JP4171280B2 - Rigid vinyl chloride resin tube - Google Patents

Rigid vinyl chloride resin tube Download PDF

Info

Publication number
JP4171280B2
JP4171280B2 JP2002302163A JP2002302163A JP4171280B2 JP 4171280 B2 JP4171280 B2 JP 4171280B2 JP 2002302163 A JP2002302163 A JP 2002302163A JP 2002302163 A JP2002302163 A JP 2002302163A JP 4171280 B2 JP4171280 B2 JP 4171280B2
Authority
JP
Japan
Prior art keywords
vinyl chloride
chloride resin
tube
resin tube
manufactured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002302163A
Other languages
Japanese (ja)
Other versions
JP2003329176A (en
Inventor
芳明 奥迫
行雄 柴崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=29713806&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP4171280(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2002302163A priority Critical patent/JP4171280B2/en
Publication of JP2003329176A publication Critical patent/JP2003329176A/en
Application granted granted Critical
Publication of JP4171280B2 publication Critical patent/JP4171280B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、硬質塩化ビニル系樹脂管に関する。
【0002】
【従来の技術】
塩化ビニル樹脂は機械的強度、耐薬品性などに優れており、管工機材や住宅資材等に広く使用されている。
しかし、硬質塩化ビニル管を太陽光が照射されるような状況下で保管した場合、塩化ビニル管が湾曲することがある。湾曲、すなわち反りの大きい塩化ビニル管は、管内を流れる流体の流動性が低下したり、施工が困難になるなどの問題があった。
この様な反りを防止する方法としては、塩化ビニル管に鉄製の線材を連着する方法がある(例えば、特許文献1参照)。この方法は塩化ビニル管の両端周縁面に山形状の突起部を形成した塩ビパイプ本体を設け、この突起部間に鉄製の線材を連着して、塩ビパイプ本体に発生する反りを防止するものである。しかし、この方法では、塩化ビニル管に鉄製の線材を一本一本連着する必要があり、非常に手間がかかってしまう。
【0003】
【特許文献1】
特開平5−141574号公報(第1頁〜第4頁)
【0004】
【発明が解決しようとする課題】
本発明は、上記に鑑み、太陽光等が照射されても湾曲し難たい又は湾曲量の小さい硬質塩化ビニル系樹脂管を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明は、上記目的を達成するためになされたものであり、請求項1の発明(以下、発明1)は、外気温15℃の雰囲気下において、波長0.7〜100μm、熱量4kw/m2の赤外及び遠赤外線が2時間照射された際に、管表面最大温度が60℃以下であることを特徴とする硬質塩化ビニル系樹脂管を提供する。
また、請求項2の発明(以下、発明2)は、3500kcal/m2・日以上の日射量が存在する環境下に20日間静置された後の、下記式(1)から算出される周方向応力σの最大値と最小値の差△σが2.94MPa以下であることを特徴とする硬質塩化ビニル系樹脂管を提供する。
σ=[E/(1−R2)]・t/2・(1/r1−1/r0) (1)
E:引張弾性率 R:ポアソン比 t:肉厚 r0:切開前内半径 r1:切開後内半径
【0006】
以下に本発明を詳述する。
本発明1の硬質塩化ビニル系樹脂管は、外気温15℃の雰囲気下において、波長0.7〜100μm、熱量4kw/m2の赤外及び遠赤外線が2時間照射された際に、管表面最大温度が60℃以下でなくてはならない。管表面最大温度が60℃を超える硬質塩化ビニル系樹脂管は、特に夏場、太陽光の照射される環境下に保管した場合湾曲量が大きくなり、管体としての性能を発揮できなくなるため、この範囲に限定される。
本発明2の硬質塩化ビニル系樹脂管は、3500kcal/m2・日以上の日射量が存在する環境下に20日間静置された後の、式(1)から算出される周方向応力σの最大値と最小値の差△σが2.94MPa以下でなくてはならない。
特に夏場、太陽光の照射される環境下に保管された場合、湾曲量が大きくなるため、この範囲に限定される。3500kcal/m2・日とは、夏場の日射量に相当し、実際の暴露試験で3〜4週間で反り量は飽和するので、20日間としたものである。
【0007】
本発明1及び本発明2に用いられる塩化ビニル系樹脂としては、塩化ビニル単独重合休または塩化ビニルを主成分とする複合塩化ビニル系樹脂が挙げられる。これらは単独で用いられても良く、2種類以上併用して用いても良い。
【0008】
本発明1及び本発明2に用いられる塩化ビニル系樹脂の平均重合度は600〜3000が好ましく、更に好ましくは800〜2000である。平均重合度が600未満であると機械的強度が不足する可能性があり、逆に平均重合度が3000を超えると成形が困難になることがある。
尚、上記の平均重合度とは、塩化ビニル単独重合体や複合塩化ビニル系樹脂をテトラヒドロフラン(THF)に溶解させ、濾過により不溶成分を除去した後、濾液中のTHFを乾燥除去して得た樹脂を試料とし、JIS K−6721「塩化ビニル樹脂試験方法」に準拠して測定した平均重合度を意味する。
【0009】
本発明1及び本発明2で用いられる塩化ビニルを主成分とする複合塩化ビニル系樹脂としては、塩化ビニルモノマーと共重合可能なモノマーや重合体との共重合体等が挙げられる。
【0010】
塩化ビニルモノマーと共重合可能なモノマーとしては、例えば、エチレン、プロピレン、ブチレン等のαオレフイン類;プロピオン酸ビニル等のビニルエステル類;エチルビニルエーテル、ブチルビニルエ−テル等のビニルエーテル類;メチル(メタ)アクリレート、ブチル(メタ)アクリレート、ヒドロキシ工チル(メタ)アクリレート等の(メタ)アクリレート類;スチレン、α−メチルスチレン等の芳香族ビニル類;フッ化ビニル、フッ化ビニリデン、塩化ビニリデン等のハロゲン化ビニル類;N−フェニルマレイミド、N−シクロヘキシルマレイミド等のN−置換マレイミド類等が挙げられる。これらの共重合性モノマーは、単独で用いられても良いし、2種類以上が併用されても良い。
【0011】
塩化ビニルモノマーと共重合可能な重合体としては、例えば、アルキル(メタ)アクリレートモノマーなどからなるアクリル系共重合体等が挙げられ、これらの共重合性重合体は、単独で用いられても良いし、2種類以上が併用されても良い。尚、ここで言う(メタ)アクリレートとはアクリレート又はメタクリレートを意味する。
【0012】
塩化ビニルモノマーと、上記の共重合性モノマーや重合体とを併用する場合、共重合性モノマーや重合体の使用量は、得られる硬質塩化ビニル管の性能や目的に応じて適宜設定されれば良く、特に限定されるものではない。
【0013】
塩化ビニル単独重合体や塩化ビニルを主成分とする複合塩化ビニル系樹脂の重合方法としては従来公知の方法で良く、例えば、懸濁重合法等が挙げられる。
【0014】
本発明1及び本発明2の硬質塩化ビニル系樹脂管を得る場合には、必要に応じて熱安定剤、安定化助剤、滑剤、加工助剤、酸化防止剤、光安定剤、顔料、充填剤等を添加してもよい。
【0015】
上記熟安定剤としては特に限定されず、例えば、ジメチル錫メルカプト、ジブチル錫メルカプト、ジオクチル錫メルカプト、ジブチル錫マレート、ジブチル錫マレートポリマー、ジオクチル錫マレート、ジオクチル錫マレートポリマー、ジブチル錫ラウレート、ジブチル錫ラウレートポリマー等の有機錫安定剤、ステアリン酸鉛、二塩基性亜リン酸鉛、三塩基性硫酸鉛等の鉛系安定剤、カルシウム−亜鉛系安定剤、バリウム−亜鉛系安定剤、バリウム−カドミウム系安定剤等が挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。
【0016】
上記の安定化助剤としては特に限定されず、例えば、エポキシ化大豆油、エポキシ化アマニ豆油、エポキシ化テトラヒドロフタレート、エポキシ化ポリブタジエン、リン酸エステル等が挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。
【0017】
上記の滑剤としては、内部滑剤、外部滑剤等が挙げられる。
上記の内部滑剤は、成形加工時の溶融樹脂の流動粘度を下げ、摩擦発熱を防止する目的で使用される。上記の内部滑剤としては特に限定されず、例えば、ブチルステアレート、ラウリルアルコール、ステアリルステアレート、エポキシ化大豆油、グリセリンモノステアレート、ステアリン酸、ビスアミド等が挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。
【0018】
上記の外部滑剤は、成形加工時の溶融樹脂と金属面との滑り効果を上げる目的で使用される。上記の外部滑剤としては特に限定されず、例えば、モンタン酸ワックス、パラフィンワックス、ポリオレフインワックス、エステルワックス等が挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。
【0019】
上記の加工助剤としては特に限定されず、例えば、重量平均分子10万〜200万のアルキルアクリレート/アルキルメタクリレート共重合体であるアクリル系加工助剤が挙げられ、具体例としては、n−ブチルアクリレート/メチルメタクリレート共重合体、2−エチルヘキシルアクリレート/メチルメタクリレート/ブチルメタクリレート共重合体等が挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。
【0020】
上記の酸化防止剤としては特に限定されず、例えば、フェノール系抗酸化剤等が挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。
上記の光安定剤としては特に限定されず、例えば、サリチル酸エステル系、べンゾフェノン系、べンゾトリアゾール系、シアノアクリレート系等の紫外線吸収剤、あるいはヒンダードアミン系の光安定剤等が挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。
【0021】
上記の顔料としては特に限定されず、例えば、アゾ系、フタロシアニン系、スレン系、染料レーキ系等の有機顔料、酸化物系、クロム酸モリブデン系、硫化物・セレン化物系、フェロシアン化物系、カーボンブラック等の無機顔料等が挙げられる。しかし、赤外線を吸収しにくいという観点から、有機系の黒色顔料が望ましい。これらは単独で用いてもよく、2種以上を併用してもよい。
上記の充填剤としては特に限定されず、例えば、炭酸カルシウム、タルク等が挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。
【0022】
上記の各種配合剤を、上記の塩化ビニル系樹脂に混合する方法としては、特に限定されず、例えば、ホットブレンドによる方法、コールドブレンドによる方法等が挙げられる。
本発明1及び本発明2の硬質塩化ビニル系樹脂管の成形方法は、従来公知の方法で良く、例えば押出成形方法が好適に用いられる。
【0023】
3500kcal/m2・日以上の日射量が存在する環境下に20日間静置された後の、式(1)から算出される周方向応力σの最大値と最小値の差△σを2.94MPa以下にする方法は、得られる塩化ビニル系樹脂管の機能を損なわなければ、特に限定されず、例えば冷却水の水温を上げたりすることによる管の残留応力を低減させたり、塩化ビニル系樹脂管の赤外線吸収率を低減したりする方法が挙げられる。
【0024】
【発明の実施の形態】
以下に実施例を挙げて、具体的に本発明の効果を鋭明するが、本発明はこれら実施例のみに限定されるものではない。
【0025】
(実施例1)
[塩化ビニル系樹脂組成物の作製]
塩化ビニル系単独重合体(商品名「TS−1000R」、徳山積水工業社製)100重量部に、有機錫系安定剤(商品名「ONZ−142F」、三共有機社製)1部、ポリエチレンワックス系滑剤(商品名「Hiwax220MP」、三井石油化学工業社製)0.5部、ステアリン酸(商品名「S−30」、花王社製)0.5部、炭酸カルシウム(商品名「ホワイトン305S」、白石カルシウム社製)5部、黒色顔料(有機系)(商品名「Black A−1103」、大日精化社製)0.5重量部、及び酸化チタン(商品名「R−3L」、堺化学社製)2重量部をスーパーミキサー(100L、カワタ社製)にて攪拌混合して塩化ビニル系樹脂組成物を得た。
【0026】
[塩化ビニル系樹脂管継手の成形]
得られた塩化ビニル系樹脂組成物を直径50mmの2軸異方向回転押出機(商品名「SLM−50」、長田製作所社製)に供給し、外径60mm、肉厚4.5mm、長さ1mの塩化ビニル系樹脂管を得た。
【0027】
(実施例2)
塩化ビニル単独重合体を用いる代わりに、下記要領で作成した複合塩化ビニル系樹脂を用いたこと以外は実施例1と同様にして塩化ビニル系樹脂管を得た。
〔アクリル系共重合体の作製〕
アクリル系モノマー成分としてn−ブチルアクリレート(単独重合体のTg:−54℃)95%及び多官能性モノマー成分としてトリメチロールプロパントリアクリレート5%を含有してなるアクリル系混合モノマー2.36kg、乳化分散剤(商品名「ハイテノールN−08」、第一工業製薬社製)の10%水溶液50g及び純水1.5kgからなる乳化モノマー液を予め調製した。
【0028】
攪拌機及び温度調整機を備えた重合反応器(内容積10リットル)内に、純水4kg、重合開始剤として過硫酸アンモニウムの10%水溶液24gを仕込み、重合容器内を窒素ガスで置換した後、攪拌下、重合反応器内を75℃に昇温した。 次いで、予め調製した上記乳化モノマー液を昇温後の重合反応器内に一定の滴下速度で滴下した。乳化モノマー液の全量の滴下を3時間で終了し、その後、1時間攪拌を続けた後、重合反応を終了し、固形分の濃度が30%のアクリル系共重合体エマルジョンを作製した。
【0029】
〔複合塩化ビニル系樹脂の作製〕
攪拌機及び温度調整機を備えた重合反応器(内容積15リットル)内に、純水7.5kg、上記で得られたアクリル系共重合体エマルジョン0.5kg(固形分0.15kg)、乳化分散剤として部分鹸化ポリビニルアルコール(商品名「クラレポバールL−8」、クラレ社製)の3%水溶液330g、重合開始剤としてt−ブチルパーオキシデカネート及びα−クミルパーオキシネオデカネートを各々1.1gを仕込み、重合反応器内の空気を真空ポンプで排出した後、攪拌下、塩化ビニルモノマー3.0kgを添加した。次いで、重合反応器内を50℃に昇温して、グラフト重合反応を開始した。重合反応器内の圧力の低下でグラフト重合反応の終了を確認した後、未反応の塩化ビニルモノマーを排出して、複合塩化ビニル系樹脂を作製した。得られた複合塩化ビニル系樹脂中の塩化ビニルのグラフト量は94%であり、アクリル系共重合体の含有量は6%であった。又、得られた複合塩化ビニル系樹脂の平均重合度をJIS K 6721に準拠して測定したところ、平均重合度は1400であった。
【0030】
(比較例1)
黒色顔料を添加する代わりに、カーボンブラック(商品名「トーカブラック#7350」、東海カーボン社製)を0.5重量部添加したこと以外は実施例1と同様にして塩化ビニル系樹脂管を得て、評価を行った。
【0031】
[塩化ビニル系樹脂管の物性評価]
実施例1,2及び比較例1で得られた塩化ビニル系樹脂管について、管表面温度及び湾曲量を以下の方法で評価し、その結果を表1に示した。
(管表面温度、湾曲量)
外気温15℃の雰囲気下において、赤外線ランプを用い、熱量4kw/m2の赤外線を塩化ビニル系樹脂管に3時間照射し、塩化ビニル系樹脂管の表面温度を測定した。尚、赤外線ランプと塩化ビニル系樹脂管との距離は40cmであった。 照射後、一昼夜放置し最も湾曲している部位のパイプの両端間にピアノ線を張り、ピアノ線とパイプとの距離を測定する。上記作業を5本のパイプについて行い、測定したピアノ線とパイプとの距離のうち最大のものを湾曲量とした。
【0032】
【表1】

Figure 0004171280
【0033】
(実施例3)
[塩化ビニル系樹脂組成物の作製]
実施例1の黒色顔料(商品名「Black A−1103」、大日精化社製)0.5重量部の代わりに、カーボンブラック(商品名「トーカブラック#7350」、東海カーボン社製)0.05重量部を用いたこと以外は実施例1と同じ方法で塩化ビニル系樹脂組成物を得た。
【0034】
[塩化ビニル系樹脂管継手の成形]
得られた塩化ビニル系樹脂樹脂組成物を直径50mmの2軸異方向回転押出機(商品名「SLM−50」、長田製作所社製)に供給し、外径60mm、肉厚4.5mmの成形体を50℃の温水で冷却後、長さ4mに切断し硬質塩化ビニル系樹脂管を得た。
【0035】
[塩化ビニル系樹脂管の物性評価]
実施例3で得られた塩化ビニル系樹脂管について、湾曲量、引張弾性率、ポアソン比、応力を以下の方法で評価し、その結果を表2に示した。
・湾曲量
硬質塩化ビニル管が動かないよう、管の両端から5cmの場所を支持し、3500Kcal/m2・日以上の日射量が存在する環境下に20日間静置された後、硬質塩化ビニル管の両端にピアノ線を張り、ピアノ線と硬質塩化ビニル管との距離を測定し、その最大値を湾曲量とした。
・引張弾性率、ポアソン比
JIS K7161に準拠して測定した。
【0036】
・応力
硬質塩化ビニル管から長さ2cmのサンプルを切り出し、肉厚及び内半径(r0)を測定する。静置時、最も下になった部分を切り取りC字型のサンプルを作成し、内半径(r1)を測定する。即ち図1において、符号1で示した部分を中心に左側は2まで、右側は8まで切り取り、全円周の1/4を切り取ったサンプルを作成した。尚、中心を通る各線は応力測定時のサンプルの切り取り方向と位置を示している。
この作業を図1の2〜8についても同様にして行い、それぞれの部位での応力σを式(1)に従って算出し、その最大値から最小値を差し引き、応力差Δσを算出する。
σ=[E/(1−R2)]・t/2・(1/r1−1/r0) (1)
E:引張弾性率 R:ポアソン比 t:肉厚 r0:切開前内半径 r1:切開後内半径
【0037】
(実施例4)
得られた塩化ビニル系樹脂樹脂組成物を直径50mmの2軸異方向回転押出機(商品名「SLM−50」、長田製作所社製)に供給し、40℃の温水で冷却したこと以外は実施例3と同様にして評価を行った。
(実施例5)
カーボンブラックを添加する代わりに、黒色顔料(商品名「Black A−1103」、大日精化社製)0.05重量部添加したこと以外は実施例3と同様にして評価を行った。
【0038】
(実施例6)
カーボンブラックを添加する代わりに、黒色顔料(商品名「Black A−1103」、大日精化社製)0.05重量部添加したこと以外は実施例4と同様にして評価を行った。
(実施例7)
得られた塩化ビニル系樹脂樹脂組成物を直径50mmの2軸異方向回転押出機(商品名「SLM−50」、長田製作所社製)に供給し、25℃の温水で冷却したこと以外は実施例3と同様にして評価を行った。
【0039】
(比較例2)
得られた塩化ビニル系樹脂樹脂組成物を直径50mmの2軸異方向回転押出機(商品名「SLM−50」、長田製作所社製)に供給し、25℃の水で冷却したこと以外は実施例4と同様にして評価を行った。
黒色顔料を添加する代わりに、カーボンブラック(商品名「トーカブラック#7350」、東海カーボン社製)を0.5重量部添加したこと以外は実施例3と同様にして評価を行った。
【0040】
【表2】
Figure 0004171280
【0041】
【発明の効果】
以上述べたように、本発明により、太陽光等の照射による湾曲が生じにくいか湾曲量の小さい硬質塩化ビニル系樹脂管を得ることが出来る。
【0042】
【図面の簡単な説明】
【図1】本発明により得られる硬質塩化ビニル系樹脂管の管軸方向に直角な断面図である。
【0043】
【符号の説明】
1〜8 応力測定時のサンプルの切り取り位置[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hard vinyl chloride resin tube.
[0002]
[Prior art]
Vinyl chloride resin is excellent in mechanical strength, chemical resistance, etc., and is widely used in pipework equipment and housing materials.
However, when the hard vinyl chloride tube is stored under the condition where sunlight is irradiated, the vinyl chloride tube may be bent. A vinyl chloride pipe having a large curvature, that is, a large warp, has problems such as a decrease in fluidity of a fluid flowing in the pipe and difficulty in construction.
As a method for preventing such warping, there is a method of continuously connecting an iron wire to a vinyl chloride pipe (see, for example, Patent Document 1). This method is to provide a PVC pipe body with mountain-shaped projections on the peripheral edges of both ends of the vinyl chloride pipe, and to connect the wire made of iron between the projections to prevent warping that occurs in the PVC pipe body. It is. However, in this method, it is necessary to attach iron wires to the polyvinyl chloride pipes one by one, which is very troublesome.
[0003]
[Patent Document 1]
JP-A-5-141574 (pages 1 to 4)
[0004]
[Problems to be solved by the invention]
In view of the above, an object of the present invention is to provide a hard vinyl chloride resin tube that is difficult to bend even when irradiated with sunlight or the like or has a small amount of bending.
[0005]
[Means for Solving the Problems]
The present invention has been made to achieve the above object, and the invention of claim 1 (hereinafter referred to as invention 1) has a wavelength of 0.7 to 100 μm and a calorific value of 4 kw / m in an atmosphere having an outside air temperature of 15 ° C. when 2 of infrared and far-infrared radiation is irradiated 2 hours, to provide a rigid vinyl chloride resin tube, wherein the maximum temperature pipe surface is 60 ° C. or less.
The invention of claim 2 (hereinafter referred to as invention 2) is a circuit calculated from the following formula (1) after standing for 20 days in an environment where an amount of solar radiation of 3500 kcal / m 2 · day or more exists. A rigid vinyl chloride resin pipe characterized in that the difference Δσ between the maximum value and the minimum value of the directional stress σ is 2.94 MPa or less.
σ = [E / (1-R 2 )] · t / 2 · (1 / r 1 −1 / r 0 ) (1)
E: Tensile modulus R: Poisson's ratio t: Wall thickness r 0 : Inner radius before incision r 1 : Inner radius after incision [0006]
The present invention is described in detail below.
The hard vinyl chloride resin tube of the present invention 1 has a tube surface when irradiated with infrared rays and far infrared rays having a wavelength of 0.7 to 100 μm and a calorific value of 4 kw / m 2 in an atmosphere having an outside air temperature of 15 ° C. for 2 hours. The maximum temperature must be below 60 ° C. Hard vinyl chloride resin pipes with a maximum tube surface temperature exceeding 60 ° C have a large bending amount when stored in an environment where they are exposed to sunlight, especially in summer. Limited to range.
The rigid vinyl chloride resin pipe of the present invention 2 has a circumferential stress σ calculated from the equation (1) after being left for 20 days in an environment where a solar radiation amount of 3500 kcal / m 2 · day or more exists. The difference Δσ between the maximum value and the minimum value must be 2.94 MPa or less.
In particular, when stored in an environment that is irradiated with sunlight in summer, the amount of bending becomes large, so the range is limited. 3500 kcal / m 2 · day corresponds to the amount of solar radiation in the summer, and the warping amount is saturated in 3 to 4 weeks in the actual exposure test, so it is 20 days.
[0007]
Examples of the vinyl chloride resin used in the present invention 1 and the present invention 2 include a vinyl chloride homopolymerization holiday or a composite vinyl chloride resin mainly composed of vinyl chloride. These may be used alone or in combination of two or more.
[0008]
The average degree of polymerization of the vinyl chloride resin used in the present invention 1 and the present invention 2 is preferably 600 to 3000, more preferably 800 to 2000. If the average degree of polymerization is less than 600, the mechanical strength may be insufficient. Conversely, if the average degree of polymerization exceeds 3000, molding may be difficult.
The average degree of polymerization is obtained by dissolving a vinyl chloride homopolymer or a composite vinyl chloride resin in tetrahydrofuran (THF), removing insoluble components by filtration, and drying and removing THF in the filtrate. It means the average degree of polymerization measured using a resin as a sample and according to JIS K-6721 “Testing methods for vinyl chloride resin”.
[0009]
Examples of the composite vinyl chloride resin containing vinyl chloride as a main component used in the present invention 1 and the present invention 2 include monomers copolymerizable with vinyl chloride monomers and copolymers with polymers.
[0010]
Examples of monomers copolymerizable with vinyl chloride monomer include α-olefins such as ethylene, propylene, and butylene; vinyl esters such as vinyl propionate; vinyl ethers such as ethyl vinyl ether and butyl vinyl ether; methyl (meth) acrylate , (Meth) acrylates such as butyl (meth) acrylate and hydroxy-modified til (meth) acrylate; aromatic vinyls such as styrene and α-methylstyrene; vinyl halides such as vinyl fluoride, vinylidene fluoride and vinylidene chloride And N-substituted maleimides such as N-phenylmaleimide and N-cyclohexylmaleimide. These copolymerizable monomers may be used alone or in combination of two or more.
[0011]
Examples of the polymer copolymerizable with the vinyl chloride monomer include acrylic copolymers composed of alkyl (meth) acrylate monomers and the like, and these copolymerizable polymers may be used alone. And two or more types may be used together. In addition, the (meth) acrylate said here means an acrylate or a methacrylate.
[0012]
When the vinyl chloride monomer is used in combination with the above copolymerizable monomer or polymer, the amount of the copolymerizable monomer or polymer used can be appropriately set according to the performance and purpose of the obtained rigid vinyl chloride tube. Good, not particularly limited.
[0013]
As a polymerization method of a vinyl chloride homopolymer or a composite vinyl chloride resin mainly composed of vinyl chloride, a conventionally known method may be used, and examples thereof include a suspension polymerization method.
[0014]
When obtaining the rigid vinyl chloride resin pipes of the present invention 1 and the present invention 2, heat stabilizers, stabilizing aids, lubricants, processing aids, antioxidants, light stabilizers, pigments, fillings are used as necessary. An agent or the like may be added.
[0015]
The ripening stabilizer is not particularly limited. Organotin stabilizers such as tin laurate polymer, lead-based stabilizers such as lead stearate, dibasic lead phosphite, tribasic lead sulfate, calcium-zinc stabilizer, barium-zinc stabilizer, barium -A cadmium stabilizer etc. are mentioned. These may be used alone or in combination of two or more.
[0016]
The stabilization aid is not particularly limited, and examples thereof include epoxidized soybean oil, epoxidized linseed bean oil, epoxidized tetrahydrophthalate, epoxidized polybutadiene, and phosphate ester. These may be used alone or in combination of two or more.
[0017]
Examples of the lubricant include an internal lubricant and an external lubricant.
The internal lubricant is used for the purpose of lowering the flow viscosity of the molten resin during molding and preventing frictional heat generation. The internal lubricant is not particularly limited, and examples thereof include butyl stearate, lauryl alcohol, stearyl stearate, epoxidized soybean oil, glycerin monostearate, stearic acid, and bisamide. These may be used alone or in combination of two or more.
[0018]
The above external lubricant is used for the purpose of increasing the sliding effect between the molten resin and the metal surface during the molding process. The external lubricant is not particularly limited, and examples thereof include montanic acid wax, paraffin wax, polyolefin wax, and ester wax. These may be used alone or in combination of two or more.
[0019]
The processing aid is not particularly limited, and examples thereof include acrylic processing aids that are alkyl acrylate / alkyl methacrylate copolymers having a weight average molecular weight of 100,000 to 2,000,000. Specific examples include n-butyl. Examples thereof include acrylate / methyl methacrylate copolymers, 2-ethylhexyl acrylate / methyl methacrylate / butyl methacrylate copolymers, and the like. These may be used alone or in combination of two or more.
[0020]
The antioxidant is not particularly limited, and examples thereof include phenolic antioxidants. These may be used alone or in combination of two or more.
The light stabilizer is not particularly limited, and examples include salicylic acid ester-based, benzophenone-based, benzotriazole-based, cyanoacrylate-based ultraviolet absorbers, hindered amine-based light stabilizers, and the like. These may be used alone or in combination of two or more.
[0021]
The pigment is not particularly limited, for example, organic pigments such as azo-based, phthalocyanine-based, selenium-based, dye lake-based, oxide-based, molybdenum chromate-based, sulfide / selenide-based, ferrocyanide-based, Examples thereof include inorganic pigments such as carbon black. However, an organic black pigment is desirable from the viewpoint that it hardly absorbs infrared rays. These may be used alone or in combination of two or more.
The filler is not particularly limited, and examples thereof include calcium carbonate and talc. These may be used alone or in combination of two or more.
[0022]
The method of mixing the various compounding agents with the vinyl chloride resin is not particularly limited, and examples thereof include a method using hot blending and a method using cold blending.
The molding method of the hard vinyl chloride resin pipe of the present invention 1 and the present invention 2 may be a conventionally known method, for example, an extrusion molding method is suitably used.
[0023]
The difference Δσ between the maximum value and the minimum value of the circumferential stress σ calculated from the equation (1) after being allowed to stand for 20 days in an environment where an amount of solar radiation of 3500 kcal / m 2 · day or more exists is 2. The method of 94 MPa or less is not particularly limited as long as the function of the obtained vinyl chloride resin tube is not impaired. For example, the residual stress of the tube by increasing the temperature of the cooling water is reduced, or the vinyl chloride resin is used. A method of reducing the infrared absorption rate of the tube is mentioned.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
EXAMPLES Examples are given below to specifically clarify the effects of the present invention, but the present invention is not limited only to these examples.
[0025]
(Example 1)
[Preparation of vinyl chloride resin composition]
100 parts by weight of a vinyl chloride homopolymer (trade name “TS-1000R”, manufactured by Tokuyama Sekisui Kogyo Co., Ltd.), 1 part of an organic tin stabilizer (trade name “ONZ-142F”, manufactured by Sansha Co., Ltd.), polyethylene Wax-based lubricant (trade name “Hiwax220MP”, manufactured by Mitsui Petrochemical Co., Ltd.) 0.5 part, stearic acid (trade name “S-30”, manufactured by Kao Corporation) 0.5 part, calcium carbonate (trade name “Whiteon” 305S ", manufactured by Shiraishi Calcium Co., Ltd. 5 parts, black pigment (organic) (trade name" Black A-1103 ", manufactured by Dainichi Seika Co., Ltd.) 0.5 part by weight, and titanium oxide (trade name" R-3L ") 2 parts by weight, manufactured by Sakai Chemical Co., Ltd.) was stirred and mixed with a super mixer (100 L, manufactured by Kawata Corp.) to obtain a vinyl chloride resin composition.
[0026]
[Molding of vinyl chloride resin pipe fittings]
The obtained vinyl chloride resin composition was supplied to a biaxial counter-rotating extruder having a diameter of 50 mm (trade name “SLM-50”, manufactured by Nagata Seisakusho Co., Ltd.), and had an outer diameter of 60 mm, a wall thickness of 4.5 mm, and a length. A 1-m vinyl chloride resin tube was obtained.
[0027]
(Example 2)
Instead of using a vinyl chloride homopolymer, a vinyl chloride resin tube was obtained in the same manner as in Example 1 except that a composite vinyl chloride resin prepared as described below was used.
[Production of acrylic copolymer]
2.36 kg of acrylic mixed monomer containing 95% n-butyl acrylate (Tg of homopolymer: −54 ° C.) as acrylic monomer component and 5% trimethylolpropane triacrylate as polyfunctional monomer component, emulsified An emulsified monomer solution consisting of 50 g of a 10% aqueous solution of a dispersant (trade name “Hitenol N-08”, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) and 1.5 kg of pure water was prepared in advance.
[0028]
In a polymerization reactor (internal volume 10 liters) equipped with a stirrer and a temperature controller, 4 kg of pure water and 24 g of a 10% aqueous solution of ammonium persulfate as a polymerization initiator were charged, and the inside of the polymerization vessel was replaced with nitrogen gas, and then stirred. The temperature inside the polymerization reactor was raised to 75 ° C. Subsequently, the emulsion monomer solution prepared in advance was dropped into the polymerization reactor after the temperature increase at a constant dropping rate. The dropping of the total amount of the emulsified monomer liquid was completed in 3 hours, and then the stirring was continued for 1 hour, and then the polymerization reaction was terminated to prepare an acrylic copolymer emulsion having a solid content of 30%.
[0029]
[Production of composite vinyl chloride resin]
In a polymerization reactor (with an internal volume of 15 liters) equipped with a stirrer and a temperature controller, 7.5 kg of pure water, 0.5 kg of the acrylic copolymer emulsion obtained above (solid content 0.15 kg), emulsified dispersion 330 g of a 3% aqueous solution of partially saponified polyvinyl alcohol (trade name “Kuraray Poval L-8”, manufactured by Kuraray Co., Ltd.) as an agent, and 1 each of t-butyl peroxydecanate and α-cumyl peroxyneodecane as polymerization initiators After charging 0.1 g, the air in the polymerization reactor was discharged with a vacuum pump, and then 3.0 kg of vinyl chloride monomer was added with stirring. Next, the temperature in the polymerization reactor was raised to 50 ° C. to initiate the graft polymerization reaction. After confirming the completion of the graft polymerization reaction by lowering the pressure in the polymerization reactor, the unreacted vinyl chloride monomer was discharged to produce a composite vinyl chloride resin. The graft amount of vinyl chloride in the obtained composite vinyl chloride resin was 94%, and the content of the acrylic copolymer was 6%. Moreover, when the average degree of polymerization of the obtained composite vinyl chloride resin was measured according to JIS K 6721, the average degree of polymerization was 1400.
[0030]
(Comparative Example 1)
A vinyl chloride resin tube was obtained in the same manner as in Example 1 except that 0.5 parts by weight of carbon black (trade name “Toka Black # 7350”, manufactured by Tokai Carbon Co., Ltd.) was added instead of adding the black pigment. And evaluated.
[0031]
[Physical property evaluation of vinyl chloride resin pipe]
For the vinyl chloride resin tubes obtained in Examples 1 and 2 and Comparative Example 1, the tube surface temperature and the amount of bending were evaluated by the following methods, and the results are shown in Table 1.
(Tube surface temperature, bending amount)
In an atmosphere with an external temperature of 15 ° C., an infrared lamp was used to irradiate the vinyl chloride resin tube with infrared rays having a heat amount of 4 kw / m 2 for 3 hours, and the surface temperature of the vinyl chloride resin tube was measured. The distance between the infrared lamp and the vinyl chloride resin tube was 40 cm. After irradiation, leave it for a whole day and night and put a piano wire between the ends of the most curved part of the pipe, and measure the distance between the piano wire and the pipe. The above operation was performed on five pipes, and the maximum distance among the measured distances between the piano wire and the pipe was defined as the bending amount.
[0032]
[Table 1]
Figure 0004171280
[0033]
(Example 3)
[Preparation of vinyl chloride resin composition]
Instead of 0.5 parts by weight of the black pigment of Example 1 (trade name “Black A-1103”, manufactured by Dainichi Seika Co., Ltd.), carbon black (trade name “Toka Black # 7350”, manufactured by Tokai Carbon Co., Ltd.) A vinyl chloride resin composition was obtained in the same manner as in Example 1 except that 05 parts by weight was used.
[0034]
[Molding of vinyl chloride resin pipe fittings]
The obtained vinyl chloride resin resin composition was supplied to a biaxial different direction rotary extruder (trade name “SLM-50”, manufactured by Nagata Seisakusho Co., Ltd.) having a diameter of 50 mm, and molded with an outer diameter of 60 mm and a wall thickness of 4.5 mm. The body was cooled with hot water at 50 ° C. and then cut to a length of 4 m to obtain a hard vinyl chloride resin tube.
[0035]
[Physical property evaluation of vinyl chloride resin pipe]
The vinyl chloride resin tube obtained in Example 3 was evaluated for the bending amount, tensile elastic modulus, Poisson's ratio, and stress by the following methods. The results are shown in Table 2.
・ Because the curved hard vinyl chloride tube does not move, it is supported at a location 5 cm from both ends of the tube, and after standing for 20 days in an environment with a solar radiation of 3500 Kcal / m 2 · day or more, the hard vinyl chloride tube A piano wire was stretched at both ends of the tube, the distance between the piano wire and the hard vinyl chloride tube was measured, and the maximum value was defined as the amount of bending.
-Tensile modulus, Poisson's ratio Measured according to JIS K7161.
[0036]
-A 2 cm long sample is cut out from the stress-hard vinyl chloride tube, and the wall thickness and inner radius (r 0 ) are measured. At rest, the lowermost part is cut out to make a C-shaped sample, and the inner radius (r 1 ) is measured. That is, in FIG. 1, a sample was created by cutting out the left side up to 2 and the right side up to 8, centering on the portion indicated by reference numeral 1 and cutting out 1/4 of the entire circumference. Each line passing through the center indicates the cutting direction and position of the sample at the time of stress measurement.
This operation is similarly performed for 2 to 8 in FIG. 1, and the stress σ at each part is calculated according to the equation (1), and the minimum value is subtracted from the maximum value to calculate the stress difference Δσ.
σ = [E / (1-R 2 )] · t / 2 · (1 / r 1 −1 / r 0 ) (1)
E: Tensile modulus R: Poisson's ratio t: Wall thickness r 0 : Radius before incision r 1 : Radius after incision
Example 4
The obtained vinyl chloride resin resin composition was supplied to a biaxial different-direction rotary extruder (trade name “SLM-50”, manufactured by Nagata Seisakusho Co., Ltd.) having a diameter of 50 mm and cooled with 40 ° C. hot water. Evaluation was carried out in the same manner as in Example 3.
(Example 5)
Evaluation was performed in the same manner as in Example 3 except that 0.05 part by weight of a black pigment (trade name “Black A-1103”, manufactured by Dainichi Seika Co., Ltd.) was added instead of adding carbon black.
[0038]
(Example 6)
Evaluation was performed in the same manner as in Example 4 except that 0.05 part by weight of a black pigment (trade name “Black A-1103”, manufactured by Dainichi Seika Co., Ltd.) was added instead of adding carbon black.
(Example 7)
The obtained vinyl chloride-based resin resin composition was supplied to a biaxial different-direction rotary extruder (trade name “SLM-50”, manufactured by Nagata Seisakusho Co., Ltd.) having a diameter of 50 mm, and was cooled except with 25 ° C. warm water. Evaluation was carried out in the same manner as in Example 3.
[0039]
(Comparative Example 2)
The obtained vinyl chloride resin resin composition was supplied to a biaxial different-direction rotary extruder (trade name “SLM-50”, manufactured by Nagata Seisakusho Co., Ltd.) having a diameter of 50 mm and cooled with water at 25 ° C. Evaluation was performed in the same manner as in Example 4.
Evaluation was performed in the same manner as in Example 3 except that 0.5 parts by weight of carbon black (trade name “Toka Black # 7350”, manufactured by Tokai Carbon Co., Ltd.) was added instead of adding the black pigment.
[0040]
[Table 2]
Figure 0004171280
[0041]
【The invention's effect】
As described above, according to the present invention, it is possible to obtain a hard vinyl chloride resin tube that is less likely to be bent by irradiation with sunlight or the like or has a small bending amount.
[0042]
[Brief description of the drawings]
FIG. 1 is a cross-sectional view perpendicular to the tube axis direction of a hard vinyl chloride resin tube obtained by the present invention.
[0043]
[Explanation of symbols]
1-8 Cutting position of sample when measuring stress

Claims (2)

外気温15℃の雰囲気下において、波長0.7〜100μm、熱量4kw/m2の赤外及び遠赤外線が2時間照射された際に、管表面最大温度が60℃以下であることを特徴とする硬質塩化ビニル系樹脂管。The tube surface maximum temperature is 60 ° C. or less when irradiated with infrared rays and far-infrared rays having a wavelength of 0.7 to 100 μm and a heat quantity of 4 kw / m 2 in an atmosphere having an outside air temperature of 15 ° C. for 2 hours. Hard vinyl chloride resin tube. 3500kcal/m2・日以上の日射量が存在する環境下に20日間静置された後の、下記式(1)から算出される周方向応力σの最大値と最小値の差△σが2.94MPa以下であることを特徴とする硬質塩化ビニル系樹脂管。
σ=[E/(1−R2)]・t/2・(1/r1−1/r0) (1)
E:引張弾性率 R:ポアソン比 t:肉厚 r0:切開前内半径 r1:切開後内半径
The difference Δσ between the maximum value and the minimum value of the circumferential stress σ calculated from the following formula (1) after standing for 20 days in an environment where the amount of solar radiation of 3500 kcal / m 2 · day or more exists is 2 A hard vinyl chloride resin tube characterized by having a pressure of 94 MPa or less.
σ = [E / (1-R 2 )] · t / 2 · (1 / r 1 −1 / r 0 ) (1)
E: Tensile modulus R: Poisson's ratio t: Wall thickness r 0 : Internal radius before incision r 1 : Internal radius after incision
JP2002302163A 2002-03-06 2002-10-16 Rigid vinyl chloride resin tube Expired - Lifetime JP4171280B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002302163A JP4171280B2 (en) 2002-03-06 2002-10-16 Rigid vinyl chloride resin tube

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002060814 2002-03-06
JP2002-60814 2002-03-06
JP2002302163A JP4171280B2 (en) 2002-03-06 2002-10-16 Rigid vinyl chloride resin tube

Publications (2)

Publication Number Publication Date
JP2003329176A JP2003329176A (en) 2003-11-19
JP4171280B2 true JP4171280B2 (en) 2008-10-22

Family

ID=29713806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002302163A Expired - Lifetime JP4171280B2 (en) 2002-03-06 2002-10-16 Rigid vinyl chloride resin tube

Country Status (1)

Country Link
JP (1) JP4171280B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5108224B2 (en) * 2004-12-16 2012-12-26 積水化学工業株式会社 Rigid vinyl chloride resin tube
JP6894545B2 (en) * 2016-03-31 2021-06-30 積水化学工業株式会社 Gutter rehabilitation method
JP6997613B2 (en) * 2017-12-15 2022-01-17 アロン化成株式会社 Hard vinyl chloride resin molded product

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000088155A (en) * 1998-09-09 2000-03-31 Sekisui Chem Co Ltd Belt-like body for forming spiral pipe and molding method therefor
JP2001139698A (en) * 1999-11-17 2001-05-22 Shin Etsu Chem Co Ltd Polyvinyl chloride resin hard molded article for outdoor building material
JP2002136920A (en) * 2000-11-06 2002-05-14 Sekisui Chem Co Ltd Method for coating outer surface of synthetic resin pipe with hot melt adhesive

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL176804C (en) * 1977-04-06 1985-06-03 Wavin Bv PLASTIC TUBE WITH LONG CHANNELS IN HIS WALL, AND METHOD FOR MANUFACTURING SUCH PLASTIC TUBE.
JPS6030347B2 (en) * 1978-07-06 1985-07-16 積水化学工業株式会社 Thermoplastic resin molded products
JPS5512151A (en) * 1978-07-11 1980-01-28 Sekisui Chem Co Ltd Chlorine-containing resin compostion
JPS6230202A (en) * 1985-08-01 1987-02-09 Dainichi Color & Chem Mfg Co Ltd Infrared reflective material
JP2626391B2 (en) * 1991-12-27 1997-07-02 住友金属工業株式会社 Polybutene resin deformed tube and method for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000088155A (en) * 1998-09-09 2000-03-31 Sekisui Chem Co Ltd Belt-like body for forming spiral pipe and molding method therefor
JP2001139698A (en) * 1999-11-17 2001-05-22 Shin Etsu Chem Co Ltd Polyvinyl chloride resin hard molded article for outdoor building material
JP2002136920A (en) * 2000-11-06 2002-05-14 Sekisui Chem Co Ltd Method for coating outer surface of synthetic resin pipe with hot melt adhesive

Also Published As

Publication number Publication date
JP2003329176A (en) 2003-11-19

Similar Documents

Publication Publication Date Title
JP4901130B2 (en) Method for producing chlorinated vinyl chloride resin
JP2024124460A (en) Cable Protection Tube
JP6674047B2 (en) Molding resin composition
JP4171280B2 (en) Rigid vinyl chloride resin tube
US20070135577A1 (en) Intermediate elastomer compositions
JP5108224B2 (en) Rigid vinyl chloride resin tube
JP4714385B2 (en) Vinyl chloride resin rehabilitation pipe
JP4555494B2 (en) Vinyl chloride resin composition
JP2003301972A (en) Hard vinyl chloride resin pipe
JP2006199801A (en) Chlorinated vinyl chloride-based resin composition and its molded article
JP2003301971A (en) Hard vinyl chloride-based resin pipe
JP2018028350A (en) Multilayer pipe and piping
WO2021065946A1 (en) Molding resin composition and molded article
JP2004270764A (en) Stainproof resin pipe and stainproof resin regeneration pipe
JP4452379B2 (en) Vinyl chloride resin rehabilitation pipe
JPWO2019065739A1 (en) Resin composition for molding
JP4079728B2 (en) Chlorinated vinyl chloride resin composition for rehabilitation pipe and rehabilitation pipe
JP4376442B2 (en) Vinyl chloride resin, method for producing the same, and molded article
JP2003097768A (en) Polyvinyl chloride base resin composition for reclamation pipe and reclamation pipe
JP6795709B2 (en) Chlorinated vinyl chloride resin composition for window frames and window frame members
JP2003089737A (en) Vinyl chloride resin composition and reclaimed vinyl chloride resin pipe
JP6705671B2 (en) Vinyl chloride resin composition and vinyl chloride resin molding
JP3302222B2 (en) Impact-resistant rigid PVC pipe
JP4472201B2 (en) Vinyl chloride resin composition
KR101705683B1 (en) Nontoxic synthetic resin composition having improved thermal stability and workability and synthetic resin water pipe made of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080716

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080808

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4171280

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

EXPY Cancellation because of completion of term