JP4168741B2 - Side member structure - Google Patents

Side member structure Download PDF

Info

Publication number
JP4168741B2
JP4168741B2 JP2002365066A JP2002365066A JP4168741B2 JP 4168741 B2 JP4168741 B2 JP 4168741B2 JP 2002365066 A JP2002365066 A JP 2002365066A JP 2002365066 A JP2002365066 A JP 2002365066A JP 4168741 B2 JP4168741 B2 JP 4168741B2
Authority
JP
Japan
Prior art keywords
side member
transition
vehicle
welding
cabin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002365066A
Other languages
Japanese (ja)
Other versions
JP2004196056A (en
Inventor
忠 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002365066A priority Critical patent/JP4168741B2/en
Publication of JP2004196056A publication Critical patent/JP2004196056A/en
Application granted granted Critical
Publication of JP4168741B2 publication Critical patent/JP4168741B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Body Structure For Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はサイドメンバ構造に係り、特に、自動車等の車両のサイドメンバ構造に関する。
【0002】
【従来の技術】
従来、自動車のサイドメンバ構造においては、前後方向に延びてその横断面がほぼU字形状をなす板金製のサイドメンバ(サイドフレームともいう)を設けると共に、このサイドメンバの上面に結合されるフロアパネルを設け、サイドメンバが、後下方に向って延びる傾斜メンバと、この傾斜メンバの後端からほぼ水平に後方に向って延びる水平メンバとを備え、傾斜メンバから水平メンバへの遷移部の上面に直接的に第1補強板を結合させる一方、水平メンバに対応するフロアパネルの部分の上面に第2補強板を設けて、これら水平メンバ、フロアパネル、及び第2補強板を互いに一体的に結合させた構成が知られている(例えば、特許文献1参照。)。
【0003】
【特許文献1】
特許第3321066号明細書
【0004】
【発明が解決しようとする課題】
しかしながら、このようなサイドメンバ構造においては、サイドメンバが、キャビンの下部に沿って上方から斜め下方に向って屈曲さた移行部を有しており、移行部の上位部、中位部、下位部における各断面形状の大きさと、車両衝突時に移行部の上位部、中位部、下位部に作用する曲げ応力との関係から、車両衝突時の移行部における曲げ強度の相対関係が、中位部が最も大きく、上位部、下位部の順になっている。この結果、車両衝突時には、移行部の上位部または下位部を起点にしてサイドメンバが折れ曲がる。このため、移行部の回転半径が大きくなり、キャビンの沈み込みが大きくなるという不具合がある。
【0005】
本発明は上記事実を考慮し、車両衝突時に発生するキャビンの沈み込みを抑制できるサイドメンバ構造を提供することが目的である。
【0006】
【課題を解決するための手段】
請求項1記載の本発明は、サイドメンバがキャビンに沿って上方から斜め下方に向って屈曲された移行部を有するサイドメンバ構造であって、
前記サイドメンバの内周部に、前記移行部における下位部の下端部を跨いで配設され、開口部を上方に向けた断面コ字状のリインフォースメントを有し、
前記移行部の中位部で、前記リインフォースメントの前端部より車両前方へ離れた位置に脆弱部を形成し、前記移行部に車両前後方向に沿った圧縮荷重が作用した場合に、前記移行部の上位部における曲げ強度に比べて、前記移行部の中位部の曲げ強度及び前記移行部の下位部の曲げ強度を小さくしたことを特徴とする。
【0007】
従って、サイドメンバの内周部に、移行部における下位部の下端部を跨いで、開口部を上方に向けた断面コ字状のリインフォースメントが配設されており、その前端部より車両前方へ離れた中位部の位置に脆弱部が形成されている。このため、車両衝突時に、移行部に車両前後方向に沿った圧縮荷重が作用した場合には、キャビンに沿って上方から斜め下方に向って屈曲されたサイドメンバの移行部の上位部における曲げ強度に比べて、移行部の中位部の曲げ強度及び移行部の下位部の上方側の曲げ強度が小さいため、移行部の中位部の脆弱部及び下位部の上方側を起点にして、サイドメンバの移行部が折れ曲がる。この際、移行部の下位部が車両下方側へ変形する。この結果、サイドメンバの移行部の回転半径が、移行部の上位部または下位部を起点にして、サイドメンバの移行部が折れ曲がる場合に比べて小さくなる。このため、車両衝突時に発生するキャビンの沈み込みを抑制できる。
【0010】
請求項2記載の本発明は、請求項1に記載のサイドメンバ構造において、前記移行部の上位部と下位部における前記キャビンとの溶接を連続溶接とし、前記移行部の中位部における前記キャビンとの溶接を不連続溶接としたことを特徴とする。
【0011】
従って、請求項1に記載の内容に加えて、不連続溶接とすることで曲げ強度を小さくした移行部の中位部を中心に、サイドメンバの移行部を確実に折り曲げることができる。
【0012】
【発明の実施の形態】
本発明に係るサイドメンバ構造の第1実施形態を図1及び図2に従って説明する。
【0013】
なお、図中矢印FRは車体前方方向を、矢印UPは車体上方方向を、矢印INは車幅内側方向を示す。
【0014】
図1に示される如く、本実施形態のフロントサイドメンバ10は、車両前部の車幅方向両端下部近傍に車両前後方向に沿って左右一対配設されている。また、フロントサイドメンバ10の前部12は、エンジンルーム14内に配設されており、フロントサイドメンバ10の後部16は、キャビン18の床部を構成するフロアパネル部20の下面20Aに沿って車両後方へ延設されている。
【0015】
また、フロントサイドメンバ10の前部12と後部16は上下方向にオフセットしており、フロントサイドメンバ10の前部12と後部16との間は、エンジンルーム14とキャビン18を仕切るダッシュパネル部22の傾斜部22Aのキャビン外側面22Bに沿って、車両前側上方から斜め後側下方に向って屈曲された移行部30となっている。また、フロントサイドメンバ10の移行部30は、車両前方側から上位部32、中位部34、下位部36となっている。
【0016】
図2に示される如く、フロントサイドメンバ10の移行部30の車幅方向に沿った垂直面で切断した断面形状は、上方に開口部を向けたハット状とされており、車幅方向外側フランジ30Aと車幅方向内側フランジ30Bがダッシュパネル部22の傾斜部22Aのキャビン外側面22Bに溶着されている。
【0017】
図1に示される如く、フロントサイドメンバ10の移行部30における上位部32、中位部34、下位部36の各断面の深さ、即ち、車幅方向外側壁部30Cと車幅方向内側壁部30Dの幅H1、H2、H3は、中位部34の中央部34Aにおける断面の深さH2が最も浅く、上位部32の上端部32A及び下位部36の下端部36Aに向って連続的に深くなっている。また、フロントサイドメンバ10の移行部30における上位部32、中位部34、下位部36の各底壁部30Eの幅Wは略一定である。
【0018】
従って、フロントサイドメンバ10の移行部30における上位部32、中位部34、下位部36の各断面積の大きさは、中位部34の中央部34Aにおける断面積が最も小さくなっており、中位部34の中央部34Aが脆弱部としての断面縮小部となっている。
【0019】
また、フロントサイドメンバ10の内周部には、移行部30における下位部36の下端部36Aを跨いで、断面コ字状のリインフォースメント39が、開口部を上方に向けて配設されている。
【0020】
また、車両前突時に発生する車両前後方向に沿った圧縮荷重により、フロントサイドメンバ10の移行部30の上位部32と下位部36には、それぞれ反対向きの曲げモーメントM1、M2が負荷されるため、曲げ応力は、相対的に上位部32で大、下位部36で大、中位部34で小となる。
【0021】
従って、フロントサイドメンバ10の移行部30における上位部32、中位部34、下位部36の各断面積の大きさと、曲げ応力との関係から、車両前突時のフロントサイドメンバ10の移行部30における上位部32、中位部34、下位部36の各曲げ強度は、上位部32で大、中位部34で小、下位部36で小となる。
【0022】
次に、本実施形態の作用を説明する。
【0023】
本実施形態では、車両前突時のフロントサイドメンバ10の移行部30における上位部32、中位部34、下位部36の各曲げ強度は、上位部32で大、中位部34で小、下位部36で小となるため、車両が前突した場合には、移行部30における中位部34の中央部34A及び下位部36の下端部36Aの上方側を起点にして、サイドメンバ10の移行部30が車両後方側へ折れ曲がる。この際、図1に二点鎖線で示すように下位部36が車両下方側へ変形する。
【0024】
この結果、サイドメンバ10における折れ部の回転半径R1が、図3に示される比較例のように、サイドメンバ70の移行部72の上位部72Aまたは下位部72Bにを起点にしてサイドメンバ70の移行部72が折れ曲がる場合の回転半径R2に比べて、小さくなる。このため、車両前突時に発生するキャビン18の前部18Aの沈み込みを抑制できる。
【0025】
次に、本発明のサイドメンバ構造の第2実施形態を図4及び図5に従って説明する。
【0026】
なお、第1実施形態と同一部材に付いては、同一符号を付してその説明を省略する。
【0027】
図4に示される如く、本実施形態では、フロントサイドメンバ10の移行部30における中位部34の中央部34Aに、脆弱部としての断面縮小部である断面内側に凸のビード40が形成されている。
【0028】
図5に示される如く、断面内側に凸のビード40は、底壁部30Eから、車幅方向外側壁部30Cにおける車幅方向外側フランジ30Aの近傍と、車幅方向内側壁部30Dにおける車幅方向内側フランジ30Bの近傍まで連続的に形成されている。
【0029】
また、車両前突時に発生する車両前後方向に沿った圧縮荷重により、フロントサイドメンバ10の移行部30の上位部32と下位部36には、それぞれ反対向きの曲げモーメントM1、M2が負荷されるため、曲げ応力は、相対的に上位部32で大、下位部36で大、中位部34で小となる。
【0030】
従って、フロントサイドメンバ10の移行部30における中位部34に形成したビード40と、曲げ応力との関係から、車両前突時のフロントサイドメンバ10の移行部30における上位部32、中位部34、下位部36の各曲げ強度は、上位部32で大、中位部34で小、下位部36で小となる。
【0031】
次に、本実施形態の作用を説明する。
【0032】
本実施形態では、車両前突時のフロントサイドメンバ10の移行部30における上位部32、中位部34、下位部36の各曲げ強度は、上位部32で大、中位部34で小、下位部36で小となっているため、車両が前突した場合には、サイドメンバ10の移行部30における中位部34のビード40及び下位部36の下端部36Aの上方側を起点にして、サイドメンバ10の移行部30が車両後方側へ折れ曲がる。この際、図4に二点鎖線で示すように下位部36が車両下方側へ変形する。
【0033】
この結果、サイドメンバ10における折れ部の回転半径R1が、図3に示される比較例のように、サイドメンバ70の移行部72の上位部72Aまたは下位部72Bにを起点にしてサイドメンバ70が折れ曲がる場合の回転半径R2に比べて、小さくなる。このため、車両前突時に発生するキャビン18の前部18Aの沈み込みを抑制できる。
【0034】
次に、本発明のサイドメンバ構造の第3実施形態を図6及び図7に従って説明する。
【0035】
なお、第1実施形態と同一部材に付いては、同一符号を付してその説明を省略する。
【0036】
図6に示される如く、本実施形態では、フロントサイドメンバ10の移行部30における中位部34の中央部34Aに、脆弱部としての応力集中手段である断面外側に凸のビード50が形成されている。
【0037】
図7に示される如く、断面外側に凸のビード50は、底壁部30Eから、車幅方向外側壁部30Cにおける車幅方向外側フランジ30Aの近傍と、車幅方向内側壁部30Dにおける車幅方向内側フランジ30Bの近傍まで連続的に形成されている。
【0038】
また、車両前突時に発生する車両前後方向に沿った圧縮荷重により、フロントサイドメンバ10の移行部30の上位部32と下位部36には、それぞれ反対向きの曲げモーメントM1、M2が負荷されるため、曲げ応力は、相対的に上位部32で大、下位部36で大、中位部34で小となる。
【0039】
従って、フロントサイドメンバ10の移行部30における中位部34に形成したビード50と、曲げ応力との関係から、車両前突時のフロントサイドメンバ10の移行部30における上位部32、中位部34、下位部36の各曲げ強度は、上位部32で大、中位部34で小、下位部36で小となる。
【0040】
次に、本実施形態の作用を説明する。
【0041】
本実施形態では、車両前突時のフロントサイドメンバ10の移行部30における上位部32、中位部34、下位部36の各曲げ強度は、上位部32で大、中位部34で小、下位部36で小となっているため、車両が前突した場合には、サイドメンバ10の移行部30における中位部34のビード50及び下位部36の下端部36Aの上方側を起点にして、サイドメンバ10の移行部30が車両後方側へ折れ曲がる。この際、図6に二点鎖線で示すように下位部36が車両下方側へ変形する。
【0042】
この結果、サイドメンバ10における折れ部の回転半径R1が、図3に示される比較例のように、サイドメンバ70の移行部72の上位部72Aまたは下位部72Bにを起点にしてサイドメンバ70が折れ曲がる場合の回転半径R2に比べて、小さくなる。このため、車両前突時に発生するキャビン18の前部18Aの沈み込みを抑制できる。
【0043】
次に、本発明のサイドメンバ構造の第4実施形態を図8及び図9に従って説明する。
【0044】
なお、第1実施形態と同一部材に付いては、同一符号を付してその説明を省略する。
【0045】
図9に示される如く、本実施形態では、フロントサイドメンバ10の移行部30における中位部34においては、車幅方向外側フランジ30Aとダッシュパネル部22との溶着及び車幅方向内側フランジ30Bとダッシュパネル部22との溶着が不連続溶接としてのスポット溶接(溶接点P1)により所定の間隔で溶接されている。
【0046】
一方、フロントサイドメンバ10の移行部30における上位部32と下位部36においては、車幅方向外側フランジ30Aとダッシュパネル部22との溶着及び車幅方向内側フランジ30Bとダッシュパネル部22との溶着が、連続溶接としてのレーザ溶接(溶接線P2)により線溶接されている。
【0047】
また、車両前突時に発生する車両前後方向に沿った圧縮荷重により、フロントサイドメンバ10の移行部30の上位部32と下位部36には、それぞれ反対向きの曲げモーメントM1、M2が負荷されるため、曲げ応力は、相対的に上位部32で大、下位部36で大、中位部34で小となる。
【0048】
従って、フロントサイドメンバ10の移行部30における中位部34のスポット溶接及び上位部32と下位部36のレーザ溶接と、曲げ応力との関係から、車両前突時のフロントサイドメンバ10の移行部30における上位部32、中位部34、下位部36の各曲げ強度は、上位部32で大、中位部34で小、下位部36で小となる。
【0049】
次に、本実施形態の作用を説明する。
【0050】
本実施形態では、車両前突時のフロントサイドメンバ10の移行部30における上位部32、中位部34、下位部36の各曲げ強度は、上位部32で大、中位部34で小、下位部36で小となっているため、車両が前突した場合には、キャビン18に沿って上方から斜め下方に向って屈曲されたサイドメンバ10の移行部30におけるスポット溶接された中位部34の溶接点P1間及び下位部36の下端部36Aの上方側を起点にして、サイドメンバ10の移行部30が車両後方側へ折れ曲がる。この際、図8に二点鎖線で示すように下位部36が車両下方側へ変形する。
【0051】
この結果、サイドメンバ10における折れ部の回転半径R1が、図3に示される比較例のように、サイドメンバ70の移行部72の上位部72Aまたは下位部72Bにを起点にしてサイドメンバ70が折れ曲がる場合の回転半径R2に比べて、小さくなる。このため、車両前突時に発生するキャビン18の前部18Aの沈み込みを抑制できる。
【0052】
次に、本発明のサイドメンバ構造の第5実施形態を図10及び図11に従って説明する。
【0053】
なお、第1実施形態と同一部材に付いては、同一符号を付してその説明を省略する。
【0054】
図11に示される如く、本実施形態では、フロントサイドメンバ10の移行部30における中位部34においては、車幅方向外側フランジ30Aとダッシュパネル部22との溶着及び車幅方向内側フランジ30Bとダッシュパネル部22との溶着が不連続溶接としてのスポット溶接(溶接点P1)により所定の間隔で溶接されている。
【0055】
一方、フロントサイドメンバ10の移行部30における上位部32と下位部36においては、車幅方向外側フランジ30Aとダッシュパネル部22との溶着及び車幅方向内側フランジ30Bとダッシュパネル部22との溶着が連続溶接としてのレーザ溶接(溶接線P2)により線溶接されている。
【0056】
更に、本実施形態では、フロントサイドメンバ10の移行部30における中位部34の中央部34Aに、脆弱部としての応力集中手段である断面外側に凸のビード50が形成されている。
【0057】
また、車両前突時に発生する車両前後方向に沿った圧縮荷重により、フロントサイドメンバ10の移行部30の上位部32と下位部36には、それぞれ反対向きの曲げモーメントM1、M2が負荷されるため、曲げ応力は、相対的に上位部32で大、下位部36で大、中位部34で小となる。
【0058】
従って、フロントサイドメンバ10の移行部30における中位部34のスポット溶接及び上位部32と下位部36のレーザ溶接と、中位部34のビード50と、曲げ応力との関係から、車両前突時のフロントサイドメンバ10の移行部30における上位部32、中位部34、下位部36の各曲げ強度は、上位部32で大、中位部34で小、下位部36で小となる。
【0059】
次に、本実施形態の作用を説明する。
【0060】
本実施形態では、車両前突時のフロントサイドメンバ10の移行部30における上位部32、中位部34、下位部36の各曲げ強度は、上位部32で大、中位部34で小、下位部36で小となっているため、車両が前突した場合には、サイドメンバ10の移行部30におけるスポット溶接され且つビード50が形成された中位部34及び下位部36の下端部36Aの上方側を起点にして、サイドメンバ10の移行部30が車両後方側へ折れ曲がる。この際、図10に二点鎖線で示すように下位部36が車両下方側へ変形する。
【0061】
この結果、サイドメンバ10における折れ部の回転半径R1が、図3に示される比較例のように、サイドメンバ70の移行部72の上位部72Aまたは下位部72Bにを起点にしてサイドメンバ70が折れ曲がる場合の回転半径R2に比べて、小さくなる。このため、車両衝突時に発生するキャビン18の前部18Aの沈み込みを抑制できる。
【0062】
なお、本実施形態では、不連続溶接により所定の間隔で溶接した中位部34に、脆弱部としての応力集中手段である断面外側に凸のビード50を形成したが、これに代えて、不連続溶接により所定の間隔で溶接した中位部34に、脆弱部としての断面内側に凸のビード40を形成しても良い。また、ビード50、40に代えて、不連続溶接により所定の間隔で溶接した中位部34の中央部34Aにおける断面積を最も小さくした構成としても良い。
【0063】
以上に於いては、本発明を特定の実施形態について詳細に説明したが、本発明はかかる実施形態に限定されるものではなく、本発明の範囲内にて他の種々の実施形態が可能であることは当業者にとって明らかである。例えば、上記実施形態では、フロントサイドメンバ10を矩形閉断面形状としたが、フロントサイドメンバ10の断面形状はこれに限定されず、他の閉断面形状としても良い。
【0064】
【発明の効果】
請求項1記載の本発明は、サイドメンバがキャビンに沿って上方から斜め下方に向って屈曲された移行部を有するサイドメンバ構造であって、サイドメンバの内周部に、移行部における下位部の下端部を跨いで配設され、開口部を上方に向けた断面コ字状のリインフォースメントを有し、移行部の中位部で、リインフォースメントの前端部より車両前方へ離れた位置に脆弱部を形成し、移行部に車両前後方向に沿った圧縮荷重が作用した場合に、移行部の上位部における曲げ強度に比べて、移行部の中位部の曲げ強度及び移行部の下位部の曲げ強度を小さくしたため、車両衝突時に発生するキャビンの沈み込みを抑制できるという優れた効果を有する。
【0066】
請求項2記載の本発明は、請求項1に記載のサイドメンバ構造において、移行部の上位部と下位部におけるキャビンとの溶接を連続溶接とし、移行部の中位部におけるキャビンとの溶接を不連続溶接としたため、請求項1に記載の内容に加えて、移行部の中位部を中心に、サイドメンバの移行部を確実に折り曲げることができるという優れた効果を有する。
【図面の簡単な説明】
【図1】本発明の第1実施形態に係るサイドメンバ構造を示す側断面図である。
【図2】本発明の第1実施形態に係るサイドメンバ構造を示す車両斜め後方内側から見た斜視図である。
【図3】本発明の比較例に係るサイドメンバ構造を示す側断面図である。
【図4】本発明の第2実施形態に係るサイドメンバ構造を示す側断面図である。
【図5】本発明の第2実施形態に係るサイドメンバ構造を示す車両斜め後方内側から見た斜視図である。
【図6】本発明の第3実施形態に係るサイドメンバ構造を示す側断面図である。
【図7】本発明の第3実施形態に係るサイドメンバ構造を示す車両斜め後方内側から見た斜視図である。
【図8】本発明の第4実施形態に係るサイドメンバ構造を示す側断面図である。
【図9】本発明の第4実施形態に係るサイドメンバ構造を示す車両斜め後方内側から見た斜視図である。
【図10】本発明の第5実施形態に係るサイドメンバ構造を示す側断面図である。
【図11】本発明の第5実施形態に係るサイドメンバ構造を示す車両斜め後方内側から見た斜視図である。
【符号の説明】
10 フロントサイドメンバ
18 キャビン
20 フロアパネル部
22 ダッシュパネル部
30 フロントサイドメンバの移行部
32 移行部の上位部
34 移行部の中位部
34A 中位部の中央部(脆弱部、断面縮小部)
36 移行部の下位部
40 ビード(脆弱部、断面縮小部)
50 ビード(脆弱部、応力集中手段)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a side member structure, and more particularly to a side member structure of a vehicle such as an automobile.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, in a side member structure of an automobile, a sheet metal side member (also referred to as a side frame) extending in the front-rear direction and having a substantially U-shaped cross section is provided, and the floor is coupled to the upper surface of the side member. An upper surface of the transition portion from the inclined member to the horizontal member is provided with a panel, and the side member includes an inclined member extending rearwardly downward and a horizontal member extending substantially horizontally rearwardly from the rear end of the inclined member. The first reinforcing plate is directly coupled to the horizontal member, and the second reinforcing plate is provided on the upper surface of the portion of the floor panel corresponding to the horizontal member, and the horizontal member, the floor panel, and the second reinforcing plate are integrated with each other. A combined configuration is known (for example, see Patent Document 1).
[0003]
[Patent Document 1]
Japanese Patent No. 3321066 Specification
[Problems to be solved by the invention]
However, in such a side member structure, the side member has a transition portion that is bent obliquely downward from above along the lower portion of the cabin, and the upper portion, middle portion, and lower portion of the transition portion. From the relationship between the size of each cross-sectional shape in the section and the bending stress acting on the upper part, middle part, and lower part of the transition part at the time of the vehicle collision, the relative relationship of the bending strength at the transition part at the time of the vehicle collision is The part is the largest, in order of the upper part and the lower part. As a result, at the time of a vehicle collision, the side member bends starting from the upper part or the lower part of the transition part. For this reason, there exists a malfunction that the turning radius of a transfer part becomes large and the sinking of a cabin becomes large.
[0005]
In view of the above fact, an object of the present invention is to provide a side member structure that can suppress the sinking of a cabin that occurs during a vehicle collision.
[0006]
[Means for Solving the Problems]
The present invention according to claim 1 is a side member structure having a transition portion in which the side member is bent obliquely downward from above along the cabin,
On the inner periphery of the side member, the reinforcement is disposed across the lower end of the lower part of the transition part, and has a U-shaped reinforcement with the opening facing upward,
In the middle portion of the transition portion, a fragile portion is formed at a position away from the front end portion of the reinforcement toward the front of the vehicle, and when a compressive load along the vehicle front-rear direction acts on the transition portion, the transition portion The bending strength of the middle part of the transition part and the bending strength of the lower part of the transition part are smaller than the bending strength of the upper part of the transition part.
[0007]
Accordingly, a reinforcement having a U-shaped cross-section with the opening facing upward is disposed on the inner periphery of the side member across the lower end of the lower part of the transition part, and forward from the front end to the front of the vehicle. The weak part is formed in the position of the distant middle part. Therefore, when a compressive load along the vehicle longitudinal direction acts on the transition portion at the time of a vehicle collision, the bending strength at the upper portion of the transition portion of the side member that is bent obliquely downward from above along the cabin compared to, since the upper side of the bending strength of the lower part of the flexural strength and transition of the middle portion of the transition section is small, then the upper side of the weak portion and the lower portion of the middle part of the transition to the origin, the side Member transitions bend. At this time, the lower portion of the transition portion is deformed to the vehicle lower side. As a result, the turning radius of the transition portion of the side member becomes smaller than that when the transition portion of the side member is bent starting from the upper portion or the lower portion of the transition portion. For this reason, the sinking of the cabin that occurs at the time of a vehicle collision can be suppressed.
[0010]
The present invention is claimed in claim 2, wherein, in the side member structure according to claim 1, the welding between the cabin in the upper portion and lower portion of the transition portion and continuous welding, the at middle portions of the transition portion cabin It is characterized by discontinuous welding.
[0011]
Therefore, in addition to the content of the first aspect , the transition part of the side member can be reliably bent around the middle part of the transition part having the bending strength reduced by discontinuous welding.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
1st Embodiment of the side member structure which concerns on this invention is described according to FIG.1 and FIG.2.
[0013]
In the figure, the arrow FR indicates the vehicle body front direction, the arrow UP indicates the vehicle body upward direction, and the arrow IN indicates the vehicle width inside direction.
[0014]
As shown in FIG. 1, a pair of left and right front side members 10 according to the present embodiment are disposed in the vicinity of the lower ends of both ends in the vehicle width direction along the vehicle front-rear direction. Further, the front portion 12 of the front side member 10 is disposed in the engine room 14, and the rear portion 16 of the front side member 10 extends along the lower surface 20 </ b> A of the floor panel portion 20 constituting the floor portion of the cabin 18. It extends to the rear of the vehicle.
[0015]
Further, the front portion 12 and the rear portion 16 of the front side member 10 are offset in the vertical direction, and a dash panel portion 22 that partitions the engine room 14 and the cabin 18 between the front portion 12 and the rear portion 16 of the front side member 10. The transition portion 30 is bent along the cabin outer surface 22B of the inclined portion 22A from the upper front side of the vehicle toward the lower rear side of the vehicle. Further, the transition part 30 of the front side member 10 is an upper part 32, a middle part 34, and a lower part 36 from the front side of the vehicle.
[0016]
As shown in FIG. 2, the cross-sectional shape of the transition portion 30 of the front side member 10 cut along a vertical plane along the vehicle width direction is a hat shape with the opening facing upward, and the outer flange in the vehicle width direction 30A and the vehicle width direction inner side flange 30B are welded to the cabin outer surface 22B of the inclined portion 22A of the dash panel portion 22.
[0017]
As shown in FIG. 1, the cross-sectional depths of the upper portion 32, the middle portion 34, and the lower portion 36 in the transition portion 30 of the front side member 10, that is, the vehicle width direction outer side wall portion 30C and the vehicle width direction inner side wall. The widths H1, H2, and H3 of the portion 30D have the shallowest cross-sectional depth H2 in the central portion 34A of the middle portion 34, and continuously toward the upper end portion 32A of the upper portion 32 and the lower end portion 36A of the lower portion 36. It is deeper. Moreover, the width W of each bottom wall part 30E of the upper part 32, the middle part 34, and the lower part 36 in the transition part 30 of the front side member 10 is substantially constant.
[0018]
Therefore, the cross-sectional area of each of the upper portion 32, the middle portion 34, and the lower portion 36 in the transition portion 30 of the front side member 10 is the smallest in the central portion 34A of the middle portion 34. A central portion 34A of the middle portion 34 is a reduced cross-sectional portion as a fragile portion.
[0019]
In addition, a reinforcement 39 having a U-shaped cross section is disposed on the inner peripheral portion of the front side member 10 so as to straddle the lower end portion 36A of the lower portion 36 of the transition portion 30 with the opening portion facing upward. .
[0020]
Further, due to the compressive load along the vehicle front-rear direction generated at the time of the frontal collision of the vehicle, bending moments M1 and M2 in opposite directions are applied to the upper part 32 and the lower part 36 of the transition part 30 of the front side member 10, respectively. Therefore, the bending stress is relatively large in the upper part 32, large in the lower part 36, and small in the middle part 34.
[0021]
Accordingly, the transition portion of the front side member 10 at the time of a vehicle front collision is determined from the relationship between the bending area and the size of the cross-sectional areas of the upper portion 32, the middle portion 34, and the lower portion 36 in the transition portion 30 of the front side member 10. The bending strength of the upper part 32, the middle part 34, and the lower part 36 at 30 is large at the upper part 32, small at the middle part 34, and small at the lower part 36.
[0022]
Next, the operation of this embodiment will be described.
[0023]
In the present embodiment, the bending strength of the upper part 32, the middle part 34, and the lower part 36 in the transition part 30 of the front side member 10 at the time of a vehicle front collision is large in the upper part 32 and small in the middle part 34. Since the lower portion 36 becomes small, when the vehicle collides forward, the side member 10 starts from the upper side of the center portion 34A of the intermediate portion 34 and the lower end portion 36A of the lower portion 36 in the transition portion 30. The transition part 30 bends to the vehicle rear side. At this time, as shown by a two-dot chain line in FIG.
[0024]
As a result, the turning radius R1 of the bent portion of the side member 10 starts from the upper portion 72A or the lower portion 72B of the transition portion 72 of the side member 70 as in the comparative example shown in FIG. This is smaller than the turning radius R2 when the transition portion 72 is bent. For this reason, the sinking of the front portion 18A of the cabin 18 that occurs at the time of a vehicle front collision can be suppressed.
[0025]
Next, a second embodiment of the side member structure of the present invention will be described with reference to FIGS.
[0026]
In addition, about the same member as 1st Embodiment, the same code | symbol is attached | subjected and the description is abbreviate | omitted.
[0027]
As shown in FIG. 4, in the present embodiment, a convex bead 40 is formed on the inner side of the cross section, which is a reduced section of the cross section as a fragile portion, in the central portion 34 </ b> A of the middle portion 34 in the transition portion 30 of the front side member 10. ing.
[0028]
As shown in FIG. 5, the bead 40 protruding inward in the cross section has a vehicle width in the vehicle width direction inner side wall portion 30 </ b> D and in the vicinity of the vehicle width direction outer side flange 30 </ b> A in the vehicle width direction outer side wall portion 30 </ b> C. It is continuously formed up to the vicinity of the direction inner flange 30B.
[0029]
Further, due to the compressive load along the vehicle front-rear direction generated at the time of the frontal collision of the vehicle, bending moments M1 and M2 in opposite directions are applied to the upper part 32 and the lower part 36 of the transition part 30 of the front side member 10, respectively. Therefore, the bending stress is relatively large in the upper part 32, large in the lower part 36, and small in the middle part 34.
[0030]
Therefore, from the relationship between the bead 40 formed in the middle portion 34 in the transition portion 30 of the front side member 10 and the bending stress, the upper portion 32 and the middle portion in the transition portion 30 of the front side member 10 at the time of a vehicle front collision. The bending strengths of the lower portion 36 and the lower portion 36 are large at the upper portion 32, small at the middle portion 34, and small at the lower portion 36.
[0031]
Next, the operation of this embodiment will be described.
[0032]
In the present embodiment, the bending strength of the upper part 32, the middle part 34, and the lower part 36 in the transition part 30 of the front side member 10 at the time of a vehicle front collision is large in the upper part 32 and small in the middle part 34. Since the lower portion 36 is small, when the vehicle collides forward, the upper side of the bead 40 of the middle portion 34 and the lower end portion 36A of the lower portion 36 in the transition portion 30 of the side member 10 is the starting point. The transition part 30 of the side member 10 bends toward the vehicle rear side. At this time, as shown by a two-dot chain line in FIG.
[0033]
As a result, the rotation radius R1 of the bent portion in the side member 10 is determined so that the side member 70 starts from the upper portion 72A or the lower portion 72B of the transition portion 72 of the side member 70 as in the comparative example shown in FIG. It becomes smaller than the turning radius R2 in the case of bending. For this reason, the sinking of the front portion 18A of the cabin 18 that occurs at the time of a vehicle front collision can be suppressed.
[0034]
Next, a third embodiment of the side member structure of the present invention will be described with reference to FIGS.
[0035]
In addition, about the same member as 1st Embodiment, the same code | symbol is attached | subjected and the description is abbreviate | omitted.
[0036]
As shown in FIG. 6, in the present embodiment, a convex bead 50 is formed on the outer side of the cross section, which is a stress concentration means as a fragile portion, in the central portion 34 </ b> A of the middle portion 34 in the transition portion 30 of the front side member 10. ing.
[0037]
As shown in FIG. 7, the bead 50 that protrudes outward in cross section includes the bottom wall 30E, the vicinity of the vehicle width direction outer flange 30A in the vehicle width direction outer wall portion 30C, and the vehicle width in the vehicle width direction inner wall portion 30D. It is continuously formed up to the vicinity of the direction inner flange 30B.
[0038]
Further, due to the compressive load along the vehicle front-rear direction generated at the time of the frontal collision of the vehicle, bending moments M1 and M2 in opposite directions are applied to the upper part 32 and the lower part 36 of the transition part 30 of the front side member 10, respectively. Therefore, the bending stress is relatively large in the upper part 32, large in the lower part 36, and small in the middle part 34.
[0039]
Accordingly, from the relationship between the bead 50 formed in the middle portion 34 in the transition portion 30 of the front side member 10 and the bending stress, the upper portion 32 and the middle portion in the transition portion 30 of the front side member 10 at the time of a vehicle front collision. The bending strengths of the lower portion 36 and the lower portion 36 are large at the upper portion 32, small at the middle portion 34, and small at the lower portion 36.
[0040]
Next, the operation of this embodiment will be described.
[0041]
In the present embodiment, the bending strength of the upper part 32, the middle part 34, and the lower part 36 in the transition part 30 of the front side member 10 at the time of a vehicle front collision is large in the upper part 32 and small in the middle part 34. Since the lower portion 36 is small, when the vehicle collides forward, the upper side of the bead 50 of the middle portion 34 and the lower end portion 36A of the lower portion 36 in the transition portion 30 of the side member 10 is the starting point. The transition part 30 of the side member 10 bends toward the vehicle rear side. At this time, as shown by a two-dot chain line in FIG. 6, the lower portion 36 is deformed to the vehicle lower side.
[0042]
As a result, the rotation radius R1 of the bent portion in the side member 10 is determined so that the side member 70 starts from the upper portion 72A or the lower portion 72B of the transition portion 72 of the side member 70 as in the comparative example shown in FIG. It becomes smaller than the turning radius R2 in the case of bending. For this reason, the sinking of the front portion 18A of the cabin 18 that occurs at the time of a vehicle front collision can be suppressed.
[0043]
Next, 4th Embodiment of the side member structure of this invention is described according to FIG.8 and FIG.9.
[0044]
In addition, about the same member as 1st Embodiment, the same code | symbol is attached | subjected and the description is abbreviate | omitted.
[0045]
As shown in FIG. 9, in the present embodiment, the middle portion 34 of the transition portion 30 of the front side member 10 is welded to the vehicle width direction outer flange 30A and the dash panel portion 22 and the vehicle width direction inner flange 30B. The welding with the dash panel portion 22 is welded at a predetermined interval by spot welding (welding point P1) as discontinuous welding.
[0046]
On the other hand, at the upper portion 32 and the lower portion 36 in the transition portion 30 of the front side member 10, welding between the vehicle width direction outer side flange 30A and the dash panel portion 22 and welding between the vehicle width direction inner side flange 30B and the dash panel portion 22 are performed. However, wire welding is performed by laser welding (welding line P2) as continuous welding.
[0047]
Further, due to the compressive load along the vehicle front-rear direction generated at the time of the frontal collision of the vehicle, bending moments M1 and M2 in opposite directions are applied to the upper part 32 and the lower part 36 of the transition part 30 of the front side member 10, respectively. Therefore, the bending stress is relatively large in the upper part 32, large in the lower part 36, and small in the middle part 34.
[0048]
Therefore, the transition portion of the front side member 10 at the time of the frontal collision of the vehicle from the relationship between the spot welding of the middle portion 34 in the transition portion 30 of the front side member 10 and the laser welding of the upper portion 32 and the lower portion 36 and the bending stress. The bending strength of the upper part 32, the middle part 34, and the lower part 36 at 30 is large at the upper part 32, small at the middle part 34, and small at the lower part 36.
[0049]
Next, the operation of this embodiment will be described.
[0050]
In the present embodiment, the bending strength of the upper part 32, the middle part 34, and the lower part 36 in the transition part 30 of the front side member 10 at the time of a vehicle front collision is large in the upper part 32 and small in the middle part 34. Since the lower portion 36 is small, when the vehicle collides forward, the spot-welded middle portion at the transition portion 30 of the side member 10 bent from the upper side to the diagonally lower side along the cabin 18. The transition part 30 of the side member 10 bends toward the vehicle rear side starting from between the welding points P1 of 34 and the upper side of the lower end part 36A of the lower part 36 . At this time, as shown by a two-dot chain line in FIG. 8, the lower portion 36 is deformed to the vehicle lower side.
[0051]
As a result, the rotation radius R1 of the bent portion in the side member 10 is determined so that the side member 70 starts from the upper portion 72A or the lower portion 72B of the transition portion 72 of the side member 70 as in the comparative example shown in FIG. It becomes smaller than the turning radius R2 in the case of bending. For this reason, the sinking of the front portion 18A of the cabin 18 that occurs at the time of a vehicle front collision can be suppressed.
[0052]
Next, a fifth embodiment of the side member structure of the present invention will be described with reference to FIGS.
[0053]
In addition, about the same member as 1st Embodiment, the same code | symbol is attached | subjected and the description is abbreviate | omitted.
[0054]
As shown in FIG. 11, in the present embodiment, the intermediate portion 34 of the transition portion 30 of the front side member 10 is welded between the vehicle width direction outer flange 30A and the dash panel portion 22 and the vehicle width direction inner flange 30B. The welding with the dash panel portion 22 is welded at a predetermined interval by spot welding (welding point P1) as discontinuous welding.
[0055]
On the other hand, at the upper portion 32 and the lower portion 36 in the transition portion 30 of the front side member 10, welding between the vehicle width direction outer side flange 30A and the dash panel portion 22 and welding between the vehicle width direction inner side flange 30B and the dash panel portion 22 are performed. Are wire-welded by laser welding (welding line P2) as continuous welding.
[0056]
Furthermore, in the present embodiment, a convex bead 50 is formed on the outer side of the cross section, which is a stress concentration means as a fragile portion, at the central portion 34A of the middle portion 34 in the transition portion 30 of the front side member 10.
[0057]
Further, due to the compressive load along the vehicle front-rear direction generated at the time of the frontal collision of the vehicle, bending moments M1 and M2 in opposite directions are applied to the upper part 32 and the lower part 36 of the transition part 30 of the front side member 10, respectively. Therefore, the bending stress is relatively large in the upper part 32, large in the lower part 36, and small in the middle part 34.
[0058]
Therefore, from the relationship between spot welding of the middle part 34 and laser welding of the upper part 32 and the lower part 36 in the transition part 30 of the front side member 10, the bead 50 of the middle part 34, and the bending stress, the frontal collision of the vehicle. The bending strength of the upper part 32, the middle part 34, and the lower part 36 in the transition part 30 of the front side member 10 at the time is large at the upper part 32, small at the middle part 34, and small at the lower part 36.
[0059]
Next, the operation of this embodiment will be described.
[0060]
In the present embodiment, the bending strength of the upper part 32, the middle part 34, and the lower part 36 in the transition part 30 of the front side member 10 at the time of a vehicle front collision is large in the upper part 32 and small in the middle part 34. Since the lower portion 36 is small, when the vehicle collides forward, the middle portion 34 and the lower end portion 36 </ b> A of the lower portion 36 are spot-welded and the beads 50 are formed at the transition portion 30 of the side member 10. The transition part 30 of the side member 10 bends toward the vehicle rear side, starting from the upper side . At this time, as shown by a two-dot chain line in FIG.
[0061]
As a result, the rotation radius R1 of the bent portion in the side member 10 is determined so that the side member 70 starts from the upper portion 72A or the lower portion 72B of the transition portion 72 of the side member 70 as in the comparative example shown in FIG. It becomes smaller than the turning radius R2 in the case of bending. For this reason, the sinking of the front portion 18A of the cabin 18 that occurs at the time of a vehicle collision can be suppressed.
[0062]
In the present embodiment, the convex bead 50 is formed on the outer side of the cross section, which is a stress concentration means as the fragile portion, in the middle portion 34 welded at a predetermined interval by discontinuous welding. You may form the convex bead 40 in the cross-section inside as a weak part in the middle part 34 welded by the predetermined space | interval by continuous welding. Further, instead of the beads 50 and 40, the cross-sectional area at the central portion 34A of the middle portion 34 welded at a predetermined interval by discontinuous welding may be minimized.
[0063]
Although the present invention has been described in detail with reference to specific embodiments, the present invention is not limited to such embodiments, and various other embodiments are possible within the scope of the present invention. It will be apparent to those skilled in the art. For example, in the above embodiment, the front side member 10 has a rectangular closed cross-sectional shape, but the cross-sectional shape of the front side member 10 is not limited to this, and may have another closed cross-sectional shape.
[0064]
【The invention's effect】
The present invention according to claim 1 is a side member structure having a transition part in which the side member is bent obliquely downward from above along the cabin, and the lower part of the transition part is provided on the inner peripheral part of the side member. It has a reinforcement with a U-shaped cross-section with the opening facing upward, and is vulnerable to the middle part of the transition part away from the front end of the reinforcement to the front of the vehicle. When the compressive load along the vehicle longitudinal direction is applied to the transition part, the bending strength of the middle part of the transition part and the lower part of the transition part are compared with the bending strength of the upper part of the transition part. Since the bending strength is reduced, it has an excellent effect of suppressing the sinking of the cabin that occurs at the time of a vehicle collision.
[0066]
The present invention is claimed in claim 2, wherein, in the side member structure according to claim 1, the welding of the cabin in the upper part and lower part of the transition to the continuous welding, the welding of the cabin in the middle of the transition portion Since the discontinuous welding is used, in addition to the content described in claim 1 , there is an excellent effect that the transition part of the side member can be reliably bent around the middle part of the transition part.
[Brief description of the drawings]
FIG. 1 is a side sectional view showing a side member structure according to a first embodiment of the present invention.
FIG. 2 is a perspective view showing the side member structure according to the first embodiment of the present invention as seen from the obliquely rearward inner side of the vehicle.
FIG. 3 is a side sectional view showing a side member structure according to a comparative example of the present invention.
FIG. 4 is a side sectional view showing a side member structure according to a second embodiment of the present invention.
FIG. 5 is a perspective view showing a side member structure according to a second embodiment of the present invention as seen from the obliquely rearward inner side of the vehicle.
FIG. 6 is a side sectional view showing a side member structure according to a third embodiment of the present invention.
FIG. 7 is a perspective view showing a side member structure according to a third embodiment of the present invention as seen from the obliquely rearward inner side of the vehicle.
FIG. 8 is a side sectional view showing a side member structure according to a fourth embodiment of the present invention.
FIG. 9 is a perspective view showing a side member structure according to a fourth embodiment of the present invention as seen from the obliquely rearward inner side of the vehicle.
FIG. 10 is a side sectional view showing a side member structure according to a fifth embodiment of the present invention.
FIG. 11 is a perspective view showing a side member structure according to a fifth embodiment of the present invention as seen from the obliquely rearward inner side of the vehicle.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Front side member 18 Cabin 20 Floor panel part 22 Dash panel part 30 Front side member transition part 32 Transition part upper part 34 Transition part middle part 34A Middle part center part (fragile part, cross-sectional reduction part)
36 Lower part of transition part 40 Bead (fragile part, cross-section reduced part)
50 bead (fragile part, stress concentration means)

Claims (2)

サイドメンバがキャビンに沿って上方から斜め下方に向って屈曲された移行部を有するサイドメンバ構造であって、
前記サイドメンバの内周部に、前記移行部における下位部の下端部を跨いで配設され、開口部を上方に向けた断面コ字状のリインフォースメントを有し、
前記移行部の中位部で、前記リインフォースメントの前端部より車両前方へ離れた位置に脆弱部を形成し、前記移行部に車両前後方向に沿った圧縮荷重が作用した場合に、前記移行部の上位部における曲げ強度に比べて、前記移行部の中位部の曲げ強度及び前記移行部の下位部の曲げ強度を小さくしたことを特徴とするサイドメンバ構造。
A side member structure having a transition portion in which the side member is bent obliquely downward from above along the cabin,
On the inner periphery of the side member, the reinforcement is disposed across the lower end of the lower part of the transition part, and has a U-shaped reinforcement with the opening facing upward,
In the middle portion of the transition portion, a fragile portion is formed at a position away from the front end portion of the reinforcement toward the front of the vehicle, and when a compressive load along the vehicle front-rear direction acts on the transition portion, the transition portion A side member structure characterized in that the bending strength of the middle portion of the transition portion and the bending strength of the lower portion of the transition portion are made smaller than the bending strength of the upper portion of the transition portion.
前記移行部の上位部と下位部における前記キャビンとの溶接を連続溶接とし、前記移行部の中位部における前記キャビンとの溶接を不連続溶接としたことを特徴とする請求項1に記載のサイドメンバ構造。 The welding with the cabin at the upper part and the lower part of the transition part is continuous welding, and the welding with the cabin at the middle part of the transition part is discontinuous welding . Side member structure.
JP2002365066A 2002-12-17 2002-12-17 Side member structure Expired - Fee Related JP4168741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002365066A JP4168741B2 (en) 2002-12-17 2002-12-17 Side member structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002365066A JP4168741B2 (en) 2002-12-17 2002-12-17 Side member structure

Publications (2)

Publication Number Publication Date
JP2004196056A JP2004196056A (en) 2004-07-15
JP4168741B2 true JP4168741B2 (en) 2008-10-22

Family

ID=32762722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002365066A Expired - Fee Related JP4168741B2 (en) 2002-12-17 2002-12-17 Side member structure

Country Status (1)

Country Link
JP (1) JP4168741B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4496956B2 (en) * 2004-12-28 2010-07-07 三菱自動車工業株式会社 Body front structure
JP2009137522A (en) * 2007-12-10 2009-06-25 Mazda Motor Corp Front body structure of automobile
JP5549866B2 (en) * 2010-06-29 2014-07-16 スズキ株式会社 Undercarriage of the vehicle
US10214243B2 (en) * 2017-07-11 2019-02-26 Ford Global Technologies, Llc Vehicle frame

Also Published As

Publication number Publication date
JP2004196056A (en) 2004-07-15

Similar Documents

Publication Publication Date Title
JP6052226B2 (en) Vehicle front structure
EP1908668B1 (en) Vehicle front structure
JP4286884B2 (en) Auto body structure
JP4758875B2 (en) Vehicle hood structure
JP2005075176A (en) Structure of hood for vehicle
JP2006199132A (en) Vehicle body lower side part structure
JP2009006903A (en) Vehicle body structure for automobile
JP4081777B2 (en) Cab back panel
JP4019647B2 (en) Body structure
JP2005125831A (en) Hood structure of vehicle
JP2005343279A (en) Hood structure for vehicle
JP2006264605A (en) Door structure
JP5560069B2 (en) Floor structure
JP2000095151A (en) Rocker structure of vehicle
JP4168741B2 (en) Side member structure
JP3741020B2 (en) Body structure
JP2008143292A (en) Vehicle body structure
JP2005206107A (en) Vehicle body front structure
JP2016068603A (en) Side body structure of vehicle
JP2008132830A (en) Front part structure for vehicle
JP2007098982A (en) Chassis frame and body construction
JP4702189B2 (en) Door belt line structure
JP3482916B2 (en) Body structure
JP2009184527A (en) Pillar reinforcement structure
JP4502262B2 (en) Car body side structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080715

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080728

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4168741

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees