JP4170878B2 - Refractive index measuring device - Google Patents

Refractive index measuring device Download PDF

Info

Publication number
JP4170878B2
JP4170878B2 JP2003364710A JP2003364710A JP4170878B2 JP 4170878 B2 JP4170878 B2 JP 4170878B2 JP 2003364710 A JP2003364710 A JP 2003364710A JP 2003364710 A JP2003364710 A JP 2003364710A JP 4170878 B2 JP4170878 B2 JP 4170878B2
Authority
JP
Japan
Prior art keywords
light
refractive index
output value
measurement
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003364710A
Other languages
Japanese (ja)
Other versions
JP2005127902A (en
Inventor
賢治 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto Electronics Manufacturing Co Ltd
Original Assignee
Kyoto Electronics Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto Electronics Manufacturing Co Ltd filed Critical Kyoto Electronics Manufacturing Co Ltd
Priority to JP2003364710A priority Critical patent/JP4170878B2/en
Publication of JP2005127902A publication Critical patent/JP2005127902A/en
Application granted granted Critical
Publication of JP4170878B2 publication Critical patent/JP4170878B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、全反射法により屈折率を測定する屈折率測定装置に関する。   The present invention relates to a refractive index measuring apparatus that measures a refractive index by a total reflection method.

従来から、図2に示すような屈折率測定装置を用いて、全反射法で屈折率を測定する方法がある。屈折率測定装置は、被測定物が載置されたプリズム101の測定面102に向けて当該測定面102の背後から光源103を発光させ、上記測定面102で反射した光を受光センサ104で受光し、受光センサ104の出力値に基づいて屈折率を求める。   Conventionally, there is a method of measuring a refractive index by a total reflection method using a refractive index measuring apparatus as shown in FIG. The refractive index measuring device causes the light source 103 to emit light from behind the measurement surface 102 toward the measurement surface 102 of the prism 101 on which the object to be measured is placed, and the light receiving sensor 104 receives the light reflected by the measurement surface 102. Then, the refractive index is obtained based on the output value of the light receiving sensor 104.

屈折率測定装置は、測定面102に被測定物を載置するための窓をプリズム101を挟んで光源103と反対側の位置に備える。屈折率測定装置によっては、この窓から上記屈折率測定装置内に入射した外光により屈折率の測定精度が低下することがある。   The refractive index measurement device includes a window for placing a measurement object on the measurement surface 102 at a position opposite to the light source 103 with the prism 101 interposed therebetween. Depending on the refractive index measuring apparatus, the measurement accuracy of the refractive index may be reduced by external light that enters the refractive index measuring apparatus from the window.

従来の屋外で使用する簡易型屈折率測定装置では、測定面102に載置された被測定物に蓋が被せられた状態で、屈折率の測定を行っていたため、入射した外光が屈折率の測定に影響を及ぼすことはない。しかし、蓋を被せたり、屈折率測定後に蓋の裏側に付着した被測定物を掃除する手間等を省くために、近年、蓋をせずに屈折率の測定を行う屈折率測定装置が製品化されている。蓋を被せずに屈折率の測定を行う屈折率測定装置においては、入射した外光によって屈折率の測定精度が低下する。   In the conventional simple refractive index measuring apparatus used outdoors, the refractive index is measured in a state in which the object to be measured placed on the measurement surface 102 is covered with the lid, so that the incident external light has a refractive index. It does not affect the measurement. However, in recent years, a refractive index measurement device that measures the refractive index without a lid has been commercialized in order to save the trouble of covering the lid or cleaning the object to be measured attached to the back side of the lid after the refractive index measurement. Has been. In a refractive index measuring apparatus that measures a refractive index without covering the lid, the measurement accuracy of the refractive index is reduced by incident external light.

従来から、屈折率は液中の糖度によって変化することから、屈折率測定装置を果物の糖度を求めるために使用する、と言った広範な用途で古くから使用されている。果物の糖度を求める場合は、屋外で屈折率測定装置が使用される機会が多い。   Conventionally, since the refractive index changes depending on the sugar content in the liquid, it has long been used for a wide range of applications such as using a refractive index measuring device to determine the sugar content of fruits. When calculating the sugar content of fruits, there are many opportunities to use a refractive index measuring device outdoors.

屈折率測定装置が実験室で使用される場合、屈折率測定装置内に外光の入射を防ぐための対策をとることができるが、屋外の生産現場等で使用される場合、外光の入射を防ぐ対策をとることは困難である。   When the refractive index measurement device is used in a laboratory, measures can be taken to prevent the incidence of external light in the refractive index measurement device. However, when used at an outdoor production site, external light is incident. It is difficult to take measures to prevent this.

屈折率測定装置に入射した外光は、上記受光センサ104に受光されるために受光センサ104の出力値が外光に影響される。受光センサ104の出力値が外光に影響されることを無くすために、光源103を発光させたときと、光源103を消灯させたときの受光センサ104の出力値差に基づいて外光の影響がキャンセルされた出力値を算出し、算出した出力値に基づいて屈折率を求める方法が、屈折率測定装置に採用されている。   Since the outside light incident on the refractive index measuring device is received by the light receiving sensor 104, the output value of the light receiving sensor 104 is affected by the outside light. In order to prevent the output value of the light receiving sensor 104 from being influenced by external light, the influence of external light is based on the difference between the output values of the light receiving sensor 104 when the light source 103 is turned on and when the light source 103 is turned off. A method of calculating an output value in which is canceled and obtaining a refractive index based on the calculated output value is employed in a refractive index measuring apparatus.

受光センサの受光量と出力値の関係は、図3に示すように、受光量が一定の範囲では直線性を示す。しかし、その範囲より大きい受光量に対しては、受光量の変化に対して出力値の変化が小さく、受光量が極端に大きい場合、受光量が変化しても出力値はほとんど変化しない。   As shown in FIG. 3, the relationship between the amount of light received by the light receiving sensor and the output value exhibits linearity when the amount of received light is constant. However, for a received light amount that is larger than that range, the change in output value is small with respect to the change in the received light amount, and when the received light amount is extremely large, the output value hardly changes even if the received light amount changes.

屈折率測定装置内に強度の高い外光が入射した場合、光源103が点灯していると、受光センサ104の受光量と出力値の関係が直線性を示す範囲よりも大きくなることがある。このような外光が入射している場合、外光のキャンセリングを完全に行うことができないので、測定された屈折率に誤差が生じる可能性がある。   When external light with high intensity is incident on the refractive index measuring apparatus, if the light source 103 is turned on, the relationship between the amount of light received by the light receiving sensor 104 and the output value may be larger than the range showing linearity. When such external light is incident, it is not possible to completely cancel the external light, which may cause an error in the measured refractive index.

そのため、光源103を消灯させたときの受光センサ104の受光量が、一定の受光量以上である場合、測定値が正確でない旨の警告を測定者に報知する屈折率測定装置が提案されている。
特開平10−48130号公報
Therefore, there has been proposed a refractive index measurement device that notifies a measurer that a measured value is not accurate when the amount of light received by the light receiving sensor 104 when the light source 103 is turned off is equal to or greater than a certain amount of received light. .
JP 10-48130 A

測定値が正確でない警告を報知する場合、警告を報知するか否かの境界となる受光量の閾値を屈折率測定装置に設定しなければならない。しかしながら、直線性を示す受光量の範囲は、受光センサ毎にある程度のばらつきがある。また、受光センサ104のメーカによっても、直線性を保証する受光量の範囲が異なる。   When a warning with an inaccurate measurement value is notified, a threshold value of the amount of received light that becomes a boundary of whether or not to notify the warning must be set in the refractive index measuring device. However, the range of the received light amount showing linearity varies to some extent for each light receiving sensor. The range of the amount of received light that guarantees linearity varies depending on the manufacturer of the light receiving sensor 104.

上記閾値は、直線性を示す受光量の範囲が受光センサ毎に異なることを考慮して、余裕をもってかなり低目に設定され、そのため、実際には正確な測定が行われているにも関わらず、警告が報知されることがあり、屈折率測定装置の性能を余すところなく発揮できないことになってしまう。   The above threshold value is set to a very low level with a margin in consideration of the range of received light amount indicating linearity for each light receiving sensor. Therefore, even though accurate measurement is actually performed, A warning may be notified, and the performance of the refractive index measuring device cannot be fully exhibited.

そこで、本発明は、屈折率の測定が正確に行われているかどうかを、屈折率測定の性能の発揮を妨げることなく、正確に検知する屈折率測定装置を提供することを目的とする。   Therefore, an object of the present invention is to provide a refractive index measuring device that accurately detects whether or not the refractive index is accurately measured without hindering the performance of the refractive index measurement.

本発明の屈折率測定装置は、光源を発光させたときの受光センサの受光量が、直線性を示す範囲に含まれるかどうかを判断することで、屈折率が正確に測定されるか否かを判定する。   The refractive index measuring apparatus of the present invention determines whether or not the refractive index is accurately measured by determining whether or not the amount of light received by the light receiving sensor when the light source emits light is included in the range showing linearity. Determine.

直線性を示す範囲に受光量が含まれるかどうかを判断するために、屈折率測定装置は、光源が、屈折率の測定時の発光強度で発光したときと消灯したときの受光センサの第1の出力値差と、光源が、測定時より弱い弱発光したときと消灯したときの受光センサの第2の出力値差とを求める。そして、屈折率測定装置は、第1の出力値差と上記測定時の発光強度の比、及び、第2の出力値差と弱発光の発光強度の比に基づいて、屈折率が正確に測定されるか否かを判定する。   In order to determine whether or not the amount of received light is included in the range showing the linearity, the refractive index measuring device uses the first light receiving sensor when the light source emits light at the light emission intensity at the time of measuring the refractive index and when the light source is turned off. And the second output value difference of the light receiving sensor when the light source emits weak light that is weaker than at the time of measurement and when the light source is turned off. The refractive index measuring device accurately measures the refractive index based on the ratio between the first output value difference and the emission intensity at the time of the measurement, and the second output value difference and the emission intensity ratio of the weak emission. It is determined whether or not.

光源が測定時の発光強度で発光したとき、弱発光したとき、消灯したときの各受光センサの受光量が直線性を示す範囲に含まれている場合、第1の出力値差と上記測定時の発光強度の比と、第2の出力値差と上記弱発光の発光強度の比が同じとなる。上記2つの比の違いが一定の許容範囲内にある場合、屈折率測定装置は、屈折率が正確に測定されていると判定する。   When the light source emits light with the light emission intensity at the time of measurement, when it emits weak light, or when it is turned off, the received light amount of each light receiving sensor is included in the range showing linearity, the first output value difference and the above measurement time , And the ratio of the second output value difference to the weak light emission intensity is the same. When the difference between the two ratios is within a certain allowable range, the refractive index measurement device determines that the refractive index is accurately measured.

本発明の屈折率測定装置は、光源を屈折率の測定時の発光強度に発光させたとき、光源を弱発光させたとき、光源を消灯したときの3つの条件での受光センサの出力値が各条件に対応する値を採るかどうかに基づいて、屈折率が正確に測定されたかどうかを判定する。よって、従来のように低目に設定された閾値を外光量が超えているかどうかに基づいて、屈折率の測定が正確に行われているか否かの判定を行わないので、屈折率の測定が正確に行われているにも関わらず、警告が報知されるという事態が発生することがない。   In the refractive index measuring apparatus of the present invention, the output value of the light receiving sensor under three conditions when the light source is made to emit light with the light emission intensity at the time of measuring the refractive index, when the light source is weakly emitted, and when the light source is turned off, It is determined whether or not the refractive index has been accurately measured based on whether or not a value corresponding to each condition is taken. Therefore, since it is not determined whether or not the measurement of the refractive index is accurately performed based on whether or not the external light amount exceeds the threshold set at a low level as in the past, the measurement of the refractive index is not performed. In spite of being performed accurately, a situation in which a warning is notified does not occur.

本実施の形態の屈折率測定装置200における屈折率の測定方法は、背景技術及び図2を用いて説明した全反射法を用いて行われる。   The method of measuring the refractive index in the refractive index measuring apparatus 200 of the present embodiment is performed using the total reflection method described with reference to the background art and FIG.

本実施の形態においては、屈折率測定装置200は、屈折率が正確に測定されたか否かを判定するために、光源103を発光させて屈折率を測定した後、光源103を弱発光させ、さらに光源103を消灯させる。屈折率測定装置200は、屈折率の測定時と、光源103を弱発光させた時と、光源103を消灯させた時との3つの受光センサ104の出力値に基づいて屈折率が正確に測定されたか否かを判定する。   In the present embodiment, the refractive index measuring apparatus 200 causes the light source 103 to emit light and measure the refractive index in order to determine whether or not the refractive index has been accurately measured. Further, the light source 103 is turned off. The refractive index measuring apparatus 200 accurately measures the refractive index based on the output values of the three light receiving sensors 104 when the refractive index is measured, when the light source 103 is weakly emitted, and when the light source 103 is turned off. It is determined whether or not it has been done.

その手順を以下に詳しく説明すれば、まず、屈折率測定装置200は、測定者からの測定指示により屈折率の測定を開始する。例えば、屈折率測定装置200に備えられたスタートキー210が押下されると、図1に示す発光制御手段201は、プリズムの測定面102に載置された被測定物の屈折率を測定するために光源103を発光させる。上記発光制御手段201は、光源103を発光させると共に、受光センサ104の全受光素子の出力値を演算手段204に取得するように指示する。上記演算手段204は、指示に基づき取得した各受光素子の出力値を屈折率測定時の出力値v1(図3参照)とする。   The procedure will be described in detail below. First, the refractive index measuring apparatus 200 starts measuring the refractive index according to a measurement instruction from the measurer. For example, when the start key 210 provided in the refractive index measuring apparatus 200 is pressed, the light emission control unit 201 shown in FIG. 1 measures the refractive index of the object to be measured placed on the measurement surface 102 of the prism. The light source 103 is caused to emit light. The light emission control unit 201 causes the light source 103 to emit light and instructs the calculation unit 204 to acquire output values of all the light receiving elements of the light receiving sensor 104. The computing means 204 uses the output value of each light receiving element acquired based on the instruction as the output value v1 (see FIG. 3) when measuring the refractive index.

次に、上記発光制御手段201は、光源103の発光強度を弱めて光源103を弱発光させる。本実施の形態においては、弱発光の発光強度は、屈折率の測定時の発光の80%とするが、弱発光の発光強度は、屈折率の測定時の発光より弱ければよい。   Next, the light emission control means 201 weakens the light emission intensity of the light source 103 and causes the light source 103 to emit light weakly. In the present embodiment, the light emission intensity of weak light emission is 80% of the light emission during measurement of the refractive index, but the light emission intensity of weak light emission may be weaker than the light emission during measurement of the refractive index.

弱発光状態で、上記発光制御手段201は、上記演算手段204に受光センサ104の全受光素子の出力値を弱発光時の出力値v2として取得するように指示する。上記演算手段204は、指示に基づき各受光素子の出力値を弱発光時の出力値v2として、全受光素子の出力値を取得する。さらに、上記発光制御手段201は、弱発光の発光強度が、屈折率の測定時の発光の80%である旨を判定手段205に入力する。   In the weak light emission state, the light emission control means 201 instructs the calculation means 204 to acquire the output values of all the light receiving elements of the light receiving sensor 104 as the output value v2 at the time of weak light emission. Based on the instruction, the arithmetic means 204 obtains the output values of all the light receiving elements by setting the output value of each light receiving element as the output value v2 at the time of weak light emission. Further, the light emission control means 201 inputs to the determination means 205 that the light emission intensity of weak light emission is 80% of the light emission at the time of measuring the refractive index.

次に、上記発光制御手段201は、光源103を消灯する。消灯状態で、上記発光制御手段201は、受光センサ104の全受光素子の出力値を消灯時の出力値v3として上記演算手段204に取得するように指示する。上記演算手段204は、指示に基づき、各受光素子の出力値を消灯時の出力値v3として取得する。   Next, the light emission control means 201 turns off the light source 103. In the light-off state, the light emission control unit 201 instructs the calculation unit 204 to acquire the output values of all the light receiving elements of the light receiving sensor 104 as the output value v3 when the light is turned off. Based on the instruction, the arithmetic means 204 acquires the output value of each light receiving element as the output value v3 when the light is extinguished.

屈折率測定装置200内に外光が入射している場合、屈折率測定時の出力値v1、弱発光時の出力値v2は、測定面102にて反射した光と入射した外光との合計の受光量に対応する出力値となり、消灯時の出力値v3は、入射した外光の受光量に対応する出力値となる。   When external light is incident on the refractive index measuring apparatus 200, the output value v1 at the time of refractive index measurement and the output value v2 at the time of weak light emission are the sum of the light reflected by the measurement surface 102 and the incident external light. The output value v3 when the light is extinguished is an output value corresponding to the amount of received external light.

上記演算手段204は、各受光素子の屈折率測定時の出力値v1、弱発光時の出力値v2、消灯時の出力値v3を取得すると、次に、外光量のキャンセリングを行う。光量のキャンセリング手段として、本実施の形態では、上記演算手段204は、各受光素子の屈折率測定時の出力値v1と各受光素子の弱発光時の出力値v2から各受光素子の消灯時の出力値v3を引く。以下では、屈折率測定時の出力値v1から消灯時の出力値v3を引いた値を第1の出力値差ΔV1と言い、弱発光時の出力値v2から消灯時の出力値v3を引いた値を第2の出力値差ΔV2という。   When the calculation means 204 obtains the output value v1 at the time of measuring the refractive index of each light receiving element, the output value v2 at the time of weak light emission, and the output value v3 at the time of extinction, it next cancels the external light quantity. In the present embodiment, as the light amount canceling means, the calculating means 204 is configured to turn off each light receiving element from the output value v1 when measuring the refractive index of each light receiving element and the output value v2 when each light receiving element emits weak light. Is subtracted from the output value v3. Hereinafter, the value obtained by subtracting the output value v3 at the time of extinction from the output value v1 at the time of refractive index measurement is referred to as a first output value difference ΔV1, and the output value v3 at the time of extinction is subtracted from the output value v2 at the time of weak light emission. The value is referred to as a second output value difference ΔV2.

上記演算手段204は、上記判定手段205に、第1の出力値差ΔV1と第2の出力値差ΔV2を入力し、測定手段207に第1の出力値差ΔV1を入力する。   The calculating means 204 inputs the first output value difference ΔV1 and the second output value difference ΔV2 to the determining means 205, and inputs the first output value difference ΔV1 to the measuring means 207.

第1の出力値差ΔV1が入力されると、上記測定手段207は、第1の出力値差ΔV1に基づいて屈折率を測定する。   When the first output value difference ΔV1 is input, the measuring unit 207 measures the refractive index based on the first output value difference ΔV1.

一方、上記判定手段205は、第1の出力値差ΔV1と第2の出力値差ΔV2が入力されると、本実施の形態では、弱発光の発光強度が80%である旨が上記発光制御手段201から入力されているので、各受光素子に対応する第1の出力値差ΔV1と第2の出力値差ΔV2の関係が、ΔV1=ΔV2/0.8となるか否かを判定する。この式が成立する場合、この式が成立した受光素子における受光量と出力値の関係が、受光量が屈折率測定時の受光量と弱発光時の受光量との間において、直線性を示すことが証明される。   On the other hand, when the first output value difference ΔV1 and the second output value difference ΔV2 are input, the determination unit 205 indicates that the light emission intensity of weak light emission is 80% in the present embodiment. Since it is input from the means 201, it is determined whether or not the relationship between the first output value difference ΔV1 and the second output value difference ΔV2 corresponding to each light receiving element is ΔV1 = ΔV2 / 0.8. When this equation is established, the relationship between the amount of light received and the output value of the light receiving element for which this equation is established indicates linearity between the amount of received light when the refractive index is measured and the amount of received light when the light is emitted weakly. It is proved that.

全受光素子の第1の出力値差ΔV1と第2の出力値差ΔV2が上記式の関係を満たすと、上記判定手段205は、屈折率が正確に測定されたと判定する。なお、光源光量の調整、受光量の測定には調整誤差と測定誤差が含まれるので、ΔV1とΔV2/0.8の値が多少異なっても、上記判定手段205は、屈折率が正確に測定されたと判定することが望ましい。   When the first output value difference ΔV1 and the second output value difference ΔV2 of all the light receiving elements satisfy the relationship of the above equation, the determination unit 205 determines that the refractive index has been accurately measured. Since the adjustment of the light source quantity and the measurement of the amount of received light include an adjustment error and a measurement error, even if the values of ΔV1 and ΔV2 / 0.8 are slightly different, the determination means 205 accurately measures the refractive index. It is desirable to determine that it has been done.

上記判定手段205は、屈折率が正確に測定されたか否かを判定すると、その判定結果を報知手段206に通知する。上記報知手段206は、通知された判定結果を表示パネルに表示したり、音や音声で測定者に知らせる。   When the determination unit 205 determines whether or not the refractive index is accurately measured, the determination unit 205 notifies the notification unit 206 of the determination result. The notification means 206 displays the notified determination result on the display panel or notifies the measurer by sound or voice.

測定者は、判定結果を知ることで、上記測定手段207が測定した屈折率が正確であるかどうかを知ることができる。   The measurer can know whether the refractive index measured by the measuring unit 207 is accurate by knowing the determination result.

上記においては、上記発光制御手段201は、屈折率の測定のために光源103を発光させてから、弱発光、消灯を行っているが、屈折率測定のための発光、弱発光、消灯の順序は、限定されるものではない。   In the above, the light emission control means 201 emits the light source 103 for measuring the refractive index and then performs weak light emission and extinguishing. Is not limited.

屈折率測定装置に入射する外光として、代表的なものとして蛍光灯の光がある。蛍光灯等の交流電圧を利用した光源は、所定周期で点灯・消灯を繰り返す。そのため、蛍光灯の設置された環境で屈折率測定装置を使用する場合、屈折率測定装置に入射する外光の強度は一定でなく、蛍光灯の発光強度に応じて変化する。本発明では、屈折率の測定が正確であるか否かの判定に、第1出力値差ΔV1と第2の出力値差ΔV2を利用している。そのため、各出力値v1、v2、v3が上記演算手段104に入力される時の蛍光灯の発光強度が異なると、各出力値差ΔV1、ΔV2は、屈折率測定装置に外光が入射していない状態で、光源が103が屈折率測定時の発光または弱発光しているときの受光センサ104の出力値を正確に示す値とならない。そこで、蛍光灯からの光が入射する可能性のある環境で屈折率測定装置が使用される場合、各出力値v1、v2、v3を測定する間隔は、蛍光灯の点灯・消灯の周期と合わせることが好ましい。   A typical example of the external light incident on the refractive index measuring device is light from a fluorescent lamp. A light source using an AC voltage such as a fluorescent lamp is repeatedly turned on and off at a predetermined cycle. For this reason, when the refractive index measuring device is used in an environment where a fluorescent lamp is installed, the intensity of external light incident on the refractive index measuring device is not constant, but changes according to the emission intensity of the fluorescent lamp. In the present invention, the first output value difference ΔV1 and the second output value difference ΔV2 are used to determine whether or not the refractive index measurement is accurate. Therefore, if the emission intensity of the fluorescent lamp is different when the output values v1, v2, and v3 are input to the calculation means 104, the output value differences ΔV1 and ΔV2 are caused by external light incident on the refractive index measuring device. Without the light source 103, the output value of the light receiving sensor 104 when the light source 103 emits light at the time of refractive index measurement or weak light emission does not accurately indicate the value. Therefore, when the refractive index measurement device is used in an environment where light from a fluorescent lamp may be incident, the intervals at which the output values v1, v2, and v3 are measured are matched with the cycle of turning on / off the fluorescent lamp. It is preferable.

また、屈折率測定装置に入射する外光は、上記した蛍光灯だけでなく自然光など強度が一定でない光の場合もある。しかし、各出力値v1、v2、v3は比較的短い時間で測定されるので、外光が急激に変化しない場合には大きな問題にはならない。逆に、測定期間中に一定とみなせないような外光が入射する場合には、たとえ外光量が受光センサ104の直線性の範囲であったとしても、上記演算手段204は正確な外光量のキャンセリングができず、測定に誤差を生じる。従来のような消灯時の出力値v3(外光量)の大きさだけに基づいて警告を報知するかどうかを判断する方法では、測定期間中に一定とみなせないような外光が入射する場合であっても、外光量がたまたま小さい時に消灯時の出力値v3を計測してしまうと、警告が出されない。しかし、本発明では、各出力値v1、v2、v3の測定時の外光量が異なると、各出力値v1、v2、v3が受光センサ104の直線性を示す範囲であっても、ΔV1とΔV2/0.8が一致しなくなり、屈折率測定装置は警告を出すことができる。   In addition, the external light incident on the refractive index measuring apparatus may be not only the fluorescent lamp described above but also light having a non-constant intensity such as natural light. However, since the output values v1, v2, and v3 are measured in a relatively short time, it is not a big problem when the external light does not change rapidly. On the other hand, when external light that cannot be considered constant during the measurement period is incident, even if the external light quantity is within the linearity range of the light receiving sensor 104, the calculation means 204 has an accurate external light quantity. Canceling is not possible and an error occurs in measurement. In the conventional method of determining whether or not to issue a warning based only on the magnitude of the output value v3 (external light quantity) at the time of extinction, when external light that cannot be considered constant is incident during the measurement period. Even when the external light quantity happens to be small, the warning is not issued if the output value v3 when the light is turned off is measured. However, in the present invention, if the external light amount at the time of measuring each of the output values v1, v2, and v3 is different, even if each of the output values v1, v2, and v3 is within the range showing the linearity of the light receiving sensor 104, ΔV1 and ΔV2 /0.8 does not match and the refractive index measuring device can issue a warning.

上記においては、受光センサ104の全受光素子の屈折率測定時の出力値v1、弱発光時の出力値v2、消灯時の出力値v3が上記演算手段204に入力され、受光センサ104の全受光素子を直線性の評価対象としている場合が記載されているが、受光センサ104の限定された領域の受光素子のみを直線性の評価対象としてもよい。   In the above, the output value v1 at the time of refractive index measurement of all the light receiving elements of the light receiving sensor 104, the output value v2 at the time of weak light emission, and the output value v3 at the time of extinction are input to the calculation means 204, Although the case where the element is set as the evaluation target of linearity is described, only the light receiving element in the limited region of the light receiving sensor 104 may be set as the evaluation target of linearity.

受光センサ104に受光される測定面102にて反射する光の量は、図4に示すように、測定面102への入射角θが一定角度(以下「臨界角」という。)より大か小で大きな差がある。そのため、入射角θが臨界角より小さい光を受光する受光素子と、臨界角より大きい光を受光する受光素子とで、出力値に大きな差がある。上記測定手段207は、各受光素子の第1の出力値差ΔV1に基づいて臨界角を求め、臨界角に基づいて屈折率の測定を行う。そのため、臨界角で測定面102に入射した光を受光する受光素子及びその周囲の受光素子における出力値が、受光量に対してリニアな関係であれば屈折率の測定は正確に行うことができる。   As shown in FIG. 4, the amount of light reflected on the measurement surface 102 received by the light receiving sensor 104 is larger or smaller than the incident angle θ on the measurement surface 102 (hereinafter referred to as “critical angle”). There is a big difference. Therefore, there is a large difference in output value between a light receiving element that receives light having an incident angle θ smaller than the critical angle and a light receiving element that receives light having a larger incident angle. The measuring means 207 obtains a critical angle based on the first output value difference ΔV1 of each light receiving element, and measures the refractive index based on the critical angle. Therefore, if the output values of the light receiving element that receives light incident on the measurement surface 102 at a critical angle and the light receiving elements around the light receiving element are linearly related to the amount of light received, the refractive index can be accurately measured. .

上記測定手段207は、上記のように臨界角を求めると、求めた臨界角に基づいて、直線性の評価対象となる受光素子を決定する。ここでの評価対象となる受光素子は、例えば、上記測定手段207が求めた臨界角で測定面102に入射した光が受光される受光素子とその周辺にある受光素子である。   When the measurement unit 207 obtains the critical angle as described above, the measurement unit 207 determines a light receiving element to be evaluated for linearity based on the obtained critical angle. The light receiving elements to be evaluated here are, for example, a light receiving element that receives light incident on the measurement surface 102 at a critical angle obtained by the measuring unit 207 and a light receiving element in the vicinity thereof.

評価対象となる受光素子を決定すると、上記測定手段207は、評価対象として決定した受光素子の位置情報を上記演算手段204に入力する。   When the light receiving element to be evaluated is determined, the measuring unit 207 inputs the position information of the light receiving element determined as the evaluation target to the calculating unit 204.

上記演算手段204は、入力された位置情報にて特定される受光素子から出力される屈折率測定時の出力値v1、弱発光時の出力値v2、消灯時の出力値v3のみを取得する。上記演算手段204は、屈折率測定時の出力値v1、弱発光時の出力値v2、消灯時の出力値v3を取得した受光素子に対応する上記第1の出力値差ΔV1と、上記第2の出力値差ΔV2を求める。上記判定手段205は、上記演算手段204にて求められた上記第1の出力値差ΔV1と、上記第2の出力値差ΔV2に基づいて、屈折率の測定が正確に測定された否かを判定する。   The calculation means 204 acquires only the output value v1 at the time of refractive index measurement, the output value v2 at the time of weak light emission, and the output value v3 at the time of extinction that are output from the light receiving element specified by the input position information. The calculation means 204 includes the first output value difference ΔV1 corresponding to the light receiving element that has acquired the output value v1 during refractive index measurement, the output value v2 during weak light emission, and the output value v3 during extinction, and the second Output value difference ΔV2. The determination unit 205 determines whether or not the measurement of the refractive index is accurately measured based on the first output value difference ΔV1 obtained by the calculation unit 204 and the second output value difference ΔV2. judge.

また、図2は、測定面102で反射した光を、直接受光センサ104に受光する全反射法を採用した屈折率測定装置の模式図となっている。全反射法を採用した屈折率測定装置には、測定面102で反射し、プリズムから出射した光を凸レンズを介して受光センサ104に受光させる構成を採用したものがある。   FIG. 2 is a schematic diagram of a refractive index measuring apparatus that employs a total reflection method in which light reflected by the measurement surface 102 is directly received by the light receiving sensor 104. Some refractive index measuring apparatuses that employ the total reflection method employ a configuration in which light reflected by the measurement surface 102 and emitted from a prism is received by the light receiving sensor 104 via a convex lens.

凸レンズを介して受光センサ104に受光させる場合、外光などの測定面102で反射した光以外の光が受光センサ104に受光される量を小さくすることができる。しかし、凸レンズを屈折率測定装置に設けると、レンズの持つ光学的収差による測定誤差や屈折率測定装置の構成が複雑となる等の不利な点がある。一方、図2に示すような凸レンズを設けない場合、凸レンズを設けた屈折率測定装置に比べ、受光センサ104に受光される外光等の受光量が大きくなるという不利な点がある。   When the light receiving sensor 104 receives light via the convex lens, the amount of light received by the light receiving sensor 104 other than light reflected by the measurement surface 102 such as external light can be reduced. However, providing a convex lens in the refractive index measuring device has disadvantages such as a measurement error due to optical aberration of the lens and a complicated configuration of the refractive index measuring device. On the other hand, when the convex lens as shown in FIG. 2 is not provided, there is a disadvantage in that the amount of received light such as external light received by the light receiving sensor 104 is larger than that of the refractive index measuring device provided with the convex lens.

本発明では、受光センサ104が外光を受光しても、屈折率が正確に測定されているかどうかを正確に判定することができるので、凸レンズを設けない屈折率測定装置に本発明を適用すると、構成が単純で、且つ屈折率が正確に測定されているか否かを正確に判定できる屈折率測定装置を実現することができる。   In the present invention, even if the light receiving sensor 104 receives external light, whether or not the refractive index is accurately measured can be accurately determined. Therefore, when the present invention is applied to a refractive index measuring apparatus that does not include a convex lens. Thus, it is possible to realize a refractive index measuring apparatus that has a simple configuration and can accurately determine whether or not the refractive index is accurately measured.

本発明の屈折率測定装置の機能ブロック図である。It is a functional block diagram of the refractive index measuring apparatus of this invention. 全反射法が採用された屈折率測定装置の模式図である。It is a schematic diagram of a refractive index measuring apparatus employing a total reflection method. 受光センサの受光量と出力値の関係を表したグラフである。It is a graph showing the relationship between the amount of light received by the light receiving sensor and the output value. 測定面からの反射光の強度分布を表したグラフである。It is a graph showing intensity distribution of reflected light from a measurement surface.

符号の説明Explanation of symbols

102 測定面
103 光源
104 受光センサ
200 屈折率測定装置
201 発光制御手段
204 演算手段
205 判定手段
206 報知手段
DESCRIPTION OF SYMBOLS 102 Measurement surface 103 Light source 104 Light receiving sensor 200 Refractive index measuring apparatus 201 Light emission control means 204 Arithmetic means 205 Judgment means 206 Notification means

Claims (2)

被測定物が載置されるプリズムの測定面に向けて光源を発光させ、上記測定面にて反射した光を受光する受光センサの出力値に基づいて上記被測定物の屈折率を測定する屈折率測定装置において、
上記光源の発光強度を制御する発光制御手段と、
上記光源が、測定時の発光強度で発光したときと消灯したときの上記受光センサの第1の出力値差と、上記光源が、測定時より弱い弱発光したときと消灯したときの上記受光センサの第2の出力値差とを求める演算手段と、
上記第1の出力値差と上記測定時の発光強度の比、及び、上記第2の出力値差と上記弱発光の発光強度の比に基づいて、上記屈折率が正確に測定されるか否かを判定する判定手段を備えたことを特徴とする屈折率測定装置。
Refraction that measures the refractive index of the object to be measured based on the output value of a light receiving sensor that emits a light source toward the measurement surface of the prism on which the object to be measured is placed and receives the light reflected by the measurement surface In the rate measuring device,
Light emission control means for controlling the light emission intensity of the light source;
The first output value difference of the light receiving sensor when the light source emits light with the light emission intensity at the time of measurement and when the light source is turned off, and the light receiving sensor when the light source emits weak light that is weaker than that at the time of measurement. Computing means for obtaining the second output value difference of
Whether the refractive index is accurately measured based on the ratio between the first output value difference and the emission intensity at the time of measurement, and the ratio between the second output value difference and the emission intensity of the weak emission. A refractive index measuring apparatus comprising a determining means for determining whether or not.
上記判定手段にて正確に測定されないと判定されたとき、警告を報知する報知手段を備えた請求項1に記載の屈折率測定装置。




The refractive index measuring apparatus according to claim 1, further comprising a notifying unit that notifies a warning when it is determined that the measurement is not accurately performed by the determining unit.




JP2003364710A 2003-10-24 2003-10-24 Refractive index measuring device Expired - Fee Related JP4170878B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003364710A JP4170878B2 (en) 2003-10-24 2003-10-24 Refractive index measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003364710A JP4170878B2 (en) 2003-10-24 2003-10-24 Refractive index measuring device

Publications (2)

Publication Number Publication Date
JP2005127902A JP2005127902A (en) 2005-05-19
JP4170878B2 true JP4170878B2 (en) 2008-10-22

Family

ID=34643618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003364710A Expired - Fee Related JP4170878B2 (en) 2003-10-24 2003-10-24 Refractive index measuring device

Country Status (1)

Country Link
JP (1) JP4170878B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010127622A (en) * 2008-11-25 2010-06-10 Kyoto Electron Mfg Co Ltd Refractive index measuring apparatus
JP2012058105A (en) * 2010-09-09 2012-03-22 Dkk Toa Corp Optical analyzer

Also Published As

Publication number Publication date
JP2005127902A (en) 2005-05-19

Similar Documents

Publication Publication Date Title
JP5032836B2 (en) Oil mist detection device
JP5221868B2 (en) Light measuring method and apparatus
JP2019124531A (en) Dust deposition detection device
JP4170878B2 (en) Refractive index measuring device
JP2012127652A (en) Gas measuring device
US10962476B2 (en) Turbidity sensor and method for measuring turbidity
US20070171389A1 (en) Method and apparatus for detecting filter status
JP2007121083A (en) Distance measurement apparatus
JP2008232707A (en) Infrared touch switch
JP2019163959A (en) State detection sensor and mass flow controller
JPH1151861A (en) Apparatus for measuring concentration of liquid
JP6828621B2 (en) Detection device
JP2010217084A (en) Fluorescence temperature sensor and failure determination method of same
JP6484125B2 (en) Temperature measuring apparatus and temperature measuring method
JP2007057534A (en) Haze measurement method and apparatus for same
KR20130080269A (en) Displacement measuring apparatus, and displacement measuring method using the same
US20230296505A1 (en) Apparatus and method
KR101850252B1 (en) Optical density analyzer
JP2004215315A (en) Photo-electric sensor and sensitivity setting method therefor
US10480930B2 (en) Optical displacement measuring instrument, adjustment method and measuring method of optical displacement measuring instrument
JP3656877B2 (en) Radiation thermometer
JP2008051662A (en) Measuring method and measuring instrument for absolute reflection factor
JP6680098B2 (en) Differential refractive index detector
KR20020081918A (en) Apparatus for testing glass transmission rate using light
JP2022147617A (en) Oil mist measurement device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080718

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080807

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4170878

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees