JP4901130B2 - Method for producing chlorinated vinyl chloride resin - Google Patents

Method for producing chlorinated vinyl chloride resin Download PDF

Info

Publication number
JP4901130B2
JP4901130B2 JP2005151933A JP2005151933A JP4901130B2 JP 4901130 B2 JP4901130 B2 JP 4901130B2 JP 2005151933 A JP2005151933 A JP 2005151933A JP 2005151933 A JP2005151933 A JP 2005151933A JP 4901130 B2 JP4901130 B2 JP 4901130B2
Authority
JP
Japan
Prior art keywords
vinyl chloride
chloride resin
chlorinated vinyl
mol
chlorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005151933A
Other languages
Japanese (ja)
Other versions
JP2006328166A (en
Inventor
敏文 三二
秀明 田中
昌敏 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Tokuyama Sekisui Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Tokuyama Sekisui Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd, Tokuyama Sekisui Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2005151933A priority Critical patent/JP4901130B2/en
Publication of JP2006328166A publication Critical patent/JP2006328166A/en
Application granted granted Critical
Publication of JP4901130B2 publication Critical patent/JP4901130B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

本発明は、塩素化塩化ビニル系樹脂の製造方法に関する。 The present invention relates to a method for producing a chlorinated vinyl chloride resin.

塩化ビニル系樹脂(以下、「PVC」という)は、機械的強度、耐候性、耐薬品性等に優れた材料として、多くの分野に用いられている。しかしながら、耐熱性に劣るため、PVCを塩素化することにより耐熱性を向上させた塩素化塩化ビニル系樹脂(以下、「CPVC」という)が開発されている。   Vinyl chloride resin (hereinafter referred to as “PVC”) is used in many fields as a material excellent in mechanical strength, weather resistance, chemical resistance and the like. However, since it is inferior in heat resistance, a chlorinated vinyl chloride resin (hereinafter referred to as “CPVC”) in which heat resistance is improved by chlorinating PVC has been developed.

PVCは、熱変形温度が低く使用可能な上限温度が60〜70℃付近であるため、熱水に対して使用できないのに対し、CPVCは熱変形温度がPVCよりも20〜40℃も高いため、熱水に対しても使用可能であり、例えば、耐熱パイプ、耐熱継手、耐熱バルブ等に好適に使用されている。   Since PVC has a low heat distortion temperature and a usable upper limit temperature is around 60 to 70 ° C., it cannot be used for hot water, whereas CPVC has a heat deformation temperature 20 to 40 ° C. higher than PVC. It can also be used for hot water, and is suitably used for heat-resistant pipes, heat-resistant joints, heat-resistant valves, and the like.

しかしながら、CPVCは塩素含有量が65重量%以上になった場合、塩素原子の付加される比率が高くなるために生じる不安定構造が多く生じ、これに起因して熱安定性が悪くなるという問題があった。   However, CPVC has a problem that when the chlorine content is 65% by weight or more, there are many unstable structures due to an increase in the ratio of added chlorine atoms, resulting in poor thermal stability. was there.

このような問題を解決するため、熱安定性の良好なCPVCを製造する方法が種々提案されている。例えば、酸素濃度が0.05〜0.35容量%の塩素を特定の流速で供給して、55〜80℃の温度で塩素化して、熱安定性の良好なCPVCを得る方法が提案されている(例えば、特許文献1参照。)が、この製造方法においては酸素濃度が高く、低温での反応のため、熱安定性が格段に優れているわけでなく、長期の押出成形や射出成形に耐えられなかった。
特公昭45−30833号公報
In order to solve such a problem, various methods for producing CPVC having good thermal stability have been proposed. For example, a method has been proposed in which chlorine having an oxygen concentration of 0.05 to 0.35% by volume is supplied at a specific flow rate and chlorinated at a temperature of 55 to 80 ° C. to obtain CPVC having good thermal stability. However, in this production method, the oxygen concentration is high and the reaction at low temperature is not so excellent in thermal stability, and it is suitable for long-term extrusion molding and injection molding. I couldn't stand it.
Japanese Examined Patent Publication No. 45-30833

又、異なる製造方法として、酸素濃度が200ppm以下の塩素を使用して紫外線照射下に塩素化する方法が提案されている(例えば、特許文献2参照。)が、この製造方法は紫外線照射による低温での反応のために、熱安定性が格段に優れたCPVCは得られなかった。
特開平9−328518号公報
Further, as a different production method, a method of chlorinating under ultraviolet irradiation using chlorine having an oxygen concentration of 200 ppm or less has been proposed (see, for example, Patent Document 2). Because of this reaction, CPVC with extremely excellent thermal stability was not obtained.
JP-A-9-328518

本発明は、上記従来技術の課題に鑑み、不安定構造が少なく、熱安定性に優れた塩素化塩化ビニル系樹脂の製造方法を提供することを目的とする。 The present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to provide a method for producing a chlorinated vinyl chloride-based resin having a less unstable structure and excellent thermal stability.

請求項1記載の塩素化塩化ビニル系樹脂の製造方法は、塩素含有量が65重量%以上、68重量%未満であり、分子構造中に含まれる−CCl2 −が6.2モル%以下、−CHCl−が58.0モル%以上、且つ、−CH2 −が35.8モル%以下である塩素化塩化ビニル系樹脂の製造方法であって、最終塩素含有量から5重量%手前に達した時点以降の塩素化を塩素消費速度(原料塩化ビニル系樹脂1kgあたりの5分間の塩素消費量)を0.010〜0.015kg/PVC−Kg・5minの範囲にて、又、3重量%手前に達した時点以降の塩素化を塩素消費速度(原料塩化ビニル系樹脂1kgあたりの5分間の塩素消費量)を前記塩素消費速度より遅く且つ0.005〜0.010kg/PVC−Kg・5minの範囲にて行うことを特徴とする。 The method for producing a chlorinated vinyl chloride resin according to claim 1, wherein the chlorine content is 65 wt% or more and less than 68 wt%, and —CCl 2 — contained in the molecular structure is 6.2 mol% or less, A method for producing a chlorinated vinyl chloride resin having —CHCl— of 58.0 mol% or more and —CH 2 — of 35.8 mol% or less, reaching 5% by weight from the final chlorine content Chlorination after the time when the chlorine consumption rate (chlorine consumption for 5 minutes per 1 kg of raw vinyl chloride resin) is in the range of 0.010 to 0.015 kg / PVC-Kg · 5 min, and 3% by weight Chlorination after the point of reaching the front, chlorine consumption rate (chlorine consumption for 5 minutes per kg of raw vinyl chloride resin) is slower than the chlorine consumption rate and 0.005-0.010 kg / PVC-Kg · 5 min It is carried out at the range And features.

上記塩素化塩化ビニル系樹脂(CPVC)は、塩化ビニル系樹脂(PVC)が塩素化されてなる樹脂である。
上記PVCとは、塩化ビニル単独重合体、塩化ビニルモノマーと共重合可能な不飽和結合を有するモノマーと塩化ビニルモノマーとの共重合体、重合体に塩化ビニルモノマーをグラフト共重合したグラフト共重合体等が挙げられる。これら重合体は単独で用いられてもよいし、2種以上が併用されてもよい。
The chlorinated vinyl chloride resin (CPVC) is a resin obtained by chlorinating a vinyl chloride resin (PVC).
The PVC is a vinyl chloride homopolymer, a copolymer of a monomer having an unsaturated bond copolymerizable with a vinyl chloride monomer and a vinyl chloride monomer, or a graft copolymer obtained by graft copolymerizing a vinyl chloride monomer to a polymer. Etc. These polymers may be used independently and 2 or more types may be used together.

上記塩化ビニルモノマーと共重合可能な不飽和結合を有するモノマーとしては、例えば、エチレン、プロピレン、ブチレン等のα−オレフィン類;酢酸ビニル、プロピオン酸ビニル等のビニルエステル類;ブチルビニルエーテル、セチルビニルエーテル等のビニルエーテル類;メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチルアクリレート、フェニルメタクリレート等の(メタ)アクリル酸エステル類;スチレン、α−メチルスチレン等の芳香族ビニル類;塩化ビニリデン、フッ化ビニリデン等のハロゲン化ビニルビニル類;N−フェニルマレイミド、N−シクロヘキシルマレイミド等のN−置換マレイミド類等が挙げられ、これらの1種若しくは2種以上が使用される。   Examples of the monomer having an unsaturated bond copolymerizable with the vinyl chloride monomer include α-olefins such as ethylene, propylene, and butylene; vinyl esters such as vinyl acetate and vinyl propionate; butyl vinyl ether, cetyl vinyl ether, and the like. Vinyl ethers; (meth) acrylic esters such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl acrylate, and phenyl methacrylate; aromatic vinyls such as styrene and α-methylstyrene; vinylidene chloride and vinylidene fluoride And halogenated vinyl vinyls such as N-substituted maleimides such as N-phenylmaleimide and N-cyclohexylmaleimide, and one or more of these are used.

上記塩化ビニルをグラフト共重合する重合体としては、塩化ビニルをグラフト重合させるものであれば特に限定されず、例えば、エチレン−酢酸ビニル共重合体、エチレン−酢酸ビニル−一酸化炭素共重合体、エチレン−エチルアクリレート共重合体、エチレン−ブチルアクリレート−一酸化炭素共重合体、エチレン−メチルメタクリレート共重合体、エチレン−プロピレン共重合体、アクリロニトリル−ブタジエン共重合体、ポリウレタン、塩素化ポリエチレン、塩素化ポリプロピレン等が挙げられ、これらは単独で用いられてもよいし、2種以上が併用されても良い。   The polymer for graft copolymerization of vinyl chloride is not particularly limited as long as vinyl chloride is graft-polymerized. For example, ethylene-vinyl acetate copolymer, ethylene-vinyl acetate-carbon monoxide copolymer, Ethylene-ethyl acrylate copolymer, ethylene-butyl acrylate-carbon monoxide copolymer, ethylene-methyl methacrylate copolymer, ethylene-propylene copolymer, acrylonitrile-butadiene copolymer, polyurethane, chlorinated polyethylene, chlorinated Polypropylene etc. are mentioned, These may be used independently and 2 or more types may be used together.

上記PVCの平均重合度は、特に限定されず、通常用いられる400〜3,000のものが好ましく、より好ましくは600〜1,500である。   The average degree of polymerization of the PVC is not particularly limited, and is usually 400 to 3,000, and more preferably 600 to 1,500.

上記PVCの重合方法は、特に限定されず、従来公知の水懸濁重合、塊状重合、溶液重合、乳化重合等が挙げられる。   The polymerization method of the PVC is not particularly limited, and examples thereof include conventionally known water suspension polymerization, bulk polymerization, solution polymerization, and emulsion polymerization.

上記CPVCの塩素含有率は、塩素含有率が65重量%未満であると耐熱性の向上が不十分になり、68重量%以上であると成形加工性が困難となるので65重量%以上、68重量%未満であり、好ましくは66重量%以上、68重量%未満である。   When the chlorine content of CPVC is less than 65% by weight, the heat resistance is not sufficiently improved, and when it is 68% by weight or more, the molding processability becomes difficult. It is less than wt%, preferably 66 wt% or more and less than 68 wt%.

CPVCの分子構造中に含まれる−CCl2 −、−CHCl−及び−CH2 −の比率はPVCが塩素化される際の塩素が導入される部位を反映したものである。塩素化前のPVCは、理想的には、ほぼ、−CCl2 −が0モル%、−CHCl−が50.0モル%、−CH2 −が50.0モル%の状態にあるが、塩素化に伴って−CH2 −が減少し、−CHCl−及び−CCl2 −が増加してくる。この際、立体障害が大きく不安定な−CCl2 −が増えすぎたり、CPVCの同一粒子内で塩素化されている部位とされていない部位が偏ったりすると、塩素化状態の不均一性が大きくなり、熱安定性が大きく損なわれてしまう。−CCl2 −が6.2モル%以下、−CHCl−が58.0モル%以上、且つ、−CH2 −が35.8モル%以下の範囲を外れると、この不均一な塩素化の影響が大きくなるため、熱安定性が悪化してしまうので、請求項1に記載のCPVCの分子構造中に含まれる−CCl2 −は6.2モル%以下、−CHCl−は58.0モル%以上、且つ、−CH2 −は35.8モル%以下である。又、−CCl2 −が5.9モル%以下、−CHCl−が59.5モル%以上、且つ、−CH2 −が34.6モル%以下になると熱安定性がより優れるので好ましい。 The ratio of —CCl 2 —, —CHCl— and —CH 2 — contained in the molecular structure of CPVC reflects the site where chlorine is introduced when PVC is chlorinated. Ideally, the PVC before chlorination is in a state in which -CCl 2 -is 0 mol%, -CHCl- is 50.0 mol%, and -CH 2 -is 50.0 mol%. With the conversion, -CH 2- decreases and -CHCl- and -CCl 2- increase. At this time, if the steric hindrance and unstable -CCl 2- increases too much, or if the chlorinated portion and the non-chlorinated portion are biased in the same particle of CPVC, the chlorinated state is highly uneven. Thus, the thermal stability is greatly impaired. -CCl 2 - 6.2 mol% or less, -CHCl- 58.0 mol% or more, and, -CH 2 - is the out of the range of less than 35.8 mol%, the effect of this inhomogeneous chlorinated Therefore, -CCl 2- contained in the molecular structure of CPVC according to claim 1 is 6.2 mol% or less, and -CHCl- is 58.0 mol%. In addition, —CH 2 — is 35.8 mol% or less. It is preferable that -CCl 2 -is 5.9 mol% or less, -CHCl- is 59.5 mol% or more, and -CH 2 -is 34.6 mol% or less because thermal stability is more excellent.

上記CPVCは、分子構造中に含まれる4連子以上の塩化ビニル単位(以下、「VC単位」という)が30.0モル%以下が好ましい。   The CPVC preferably contains 30.0 mol% or less of vinyl chloride units (hereinafter referred to as “VC units”) having a quadruple or more contained in the molecular structure.

上記VC単位とは未塩素化PVC単位のことで、−CH2 −CHCl−であり、4連子以上のVC単位とは、VC単位が4個以上連続して結合している単位を意味する。 The VC unit is an unchlorinated PVC unit, which is —CH 2 —CHCl—, and a VC unit of 4 or more means a unit in which 4 or more VC units are continuously bonded. .

CPVC中に存在するVC単位は脱HClの起点となり、且つ、このVC単位が連続していると、ジッパー反応と言われる連続した脱HCl反応が起こりやすくなってしまう。即ち、この4連子以上のVC単位の量が大きくなるほど、脱HClが起こり易く、熱安定性が低くなる。従って、4連子以上のVC単位が30.0モル%を超えると、脱HCl反応が起こり易くなり、熱安定性が大きく損なわれてしまうので30.0モル%以下が好ましく、より好ましくは28.0モル%以下である。   The VC unit present in CPVC serves as a starting point for de-HCl, and if this VC unit is continuous, a continuous de-HCl reaction called a zipper reaction tends to occur. That is, as the amount of VC units of the quadruple or larger is increased, de-HCl is more likely to occur and the thermal stability is lowered. Therefore, when the VC unit of 4 or more is more than 30.0 mol%, de-HCl reaction tends to occur and the thermal stability is greatly impaired, so 30.0 mol% or less is preferable, more preferably 28 0.0 mol% or less.

又、上記CPVCは、216nmの波長におけるUV吸光度が0.8以下であるのが好ましい。   The CPVC preferably has a UV absorbance at a wavelength of 216 nm of 0.8 or less.

UV吸光度は、紫外吸収スペクトルを測定し、CPVC中の異種構造である、−CH=CH−C(=O)−及び−CH=CH−CH=CH−が吸収をもつ、波長216nmのUV吸光度の値を読み取る方法で測定される。   The UV absorbance is a UV absorbance at a wavelength of 216 nm, in which UV absorption spectrum is measured and -CH = CH-C (= O)-and -CH = CH-CH = CH-, which are different structures in CPVC, have absorption. It is measured by reading the value of.

CPVCでは、UV吸光度の値により、塩素化反応時の分子鎖中の異種構造を定量化し、熱安定性の指標とすることができる。CPVCでは、二重結合した炭素の隣の炭素に付いた塩素原子は不安定であることから、そこを起点として、脱HClが起こる、つまり、UV吸光度の値が大きいほど、脱HClが起こり易く、熱安定性が低いことになる。UV吸光度の値が0.8を超えると、分子鎖中の異種構造の影響が大きくなるため、その結果、熱安定性に劣るようになるので、UV吸光度は0.8以下が好ましい。   In CPVC, the heterogeneous structure in the molecular chain during the chlorination reaction can be quantified based on the value of UV absorbance, and used as an index of thermal stability. In CPVC, since the chlorine atom attached to the carbon adjacent to the double-bonded carbon is unstable, de-HCl occurs from that point, that is, the larger the UV absorbance value, the easier the de-HCl occurs. The thermal stability will be low. When the value of UV absorbance exceeds 0.8, the influence of heterogeneous structures in the molecular chain increases, and as a result, the thermal stability becomes poor. Therefore, the UV absorbance is preferably 0.8 or less.

更に、上記CPVCは、190℃における脱HCl量が7000ppmに到達するのに必要な時間が50秒以上であるのが好ましい。   Further, the CPVC preferably has a time required for the amount of deHCl to reach 7000 ppm at 190 ° C. of 50 seconds or longer.

CPVCでは、190℃における脱HCl量が7000ppmに到達するのに必要な時間により、熱安定性の指標とすることができる。CPVCは高温にさらされると熱分解を起こすが、その際、HClガスが発生する。つまり、190℃における脱HCl量が7000ppmに到達するのに必要な時間が短くなるほど、熱安定性が低いことになり、50秒未満であると、熱安定性が大きく損なわれてしまうので、50秒以上が好ましく、より好ましくは60秒以上であり、更に好ましくは70秒以上である。   In CPVC, the time required for the amount of HCl removed at 190 ° C. to reach 7000 ppm can be used as an indicator of thermal stability. CPVC undergoes thermal decomposition when exposed to high temperatures, but HCl gas is generated at that time. In other words, the shorter the time required for the amount of HCl removed at 190 ° C. to reach 7000 ppm, the lower the thermal stability. If it is less than 50 seconds, the thermal stability is greatly impaired. It is preferably at least 2 seconds, more preferably at least 60 seconds, and even more preferably at least 70 seconds.

請求項6記載の塩素化塩化ビニル系樹脂の製造方法は、塩素含有量が70重量%以上、72重量%未満であり、分子構造中に含まれる−CCl2 −が17.0モル%以下、−CHCl−が46.0モル%以上、且つ、−CH2 −が37.0モル%以下である塩素化塩化ビニル系樹脂の製造方法であって、最終塩素含有量から5重量%手前に達した時点以降の塩素化を塩素消費速度(原料塩化ビニル系樹脂1kgあたりの5分間の塩素消費量)を0.015〜0.020kg/PVC−Kg・5minの範囲にて、又、3重量%手前に達した時点以降の塩素化を塩素消費速度(原料塩化ビニル系樹脂1kgあたりの5分間の塩素消費量)を前記塩素消費速度より遅く且つ0.005〜0.015kg/PVC−Kg・5minの範囲にて行うことを特徴とする。 The method for producing a chlorinated vinyl chloride resin according to claim 6 has a chlorine content of 70% by weight or more and less than 72% by weight, and -CCl 2- contained in the molecular structure is 17.0 mol% or less, A method for producing a chlorinated vinyl chloride resin having —CHCl— of 46.0 mol% or more and —CH 2 — of 37.0 mol% or less, reaching 5% by weight from the final chlorine content Chlorination after the point of time, chlorine consumption rate (chlorine consumption for 5 minutes per 1 kg of raw material vinyl chloride resin) in the range of 0.015-0.020 kg / PVC-Kg · 5 min, and 3% by weight Chlorination after the point of reaching the front, the chlorine consumption rate (chlorine consumption for 5 minutes per 1 kg of the raw vinyl chloride resin) is slower than the chlorine consumption rate and 0.005-0.015 kg / PVC-Kg · 5 min this carried out at the range The features.

上記塩素化塩化ビニル系樹脂(CPVC)は、塩素含有量が70重量%以上、72重量%未満である以外は請求項1記載のCPVCと同一である。塩素含有量が70重量%以上、72重量%未満であるため、特に高い耐熱性を必要とする用途に適しているが、70重量%未満であると、耐熱性の向上が不十分であり、72重量%以上であると成形加工性が著しく困難となる。   The chlorinated vinyl chloride resin (CPVC) is the same as CPVC according to claim 1, except that the chlorine content is 70 wt% or more and less than 72 wt%. Since the chlorine content is 70% by weight or more and less than 72% by weight, it is suitable for applications requiring particularly high heat resistance, but if it is less than 70% by weight, the improvement in heat resistance is insufficient. If it is 72% by weight or more, moldability becomes extremely difficult.

一般的にCPVCはその塩素化度が高くなるにつれて、−CCl2 −が多くなり、塩素化状態の不均一性がより大きくなる傾向にあるため、熱安定性が大きく損なわれてしまうので、上記CPVCは分子構造中に含まれる−CCl2 −が17.0モル%以下、−CHCl−が46.0モル%以上、且つ、−CH2 −が37.0モル%以下であり、好ましくは−CCl2 −が16.0モル%以下、−CHCl−が53.5モル%以上、且つ、−CH2 −が30.5モル%以下である。 In general, as CPVC has a higher degree of chlorination, -CC1 2- increases and the non-uniformity of the chlorination state tends to increase, so the thermal stability is greatly impaired. CPVC contains —CCl 2 — in the molecular structure of 17.0 mol% or less, —CHCl— of 46.0 mol% or more, and —CH 2 — of 37.0 mol% or less, preferably − CCl 2 − is 16.0 mol% or less, —CHCl— is 53.5 mol% or more, and —CH 2 — is 30.5 mol% or less.

上記CPVCは、分子構造中に含まれる4連子以上の塩化ビニル単位は18.0モル%を超えると、脱HCl反応が起こり易くなり、熱安定性が大きく損なわれてしまうので、18.0モル%以下が好ましい。   In the case of CPVC, if the vinyl chloride unit having a quadruple or more contained in the molecular structure exceeds 18.0 mol%, the HCl removal reaction tends to occur and the thermal stability is greatly impaired. Mole% or less is preferable.

一般的に塩素化度の高いCPVCを得るには、塩素化の際に、長時間触媒や紫外線にさらされたり、高温中に長時間置かれることになるため、CPVC分子鎖中の異種構造が多くなり、熱安定性が大きく損なわれてしまう傾向にあるが、UV吸光度の値が8.0を超えると、分子鎖中の異種構造の影響が大きくなり、熱安定性に劣るようになるので、上記CPVCのUV吸光度は8.0以下が好ましい。   In general, in order to obtain CPVC having a high degree of chlorination, it is exposed to a catalyst or ultraviolet rays for a long time during chlorination, or placed in a high temperature for a long time. However, if the UV absorbance value exceeds 8.0, the influence of heterogeneous structures in the molecular chain increases and the thermal stability becomes inferior. The UV absorbance of CPVC is preferably 8.0 or less.

更に、上記CPVCは、190℃における脱HCl量が7000ppmに到達するのに必要な時間が100秒以上であるのが好ましい。   Furthermore, the CPVC preferably has a time required for the amount of deHCl to reach 7000 ppm at 190 ° C. of 100 seconds or longer.

一般にCPVCはその塩素化度が高くなるにつれて未塩素化PVC単位であるVC単位が減少するため、その脱HCl量は減少する傾向にある。しかし、同時に不均一な塩素化状態や異種構造の増加が起こり、熱安定性が低下するため、脱HCl量を少なく抑える必要がある。190℃における脱HCl量が7000ppmに到達するのに必要な時間が100秒未満であると、熱安定性が大きく低下してしまうので100秒以上が好ましく、より好ましくは120秒以上であり、更に好ましくは140秒以上である。   In general, CPVC tends to decrease the amount of deHCl because VC units which are unchlorinated PVC units decrease as the degree of chlorination increases. However, at the same time, a non-uniform chlorination state and an increase in heterogeneous structures occur, resulting in a decrease in thermal stability. When the time required for the amount of HCl removed at 190 ° C. to reach 7000 ppm is less than 100 seconds, the thermal stability is greatly reduced, so it is preferably 100 seconds or more, more preferably 120 seconds or more, Preferably it is 140 seconds or more.

上記塩素化塩化ビニル系樹脂(CPVC)は、塩化ビニル系樹脂(PVC)が塩素化されてなる樹脂であり、塩素化は従来公知の任意の方法で行わればよいが、反応器内においてPVCを水性溶媒中で懸濁状態となした状態で、反応器内に液体塩素又は気体塩素を導入して塩素化されるのが好ましい。   The chlorinated vinyl chloride resin (CPVC) is a resin obtained by chlorinating a vinyl chloride resin (PVC), and chlorination may be performed by any conventionally known method. It is preferable that liquid chlorine or gaseous chlorine is introduced into the reactor in a state of being suspended in an aqueous solvent.

上記塩素化反応に用いる反応器の材質は、グラスライニングが施されたステンレス製反応器の他、チタン製反応器等、一般に使用されているものが適用できる。   As the material of the reactor used for the chlorination reaction, commonly used materials such as a titanium reactor can be applied in addition to a stainless steel reactor with glass lining.

上記PVCを懸濁状態に調整する方法は、特に限定されず、重合後のPVCを脱モノマー処理したケーキ状のPVCを用いてもよいし、乾燥させたものを再度、水性媒体で懸濁化してもよく、あるいは、重合系中より、塩素化反応に好ましくない物質を除去した懸濁液を使用してもよいが、重合後のPVCを脱モノマー処理したケーキ状の樹脂を用いるのが好ましい。反応器内に仕込む水性媒体の量は、特に限定されないが、一般にPVCの100重量部に対して2〜10重量部が好ましい。   The method for adjusting the PVC to a suspended state is not particularly limited, and a cake-like PVC obtained by removing a monomer from the polymerized PVC may be used, or the dried PVC is suspended again in an aqueous medium. Alternatively, a suspension obtained by removing undesired substances for the chlorination reaction from the polymerization system may be used. However, it is preferable to use a cake-like resin obtained by removing the polymerized PVC from the monomer. . The amount of the aqueous medium charged into the reactor is not particularly limited, but is generally preferably 2 to 10 parts by weight with respect to 100 parts by weight of PVC.

塩素の導入は、工程上液体塩素を導入することが効率的である。反応途中の圧力調整の為、又、塩素化反応の進行に伴う塩素の補給については、液体塩素の他、気体塩素を適宜吹き込むこともできる。又、ボンベ塩素の5〜10重量%をパージした後の塩素を用いるのが好ましい。上記反応器内のゲージ圧力は、特に限定されないが、塩素圧力が高いほど塩素がPVC粒子の内部に浸透し易いため、0.3〜2MPaの範囲が好ましい。   Introducing chlorine is efficient in introducing liquid chlorine in the process. In order to adjust the pressure during the reaction and to supply chlorine as the chlorination reaction proceeds, gaseous chlorine can be appropriately blown in addition to liquid chlorine. Moreover, it is preferable to use chlorine after purging 5 to 10% by weight of cylinder chlorine. Although the gauge pressure in the said reactor is not specifically limited, Since chlorine will osmose | permeate the inside of a PVC particle, so that a chlorine pressure is high, the range of 0.3-2 Mpa is preferable.

上記懸濁した状態でPVCを塩素化する方法は、特に限定されず、例えば、熱によりPVCの結合や塩素を励起させて塩素化を促進する方法(以下、熱塩素化という)、光を照射して光反応的に塩素化を促進する方法(以下、光塩素化という)等が挙げられる。熱エネルギーにより塩素化する際の加熱方法は、特に限定されず、例えば、反応器壁からの外部ジャケット方式による加熱が効果的である。又、紫外光線等の光エネルギーを使用する場合は、高温、高圧下の条件下での紫外線照射等の光エネルギー照射が可能な装置が必要である。光塩素化の場合の塩素化反応温度は、40〜80℃が好ましい。   The method of chlorinating PVC in the suspended state is not particularly limited. For example, a method of accelerating chlorination by exciting PVC bonds or chlorine with heat (hereinafter referred to as thermal chlorination), irradiation with light. Then, a method of promoting chlorination photoreactively (hereinafter referred to as photochlorination) and the like. The heating method for chlorination with thermal energy is not particularly limited, and for example, heating by an external jacket system from the reactor wall is effective. In addition, when using light energy such as ultraviolet light, an apparatus capable of light energy irradiation such as ultraviolet irradiation under high temperature and high pressure conditions is required. The chlorination reaction temperature in the case of photochlorination is preferably 40 to 80 ° C.

上記塩素化方法の中では、紫外線照射を行わない熱塩素方法が好ましく、熱のみ又は熱及び過酸化水素により塩化ビニル系樹脂の結合や塩素を励起させ塩素化反応を促進する方法が好ましい。   Among the chlorination methods, a thermal chlorination method in which ultraviolet irradiation is not performed is preferable, and a method of accelerating the chlorination reaction by exciting bonds of vinyl chloride resin or chlorine with only heat or heat and hydrogen peroxide is preferable.

紫外線照射による塩素化反応の場合、PVCが塩素化されるのに必要な光エネルギーの大きさは、PVCと光源との距離に大きく影響を受ける事になり、PVC粒子の表面と内部では、そのエネルギーの大きさに違いが生じるため、均一な塩素化を行うのがより難しくなる。これに対し、紫外線照射を行わず、熱のみ又は熱及び過酸化水素によりPVCの結合や塩素を励起させ塩素化する方法では、より均一な塩素化反応が可能となり、CPVCの熱安定性の向上が可能となる。   In the case of chlorination reaction by ultraviolet irradiation, the amount of light energy required for chlorinating PVC is greatly affected by the distance between the PVC and the light source. Due to the difference in energy magnitude, it becomes more difficult to perform uniform chlorination. On the other hand, the method of exciting and chlorinating PVC bonds and chlorine with only heat or heat and hydrogen peroxide without irradiating with ultraviolet rays enables more uniform chlorination reaction, and improves the thermal stability of CPVC. Is possible.

加熱のみで塩素化する場合には、温度が低くなると塩素化速度が低下し、高くなりすぎると塩素化反応と並行して脱HCl反応が起こり、得られたCPVCが着色するので、70〜140℃が好ましく、より好ましくは100〜135℃である。   In the case of chlorination only by heating, when the temperature is lowered, the chlorination rate is lowered, and when it is too high, a deHCl reaction occurs in parallel with the chlorination reaction, and the obtained CPVC is colored. ° C is preferred, more preferably 100-135 ° C.

過酸化水素の添加量は、少なくなると塩素化の速度を向上させる効果が無くなり、多くなると得られたCPVCの耐熱性が低下するので、PVCに対して1時間当たり5〜500ppmが好ましい。又、過酸化水素添加の場合の反応温度は、過酸化水素を添加することにより、塩素化速度が向上するので60〜140℃が好ましく、より好ましくは65〜110℃である。   The amount of hydrogen peroxide added is preferably from 5 to 500 ppm per hour with respect to PVC because the effect of improving the rate of chlorination is lost when the amount is reduced and the heat resistance of the obtained CPVC is reduced when the amount is increased. The reaction temperature in the case of adding hydrogen peroxide is preferably 60 to 140 ° C., more preferably 65 to 110 ° C., because the chlorination rate is improved by adding hydrogen peroxide.

そして、請求項1においては、上記PVCの塩素化により最終塩素含有量が65重量%以上、68重量%未満のCPVCを得る際に、最終塩素含有量から5重量%手前に達した時点以降の塩素化を塩素消費速度(原料塩化ビニル系樹脂1kgあたりの5分間の塩素消費量)を0.010〜0.015kg/PVC−Kg・5minの範囲にて、又、3重量%手前に達した時点以降の塩素化を塩素消費速度(原料塩化ビニル系樹脂1kgあたりの5分間の塩素消費量)を前記塩素消費速度より遅く且つ0.005〜0.010kg/PVC−Kg・5minの範囲にて行う。こうすることにより、塩素化状態の不均一性が少なく、熱安定性の優れたCPVCが得られる。 In claim 1, when obtaining CPVC having a final chlorine content of 65% by weight or more and less than 68% by weight by chlorination of the PVC, after the point when the final chlorine content reaches 5% by weight or less. Chlorination reached a chlorine consumption rate (chlorine consumption for 5 minutes per 1 kg of raw vinyl chloride resin) in the range of 0.010 to 0.015 kg / PVC-Kg · 5 min, and 3% by weight. Chlorination after the time point: Chlorine consumption rate (chlorine consumption for 5 minutes per 1 kg of raw vinyl chloride resin) is slower than the chlorine consumption rate and in the range of 0.005-0.010 kg / PVC-Kg · 5 min It intends line. By doing so, CPVC with less non-uniformity in the chlorinated state and excellent thermal stability can be obtained.

又、請求項6においては、上記PVCの塩素化により最終塩素含有量が70重量%以上、72重量%未満のCPVCを得る際に、最終塩素含有量から5重量%手前に達した時点以降の塩素化を塩素消費速度(原料塩化ビニル系樹脂1kgあたりの5分間の塩素消費量)を0.015〜0.020kg/PVC−Kg・5minの範囲にて、又、3重量%手前に達した時点以降の塩素化を塩素消費速度(原料塩化ビニル系樹脂1kgあたりの5分間の塩素消費量)を前記塩素消費速度より遅く且つ0.005〜0.015kg/PVC−Kg・5minの範囲にて行う。こうすることにより、塩素化状態の不均一性が少なく、熱安定性の優れたCPVCが得られる。 Further, in claim 6, when obtaining a CPVC having a final chlorine content of 70 wt% or more and less than 72 wt% by chlorination of the PVC, a point after the point when the final chlorine content reaches 5 wt% or less is obtained . Chlorination reached a chlorine consumption rate (5 minutes of chlorine consumption per 1 kg of raw vinyl chloride resin) in the range of 0.015 to 0.020 kg / PVC-Kg · 5 min and 3% by weight. Chlorination after the time point, chlorine consumption rate (chlorine consumption for 5 minutes per 1 kg of vinyl chloride resin) is slower than the chlorine consumption rate and in the range of 0.005 to 0.015 kg / PVC-Kg · 5 min It intends line. By doing so, CPVC with less non-uniformity in the chlorinated state and excellent thermal stability can be obtained.

得られたCPVCを成形して成形体を製造する方法は、従来公知の任意の製造方法が採用されてよく、例えば、押出成形法、射出成形法等が挙げられ、得られた成形体は、請求項1〜12のいずれか1項記載の塩素化塩化ビニル系樹脂を成形した成形体であるので、熱安定性が優れている。 As a method for producing a molded product by molding the obtained CPVC, any conventionally known production method may be employed, for example, an extrusion molding method, an injection molding method, etc. Since it is the molded object which shape | molded the chlorinated vinyl chloride type resin of any one of Claims 1-12, thermal stability is excellent.

上記成形体には必要に応じて、安定剤、滑剤、加工助剤、衝撃改質剤、耐熱向上剤、酸化防止剤、紫外線吸収剤、光安定剤、充填剤、熱可塑性エラストマー、顔料などの添加剤が添加されていてもよい。   If necessary, the molded product may contain stabilizers, lubricants, processing aids, impact modifiers, heat improvers, antioxidants, ultraviolet absorbers, light stabilizers, fillers, thermoplastic elastomers, pigments, etc. An additive may be added.

上記安定剤としては、特に限定されず、例えば、熱安定剤、熱安定化助剤などが挙げられる。上記熱安定剤としては、特に限定されず、例えば、ジブチル錫メルカプト、ジオクチル錫メルカプト、ジメチル錫メルカプト、ジブチル錫メルカプト、ジブチル錫マレート、ジブチル錫マレートポリマー、ジオクチル錫マレート、ジオクチル錫マレートポリマー、ジブチル錫ラウレート、ジブチル錫ラウレートポリマー等の有機錫系安定剤;ステアリン酸鉛、二塩基性亜りん酸鉛、三塩基性硫酸鉛等の鉛系安定剤;カルシウム−亜鉛系安定剤;バリウム−亜鉛系安定剤;バリウム−カドミウム系安定剤などが挙げられる。これらは単独で使用してもよく、2種以上を併用してもよい。   The stabilizer is not particularly limited, and examples thereof include a heat stabilizer and a heat stabilization aid. The heat stabilizer is not particularly limited. Organotin stabilizers such as dibutyltin laurate and dibutyltin laurate polymer; lead stabilizers such as lead stearate, dibasic lead phosphite and tribasic lead sulfate; calcium-zinc stabilizer; barium Zinc-based stabilizers; barium-cadmium-based stabilizers and the like. These may be used alone or in combination of two or more.

上記安定化助剤としては、特に限定されず、例えば、エポキシ化大豆油、りん酸エステル、ポリオール、ハイドロタルサイト、ゼオライト等が挙げられる。これらは単独で使用してもよく、2種以上を併用してもよい。   The stabilization aid is not particularly limited, and examples thereof include epoxidized soybean oil, phosphate ester, polyol, hydrotalcite, and zeolite. These may be used alone or in combination of two or more.

上記滑剤としては、内部滑剤、外部滑剤が挙げられる。
内部滑剤は、成形加工時の溶融樹脂の流動粘度を下げ、摩擦発熱を防止する目的で使用される。上記内部滑剤としては特に限定されず、例えば、ブチルステアレート、ラウリルアルコール、ステアリルアルコール、エポキシ大豆油、グリセリンモノステアレート、ステアリン酸、ビスアミド等が挙げられる。これらは単独で使用してもよく、2種以上を併用してもよい。
Examples of the lubricant include an internal lubricant and an external lubricant.
The internal lubricant is used for the purpose of lowering the flow viscosity of the molten resin during molding and preventing frictional heat generation. The internal lubricant is not particularly limited, and examples thereof include butyl stearate, lauryl alcohol, stearyl alcohol, epoxy soybean oil, glycerin monostearate, stearic acid, and bisamide. These may be used alone or in combination of two or more.

上記外部滑剤は、成形加工時の溶融樹脂と金属面との滑り効果を上げる目的で使用される。外部滑剤としては特に限定されず、例えば、パラフィンワックス、ポリオレフィンワックス、エステルワックス、モンタン酸ワックスなどが挙げられる。これらは単独で使用してもよく、2種以上を併用してもよい。   The external lubricant is used for the purpose of increasing the sliding effect between the molten resin and the metal surface during molding. The external lubricant is not particularly limited, and examples thereof include paraffin wax, polyolefin wax, ester wax, and montanic acid wax. These may be used alone or in combination of two or more.

上記加工助剤としては、特に限定されず、例えば重量平均分子量10万〜200万のアルキルアクリレート−アルキルメタクリレート共重合体等のアクリル系加工助剤などが挙げられる。上記アクリル系加工助剤としては特に限定されず、例えば、n−ブチルアクリレート−メチルメタクリレート共重合体、2−エチルヘキシルアクリレート−メチルメタクリレート−ブチルメタクリレート共重合体等が挙げられる。これらは単独で使用してもよく、2種以上を併用してもよい。     The processing aid is not particularly limited, and examples thereof include acrylic processing aids such as alkyl acrylate-alkyl methacrylate copolymers having a weight average molecular weight of 100,000 to 2,000,000. The acrylic processing aid is not particularly limited, and examples thereof include n-butyl acrylate-methyl methacrylate copolymer and 2-ethylhexyl acrylate-methyl methacrylate-butyl methacrylate copolymer. These may be used alone or in combination of two or more.

上記衝撃改質剤としては特に限定されず、例えばメタクリル酸メチル−ブタジエン−スチレン共重合体(MBS)、塩素化ポリエチレン、アクリルゴムなどが挙げられる。
上記耐熱向上剤としては特に限定されず、例えばα−メチルスチレン系、N−フェニルマレイミド系樹脂等が挙げられる。
The impact modifier is not particularly limited, and examples thereof include methyl methacrylate-butadiene-styrene copolymer (MBS), chlorinated polyethylene, and acrylic rubber.
The heat resistance improver is not particularly limited, and examples thereof include α-methylstyrene-based and N-phenylmaleimide-based resins.

上記酸化防止剤としては特に限定されず、例えば、フェノール系抗酸化剤等が挙げられる。
上記光安定剤としては特に限定されず、例えば、ヒンダードアミン系等の光安定剤等が挙げられる。
It does not specifically limit as said antioxidant, For example, a phenolic antioxidant etc. are mentioned.
The light stabilizer is not particularly limited, and examples thereof include hindered amine light stabilizers.

上記紫外線吸収剤としては特に限定されず、例えば、サリチル酸エステル系、ベンゾフェノン系、ベンゾトリアゾール系、シアノアクリレート系等の紫外線吸収剤等が挙げられる。
上記充填剤としては特に限定されず、例えば、炭酸カルシウム、タルク等が挙げられる。
The ultraviolet absorber is not particularly limited, and examples thereof include salicylic acid ester-based, benzophenone-based, benzotriazole-based, and cyanoacrylate-based ultraviolet absorbers.
The filler is not particularly limited, and examples thereof include calcium carbonate and talc.

上記顔料としては特に限定されず、例えば、アゾ系、フタロシアニン系、スレン系、染料レーキ系等の有機顔料;酸化物系、クロム酸モリブデン系、硫化物・セレン化物系、フェロシアニン化物系などの無機顔料などが挙げられる。   The pigment is not particularly limited, and examples thereof include organic pigments such as azo, phthalocyanine, selenium, and dye lakes; oxides, molybdenum chromates, sulfides / selenides, ferrocyanides, and the like. Examples include inorganic pigments.

又、上記成形体には成形時の加工性を向上させる目的で、可塑剤が添加されていてもよいが、成形体の耐熱性を低下させることがあるため、多量に使用することはあまり好ましくない。上記可塑剤としては特に限定されず、例えば、ジブチルフタレート、ジ−2−エチルヘキシルフタレート、ジ−2−エチルヘキシルアジペート等が挙げられる。   In addition, a plasticizer may be added to the molded body for the purpose of improving processability at the time of molding. However, since the heat resistance of the molded body may be lowered, it is not preferable to use a large amount. Absent. The plasticizer is not particularly limited, and examples thereof include dibutyl phthalate, di-2-ethylhexyl phthalate, and di-2-ethylhexyl adipate.

更に、上記成形体には施工性を向上させる目的で、熱可塑性エラストマーが添加されていてもよい。上記熱可塑性エラストマーとしては、特に限定されず、例えば、アクリルニトリル−ブタジエン共重合体(NBR) 、エチレン−酢酸ビニル共重合体(EVA) 、エチレン−酢酸ビニル−一酸化炭素共重合体(EVACO) 、塩化ビニル−酢酸ビニル共重合体や塩化ビニル−塩化ビニリデン共重合体等の塩化ビニル系熱可塑性エラストマー、スチレン系熱可塑性エラストマー、オレフィン系熱可塑性エラストマー、ウレタン系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー等が挙げられる。これらの熱可塑性エラストマーは、単独で用いられてもよいし、2種類以上が併用されてもよい。   Furthermore, a thermoplastic elastomer may be added to the molded body for the purpose of improving workability. The thermoplastic elastomer is not particularly limited. For example, acrylonitrile-butadiene copolymer (NBR), ethylene-vinyl acetate copolymer (EVA), ethylene-vinyl acetate-carbon monoxide copolymer (EVACO). , Vinyl chloride thermoplastic elastomers such as vinyl chloride-vinyl acetate copolymer and vinyl chloride-vinylidene chloride copolymer, styrene thermoplastic elastomer, olefin thermoplastic elastomer, urethane thermoplastic elastomer, polyester thermoplastic elastomer And polyamide-based thermoplastic elastomers. These thermoplastic elastomers may be used alone or in combination of two or more.

上記添加剤をCPVCに混合する方法としては、特に限定されず、例えば、ホットブレンドによる方法、コールドブレンドによる方法等が挙げられる。   The method for mixing the additive with CPVC is not particularly limited, and examples thereof include a method using hot blending and a method using cold blending.

本発明の塩素化塩化ビニル系樹脂の製造方法の構成は上記の通りであり、得られた塩素化塩化ビニル系樹脂は不安定構造が少なく、熱安定性が優れている。又、その成形体は熱安定性が優れているので、建築部材、管工機材、住宅資材等の用途で好適に用いられる。特に、耐熱性と熱安定性が要求される、大型の耐熱部材に好適に用いられる。 The structure of the manufacturing method of the chlorinated vinyl chloride resin of the present invention is as described above, and the obtained chlorinated vinyl chloride resin has few unstable structures and is excellent in thermal stability. Moreover, since the molded body is excellent in thermal stability, it is suitably used in applications such as building members, pipe construction equipment, and housing materials. In particular, it is suitably used for large heat-resistant members that require heat resistance and thermal stability.

以下、本発明の実施例について説明するが、下記の例に限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited to the following examples.

(実施例1)
塩素化塩化ビニル樹脂の調製
内容積300リットルのグラスライニング製反応容器に、イオン交換水200重量部と平均重合度1000の塩化ビニル樹脂50重量部を供給し、攪拌して塩化ビニル樹脂をイオン交換水中に均一に分散させた後、減圧して反応容器内の酸素を除去すると共に、90℃に昇温した。
Example 1
Preparation of chlorinated vinyl chloride resin 200 parts by weight of ion-exchange water and 50 parts by weight of vinyl chloride resin having an average polymerization degree of 1000 are supplied to a glass-lined reaction vessel having an internal volume of 300 liters, and the vinyl chloride resin is ion-exchanged by stirring. After uniformly dispersing in water, the pressure was reduced to remove oxygen in the reaction vessel, and the temperature was raised to 90 ° C.

次いで、塩素を反応容器内に、塩素分圧が0.4MPaになるように供給し、0.2重量%過酸化水素を1時間当たり1重量部(320ppm/時間)添加しながら塩素化反応を行い、塩素化された塩化ビニル樹脂の塩素含有量が62重量%になるまで反応を行った。 Next, chlorine is supplied into the reaction vessel so that the partial pressure of chlorine is 0.4 MPa, and the chlorination reaction is performed while adding 1 part by weight (320 ppm / hour) of 0.2 wt% hydrogen peroxide per hour. The reaction was continued until the chlorine content of the chlorinated vinyl chloride resin was 62 % by weight.

塩素化された塩化ビニル樹脂の塩素含有量が62重量%(5重量%手前)に達した時に、0.2重量%過酸化水素の添加量を1時間当たり0.1重量部(200ppm/時間)に減少し、平均塩素消費速度が0.012kg/PVC−kg・5minになるように調整して、塩素化を進め、64重量%(3重量%手前)に達した時に0.2重量%過酸化水素の添加量を1時間当たり150ppm/時間に減少し、平均塩素消費速度が0.008kg/PVC−kg・5minになるように調整して塩素化を進め、塩素含有量が66.9重量%の塩素化塩化ビニル樹脂を得た。   When the chlorine content of the chlorinated vinyl chloride resin reaches 62% by weight (before 5% by weight), the addition amount of 0.2% by weight hydrogen peroxide is 0.1 parts by weight (200 ppm / hour). ), The average chlorine consumption rate is adjusted to 0.012kg / PVC-kg · 5min, chlorination is advanced, and when it reaches 64% by weight (before 3% by weight), 0.2% by weight The amount of hydrogen peroxide added was reduced to 150 ppm / hour per hour, the chlorination was advanced by adjusting the average chlorine consumption rate to 0.008 kg / PVC-kg · 5 min, and the chlorine content was 66.9. A weight percent chlorinated vinyl chloride resin was obtained.

塩素化塩化ビニル系樹脂成形体の作製
得られた塩素化塩化ビニル樹脂100重量部に、有機錫系安定剤(三共有機合成社製、商品名「ONZ−100F」)1.5重量部、衝撃改質剤(鐘淵化学社製、商品名「M511」)8重量部、滑剤(三井化学社製、商品名「Hiwax2203A」)1重量部及び滑剤(理研ビタミン社製、商品名「SL800」)0.5重量部を添加し、攪拌混合して、塩素化塩化ビニル系樹脂組成物を得た。得られた塩素化塩化ビニル系樹脂組成物を押出機(長田製作所社製、商品名「SLM−50」)に供給し、押出樹脂温度205℃、スクリュー回転数19.5rpmで押出成形を行い、外径20mm、厚さ3mmのパイプ状成形体を作製した。
Production of Chlorinated Vinyl Chloride-Based Resin Molded Body To 100 parts by weight of the obtained chlorinated vinyl chloride resin, 1.5 parts by weight of an organic tin stabilizer (trade name “ONZ-100F” manufactured by Sansha Co., Ltd.), 8 parts by weight of impact modifier (trade name “M511” manufactured by Kaneka Chemical Co., Ltd.), 1 part by weight of lubricant (trade name “Hiwax 2203A” manufactured by Mitsui Chemicals, Inc.) and lubricant (trade name “SL800” manufactured by Riken Vitamin Co., Ltd.) ) 0.5 part by weight was added and mixed by stirring to obtain a chlorinated vinyl chloride resin composition. The obtained chlorinated vinyl chloride resin composition was supplied to an extruder (trade name “SLM-50” manufactured by Nagata Seisakusho Co., Ltd.), and extrusion molding was performed at an extrusion resin temperature of 205 ° C. and a screw rotation speed of 19.5 rpm. A pipe-shaped molded body having an outer diameter of 20 mm and a thickness of 3 mm was produced.

(実施例2)
内容積300リットルのグラスライニング製反応容器に、イオン交換水200重量部と平均重合度1000の塩化ビニル樹脂50重量部を供給し、攪拌して塩化ビニル樹脂をイオン交換水中に均一に分散させた後、減圧して反応容器内の酸素を除去すると共に、100℃に昇温した。
(Example 2)
200 parts by weight of ion-exchanged water and 50 parts by weight of vinyl chloride resin having an average polymerization degree of 1000 were supplied to a glass-lined reaction vessel having an internal volume of 300 liters, and the vinyl chloride resin was uniformly dispersed in the ion-exchanged water by stirring. Thereafter, the pressure was reduced to remove oxygen in the reaction vessel, and the temperature was raised to 100 ° C.

次いで、塩素を反応容器内に、塩素分圧が0.4MPaになるように供給し、0.2重量%過酸化水素を1時間当たり1重量部(320ppm/時間)添加しながら塩素化反応を行い、塩素化された塩化ビニル樹脂の塩素含有量が62重量%になるまで反応を行った。 Next, chlorine is supplied into the reaction vessel so that the partial pressure of chlorine is 0.4 MPa, and the chlorination reaction is performed while adding 1 part by weight (320 ppm / hour) of 0.2 wt% hydrogen peroxide per hour. The reaction was continued until the chlorine content of the chlorinated vinyl chloride resin was 62 % by weight.

塩素化された塩化ビニル樹脂の塩素含有量が62重量%(5重量%手前)に達した時に、0.2重量%過酸化水素の添加量を1時間当たり0.1重量部(200ppm/時間)に減少し、平均塩素消費速度が0.012kg/PVC−kg・5minになるように調整して、塩素化を進め、64重量%(3重量%手前)に達した時に0.2重量%過酸化水素の添加量を1時間当たり150ppmに減少し、塩素消費速度が0.008kg/PVC−kg・5minになるように調整して塩素化を進め、塩素含有量が67.3重量%の塩素化塩化ビニル樹脂を得た。
得られた塩素化塩化ビニル樹脂を用いて、実施例1で行ったと同様にしてパイプ状成形体を作製した。
When the chlorine content of the chlorinated vinyl chloride resin reaches 62% by weight (before 5% by weight), the addition amount of 0.2% by weight hydrogen peroxide is 0.1 parts by weight (200 ppm / hour). ), The average chlorine consumption rate is adjusted to 0.012kg / PVC-kg · 5min, chlorination is advanced, and when it reaches 64% by weight (before 3% by weight), 0.2% by weight The amount of hydrogen peroxide added was reduced to 150 ppm per hour, and the chlorination was advanced by adjusting the chlorine consumption rate to 0.008 kg / PVC-kg · 5 min. The chlorine content was 67.3 wt%. A chlorinated vinyl chloride resin was obtained.
Using the obtained chlorinated vinyl chloride resin, a pipe-like molded body was produced in the same manner as in Example 1.

(実施例3)
塩素化塩化ビニル樹脂の調製
内容積300リットルのグラスライニング製反応容器に、イオン交換水200重量部と平均重合度1000の塩化ビニル樹脂50重量部を供給し、攪拌して塩化ビニル樹脂をイオン交換水中に均一に分散させた後、減圧して反応容器内の酸素を除去すると共に、100℃に昇温した。
Example 3
Preparation of chlorinated vinyl chloride resin 200 parts by weight of ion-exchange water and 50 parts by weight of vinyl chloride resin having an average polymerization degree of 1000 are supplied to a glass-lined reaction vessel having an internal volume of 300 liters, and the vinyl chloride resin is ion-exchanged by stirring. After uniformly dispersing in water, the pressure was reduced to remove oxygen in the reaction vessel, and the temperature was raised to 100 ° C.

次いで、塩素を反応容器内に、塩素分圧が0.4MPaになるように供給し、0.2重量%過酸化水素を1時間当たり1重量部(320ppm/時間)添加しながら塩素化反応を行い、塩素化された塩化ビニル樹脂の塩素含有量が66重量%になるまで反応を行った。 Next, chlorine is supplied into the reaction vessel so that the partial pressure of chlorine is 0.4 MPa, and the chlorination reaction is performed while adding 1 part by weight (320 ppm / hour) of 0.2 wt% hydrogen peroxide per hour. The reaction was continued until the chlorine content of the chlorinated vinyl chloride resin reached 66 % by weight.

塩素化された塩化ビニル樹脂の塩素含有量が66重量%(5重量%手前)に達した時に、0.2重量%過酸化水素の添加量を1時間当たり200ppmに減少し、平均塩素消費速度が0.016kg/PVC−kg・5minになるように調整して、塩素化を進め、68重量%(3重量%手前)に達した時に0.2重量%過酸化水素の添加量を1時間当たり150ppmに減少し、塩素消費速度が0.012kg/PVC−kg・5minになるように調整して塩素化を進め、塩素含有量が70.7重量%の塩素化塩化ビニル樹脂を得た。 When the chlorine content of the chlorinated vinyl chloride resin reached 66% by weight (5% by weight), the amount of 0.2% by weight hydrogen peroxide was reduced to 200 ppm per hour, and the average chlorine consumption The rate is adjusted to 0.016 kg / PVC-kg · 5 min, chlorination proceeds, and when the amount reaches 68% by weight (before 3% by weight), the addition amount of 0.2% by weight hydrogen peroxide is 1 Reduced to 150 ppm per hour and adjusted the chlorine consumption rate to 0.012 kg / PVC-kg · 5 min to advance chlorination to obtain a chlorinated vinyl chloride resin with a chlorine content of 70.7 wt% It was.

塩素化塩化ビニル系樹脂成形体の作製
得られた塩素化塩化ビニル系樹脂100重量部に、有機錫系安定剤(三共有機合成社製、商品名「ONZ−100F」)2.0重量部、衝撃改質剤(鐘淵化学社製、商品名「M511」)8重量部、滑剤(三井化学社製、商品名「Hiwax2203A」)1.5重量部及び滑剤(理研ビタミン社製、商品名「SL800」)1.0重量部を添加し、攪拌混合して、塩素化塩化ビニル系樹脂組成物を得た。得られた塩素化塩化ビニル系樹脂組成物を押出機(長田製作所社製、商品名「SLM−50」)に供し、押出樹脂温度205℃、スクリュー回転数19.5rpmで押出成形を行い、外径20mm、厚さ3mmのパイプ状成形体を作製した。
Production of Chlorinated Vinyl Chloride Resin Molded Body To 100 parts by weight of the obtained chlorinated vinyl chloride resin, 2.0 parts by weight of an organic tin stabilizer (trade name “ONZ-100F” manufactured by Sansha Gosei Co., Ltd.) , Impact modifier (trade name “M511” manufactured by Kaneka Chemical Co., Ltd.) 8 parts by weight, lubricant (manufactured by Mitsui Chemicals, trade name “Hiwax 2203A”) 1.5 parts by weight and lubricant (trade name, manufactured by Riken Vitamin Co., Ltd.) "SL800") 1.0 part by weight was added and mixed with stirring to obtain a chlorinated vinyl chloride resin composition. The obtained chlorinated vinyl chloride resin composition was subjected to an extrusion machine (trade name “SLM-50”, manufactured by Nagata Seisakusho Co., Ltd.) and subjected to extrusion molding at an extrusion resin temperature of 205 ° C. and a screw rotation number of 19.5 rpm. A pipe-shaped molded body having a diameter of 20 mm and a thickness of 3 mm was produced.

(実施例4)
内容積300リットルのグラスライニング製反応容器に、イオン交換水200重量部と平均重合度1000の塩化ビニル樹脂50重量部を供給し、攪拌して塩化ビニル樹脂をイオン交換水中に均一に分散させた後、減圧して反応容器内の酸素を除去すると共に、110℃に昇温した。
Example 4
200 parts by weight of ion-exchanged water and 50 parts by weight of vinyl chloride resin having an average polymerization degree of 1000 were supplied to a glass-lined reaction vessel having an internal volume of 300 liters, and the vinyl chloride resin was uniformly dispersed in the ion-exchanged water by stirring. Thereafter, the pressure was reduced to remove oxygen in the reaction vessel, and the temperature was raised to 110 ° C.

次いで、塩素を反応容器内に、塩素分圧が0.4MPaになるように供給し、0.2重量%過酸化水素を1時間当たり1重量部(320ppm/時間)添加しながら塩素化反応を行い、塩素化された塩化ビニル樹脂の塩素含有量が66重量%になるまで反応を行った。 Next, chlorine is supplied into the reaction vessel so that the partial pressure of chlorine is 0.4 MPa, and the chlorination reaction is performed while adding 1 part by weight (320 ppm / hour) of 0.2 wt% hydrogen peroxide per hour. The reaction was continued until the chlorine content of the chlorinated vinyl chloride resin reached 66 % by weight.

塩素化された塩化ビニル樹脂の塩素含有量が66重量%(5重量%手前)に達した時に、0.2重量%過酸化水素の添加量を1時間当たり0.1重量部(200ppm/時間)に減少し、平均塩素消費速度が0.016kg/PVC−kg・5minになるように調整して、塩素化を進め、68重量%(3重量%手前)に達した時に0.2重量%過酸化水素の添加量を1時間当たり150pmに減少し、塩素消費速度が0.010kg/PVC−kg・5minになるように調整して塩素化を進め、塩素含有量が70.9重量%の塩素化塩化ビニル樹脂を得た。
得られた塩素化塩化ビニル樹脂を用いて、実施例3で行ったと同様にしてパイプ状成形体を作製した。
When the chlorine content of the chlorinated vinyl chloride resin reaches 66% by weight (before 5% by weight), the amount of 0.2% by weight hydrogen peroxide added is 0.1 parts by weight ( 200 ppm / hour). Time), the average chlorine consumption rate is adjusted to 0.016kg / PVC-kg · 5min, chlorination is advanced, and when it reaches 68 wt% (3 wt% before), 0.2 wt% % Hydrogen peroxide was reduced to 150 pm per hour, the chlorine consumption rate was adjusted to 0.010 kg / PVC-kg · 5 min, and chlorination proceeded, resulting in a chlorine content of 70.9 wt. % Chlorinated vinyl chloride resin was obtained.
Using the obtained chlorinated vinyl chloride resin, a pipe-shaped molded body was produced in the same manner as in Example 3.

(比較例1)
内部に光照射設備を有する、内容積300リットルのグラスライニング製反応容器に、イオン交換水200重量部と平均重合度1000の塩化ビニル樹脂50重量部を供給し、攪拌して塩化ビニル樹脂をイオン交換水中に分散させた後、減圧して反応容器内の酸素を除去すると共に、60℃に昇温した。
(Comparative Example 1)
200 parts by weight of ion-exchanged water and 50 parts by weight of a vinyl chloride resin having an average polymerization degree of 1000 are supplied to a glass-lined reaction vessel having an internal volume of 300 liters and stirred to ionize the vinyl chloride resin. After being dispersed in the exchanged water, the pressure was reduced to remove oxygen in the reaction vessel, and the temperature was raised to 60 ° C.

次いで、塩素を反応容器内に、塩素分圧が0.05MPaになるように供給し、水銀灯を30kwhの強さで照射して塩素化反応を行い、塩素化された塩化ビニル樹脂の塩素含有率が67.3重量%になるまで反応を行った。
得られた塩素化塩化ビニル樹脂を用いて、実施例1で行ったと同様にしてパイプ状成形体を作製した。
Next, chlorine is supplied into the reaction vessel so that the partial pressure of chlorine is 0.05 MPa, and a chlorination reaction is performed by irradiating a mercury lamp at an intensity of 30 kwh. The chlorine content of the chlorinated vinyl chloride resin The reaction was continued until 67.3 wt%.
Using the obtained chlorinated vinyl chloride resin, a pipe-like molded body was produced in the same manner as in Example 1.

比較例2
塩素化塩化ビニル樹脂の調製
内部に光照射設備を有する、内容積300リットルのグラスライニング製反応容器に、イオン交換水200重量部と平均重合度800の塩化ビニル樹脂50重量部を供給し、攪拌して塩化ビニル樹脂をイオン交換水中に分散させた後、減圧して反応容器内の酸素を除去すると共に、60℃に昇温した。
( Comparative Example 2 )
Preparation of chlorinated vinyl chloride resin 200 parts by weight of ion-exchanged water and 50 parts by weight of vinyl chloride resin having an average degree of polymerization of 800 parts are fed into a 300-liter glass-lined reaction vessel having a light irradiation facility inside and stirred. Then, after the vinyl chloride resin was dispersed in ion-exchanged water, the pressure was reduced to remove oxygen in the reaction vessel, and the temperature was raised to 60 ° C.

次いで、塩素を反応容器内に、塩素分圧が0.05MPaになるように供給し、水銀灯を30kwhの強さで照射して塩素化反応を行い、塩素化された塩化ビニル樹脂の塩素含有率が70.0重量%になるまで反応を行った。
得られた塩素化塩化ビニル樹脂を用いて、実施例3で行ったと同様にしてパイプ状成形体を作製した。
Next, chlorine is supplied into the reaction vessel so that the partial pressure of chlorine is 0.05 MPa, and a chlorination reaction is performed by irradiating a mercury lamp at an intensity of 30 kwh. The chlorine content of the chlorinated vinyl chloride resin The reaction was continued until 70.0% by weight.
Using the obtained chlorinated vinyl chloride resin, a pipe-shaped molded body was produced in the same manner as in Example 3.

上記実施例1〜4及び比較例1、2で得られた塩素化塩化ビニル樹脂の塩素含有量、UV吸光度及び脱HCl時間を測定し、分子構造解析を行って−CCl2 −、−CHCl−及び−CH2 −のモル比及び4連子以上のVC単位のモル比率を測定し、結果を表1に示した。又、得られたパイプ状成形体の熱安定性を測定し、結果を表1に示した。 Above Examples 1 to 4 and the chlorine content of the chlorinated vinyl chloride resin obtained in Comparative Examples 1 and 2, by measuring the UV absorbance and de HCl time, -CCl perform molecular structure analysis 2 -, - CHCl- And the molar ratio of —CH 2 — and the molar ratio of VC units of four or more ligands were measured, and the results are shown in Table 1. Further, the thermal stability of the obtained pipe-shaped molded body was measured, and the results are shown in Table 1.

上記測定方法は以下の通りである。
(1)塩素含有量の測定
JIS K 7229に準拠して測定を行った。
The measurement method is as follows.
(1) Measurement of chlorine content The chlorine content was measured according to JIS K 7229.

(2)分子構造解析
R.A.Komoroski,R.G.Parker,J.P.Shocker,Macromolecules,1985,18,1257−1265に記載のNMR測定方法に準拠して測定を行った。
(2) Molecular structure analysis A. Komoroski, R.A. G. Parker, J .; P. Measurement was performed in accordance with the NMR measurement method described in Shocker, Macromolecules, 1985, 18, 1257-1265.

NMR測定条件は以下の通りである。
装置:FT−NMRJEOLJNM−AL−300
測定核: 13C(プロトン完全デカップリング)
パルス幅:90°
PD:2. 4sec
溶媒:o- ジクロロベンゼン:重水素化ベンゼン(C5D5)=3:1
試料濃度:約20%
温度:110℃
基準物質:ベンゼンの中央のシグナルを128ppmとした
積算回数:20000回
The NMR measurement conditions are as follows.
Apparatus: FT-NMRJEOLJNM-AL-300
Measurement nucleus: 13C (proton complete decoupling)
Pulse width: 90 °
PD: 2.4 sec
Solvent: o-dichlorobenzene: deuterated benzene (C5D5) = 3: 1
Sample concentration: about 20%
Temperature: 110 ° C
Reference substance: The number of integrations when the central signal of benzene is 128 ppm: 20000 times

(3)UV吸光度の測定(216nm)
216nmの波長におけるUV吸光度を下記測定条件で測定した。
装置:自記分光光度計日立製作所U−3500
溶媒:THF
濃度:試料20mg/THF25ml・・・800ppm(実施例1、2及び比較例1)
試料10mg/THF25ml・・・800ppm (実施例3〜5)
(3) Measurement of UV absorbance (216 nm)
The UV absorbance at a wavelength of 216 nm was measured under the following measurement conditions.
Apparatus: Self-recording spectrophotometer Hitachi U-3500
Solvent: THF
Concentration: Sample 20 mg / THF 25 ml... 800 ppm (Examples 1 and 2 and Comparative Example 1)
Sample 10 mg / THF 25 ml ... 800 ppm (Examples 3 to 5)

(4)脱HCl時間
得られた塩素化塩化ビニル樹脂1gを試験管に入れ、オイルバスを使用して190℃で加熱、発生したHClガスを回収し100mlのイオン交換水に溶解させpHを測定した。pH値から塩素化塩化ビニル樹脂100万gあたり何gのHClが発生したかを算出し、この値が7000ppmに到達する時間を計測した。
(4) 1 g of chlorinated vinyl chloride resin obtained in the HCl removal time is placed in a test tube, heated at 190 ° C. using an oil bath, the generated HCl gas is recovered, dissolved in 100 ml of ion-exchanged water, and the pH is measured. did. From the pH value, it was calculated how many g of HCl was generated per 1 million g of the chlorinated vinyl chloride resin, and the time until this value reached 7000 ppm was measured.

(5)熱安定性評価
得られたパイプ状成形体を2cm×3cmに切り出し、200℃のギアオーブンに所定枚数を入れ、10分ごとに取り出し、黒化時間を計測した。
(5) Evaluation of thermal stability The obtained pipe-shaped molded body was cut into 2 cm x 3 cm, a predetermined number was put in a gear oven at 200 ° C, taken out every 10 minutes, and the blackening time was measured.

Figure 0004901130
Figure 0004901130

Claims (12)

塩素含有量が65重量%以上、68重量%未満であり、分子構造中に含まれる−CCl2 −が6.2モル%以下、−CHCl−が58.0モル%以上、且つ、−CH2 −が35.8モル%以下である塩素化塩化ビニル系樹脂の製造方法であって、最終塩素含有量から5重量%手前に達した時点以降の塩素化を塩素消費速度(原料塩化ビニル系樹脂1kgあたりの5分間の塩素消費量)を0.010〜0.015kg/PVC−Kg・5minの範囲にて、又、3重量%手前に達した時点以降の塩素化を塩素消費速度(原料塩化ビニル系樹脂1kgあたりの5分間の塩素消費量)を前記塩素消費速度より遅く且つ0.005〜0.010kg/PVC−Kg・5minの範囲にて行うことを特徴とする塩素化塩化ビニル系樹脂の製造方法。 The chlorine content is 65 wt% or more and less than 68 wt%, -CCl 2- contained in the molecular structure is 6.2 mol% or less, -CHCl- is 58.0 mol% or more, and -CH 2 -Is a method for producing a chlorinated vinyl chloride resin having 35.8 mol% or less, and the chlorination after the point when the final chlorine content reaches 5% by weight is the chlorine consumption rate (raw material vinyl chloride resin) Chlorination after the point of reaching 3 wt% in the range of 0.010 to 0.015 kg / PVC-Kg · 5 min (chlorine consumption for 5 minutes per kg) Chlorinated vinyl chloride resin characterized in that the chlorine consumption for 5 minutes per kg of vinyl resin) is slower than the chlorine consumption rate and in the range of 0.005 to 0.010 kg / PVC-Kg · 5 min. Manufacturing method. 塩素化塩化ビニル系樹脂の分子構造中に含まれる−CCl2 −が5.9モル%以下、−CHCl−が59.5モル%以上、且つ、−CH2 −が34.6モル%以下であることを特徴とする請求項1記載の塩素化塩化ビニル系樹脂の製造方法。 -CCl 2- contained in the molecular structure of the chlorinated vinyl chloride resin is 5.9 mol% or less, -CHCl- is 59.5 mol% or more, and -CH 2 -is 34.6 mol% or less. The method for producing a chlorinated vinyl chloride resin according to claim 1, wherein: 塩素化塩化ビニル系樹脂の分子構造中に含まれる4連子以上の塩化ビニル単位が30.0モル%以下であることを特徴とする請求項1又は2記載の塩素化塩化ビニル系樹脂の製造方法。   3. The production of a chlorinated vinyl chloride resin according to claim 1 or 2, wherein the vinyl chloride unit of 4 or more ligands contained in the molecular structure of the chlorinated vinyl chloride resin is 30.0 mol% or less. Method. 塩素化塩化ビニル系樹脂の216nmの波長におけるUV吸光度が0.8以下である請求項1、2又は3記載の塩素化塩化ビニル系樹脂の製造方法。   The method for producing a chlorinated vinyl chloride resin according to claim 1, 2, or 3, wherein the UV absorbance of the chlorinated vinyl chloride resin at a wavelength of 216 nm is 0.8 or less. 塩素化塩化ビニル系樹脂の190℃における脱HCl量が7000ppmに到達するのに必要な時間が50秒以上である請求項1〜4のいずれか1項記載の塩素化塩化ビニル系樹脂の製造方法。 The method for producing a chlorinated vinyl chloride resin according to any one of claims 1 to 4, wherein the time required for the amount of HCl removed at 190 ° C of the chlorinated vinyl chloride resin to reach 7000 ppm is 50 seconds or more. . 塩素含有量が70重量%以上、72重量%未満であり、分子構造中に含まれる−CCl2 −が17.0モル%以下、−CHCl−が46.0モル%以上、且つ、−CH2 −が37.0モル%以下である塩素化塩化ビニル系樹脂の製造方法であって、最終塩素含有量から5重量%手前に達した時点以降の塩素化を塩素消費速度(原料塩化ビニル系樹脂1kgあたりの5分間の塩素消費量)を0.015〜0.020kg/PVC−Kg・5minの範囲にて、又、3重量%手前に達した時点以降の塩素化を塩素消費速度(原料塩化ビニル系樹脂1kgあたりの5分間の塩素消費量)を前記塩素消費速度より遅く且つ0.005〜0.015kg/PVC−Kg・5minの範囲にて行うことを特徴とする塩素化塩化ビニル系樹脂の製造方法。 The chlorine content is 70 wt% or more and less than 72 wt%, —CCl 2 — contained in the molecular structure is 17.0 mol% or less, —CHCl— is 46.0 mol% or more, and —CH 2 -Is a method for producing a chlorinated vinyl chloride resin having a content of 37.0 mol% or less, wherein the chlorination after the point when the final chlorine content reaches 5% by weight is determined by the chlorine consumption rate (raw material vinyl chloride resin). Chlorination after the point of reaching 5 wt% in the range of 0.015-0.020kg / PVC-Kg · 5min) (chlorine consumption for 5 minutes per kg) Chlorinated vinyl chloride resin characterized in that the chlorine consumption for 5 minutes per kg of vinyl resin) is slower than the chlorine consumption rate and in the range of 0.005 to 0.015 kg / PVC-Kg · 5 min. Manufacturing method. 塩素化塩化ビニル系樹脂の分子構造中に含まれる−CCl2 −が16.0モル%以下、−CHCl−が53.5モル%以上、且つ、−CH2 −が30.5モル%以下であることを特徴とする請求項6記載の塩素化塩化ビニル系樹脂の製造方法。 -CCl 2 contained in the molecular structure of the chlorinated vinyl chloride resin - 16.0 mol% or less, -CHCl- is 53.5 mol% or more, and, -CH 2 - is at 30.5 mol% The method for producing a chlorinated vinyl chloride resin according to claim 6. 塩素化塩化ビニル系樹脂の分子構造中に含まれる4連子以上の塩化ビニル単位が18.0モル%以下であることを特徴とする請求項6又は7記載の塩素化塩化ビニル系樹脂の製造方法。  The production of a chlorinated vinyl chloride resin according to claim 6 or 7, wherein a vinyl chloride unit of 4 or more ligands contained in the molecular structure of the chlorinated vinyl chloride resin is 18.0 mol% or less. Method. 塩素化塩化ビニル系樹脂の216nmの波長におけるUV吸光度が8.0以下である請求項6,7又は8記載の塩素化塩化ビニル系樹脂の製造方法。   9. The method for producing a chlorinated vinyl chloride resin according to claim 6, 7 or 8, wherein the UV absorbance of the chlorinated vinyl chloride resin at a wavelength of 216 nm is 8.0 or less. 塩素化塩化ビニル系樹脂の190℃における脱HCl量が7000ppmに到達するのに必要な時間が100秒以上である請求項6〜9のいずれか1項記載の塩素化塩化ビニル系樹脂の製造方法。   The method for producing a chlorinated vinyl chloride resin according to any one of claims 6 to 9, wherein the time required for the amount of HCl removed at 190 ° C of the chlorinated vinyl chloride resin to reach 7000 ppm is 100 seconds or more. . 塩化ビニル系樹脂を水性溶媒中で懸濁状態となした状態で、反応器内に液体塩素又は気体塩素を導入し塩素化することを特徴とする請求項1〜10のいずれか1項記載の塩素化塩化ビニル系樹脂の製造方法。   The chlorination is carried out by introducing liquid chlorine or gaseous chlorine into the reactor while the vinyl chloride resin is suspended in an aqueous solvent. A method for producing a chlorinated vinyl chloride resin. 塩素化を、紫外線照射を行わず、熱及び過酸化水素により塩化ビニル系樹脂の結合や塩素を励起させて行うことを特徴とする請求項11記載の塩素化塩化ビニル系樹脂の製造方法。 12. The method for producing a chlorinated vinyl chloride resin according to claim 11, wherein the chlorination is carried out by irradiating the bond of vinyl chloride resin or chlorination with heat and hydrogen peroxide without performing ultraviolet irradiation.
JP2005151933A 2005-05-25 2005-05-25 Method for producing chlorinated vinyl chloride resin Active JP4901130B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005151933A JP4901130B2 (en) 2005-05-25 2005-05-25 Method for producing chlorinated vinyl chloride resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005151933A JP4901130B2 (en) 2005-05-25 2005-05-25 Method for producing chlorinated vinyl chloride resin

Publications (2)

Publication Number Publication Date
JP2006328166A JP2006328166A (en) 2006-12-07
JP4901130B2 true JP4901130B2 (en) 2012-03-21

Family

ID=37550206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005151933A Active JP4901130B2 (en) 2005-05-25 2005-05-25 Method for producing chlorinated vinyl chloride resin

Country Status (1)

Country Link
JP (1) JP4901130B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100063247A1 (en) * 2006-11-24 2010-03-11 Sekisui Chemical Co., Ltd. Chlorinated vinyl chloride-based resin and manufacturing method
WO2015046454A1 (en) * 2013-09-27 2015-04-02 積水化学工業株式会社 Molding resin composition including chlorinated vinyl chloride-based resin, and molded article thereof
WO2015046456A1 (en) * 2013-09-27 2015-04-02 積水化学工業株式会社 Molding resin composition including chlorinated vinyl chloride-based resin, and molded article thereof
JP6532875B2 (en) * 2014-07-24 2019-06-19 積水化学工業株式会社 Molding resin composition
WO2017065224A1 (en) * 2015-10-15 2017-04-20 株式会社カネカ Chlorinated vinyl chloride resin production method
CN108602911A (en) * 2016-02-25 2018-09-28 株式会社钟化 The manufacturing method of chlorinated vinyl chloride-based resin
JP6589069B2 (en) 2017-09-27 2019-10-09 積水化学工業株式会社 Resin composition for injection molding
US11866574B2 (en) 2017-09-27 2024-01-09 Sekisui Chemical Co., Ltd. Resin composition for molding
JP6933777B2 (en) * 2019-03-29 2021-09-08 積水化学工業株式会社 Chlorinated vinyl chloride resin
JP7041264B2 (en) * 2019-03-29 2022-03-23 積水化学工業株式会社 Chlorinated vinyl chloride resin
TW202041543A (en) * 2019-03-29 2020-11-16 日商積水化學工業股份有限公司 Chlorinated vinyl-chloride-based resin
CN112358556B (en) * 2020-10-16 2023-07-07 云南正邦科技有限公司 Method for preparing chlorinated polyvinyl chloride by micro-channel reaction and product
JP7474350B2 (en) 2021-09-24 2024-04-24 積水化学工業株式会社 Chlorinated vinyl chloride resin, molding resin composition and molded article
JP7474351B2 (en) 2021-09-24 2024-04-24 積水化学工業株式会社 Chlorinated vinyl chloride resin, molding resin composition and molded article

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3057126B2 (en) * 1993-01-29 2000-06-26 徳山積水工業株式会社 Method for producing chlorinated vinyl chloride resin
JPH0790019A (en) * 1993-09-27 1995-04-04 Tokuyama Sekisui Ind Corp Production of chlorinated vinyl chloride resin
JP2000119333A (en) * 1998-10-20 2000-04-25 Tokuyama Sekisui Ind Corp Production of chlorinated vinyl chloride-based resin
JP2000281720A (en) * 1999-03-30 2000-10-10 Tokuyama Sekisui Ind Corp Chlorinated vinyl chloride resin
JP2001278992A (en) * 2000-03-30 2001-10-10 Sekisui Chem Co Ltd Molded product of chlorinated vinyl chloride resin and resin pipe
JP2005036216A (en) * 2003-06-27 2005-02-10 Sekisui Chem Co Ltd Vinyl chloride resin and vinyl chloride resin-molded article

Also Published As

Publication number Publication date
JP2006328166A (en) 2006-12-07

Similar Documents

Publication Publication Date Title
JP4901130B2 (en) Method for producing chlorinated vinyl chloride resin
WO2008062526A1 (en) Chlorinated vinyl chloride resins and process for production
JP6263129B2 (en) Molding resin composition containing chlorinated vinyl chloride resin and molded article thereof
JP6263128B2 (en) Molding resin composition containing chlorinated vinyl chloride resin and molded article thereof
JP2021185240A (en) Chlorinated vinyl chloride-based resin
JP7488850B2 (en) Molding resin composition and molded body
JP7041264B2 (en) Chlorinated vinyl chloride resin
CN113614121B (en) Chlorinated polyvinyl chloride resin
JP7474350B2 (en) Chlorinated vinyl chloride resin, molding resin composition and molded article
JP6933777B2 (en) Chlorinated vinyl chloride resin
WO2023048245A1 (en) Chlorinated vinyl chloride-based resin, resin composition for molding, and molded article
JP4171280B2 (en) Rigid vinyl chloride resin tube
TWI428360B (en) Production method of chlorinated vinyl chloride resin
WO2021065941A1 (en) Resin composition for molding and molded article
JP2003301971A (en) Hard vinyl chloride-based resin pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111227

R150 Certificate of patent or registration of utility model

Ref document number: 4901130

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3