用した図3の容器を成形する金型を用い次の成形条件により熱盤圧空成形した。
【0019】
成形条件は、金型温度60℃、成形温度230℃、シート加熱時間8秒、圧空成形時間8秒であった。
【0020】
使用した材料は結晶化度40%の二軸延伸PETシート(ユニチカ社製エンブレット)でシートの厚みは250μであった。成形された容器の状態を図5に示す。
【0021】
【実施例3】
実施例1で使用した図3の容器用金型を用い以下の成形条件により熱盤圧空成形した3種類の成形品について耐熱性試験を実施した。試験方法は様々な温度に加熱したシリコーンオイルバスに各成形品を20分浸漬した時の容積変化率(%)を測定した。
【0022】
成形条件は、金型温度60℃、成形圧力3.5kg/cm2 、圧空成形時間8秒であった。
【0023】
使用した材料は結晶化度40%の二軸延伸PETシート(ユニチカ社製エンブレット)でシートの厚みは250μであった。なお、各サンプルのシート加熱時間は8秒、加熱温度はサンプル1が220℃、サンプル2が230℃、サンプル3が235℃であった。結果を図6に示す。サンプル2、3の成形品は、160℃でも容積変化率が10%以下と優れた耐熱性を示した。容積変化率が10%以下では容器の変化はあまり目立たなかった。
【0024】
【実施例4】
内径230mm、深さ10mmの円錐台形キャビティを有する金型により、実施例1と同条件で成形温度と加熱時間を図7の通り変化させ、各々の成形品の底面平坦部分について以下の昇温収縮テストを実施した。即ち、熱分析装置により、成形後のサンプル片(5mm×20mm×0.024mm)の一端を固定し、もう一端に417g/cm2 の荷重を掛けた状態で、雰囲気温度を30から230℃に5℃/分の速度で上昇させ、サンプルの膨張・収縮率(dL/L)を測定した。なお、横方向は縦方向に比べ加熱収縮が小さいため省略した。
【0025】
シート加熱時間一定(8秒)でシート加熱温度を変化させた時の収縮率の比較を図8に示した。また、加熱温度と加熱時間共に変化させた時の収縮率の比較を図9に示した。図から分るように235℃・加熱時間8秒の成形条件での成形品は220℃時点での収縮率が1%以下と高温環境下で優れた寸法精度を示した。
【0026】
【発明の効果】
この発明の成形方法によれば、以上のように、シート加熱温度と時間を制御することにより、通常の熱盤圧空成形による成形圧力でも二軸延伸PETシートを成形することが可能となり、成形設備や成形金型は、従来汎用樹脂シートの成形に使用している一般的な熱盤圧空成形装置及び金型を使用することができるため、既存金型をそのまま転用して成形可能であり、新規投資無しで生産することも可能となる。
【図面の簡単な説明】
【図1】この発明の成形方法の一例を示す断面線図
【図2】実施例1の製品形状を示す(イ) 平面図及び(ロ) 断面図
【図3】実施例1の製品形状を示す(イ) 平面図及び(ロ) 断面図
【図4】実施例1のシート加熱温度と時間及び成形状態を示す表
【図5】実施例2の成形圧力と成形状態を示す表
【図6】実施例3の試験結果を示すグラフ
【図7】実施例4のシート加熱温度と時間を示す表
【図8】実施例4の試験結果を示すグラフ
【図9】実施例4の試験結果を示すグラフ
【符号の説明】
10 成形型
11 キャビティ
12 給排気孔
20 熱盤
21 熱盤表面
22 給排気孔
23 ヒータ
S シート
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for forming a biaxially stretched polyethylene terephthalate sheet.
[0002]
[Prior art]
Conventionally, it has been considered extremely difficult for industrial production to form a physically very tough biaxially stretched polyethylene terephthalate (hereinafter abbreviated as PET) sheet by hot platen molding or press molding. Japanese Patent Laid-Open No. 62-18339 discloses a solution for pressure forming at the time of molding under the conditions of molding temperature (T) = 220 to 245 ° C. and molding pressure (P) ≧ [30+ (220−T) / 2] kg / cm 2. It is shown. However, this condition makes it possible to form by applying a very high pressure forming pressure of about 20 to 40 kg / cm 2 when actually forming pressure.
[0003]
[Problems to be solved by the invention]
The above-described biaxially stretched PET sheet molding method requires a very high pressure forming pressure of about 20 to 40 kg / cm 2 , and therefore requires special manufacturing equipment, which is practical in the field of low-cost one-way containers and the like. It hasn't arrived. The subject of this invention is the method of shape | molding biaxially-stretched PET sheet | seat by the low forming pressure equivalent to the normal hot-plate pressure forming of 3.0-4.5 kg / cm < 2 >, without requiring such a high pressure forming pressure Is to provide.
[0004]
[Means for solving problems]
In order to solve the above problems, in this invention, the stretch ratio obtained by stretching and crystallizing a polyethylene terephthalate-based resin is 2.5 times or more in the longitudinal direction and 2 or more times in the transverse direction, A sheet having a crystallinity of 38% or more and 50% or less,
(A) The relationship between the sheet heating time X (seconds) and the sheet heating temperature Y (° C.)
Y ≧ 220-1.5X
X ≧ 1
(B) Molding was performed under a pressure forming pressure of 3.0 kg / cm 2 or more and 6.0 kg / cm 2 or less.
[0005]
Moreover, it is particularly preferable that Y ≧ 238−1.5X.
[0006]
Embodiment
Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 shows a hot platen pressure forming apparatus used in the forming method of the present invention. This apparatus is a sheet heating type pressure forming apparatus by contact with a hot plate which is usually used. As shown in FIG. 1 (a), the mold 10 and the hot platen 20 are arranged facing each other across the sheet S, and the sheet S is intermittently fed in the direction of the arrow. The mold 10 is provided with a plurality of cavities 11, and a plurality of air supply / exhaust holes 12 are provided on the inner surface of the cavities 11. On the other hand, the hot platen 20 is also provided with a number of air supply / exhaust holes 22 that open to the surface 21 thereof.
[0007]
When forming the sheet S, as shown in FIG. 1 (b), the sheet S is brought into close contact with the heating plate 20 by being evacuated from the air supply / exhaust hole 22 of the heating plate 20 and heated by the heater 23. At this time, pressure gas may be supplied from the air supply / exhaust hole 12 of the molding cavity 11 to assist the close contact action. Next, as shown in FIG. 1 (c), pressurized gas is supplied from the air supply / exhaust hole 22 of the hot platen 20, and the softened sheet S is pressed against the cavity 11 of the forming die 10 to be formed. At this time, the moldability can be improved by evacuating from the air supply / exhaust hole 12 of the cavity 11. Finally, as shown in FIG. 1 (d), the pressure gas is discharged from the air supply / exhaust hole 12 of the cavity 11 and released.
[0008]
As described above, since the heating method of the sheet S requires uniform heating of the entire sheet, the direct heating method using a hot platen is most suitable. In the indirect heating method, uneven heating of the sheet is likely to occur, and in an extreme case, the insufficiently heated portion is broken during molding.
[0009]
And it is important to perform molding under conditions selected from the range of the following formula. That is, the relationship between the sheet heating time X (second) and the sheet heating temperature Y (° C.) is Y ≧ 220−1.5X.
X ≧ 1
As long as molding is performed within the range of this condition, the pressure forming pressure can be sufficiently molded at a very low pressure of at least 3.0 kg / cm 2 . Molded products obtained by this molding method have heat resistance (deformation begins at 100 ° C or higher, but does not significantly deform even at higher temperatures, and does not melt or puncture at 230 ° C). It has excellent properties such as properties, tensile strength, impact strength, gas barrier properties, and fragrance retention. If the conditions of the sheet heating temperature and the sheet heating time are below the above range, molding cannot be performed sufficiently, and the reproducibility of the detailed shape becomes insufficient.
[0010]
In particular, an excellent molded product can be obtained by molding under conditions selected from the range of the following formula. That is, the relationship between the sheet heating time X (second) and the sheet heating temperature Y (° C.) is Y ≧ 238−1.5X.
X ≧ 1
As long as molding is performed within the range of this condition, the pressure forming pressure can be sufficiently molded at a very low pressure of at least 3.0 kg / cm 2 . Further, when molded in this condition range, as shown in the examples described later, the heat resistance is very excellent in that the volume change rate when the molded product is immersed in a silicone oil bath heated to 160 ° C. for 20 minutes is less than 10%. A molded product can be obtained. This molded product exhibits excellent properties such as transparency, tensile strength, impact strength, gas barrier properties, and fragrance retention. If the conditions of the sheet heating temperature and the sheet heating time are below the above ranges, the heat resistance of the molded product is greatly reduced even if molding is possible.
[0011]
In the above molding method, the pressure forming time can be formed in about several seconds as in the case of forming a general-purpose resin sheet. Even if the pressure forming time is extremely long, the cost is increased and a great effect cannot be obtained. Further, when the pressure forming pressure is less than 3 kg / cm 2 , the forming cannot be sufficiently performed. There is no problem with increasing the pressure forming pressure, but if it is higher than 6 kg / cm 2 , air leakage during molding is likely to occur. Not good at all.
[0012]
The PET resin used in the present invention is a copolymer (for example, a resin containing a PET unit of 85 mol% or more) that does not impair the characteristics of homopolymerization and PET, and this is a known biaxially stretched crystallized polyester film. The film was formed into a sheet shape by biaxial orientation and crystallization by the production method described above. It should be noted that if the crystallinity of the stretched and crystallized PET sheet (including film) is less than 38%, the heat resistance is poor, and if it exceeds 50%, the material is poorly stretched and cannot be molded. The crystallinity is derived based on the following formula.
[0013]
Crystallinity Xc = dc (d-da) / d (dc-da)
Where da (density when completely non-crystalline) = 1.335
dc (density at complete crystal) = 1.501
d = Sample density Biaxially stretched PET sheet made of these materials can be used for organic and inorganic substances such as antistatic agents, antifogging agents, surfactants, ceramic coats, fillers such as aluminum vapor deposition and glass fibers, etc. It is optional to add. Furthermore, at least one barrier layer can be provided on the resin layer. Examples of the resin for the barrier layer include polyvinylidene chloride, ethylene-vinyl alcohol copolymer, various nylons, and the like. The thickness of the biaxially stretched PET sheet is usually 70 to 500 μm, and particularly suitable for the molding method of the present invention is 150 to 350 μm.
[0014]
In this invention, the sheet heating temperature at the time of biaxial stretching PET sheet shaping | molding adjusted to arbitrary draw ratios and crystallinity in the said range is 200-245 degreeC. If this temperature is less than 200 ° C., the resin does not extend sufficiently and it is difficult to mold by pressure forming. Further, at a temperature higher than 245 ° C., the sheet becomes molten and adheres to the hot platen and cannot be molded.
[0015]
[Example 1]
The containers shown in FIGS. 2 and 3 were hot-plate pressure-molded under the following molding conditions using two types of molding dies.
[0016]
The molding conditions were a mold temperature of 60 ° C., a molding pressure of 3.5 kg / cm 2 , and a pressure forming time of 8 seconds.
[0017]
The material used was a biaxially stretched PET sheet (Embret made by Unitika) having a crystallinity of 40%, and the thickness of the sheet was 250 μm. The result of visually observing the state of the molded container is shown in FIG.
[0018]
[Example 2]
Using the mold for molding the container of FIG. 3 used in Example 1, hot platen was formed under the following molding conditions.
[0019]
The molding conditions were a mold temperature of 60 ° C., a molding temperature of 230 ° C., a sheet heating time of 8 seconds, and a pressure forming time of 8 seconds.
[0020]
The material used was a biaxially stretched PET sheet (Embret made by Unitika) having a crystallinity of 40%, and the thickness of the sheet was 250 μm. The state of the molded container is shown in FIG.
[0021]
[Example 3]
A heat resistance test was carried out on three types of molded products formed by hot platen pressure molding under the following molding conditions using the container mold of FIG. 3 used in Example 1. The test method measured the volume change rate (%) when each molded article was immersed in the silicone oil bath heated to various temperatures for 20 minutes.
[0022]
The molding conditions were a mold temperature of 60 ° C., a molding pressure of 3.5 kg / cm 2 , and a pressure forming time of 8 seconds.
[0023]
The material used was a biaxially stretched PET sheet (Embret made by Unitika) having a crystallinity of 40%, and the thickness of the sheet was 250 μm. In addition, the sheet heating time of each sample was 8 seconds, and the heating temperature was 220 ° C for sample 1, 230 ° C for sample 2, and 235 ° C for sample 3. The results are shown in FIG. The molded products of Samples 2 and 3 showed excellent heat resistance with a volume change rate of 10% or less even at 160 ° C. When the volume change rate was 10% or less, the change of the container was not so noticeable.
[0024]
[Example 4]
By using a mold having a truncated cone cavity having an inner diameter of 230 mm and a depth of 10 mm, the molding temperature and the heating time are changed as shown in FIG. 7 under the same conditions as in Example 1. A test was conducted. That is, one end of the molded sample piece (5 mm × 20 mm × 0.024 mm) was fixed by a thermal analyzer, and the ambient temperature was changed from 30 to 230 ° C. with a load of 417 g / cm 2 applied to the other end. The sample was raised at a rate of 5 ° C./min, and the expansion / contraction rate (dL / L) of the sample was measured. The horizontal direction is omitted because the heat shrinkage is smaller than that in the vertical direction.
[0025]
FIG. 8 shows a comparison of the shrinkage rate when the sheet heating temperature is changed at a constant sheet heating time (8 seconds). In addition, FIG. 9 shows a comparison of the shrinkage rate when both the heating temperature and the heating time are changed. As can be seen, the molded product under the molding conditions of 235 ° C. and heating time of 8 seconds showed excellent dimensional accuracy under a high temperature environment with a shrinkage rate of 1% or less at 220 ° C.
[0026]
【The invention's effect】
According to the molding method of the present invention, as described above, by controlling the sheet heating temperature and time, it becomes possible to mold a biaxially stretched PET sheet even with molding pressure by ordinary hot platen pressure molding, and molding equipment Since the conventional hot platen pressure forming equipment and molds used for molding general-purpose resin sheets can be used, the existing molds can be used as they are, It is also possible to produce without investment.
[Brief description of the drawings]
FIG. 1 is a cross-sectional diagram showing an example of the molding method of the present invention. FIG. 2 is a plan view and (b) a cross-sectional view showing a product shape of Example 1. FIG. Shown (a) Plan view and (b) Cross-sectional view FIG. 4 is a table showing the sheet heating temperature, time and forming state of Example 1. FIG. 5 is a table showing forming pressure and forming state of Example 2. FIG. [Fig. 7] A graph showing the test results of Example 3. [Fig. 7] A table showing the sheet heating temperature and time of Example 4. [Fig. 8] A graph showing the test results of Example 4. [Fig. Graph to show 【Explanation of symbols】
10 Mold 11 Cavity 12 Supply / Exhaust Hole 20 Heating Plate 21 Heating Plate Surface 22 Supply / Exhaust Hole 23 Heater S Sheet

Claims (2)

ポリエチレンテレフタレート系樹脂を延伸配向および結晶化させて得られた延伸倍率が縦方向に2.5倍以上、横方向に2倍以上であって、結晶化度が38%以上、50%以下のシートを、
(a)シート加熱時間X(秒)とシート加熱温度Y(℃)との関係が、
Y≧220−1.5X
X≧1
(b)圧空成形圧力が3.0kg/cm2 以上、6.0kg/cm2 以下
の条件で成形することを特徴とする二軸延伸ポリエチレンテレフタレートシートの成形方法。
A sheet having a draw ratio of 2.5 times or more in the longitudinal direction and 2 times or more in the transverse direction obtained by stretching and crystallizing a polyethylene terephthalate resin and having a crystallinity of 38% or more and 50% or less. The
(A) The relationship between the sheet heating time X (seconds) and the sheet heating temperature Y (° C.)
Y ≧ 220-1.5X
X ≧ 1
(B) A method for forming a biaxially stretched polyethylene terephthalate sheet, wherein the air pressure is formed under conditions of a pressure of 3.0 kg / cm 2 or more and 6.0 kg / cm 2 or less.
ポリエチレンテレフタレート系樹脂を延伸配向および結晶化させて得られた延伸倍率が縦方向に2.5倍以上、横方向に2倍以上であって、結晶化度が38%以上、50%以下のシートを、
(a)シート加熱時間X(秒)とシート加熱温度Y(℃)との関係が、
Y≧238−1.5X
X≧1
(b)圧空成形圧力が3.0kg/cm2 以上、6.0kg/cm2 以下
の条件で成形することを特徴とする二軸延伸ポリエチレンテレフタレートシートの成形方法。
A sheet having a draw ratio of 2.5 times or more in the longitudinal direction and 2 times or more in the transverse direction obtained by stretching and crystallizing a polyethylene terephthalate resin and having a crystallinity of 38% or more and 50% or less. The
(A) The relationship between the sheet heating time X (seconds) and the sheet heating temperature Y (° C.)
Y ≧ 238-1.5X
X ≧ 1
(B) A method for forming a biaxially stretched polyethylene terephthalate sheet, wherein the air pressure is formed under conditions of a pressure of 3.0 kg / cm 2 or more and 6.0 kg / cm 2 or less.
JP16419299A 1999-06-10 1999-06-10 Method for forming biaxially stretched polyethylene terephthalate sheet Expired - Lifetime JP4172878B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16419299A JP4172878B2 (en) 1999-06-10 1999-06-10 Method for forming biaxially stretched polyethylene terephthalate sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16419299A JP4172878B2 (en) 1999-06-10 1999-06-10 Method for forming biaxially stretched polyethylene terephthalate sheet

Publications (2)

Publication Number Publication Date
JP2000351153A JP2000351153A (en) 2000-12-19
JP4172878B2 true JP4172878B2 (en) 2008-10-29

Family

ID=15788443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16419299A Expired - Lifetime JP4172878B2 (en) 1999-06-10 1999-06-10 Method for forming biaxially stretched polyethylene terephthalate sheet

Country Status (1)

Country Link
JP (1) JP4172878B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012143997A (en) * 2011-01-14 2012-08-02 Risu Pack Co Ltd Heat resistant packaging container having excellent transparency, and method of manufacturing the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006346979A (en) * 2005-06-15 2006-12-28 Sakaiya:Kk Synthetic resin sheet and method of stretch-forming synthetic resin sheet
AR078237A1 (en) * 2009-08-24 2011-10-26 Aki Inc UNIT PACKAGING AND METHOD TO MANUFACTURE
US9272830B2 (en) 2009-08-24 2016-03-01 Aki, Inc. Unitized package of card and fluid vessel
WO2013015129A1 (en) * 2011-07-28 2013-01-31 Fukumura Mikio Thermoforming device and forming method
JP2020029305A (en) * 2018-08-24 2020-02-27 三菱ケミカル株式会社 Food packaging multi-layer film, food packaging laminate composite film, and deep drawn molded body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012143997A (en) * 2011-01-14 2012-08-02 Risu Pack Co Ltd Heat resistant packaging container having excellent transparency, and method of manufacturing the same

Also Published As

Publication number Publication date
JP2000351153A (en) 2000-12-19

Similar Documents

Publication Publication Date Title
EP2081745B1 (en) Heat-resistant molded foam articles and process for their manufacture
CA2004376C (en) Method and apparatus of producing a deep-drawn formed plastics piece
JP5363111B2 (en) Method for forming thermoplastic composite material
IE46749B1 (en) Process for the production of oriented hollow body from a thermoplastics material
JP4804179B2 (en) Polylactic acid composition and molded product comprising the composition
NL1029471C2 (en) Producing shaped plastic articles, useful as construction elements, comprises heating laminate between membrane and shaping with hot forming tool
WO2006095923A1 (en) Polylactic acid composition and moldings thereof
JP4172878B2 (en) Method for forming biaxially stretched polyethylene terephthalate sheet
US5618486A (en) Process for manufacturing a heat-resistant molded foam product
JPH0724861A (en) Production of heat-insulating and/or structural double-wall molded body and product obtained by this method
JPS595019A (en) Manufacture of heat-resisting container
JPH0375123A (en) Manufacture of thermoformable polypropylene film and sheet
EP0435234B1 (en) Process for thermoforming thermoplastic resin sheet and apparatus therefor
JPS6218339B2 (en)
JP3143244B2 (en) Manufacturing method for good appearance molded products
KR930009316B1 (en) Thermoformable polyaryether ketone/polyvinyl fluoride laminates
JP2012155153A (en) In-mold label and method for producing the same
EP0376211B1 (en) Method of forming an articale out of a themoplastic resin sheet
JPS6216171B2 (en)
JPS5953852B2 (en) Method for manufacturing transparent containers
JP3662197B2 (en) Polylactic acid-based thermoformed products
JP2837500B2 (en) Molding method of multilayer container
JPH0655623A (en) Heat-resistant polyester molded body
JPH0649334B2 (en) Thermoforming method for polyester sheet
JP2008178983A (en) Retort food container

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080812

R150 Certificate of patent or registration of utility model

Ref document number: 4172878

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term