JP4168694B2 - Ultrasonic welding horn for electrolytic capacitor and method for manufacturing electrolytic capacitor - Google Patents

Ultrasonic welding horn for electrolytic capacitor and method for manufacturing electrolytic capacitor Download PDF

Info

Publication number
JP4168694B2
JP4168694B2 JP2002233465A JP2002233465A JP4168694B2 JP 4168694 B2 JP4168694 B2 JP 4168694B2 JP 2002233465 A JP2002233465 A JP 2002233465A JP 2002233465 A JP2002233465 A JP 2002233465A JP 4168694 B2 JP4168694 B2 JP 4168694B2
Authority
JP
Japan
Prior art keywords
tab
protrusion
ultrasonic welding
rivet
electrolytic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002233465A
Other languages
Japanese (ja)
Other versions
JP2004079563A (en
Inventor
達郎 久保内
健 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP2002233465A priority Critical patent/JP4168694B2/en
Publication of JP2004079563A publication Critical patent/JP2004079563A/en
Application granted granted Critical
Publication of JP4168694B2 publication Critical patent/JP4168694B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、アルミニウム電解コンデンサ等の電解コンデンサのターミナルリベットと引出しリード(タブ)との超音波溶接等に使用される超音波溶接ホーン、この超音波溶接ホーンを用いた電解コンデンサの製造方法に関する。
【0002】
【従来の技術】
アルミニウム電解コンデンサでは、コンデンサ素子を封入する外装ケースの封口板にターミナルリベットが固定され、このリベットにコンデンサ素子から引き出されたタブをワッシャ等の加締めにより取り付けるとともに、タブをリベットの端部に超音波によって金属接合することにより、ターミナルリベットとタブとの機械的な結合とともに、電気的な接続が行われている。このような機械的な金属間接合を超音波接合によって補完するのは、信頼性の高い接合状態を実現することにある。このようなタブとターミナルリベットとを超音波を用いて接合する技術には例えば、特許第2811732号「アルミ電解コンデンサの製造方法」がある。
【0003】
【発明が解決しようとする課題】
ところで、このアルミ電解コンデンサの製造方法では、被溶接部材に超音波エネルギを付与する超音波溶接ホーンが使用され、この超音波溶接ホーンには、複数個の円錐台形状の突起が形成されたものや、複数個の小突起が形成されたものがある。これらホーンの突起の高さがタブの厚みより低く、複数の突起の各頂面で超音波溶接が行われているので、接合されたリベットとタブとの間に境界面が生じるため、両者の接続強度が十分でない。この接続強度を高めるには、溶接処理に必要な超音波エネルギの増大が考えられ、複数枚のタブを重ねて溶接する場合には、タブの厚みや積層数が増すほどに超音波エネルギを増大させ、その超音波の印加時間を長くする必要がある。
【0004】
しかしながら、増大させた超音波エネルギにタブが耐えられない場合には、タブが変形し、その変形量は超音波エネルギ量によって大きくなり、溶接部分やその近傍に亀裂や破断を生じさせ、場合によってはタブ間にズレを生じさせる。特に、タブ間に幅方向のズレが生じると、溶接面が縮小する結果、溶接不良や接続強度の低下を来たし、接続の信頼性を低下させるおそれがある。
【0005】
そこで、本発明は、ターミナルリベットとタブとの超音波接合の強度を高め、接続の信頼性の向上を図ることができる電解コンデンサ用超音波溶接ホーン、及び電解コンデンサの製造方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
係る課題を解決した本発明の電解コンデンサ用超音波溶接ホーン、及び電解コンデンサの製造方法の構成は以下の通りである。
【0007】
本発明の電解コンデンサ用超音波溶接ホーンにおいて、請求項1に係る電解コンデンサ用超音波溶接ホーンは、溶接すべきターミナルリベット34上にコンデンサ素子24から引き出されたタブ36を重ね、該タブを加圧しながら前記ターミナルリベットと前記タブとの溶接部44に超音波エネルギを付与する電解コンデンサ用超音波溶接ホーンであって、尖鋭部を持つ第1の突部12と、この第1の突部を包囲して形成され、前記第1の突部より高さの低い第2の突部16、18とを備えたことを特徴とする。
【0008】
即ち、溶接すべきターミナルリベットの上に重ねられたタブの溶接部に第1の突部を当接すると、該突部が尖鋭部を備えているので、該尖鋭部が加圧によってタブ上に位置決めされ、この部分から超音波溶接が開始される。加圧を持続することで、軟化した溶接部に第1の突部が進入し、この第1の突部の周囲に形成されている凹部に軟化したタブの金属が進入するとともに、第2の突部が溶接部に進行し、主たる溶接部分が第2の突部で包囲されることになる。同時に、主たる溶接部分を包囲して第2の突部での超音波溶接が行われる。
【0009】
このように、超音波溶接ホーンの中央部にある第1の突部を中心に超音波溶接が行われると、超音波エネルギが溶接部の中央に集中し、その溶接部分が尖鋭化し、タブ側の金属とリベット側の金属との接合面が一体化されるので、ターミナルリベットとタブとの接合強度が高められ、信頼性の高い接合状態が得られる。その結果、溶接時間の低減とともに、溶接に要する超音波エネルギを削減でき、溶接部の尖鋭化は、タブのズレ防止にも寄与する。
【0010】
また、尖鋭部を持つ第1の突部を中心に超音波エネルギがタブに加わると、溶接部分が尖鋭化し、この部分を中心に積層状のタブが反り返る現象が瞬間的に起こることが予想されるが、第1の突部の周囲にある第2の突部がタブの溶接部の周囲を押圧し、主たる溶接部分を第2の突部によって生じる従たる溶接部分で包囲する結果、反り返り等のタブの変形が抑制され、溶接部分が第1の突部を中心に第2の突部で包囲される範囲に波及し、接合強度の高い溶接とともに、タブのズレが防止される。しかも、第1の突部と第2の突部との間の凹部には、タブ側の溶融金属が進入して立壁状の突部が形成され、溶接範囲外への流出が防止される。さらに、溶接時間及び溶接エネルギの削減により、超音波溶接ホーンを磨耗から防護でき、その耐用時間を延ばすことが可能となる。
【0011】
本発明の電解コンデンサ用超音波溶接ホーンにおいて、請求項2に係る電解コンデンサ用超音波溶接ホーンは、前記第1の突部が前記タブの厚みより高く設定されたことを特徴とする。即ち、第1の突部をタブの厚みより高く設定することにより、溶接時、タブを超えてリベットに第1の突部を食い込ませることができ、リベットとタブとの溶接強度を向上させることができる。
【0012】
本発明の電解コンデンサ用超音波溶接ホーンにおいて、請求項3に係る電解コンデンサ用超音波溶接ホーンは、前記第1の突部が尖鋭部を持つ柱状であることを特徴とする。即ち、柱状部を備え、その高さを任意に設定して溶接部分を離間させることができる。
【0013】
本発明の電解コンデンサ用超音波溶接ホーンにおいて、請求項4に係る電解コンデンサ用超音波溶接ホーンは、前記第2の突部が点状の尖鋭部、連続した線状又は曲線状の尖鋭部を備えたことを特徴とする。即ち、第2の突部の尖鋭部の形態を点状、線状又は曲線状とすることにより、超音波エネルギパターンを所望の形態に制御することができる。点状であれば、超音波エネルギを集中させることができるとともに、その点を中心にしたパターンが得られる。また、線状とすれば、一定の幅を持つエネルギパターンを形成でき、曲線状とすれば、その曲線に沿ったエネルギパターンを形成することができる。このようなパターンを単独又は組み合わせることにより、所望の溶接範囲にすることができる。そして、リベットに溶接されるタブを所定範囲で押圧させることができ、例えば、電解液が付着したタブであっても、リベットからずれることがなく、積層状態にあるタブのズレをも防止できる。
【0014】
本発明の電解コンデンサ用超音波溶接ホーンにおいて、請求項5に係る電解コンデンサ用超音波溶接ホーンは、前記第2の突部の周縁側に角錐面(傾斜面20)を備え、その角部に面取り部22を備えたことを特徴とする。即ち、面取り部により、角部が鈍角化するため、溶接後のタブとの密着を防止でき、取外しが容易になる。
【0015】
本発明の電解コンデンサ用超音波溶接ホーンにおいて、請求項6に係る電解コンデンサ用超音波溶接ホーンは、前記第2の突部の頂部に平坦面を有することを特徴とする。即ち、第2の突部の頂部の平坦面が主たる溶接部分の周囲を少なからず押圧するため、溶接時のタブの反り返りを防止でき、溶接時間を短縮することができる。
【0016】
本発明の電解コンデンサの製造方法において、請求項7に係る電解コンデンサの製造方法は、封口板30に貫通させて固定されたリベット(ターミナルリベット34)にコンデンサ素子24から引き出されたタブ36を重ねて超音波エネルギによって溶接する電解コンデンサの製造方法であって、前記リベット上に重ねられた前記タブと、中央部に尖鋭部を持つ第1の突部12、この第1の突部を包囲して形成され、該第1の突部より低い第2の突部16、18を備えた超音波溶接ホーンとを当接して加圧させる処理と、前記超音波溶接ホーンから前記タブと前記リベットとの溶接部44に超音波エネルギを付与する処理とを含むことを特徴とする。
【0017】
即ち、この電解コンデンサの製造方法は、既に述べた電解コンデンサ用超音波溶接ホーンを用いたものであるから、溶接時のタブの変形やズレが抑制され、溶接強度が高く、信頼性の高い接続状態が得られ、電解コンデンサにおいて、振動応力に対する耐力を備えた端子構造を実現できる。この場合、リベットに重ねられたタブに第1の突部を当接して加圧させ、その加圧及び溶接の進行とともに第2の突部がタブ上に当接される結果、第1の突部による超音波溶接ホーンの溶接部分への位置決めと、第2の突部によるタブの押え込みで、タブの位置ずれを防止することができる。
【0018】
本発明の電解コンデンサの製造方法において、請求項8に係る電解コンデンサの製造方法は、前記リベットと前記タブとを溶接させ、前記第1の突部12によって第1の凹部46、前記第1及び第2の突部の間隔内に立壁部48、前記第2の突部によって前記立壁部を包囲して前記第1の凹部より浅い第2の凹部50、52を形成する処理を含むことを特徴とする。即ち、この処理によって、リベット上にタブが確実に溶接される。
【0019】
本発明の電解コンデンサの製造方法において、請求項9に係る電解コンデンサの製造方法は、溶接時、前記リベットに重ねられた前記タブを前記超音波溶接ホーンで加圧し、前記タブと前記リベットとの前記溶接部を前記超音波溶接ホーンで包囲することを特徴とする。即ち、タブの反り返りやズレを防止でき、タブとリベットとの接続強度を高めることができる。
【0020】
本発明の電解コンデンサの製造方法において、請求項10に係る電解コンデンサの製造方法は、溶接時、前記タブに前記超音波溶接ホーンの超音波エネルギを前記タブと同一方向に付与することを特徴とする。即ち、超音波振動がタブと同一方向に付与されるので、タブの幅方向へのズレが防止でき、リベットとタブとの接続範囲を広くすることができる。
【0021】
【発明の実施の形態】
図1は、本発明の実施の形態に係る電解コンデンサ用超音波溶接ホーンを示している。
【0022】
この電解コンデンサ用超音波溶接ホーンは、鋼等の金属材料を用いて例えば、十字形に形成されたホーンの先端に単一又は複数のホーン部4が形成されるとともに、図示しない超音波振動源から超音波エネルギが付与される構成である。
【0023】
各ホーン部4は角柱状の柱状部10の頂部にローレット加工により形成され、例えば、図2に示すように、尖鋭部を持つ第1の突部として、中央部に突部12、この突部12を包囲する凹部として断面V字状の凹部14、この凹部14を包囲して突部12より高さの低い第2の突部として複数の突部16、18を備えている。図3及び図4は図2に示したホーン部の各断面を示しており、図3の(A)は図2のIIIA−IIIA線断面、図3の(B)は図2のIIIB−IIIB線断面、図4の(A)は図2の IVA−IVA 線断面、図4の(B)は図2の IVB−IVB 線断面である。
【0024】
突部12は、底面側を正方形とし、点状の尖鋭部を持つ四角錐形であって、鋭角状の頂角を備え、その角度θ1 は例えば、80°であり、突部12を形成する各側面部は二等辺三角形である。この突部12の高さh1 は図3の(A)に示すように、ホーン部4で最も高く、この高さh1 は被溶接部材であるタブ(図6)の厚さt及び溶接深さに応じて設定される。
【0025】
凹部14は、突部12の底縁を最深部とし、突部12、16間、突部12、18間及び突部16、18間に形成されて井桁状である。
【0026】
突部16は、突部12の底縁長と同一の二辺部を備えた長方形状の底面とし、2つの二等辺三角形と台形とからなる線状の尖鋭部を備えた四角錐であって、凹部14を挟んで突部12の各底縁に平行に突部12を包囲して配置されている。この突部16において、台形の側面が成す角度、即ち、尖鋭部の角度θ2 は、鋭角であって角度θ1 より鋭く、例えば、60°に設定されている。また、この突部16の高さh2 は図3の(A)に示すように突部12より低く、この高さh2 は突部12と同様に、被溶接部材であるタブ(図6)の厚さt及び溶接深さに応じて設定される。なお、突部16を突部12に向かって又はその反対方向に向かって湾曲させることで、上面視曲線状の尖鋭部からなる突部とし、中央の突部12を包囲する形態を取ることもできる。
【0027】
また、突部18は、突部16の短い側の底縁長と同一の底縁部を備えた正方形状の底面とし、4つの二等辺三角形からなる点状の尖鋭部を備えた四角錐であって、凹部14を挟んで突部12の対角線上の4箇所に配置されている。この突部18において、尖鋭部が成す角度θ3 は、突部16と同様に例えば、60°に設定されている。突部18の高さh3 は図4の(A)に示すように突部12より低く、この実施の形態では高さh3 は突部16の高さh2 と同一であり、突部12と同様に、被溶接部材であるタブ36(図6)の厚さt及び溶接深さに応じて設定される。この場合、突部16、18の高さh2 、h3 は異ならせてもよく、また、角度θ2 、θ3 を異ならせてもよい。
【0028】
この実施の形態では、突部16、18を尖鋭部を備えた形状としてが、他の形態としては、突部の頂点を削り、頂部に平面部を形成してもよい。この平面部を有する突部は、その平面部が上面視円形状や、長方形、正方形、三角形等の多角形状とすることができる。また、この突部は、その平面部が長方形を湾曲させて上面視曲面状として突部12を包囲するように形成してもよい。
【0029】
そして、このホーン部4は、突部12を中央にして突部16、18が突部12を包囲して形成され、突部12、16、18の外郭線は、突部12の底面と相似形の正方形を成し、突部12の中心が柱状部10の中心に一致している。ホーン部4は角錐台形であって、周面部が台形状の傾斜面20を備えているとともに、その角部に例えば、三角形状の面取り部22が形成されている。この面取り部22は、円弧面であってもよい。この場合、傾斜面20と突部16又は突部18とは、傾斜面20側の角度と突部16、18側の角度とが相違するため、外面側に角度θ4 の断面V字状の凹部を形成している。
【0030】
次に、図5及び図6は、本発明の実施の形態に係る電解コンデンサの製造方法を示している。
【0031】
電解コンデンサは、コンデンサ素子24が封入される外装ケース26を備えており、この外装ケース26の開口部28は封口板30によって封止される。封口板30は硬質合成樹脂板で形成され、上縁部には封止部材としてOリング32が取り付けられている。
【0032】
封口板30には、外部端子を構成するターミナルリベット34が封口板30へのインサート成形によって貫通、固定されており、封口板30の内側に突出させたターミナルリベット34と、コンデンサ素子24から引き出された引出しリードとして、アルミニウム等の金属材料で形成された帯状の複数枚のタブ36とは、ターミナルリベット34をタブ36の貫通孔38(図6)に挿入し、且つ、ターミナルリベット34に嵌合させたワッシャ40の加締めによって固定されている。この場合、タブ36の端部側が折り返されてターミナルリベット34の端部側に重ねられている。
【0033】
そして、ターミナルリベット34に重ねられたタブ36には、図6に示すように、本発明に係る超音波溶接ホーン(図1及び図2)のホーン部4が当接され、図示しない固定手段で位置決め固定された封口板30のターミナルリベット34に対向してホーン部4に矢印Fで示すように、加圧力とともに図示しない超音波溶接源から超音波エネルギが加えられる。この場合、突部12の高さh1 は被溶接部材であるタブ36の厚みtより高く、突部16、18の高さh2 、h3 は厚みtより低く設定されている。即ち、これらの大小関係は、h1 >t>h2 ,h3 である。なお、この大小関係は、h1 >h2 ,h3 >tとしてもよい。このように突部16、18の高さh2 、h3 をタブ36の厚みtに対して高く設定することで、溶接時のタブ36の反り返りを防止できるとともに、溶接時間を短縮してタブ36の過度な変形を抑制できるという効果に加えて、突部16、18がターミナルリベット34と当接してタブ36とターミナルリベット34とを接続するため、中央の突部12による溶接部分の電気的な接続状態を強化できるという補完的な効果も得られる。
【0034】
この超音波溶接において、ターミナルリベット34に重ねられたタブ36にホーン部4の突部12が当接され、その尖鋭部が加圧によってタブ36上に位置決めされ、この部分から超音波溶接が開始される。加圧を持続すると、超音波エネルギによって軟化したタブ36を構成する金属中に突部12がその高さh1 だけ進入するが、その際、突部12及び突部16、18に沿って屈曲したタブ36がターミナルリベット34に密着するとともに、突部12とともに一部のタブ36の金属がターミナルリベット34内に進入する。このとき、突部12の周囲の凹部14には、タブ36の金属が進入し、溶接部44中の主たる溶接部分が突部12によって形成されるとともに、突部16、18側にも溶接が進行し、主たる溶接部分を包囲する従たる溶接部分が突部16、18側に形成されることにより、タブ36がターミナルリベット34に溶着し、溶接部44が形成される。この実施の形態では、突部12の高さh1 がタブ36の厚みtよりも高いため、溶接時、突部12がターミナルリベット34の端面より内側に進入し、その結果、ターミナルリベット34の内部にタブ36が入り込んでターミナルリベット34とタブ36とが溶接されるので、極めて高い接続強度が得られる。
【0035】
しかも、ホーン部4の中央部にある突部12を中心に超音波溶接が行われると、超音波エネルギが溶接部44の中央に集中し、その溶接部分が尖鋭化し、タブ36側の金属とターミナルリベット34側の金属との接合面が一体化され、ターミナルリベット34とタブ36との接合強度が高められる。その結果、信頼性の高い接合状態が得られる。このような超音波溶接によれば、溶接時間や溶接に要する超音波エネルギを削減でき、溶接部44の突部12による尖鋭化は、タブ36のズレ防止を図ることができる。
【0036】
また、尖鋭部を持つ突部12を中心に超音波エネルギがタブ36に加わると、溶接部分が尖鋭化するが、この部分を中心に積層状のタブ36が反り返る現象が瞬間的に生じても、突部12の周囲にある突部16、18がタブ36の溶接部44の周囲を押圧し、主たる溶接部分を突部16、18によって生じる従たる溶接部分で包囲する結果、反り返り等のタブ36の変形が抑制される。しかも、溶接部分が突部12を中心に突部16、18で包囲される範囲に波及するので、溶接部44がターミナルリベット34の端面の全面となる結果、接合強度の高い溶接状態が得られ、タブ36のズレも防止できる。
【0037】
そして、このようなホーン部4を用いた超音波溶接では、例えば、図7に示すように、溶接部44の中央部には突部12によって角錐状の第1の凹部46、ホーン部4側の凹部14によって凹部46を包囲する立壁部48、突部16、18によって立壁部48を包囲して凹部46より浅い角錐状の複数の第2の凹部50、52が形成される。ホーン部4の突部12と突部16、18との間の凹部14が成す空間がタブ36側の溶融金属溜まりとして機能するとともに、凹部14の空間で進入した金属の立壁部48が形成され、同時に、突部16、18で凹部50、52が形成される。従って、タブ36の溶接部44の中央には、容積が大きく、最大の深部を持つ角錐状の凹部46、この凹部46より浅く、小さい容積を持つ角錐状の4組の凹部50、52とともに、これら凹部46、50、52を仕切る立壁部48が形成される。立壁部48の高さは、タブ36の外面に一致している。この場合、立壁部48の高さは、タブ36の平面内に後退させてもよい。
【0038】
このようなホーン部4を持つ超音波溶接ホーンを用いれば、溶接時間及び溶接エネルギを削減しても強力な溶接が可能となり、溶接時間を短縮できるので、タブ36に生じる過度な変形を抑制できる上、超音波溶接ホーンを磨耗から防護でき、その耐用時間を延ばすことができる。
【0039】
【実施例】
この超音波溶接ホーンの実施例1として、例えば、ホーン部4の中央部に頂角の角度(θ1 )=80°、高さ(h1 )=1.4mmの正四角錐からなる突部12、この突部12の四隅部に正四角錐からなる突部16、突部12の辺部に突部18を設け、各突部16、18の高さ(h2 、h3 )=0.7mm、各頂角の角度(θ2 、θ3 )=60°とし、面取り部22の高さ=1mmに形成した。
【0040】
被溶接部材であるターミナルリベット34は直径φ=4mmとし、タブ36には厚さ=0.2mm、幅=7mmの化成タブを6枚重ねとした。即ち、タブ36の総厚み(t)=1.2mmであることから、ホーン部4の中央部の突部12の高さ(h1 )はタブ36の総厚み(t)=1.2mmより0.2mmだけ高く設定されている。
【0041】
溶接条件として、加圧力=4kg(ゲージ圧)で固定し、超音波振動はタブ36の長手方向と同方向に設定するとともに、タブ36に電解液が付着した状態、電解液が付着していない状態を設定した。
【0042】
また、実施例2として、中央の突部12を四角錐にするとともに、突部12を包囲する各突部16、18の頂部に平面部を形成した変形ホーンと、従来ホーンとして、例えば、図8に示すように、ホーン部54に複数の小突起56が形成されたものを使用した。即ち、タブ36の貫通孔38にターミナルリベット34を貫通させ、ワッシャ40の加締めによってターミナルリベット34にタブ36を固定するとともに、折り返して重ねられたタブ36にホーン部54の小突起56を加圧力Fで加圧させながら超音波エネルギを付与して溶接を行った。
【0043】
このような条件下での溶接結果は表1の通りである。
【0044】
【表1】

Figure 0004168694
【0045】
この実験結果から明らかなように、従来ホーンでは、電解液の有無を問わず、タブにズレやタブの一部に破損が発生した。これに対し、実施例1では、電解液の付着の有り、無しに拘わらず、タブズレやタブ破損は生じていない。また、実施例2では、僅かながらタブズレが生じる。しかし、実施例1及び実施例2では、溶接時間が短縮され、溶接に要する超音波エネルギを大幅に低減でき、タブズレが僅かに生じるもののタブ破損がないことから、接続強度を向上させることができ、信頼性の高い溶接が得られている。なお、溶接時に電解液がタブに付着している場合では、第2の突部に尖鋭部を持つ実施例1では、その尖鋭部が電解液を排除してタブを容易に加圧できるので、タブを確実に押さえ込み、タブズレを抑制できるのに対し、第2の突部の頂部に平面部を持つ実施例2では実用上問題にならない程度の僅かなタブズレが生じている。
【0046】
なお、実施の形態では、中央の突部12、その四隅部の突部18を角錐状にしたが、円錐状としてもよく、また、突部12は、尖鋭部を持つ円柱状又は角柱状等、柱状部を備えてもよい。柱状部の高さを加減することで、所望の溶接深度に設定することができる。
【0047】
【発明の効果】
以上説明したように、本発明によれば、次の効果が得られる。
(a) 第1の突部を中心に溶接を行うことができるので、ターミナルリベットとタブとの溶接強度を向上させることができ、第1の突部の周囲にある複数の第2の突部で溶接部のタブを押圧するとともに溶接するので、溶接時のタブの変形やズレを防止でき、接続の信頼性の向上を図ることができる。
(b) 第1の突部を中心に溶接を行うので、溶接時間を大幅に低減できるとともに、溶接に要する超音波エネルギを小さくでき、溶接によるタブの亀裂、破断等の損傷の発生を防止でき、タブとターミナルリベットとの溶接の信頼性を高めることができる。
(c) 溶接時間や溶接時の超音波エネルギを削減できるため、ホーンの突部の先端部分を磨耗から防護でき、ホーン寿命を延ばすことができるとともに、安定した溶接を長期間に亘って維持することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る超音波溶接ホーンを示す側面図である。
【図2】超音波溶接ホーンのホーン部を示す平面図である。
【図3】図2に示すホーン部の各断面を示し、(A)は図2のIIIA−IIIA線断面図、(B)は図2のIIIB−IIIB線断面図である。
【図4】図2に示すホーン部の各断面を示し、(A)は図2のIVA − IVA線断面図、(B)は図2のIVB −IVB 線断面図である。
【図5】本発明の実施の形態に係る電解コンデンサの製造方法における製造途上の電解コンデンサの一部を示す図である。
【図6】ターミナルリベットとタブとの溶接を示す図である。
【図7】ターミナルリベットとタブとの溶接部を示す部分平面図である。
【図8】従来の超音波溶接ホーン及び電解コンデンサの製造方法を示す側面図である。
【符号の説明】
12 第1の突部
16、18 第2の突部
20 傾斜面(角錐面)
22 面取り部
24 コンデンサ素子
30 封口板
34 ターミナルリベット
36 タブ
44 溶接部
46 第1の凹部
48 立壁部
50、52 第2の凹部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ultrasonic welding horn used for ultrasonic welding or the like of a terminal rivet of an electrolytic capacitor such as an aluminum electrolytic capacitor and a lead (tab), and a method of manufacturing an electrolytic capacitor using the ultrasonic welding horn.
[0002]
[Prior art]
In an aluminum electrolytic capacitor, a terminal rivet is fixed to a sealing plate of an outer case that encloses a capacitor element, and a tab drawn from the capacitor element is attached to the rivet by crimping a washer or the like, and the tab is attached to the end of the rivet. By joining the metal by sound waves, the electrical connection is made together with the mechanical coupling between the terminal rivet and the tab. Complementing such mechanical metal-metal bonding by ultrasonic bonding is to realize a highly reliable bonding state. As a technique for joining such a tab and a terminal rivet using ultrasonic waves, there is, for example, Japanese Patent No. 2811732 “A manufacturing method of an aluminum electrolytic capacitor”.
[0003]
[Problems to be solved by the invention]
By the way, in this method of manufacturing an aluminum electrolytic capacitor, an ultrasonic welding horn that imparts ultrasonic energy to a member to be welded is used, and this ultrasonic welding horn has a plurality of frustoconical protrusions formed thereon. In some cases, a plurality of small protrusions are formed. Since the height of the projections of these horns is lower than the thickness of the tab and ultrasonic welding is performed on each top surface of the plurality of projections, a boundary surface is generated between the joined rivet and the tab. Connection strength is not enough. To increase the connection strength, the ultrasonic energy required for the welding process can be increased. When welding multiple tabs, the ultrasonic energy increases as the thickness of the tabs and the number of layers increase. Therefore, it is necessary to lengthen the application time of the ultrasonic waves.
[0004]
However, when the tab cannot withstand the increased ultrasonic energy, the tab is deformed, and the amount of deformation is increased by the amount of ultrasonic energy, causing cracks and fractures in the welded part and the vicinity thereof. Causes a gap between tabs. In particular, when a deviation in the width direction occurs between the tabs, the weld surface is reduced, resulting in poor welding and a reduction in connection strength, which may reduce connection reliability.
[0005]
Therefore, the present invention provides an ultrasonic welding horn for an electrolytic capacitor that can increase the strength of ultrasonic bonding between a terminal rivet and a tab and improve connection reliability, and a method for manufacturing the electrolytic capacitor. Objective.
[0006]
[Means for Solving the Problems]
The structure of the ultrasonic welding horn for electrolytic capacitors of this invention which solved the subject which concerns, and the manufacturing method of an electrolytic capacitor is as follows.
[0007]
In the ultrasonic welding horn for electrolytic capacitors of the present invention, the ultrasonic welding horn for electrolytic capacitors according to claim 1 is configured such that a tab 36 drawn from the capacitor element 24 is superimposed on a terminal rivet 34 to be welded, and the tab is added. An ultrasonic welding horn for an electrolytic capacitor that applies ultrasonic energy to a welded portion 44 between the terminal rivet and the tab while pressing, the first protrusion 12 having a sharp portion, and the first protrusion The second protrusions 16 and 18 are provided so as to surround the first protrusion and have a height lower than that of the first protrusion.
[0008]
That is, when the first protrusion is brought into contact with the welded portion of the tab that is overlaid on the terminal rivet to be welded, the protrusion has a sharp portion. Positioning is performed, and ultrasonic welding is started from this portion. By continuing the pressurization, the first protrusion enters the softened weld, and the softened tab metal enters the recess formed around the first protrusion. The projecting portion proceeds to the welded portion, and the main welded portion is surrounded by the second projecting portion. At the same time, ultrasonic welding at the second protrusion is performed surrounding the main welding portion.
[0009]
Thus, when ultrasonic welding is performed around the first protrusion at the center of the ultrasonic welding horn, the ultrasonic energy is concentrated at the center of the weld, and the welded portion is sharpened, and the tab side Since the joining surfaces of the metal and the metal on the rivet side are integrated, the joining strength between the terminal rivet and the tab is increased, and a highly reliable joining state is obtained. As a result, the ultrasonic energy required for welding can be reduced along with the reduction in welding time, and the sharpening of the welded part contributes to the prevention of tab displacement.
[0010]
In addition, when ultrasonic energy is applied to the tab centering on the first protrusion having a sharp portion, it is expected that the welded portion will be sharpened, and the phenomenon that the laminated tab will warp around this portion will occur instantaneously. However, the second projection around the first projection presses the periphery of the welded portion of the tab and surrounds the main welded portion with the secondary welded portion generated by the second projection, resulting in warping, etc. The deformation of the tab is suppressed, the welded portion extends to the range surrounded by the second protrusion around the first protrusion, and the tab is prevented from being displaced together with the welding having high bonding strength. In addition, in the recess between the first protrusion and the second protrusion, the molten metal on the tab side enters to form a standing wall-like protrusion, and the outflow outside the welding range is prevented. Furthermore, by reducing the welding time and welding energy, the ultrasonic welding horn can be protected from wear, and the service life can be extended.
[0011]
In the ultrasonic welding horn for electrolytic capacitors of the present invention, the ultrasonic welding horn for electrolytic capacitors according to claim 2 is characterized in that the first protrusion is set higher than the thickness of the tab. That is, by setting the first protrusion higher than the thickness of the tab, it is possible to cause the first protrusion to bite into the rivet beyond the tab during welding, and to improve the welding strength between the rivet and the tab. Can do.
[0012]
In the ultrasonic welding horn for electrolytic capacitors of the present invention, the ultrasonic welding horn for electrolytic capacitors according to claim 3 is characterized in that the first protrusion has a columnar shape having a sharp portion. That is, a columnar part is provided and the height can be arbitrarily set to separate the welded parts.
[0013]
In the ultrasonic welding horn for electrolytic capacitors of the present invention, the ultrasonic welding horn for electrolytic capacitors according to claim 4 is characterized in that the second protrusion has a pointed sharp portion, a continuous linear or curved sharpened portion. It is characterized by having. That is, the ultrasonic energy pattern can be controlled to a desired shape by setting the shape of the sharp portion of the second protrusion to a dot shape, a line shape, or a curve shape. If it is point-like, the ultrasonic energy can be concentrated and a pattern centered on that point can be obtained. Moreover, if it is linear, an energy pattern having a certain width can be formed, and if it is curved, an energy pattern along the curve can be formed. By combining such patterns individually or in combination, a desired welding range can be obtained. And the tab welded to a rivet can be pressed in a predetermined range, for example, even if it is a tab to which electrolyte solution adhered, it does not shift from a rivet and it can prevent tab shift in a lamination state.
[0014]
In the ultrasonic welding horn for electrolytic capacitors of the present invention, the ultrasonic welding horn for electrolytic capacitors according to claim 5 includes a pyramid surface (inclined surface 20) on a peripheral side of the second protrusion, and the corners thereof. A chamfered portion 22 is provided. That is, since the corner portion becomes obtuse by the chamfered portion, it is possible to prevent contact with the tab after welding, and the removal becomes easy.
[0015]
The ultrasonic welding horn for electrolytic capacitors according to the present invention is characterized in that the ultrasonic welding horn for electrolytic capacitors according to claim 6 has a flat surface at the top of the second protrusion. That is, since the flat surface at the top of the second protrusion presses around the main welded portion, it is possible to prevent warping of the tab during welding and to shorten the welding time.
[0016]
In the electrolytic capacitor manufacturing method according to the present invention, the electrolytic capacitor manufacturing method according to claim 7 is configured such that the tab 36 drawn out from the capacitor element 24 is overlapped with a rivet (terminal rivet 34) fixed through the sealing plate 30. A method of manufacturing an electrolytic capacitor that is welded by ultrasonic energy, wherein the tab overlaid on the rivet, a first protrusion 12 having a sharp point at the center, and the first protrusion are surrounded. A process of abutting and pressurizing an ultrasonic welding horn having a second protrusion 16, 18 lower than the first protrusion, and the tab and the rivet from the ultrasonic welding horn. And a process of applying ultrasonic energy to the welded portion 44.
[0017]
That is, since the electrolytic capacitor manufacturing method uses the above-described ultrasonic welding horn for electrolytic capacitors, deformation and misalignment of the tab during welding is suppressed, welding strength is high, and reliable connection is achieved. Thus, a terminal structure having resistance to vibration stress can be realized in the electrolytic capacitor. In this case, the first protrusion comes into contact with and pressurizes the tab stacked on the rivet, and as the pressurization and welding progress, the second protrusion comes into contact with the tab. Positional displacement of the tab can be prevented by positioning the ultrasonic welding horn on the welding portion by the portion and pressing the tab by the second protrusion.
[0018]
In the electrolytic capacitor manufacturing method of the present invention, the electrolytic capacitor manufacturing method according to an eighth aspect of the present invention is to weld the rivet and the tab, and the first protrusions 12, the first recess 46, the first and the first And a process of forming the second recessed portions 50 and 52 shallower than the first recessed portion by surrounding the standing wall portion by the second protruding portion within the interval between the second protruding portions and the second protruding portion. And That is, this process ensures that the tab is welded onto the rivet.
[0019]
In the method for producing an electrolytic capacitor according to the present invention, the method for producing an electrolytic capacitor according to claim 9 is characterized in that, during welding, the tab superimposed on the rivet is pressurized with the ultrasonic welding horn, and the tab and the rivet are The welded portion is surrounded by the ultrasonic welding horn. That is, it is possible to prevent the tabs from being warped or shifted, and to increase the connection strength between the tabs and the rivets.
[0020]
In the electrolytic capacitor manufacturing method of the present invention, the electrolytic capacitor manufacturing method according to claim 10 is characterized in that, during welding, the ultrasonic energy of the ultrasonic welding horn is applied to the tab in the same direction as the tab. To do. That is, since the ultrasonic vibration is applied in the same direction as the tab, it is possible to prevent the tab from being displaced in the width direction and to widen the connection range between the rivet and the tab.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows an ultrasonic welding horn for an electrolytic capacitor according to an embodiment of the present invention.
[0022]
This electrolytic capacitor ultrasonic welding horn is made of a metal material such as steel, for example, a single or plural horn portions 4 are formed at the tip of a horn formed in a cross shape, and an ultrasonic vibration source (not shown) From this, ultrasonic energy is applied.
[0023]
Each horn portion 4 is formed by knurling on the top of a prismatic columnar portion 10. For example, as shown in FIG. 2, the first protrusion having a sharp portion is a protrusion 12 at the center, and this protrusion A concave portion 14 having a V-shaped cross section is provided as a concave portion surrounding 12, and a plurality of protrusions 16, 18 are provided as second protrusions surrounding the concave portion 14 and having a height lower than that of the protrusion 12. 3 and 4 show cross sections of the horn part shown in FIG. 2. FIG. 3A is a cross section taken along line IIIA-IIIA in FIG. 2, and FIG. 3B is IIIB-IIIB in FIG. 4A is a cross section taken along line IVA-IVA in FIG. 2, and FIG. 4B is a cross section taken along line IVB-IVB in FIG.
[0024]
The protrusion 12 is a quadrangular pyramid having a square bottom surface and a pointed sharp portion, and has an acute apex angle, and its angle θ 1 is, for example, 80 °, forming the protrusion 12. Each side part is an isosceles triangle. As shown in FIG. 3A, the height h 1 of the protrusion 12 is the highest in the horn part 4, and this height h 1 is the thickness t of the tab (FIG. 6) that is the member to be welded and the welding. It is set according to the depth.
[0025]
The concave portion 14 has a bottom edge of the projection 12 as the deepest portion, and is formed between the projections 12 and 16, between the projections 12 and 18, and between the projections 16 and 18 and has a cross beam shape.
[0026]
The protrusion 16 is a quadrangular pyramid having a rectangular bottom surface having two sides that are the same as the bottom edge length of the protrusion 12, and a linear pointed portion composed of two isosceles triangles and a trapezoid. The projection 12 is disposed so as to surround the recess 14 in parallel with the bottom edges of the projection 12. In this protrusion 16, the angle formed by the trapezoidal side surface, that is, the angle θ 2 of the sharp portion is an acute angle that is sharper than the angle θ 1 , for example, 60 °. Further, the height h 2 of the projection 16 is lower than the projection 12 as shown in FIG. 3A, and the height h 2 is a tab (FIG. 6) that is a member to be welded, like the projection 12. ) And the welding depth. In addition, it is also possible to take a form in which the protrusion 16 is curved toward the protrusion 12 or in the opposite direction so as to be a protrusion made of a sharp portion with a curved shape in a top view and surrounds the protrusion 12 in the center. it can.
[0027]
The protrusion 18 is a square pyramid having a square bottom surface having the same bottom edge length as the bottom edge length of the short side of the protrusion 16 and a pointed sharp portion made of four isosceles triangles. Thus, the protrusions 12 are arranged at four locations on the diagonal line with the recess 14 interposed therebetween. In this protrusion 18, the angle θ 3 formed by the sharp portion is set to 60 °, for example, like the protrusion 16. The height h 3 of the protrusion 18 is lower than the protrusion 12 as shown in FIG. 4A. In this embodiment, the height h 3 is the same as the height h 2 of the protrusion 16. 12 is set according to the thickness t and the welding depth of the tab 36 (FIG. 6) which is a member to be welded. In this case, the heights h 2 and h 3 of the protrusions 16 and 18 may be different, and the angles θ 2 and θ 3 may be different.
[0028]
In this embodiment, the protrusions 16 and 18 have a shape having a sharp portion, but as another form, the top of the protrusion may be shaved and a flat portion formed at the top. The protrusion having the flat surface portion may have a circular shape when viewed from above, or a polygonal shape such as a rectangle, a square, or a triangle. In addition, the protrusion may be formed so that the flat surface of the protrusion curves a rectangle to surround the protrusion 12 as a curved surface when viewed from above.
[0029]
The horn portion 4 is formed so that the protrusions 16 and 18 surround the protrusion 12 with the protrusion 12 at the center, and the outline of the protrusions 12, 16 and 18 is similar to the bottom surface of the protrusion 12. A square of the shape is formed, and the center of the protrusion 12 coincides with the center of the columnar part 10. The horn part 4 has a truncated pyramid shape, and a peripheral surface part includes a trapezoidal inclined surface 20, and a triangular chamfered part 22 is formed at the corner part, for example. The chamfered portion 22 may be an arc surface. In this case, the inclined surface 20 and the protrusion 16 or the protrusion 18 are different in the angle on the inclined surface 20 side and the angle on the protrusions 16 and 18 side, so that the outer surface has a V-shaped cross section with an angle θ 4 . A recess is formed.
[0030]
Next, FIG.5 and FIG.6 has shown the manufacturing method of the electrolytic capacitor which concerns on embodiment of this invention.
[0031]
The electrolytic capacitor includes an outer case 26 in which the capacitor element 24 is enclosed, and an opening 28 of the outer case 26 is sealed with a sealing plate 30. The sealing plate 30 is formed of a hard synthetic resin plate, and an O-ring 32 is attached to the upper edge portion as a sealing member.
[0032]
A terminal rivet 34 constituting an external terminal is penetrated and fixed to the sealing plate 30 by insert molding to the sealing plate 30, and is pulled out from the terminal rivet 34 projecting inside the sealing plate 30 and the capacitor element 24. A plurality of strip-shaped tabs 36 formed of a metal material such as aluminum as lead-out leads, and a terminal rivet 34 is inserted into a through-hole 38 (FIG. 6) of the tab 36 and fitted into the terminal rivet 34. The washer 40 is fixed by caulking. In this case, the end side of the tab 36 is folded and overlapped with the end side of the terminal rivet 34.
[0033]
As shown in FIG. 6, the horn portion 4 of the ultrasonic welding horn (FIGS. 1 and 2) according to the present invention is brought into contact with the tab 36 overlapped with the terminal rivet 34 by a fixing means (not shown). As indicated by an arrow F on the horn portion 4 facing the terminal rivet 34 of the sealing plate 30 positioned and fixed, ultrasonic energy is applied from an ultrasonic welding source (not shown) together with the applied pressure. In this case, the height h 1 of the protrusion 12 is higher than the thickness t of the tab 36 which is a member to be welded, and the heights h 2 and h 3 of the protrusions 16 and 18 are set lower than the thickness t. That is, these magnitude relationships are h 1 >t> h 2 , h 3 . The magnitude relationship may be h 1 > h 2 and h 3 > t. Thus, by setting the heights h 2 and h 3 of the protrusions 16 and 18 higher than the thickness t of the tab 36, the tab 36 can be prevented from warping during welding, and the welding time can be shortened to reduce the tab. In addition to the effect that the excessive deformation of the protrusion 36 can be suppressed, the protrusions 16 and 18 abut against the terminal rivet 34 to connect the tab 36 and the terminal rivet 34. Complementary effect that can strengthen the connection state is also obtained.
[0034]
In this ultrasonic welding, the projection 12 of the horn 4 is brought into contact with the tab 36 superimposed on the terminal rivet 34, and the sharp portion is positioned on the tab 36 by pressurization, and ultrasonic welding is started from this portion. Is done. When the pressurization is continued, the protrusion 12 enters the metal constituting the tab 36 softened by the ultrasonic energy by the height h 1 , and at this time, the protrusion 12 and the protrusions 16 and 18 are bent along the protrusion 12. The tab 36 is brought into close contact with the terminal rivet 34, and a part of the metal of the tab 36 enters the terminal rivet 34 together with the protrusion 12. At this time, the metal of the tab 36 enters the recess 14 around the protrusion 12, the main welded portion in the welded portion 44 is formed by the protrusion 12, and welding is also performed on the protrusions 16 and 18 side. As a result of the progress, the secondary welded part surrounding the main welded part is formed on the side of the protrusions 16, 18, so that the tab 36 is welded to the terminal rivet 34 and the welded part 44 is formed. In this embodiment, since the height h 1 of the protrusion 12 is higher than the thickness t of the tab 36, the protrusion 12 enters inside the end surface of the terminal rivet 34 during welding. Since the tab 36 enters the inside and the terminal rivet 34 and the tab 36 are welded, extremely high connection strength can be obtained.
[0035]
Moreover, when ultrasonic welding is performed around the protrusion 12 at the center of the horn part 4, the ultrasonic energy is concentrated at the center of the weld 44, the welded part sharpens, and the metal on the tab 36 side The joining surface with the metal on the terminal rivet 34 side is integrated, and the joining strength between the terminal rivet 34 and the tab 36 is increased. As a result, a highly reliable bonded state can be obtained. According to such ultrasonic welding, it is possible to reduce welding time and ultrasonic energy required for welding, and sharpening by the protrusion 12 of the welded portion 44 can prevent the tab 36 from being displaced.
[0036]
Further, when ultrasonic energy is applied to the tab 36 around the protrusion 12 having a sharp portion, the welded portion sharpens, but even if a phenomenon occurs in which the laminated tab 36 warps around this portion instantaneously. As a result of the protrusions 16 and 18 around the protrusion 12 pressing the periphery of the welded portion 44 of the tab 36, the main welded portion is surrounded by the subordinate welded portion generated by the protrusions 16 and 18, resulting in tabs such as warping. The deformation of 36 is suppressed. In addition, since the welded portion spills over the range surrounded by the projections 16 and 18 with the projection 12 as the center, the welded portion 44 becomes the entire end face of the terminal rivet 34, resulting in a welded state with high joint strength. The tab 36 can be prevented from being displaced.
[0037]
And in ultrasonic welding using such a horn part 4, as shown in FIG. 7, for example, the pyramid-shaped 1st recessed part 46 and the horn part 4 side are formed in the center part of the welding part 44 by the protrusion 12. As shown in FIG. A plurality of second concave portions 50 and 52 having a pyramid shape shallower than the concave portion 46 are formed by surrounding the standing wall portion 48 by the concave portion 14 and the standing wall portion 48 by the protrusions 16 and 18. A space formed by the recess 14 between the protrusion 12 and the protrusions 16 and 18 of the horn part 4 functions as a molten metal pool on the tab 36 side, and a metal standing wall 48 that has entered in the space of the recess 14 is formed. At the same time, the recesses 50 and 52 are formed by the protrusions 16 and 18. Therefore, in the center of the welded portion 44 of the tab 36, a pyramidal concave portion 46 having a large volume and a maximum depth, and four pyramid-shaped concave portions 50 and 52 having a small volume and shallower than the concave portion 46, A standing wall 48 that partitions the recesses 46, 50, 52 is formed. The height of the standing wall portion 48 coincides with the outer surface of the tab 36. In this case, the height of the standing wall 48 may be retracted in the plane of the tab 36.
[0038]
If an ultrasonic welding horn having such a horn portion 4 is used, strong welding is possible even when the welding time and welding energy are reduced, and the welding time can be shortened, so that excessive deformation occurring in the tab 36 can be suppressed. In addition, the ultrasonic welding horn can be protected from wear, and its service life can be extended.
[0039]
【Example】
As Example 1 of this ultrasonic welding horn, for example, a protrusion 12 made of a regular quadrangular pyramid having an apex angle (θ 1 ) = 80 ° and a height (h 1 ) = 1.4 mm at the center of the horn portion 4. The protrusions 16 are formed of regular quadrangular pyramids at the four corners of the protrusion 12, and the protrusions 18 are provided at the sides of the protrusion 12, and the heights (h 2 , h 3 ) of the protrusions 16 and 18 are 0.7 mm. Each apex angle (θ 2 , θ 3 ) = 60 °, and the height of the chamfered portion 22 was set to 1 mm.
[0040]
The terminal rivet 34 which is a member to be welded has a diameter φ = 4 mm, and the tab 36 has six sheets of chemical conversion tabs having a thickness = 0.2 mm and a width = 7 mm. That is, since the total thickness (t) of the tab 36 is 1.2 mm, the height (h 1 ) of the projection 12 at the center of the horn portion 4 is from the total thickness (t) of the tab 36 = 1.2 mm. It is set higher by 0.2 mm.
[0041]
As welding conditions, the pressure is fixed at 4 kg (gauge pressure), the ultrasonic vibration is set in the same direction as the longitudinal direction of the tab 36, the electrolyte solution is attached to the tab 36, and the electrolyte solution is not attached. Set the state.
[0042]
Moreover, as Example 2, while making the center protrusion 12 into a quadrangular pyramid and forming a flat portion on the top of each protrusion 16, 18 surrounding the protrusion 12, as a conventional horn, for example, FIG. As shown in FIG. 8, a horn portion 54 having a plurality of small protrusions 56 formed thereon was used. That is, the terminal rivet 34 is passed through the through hole 38 of the tab 36, the tab 36 is fixed to the terminal rivet 34 by caulking the washer 40, and the small projection 56 of the horn portion 54 is added to the folded tab 36. While applying pressure F, ultrasonic energy was applied to perform welding.
[0043]
The welding results under such conditions are as shown in Table 1.
[0044]
[Table 1]
Figure 0004168694
[0045]
As is apparent from the experimental results, in the conventional horn, the tab was displaced or a part of the tab was damaged regardless of the presence or absence of the electrolytic solution. On the other hand, in Example 1, the tab shift and the tab breakage did not occur regardless of the presence or absence of adhesion of the electrolytic solution. In Example 2, a slight tab shift occurs. However, in Example 1 and Example 2, the welding time is shortened, the ultrasonic energy required for welding can be greatly reduced, and tab breakage occurs slightly, but there is no tab breakage, so the connection strength can be improved. Reliable welding has been obtained. In addition, in the case where the electrolytic solution is attached to the tab at the time of welding, in Example 1 having the sharp portion on the second protrusion, the sharp portion can easily pressurize the tab by removing the electrolytic solution. While the tab can be surely pressed down and the tab shift can be suppressed, in Example 2 having the flat portion at the top of the second protrusion, a slight tab shift that does not cause a problem in practice occurs.
[0046]
In the embodiment, the central protrusion 12 and the protrusions 18 at the four corners thereof are formed in a pyramid shape. However, the protrusion 12 may have a conical shape, and the protrusion 12 may have a columnar shape or a prism shape with a sharp portion. A columnar part may be provided. A desired welding depth can be set by adjusting the height of the columnar part.
[0047]
【The invention's effect】
As described above, according to the present invention, the following effects can be obtained.
(a) Since welding can be performed around the first protrusion, the welding strength between the terminal rivet and the tab can be improved, and a plurality of second protrusions around the first protrusion. Thus, since the tab of the welded portion is pressed and welded, deformation and misalignment of the tab during welding can be prevented and connection reliability can be improved.
(b) Since welding is performed around the first protrusion, the welding time can be greatly reduced, the ultrasonic energy required for welding can be reduced, and the occurrence of damage such as cracks and breaks in the tab due to welding can be prevented. The reliability of welding between the tab and the terminal rivet can be enhanced.
(c) Since the welding time and ultrasonic energy during welding can be reduced, the tip of the horn protrusion can be protected from wear, the horn life can be extended, and stable welding can be maintained over a long period of time. be able to.
[Brief description of the drawings]
FIG. 1 is a side view showing an ultrasonic welding horn according to an embodiment of the present invention.
FIG. 2 is a plan view showing a horn portion of an ultrasonic welding horn.
3A and 3B are cross-sectional views taken along the line IIIA-IIIA in FIG. 2, and FIG. 3B is a cross-sectional view taken along the line IIIB-IIIB in FIG.
4 is a cross-sectional view of the horn portion shown in FIG. 2, wherein (A) is a cross-sectional view taken along line IVA-IVA in FIG. 2, and (B) is a cross-sectional view taken along line IVB-IVB in FIG.
FIG. 5 is a diagram showing a part of the electrolytic capacitor under production in the method for producing an electrolytic capacitor according to the embodiment of the present invention.
FIG. 6 is a view showing welding of a terminal rivet and a tab.
FIG. 7 is a partial plan view showing a welded portion between a terminal rivet and a tab.
FIG. 8 is a side view showing a conventional method of manufacturing an ultrasonic welding horn and an electrolytic capacitor.
[Explanation of symbols]
12 1st protrusion 16, 18 2nd protrusion 20 Inclined surface (pyramidal surface)
22 Chamfered portion 24 Capacitor element 30 Sealing plate 34 Terminal rivet 36 Tab 44 Welded portion 46 First recessed portion 48 Standing wall portions 50 and 52 Second recessed portion

Claims (10)

溶接すべきターミナルリベット上にコンデンサ素子から引き出されたタブを重ね、該タブを加圧しながら前記ターミナルリベットと前記タブとの溶接部に超音波エネルギを付与する電解コンデンサ用超音波溶接ホーンであって、
尖鋭部を持つ第1の突部と、
この第1の突部を包囲して形成され、前記第1の突部より高さの低い第2の突部と、
を備えたことを特徴とする電解コンデンサ用超音波溶接ホーン。
An ultrasonic welding horn for an electrolytic capacitor that superimposes a tab drawn from a capacitor element on a terminal rivet to be welded and applies ultrasonic energy to a welded portion between the terminal rivet and the tab while pressing the tab. ,
A first protrusion having a sharp point;
A second protrusion formed to surround the first protrusion and having a height lower than that of the first protrusion;
An ultrasonic welding horn for electrolytic capacitors, comprising:
前記第1の突部が前記タブの厚みより高く設定されたことを特徴とする請求項1記載の電解コンデンサ用超音波溶接ホーン。2. The ultrasonic welding horn for electrolytic capacitors according to claim 1, wherein the first protrusion is set to be higher than the thickness of the tab. 前記第1の突部が尖鋭部を持つ柱状であることを特徴とする請求項1記載の電解コンデンサ用超音波溶接ホーン。The ultrasonic welding horn for electrolytic capacitors according to claim 1, wherein the first protrusion has a columnar shape having a sharp portion. 前記第2の突部が点状の尖鋭部、連続した線状又は曲線状の尖鋭部を備えたことを特徴とする請求項1記載の電解コンデンサ用超音波溶接ホーン。The ultrasonic welding horn for an electrolytic capacitor according to claim 1, wherein the second protrusion includes a pointed sharp part, a continuous linear or curved pointed part. 前記第2の突部の周縁側に角錐面を備え、その角部に面取り部を備えたことを特徴とする請求項1記載の電解コンデンサ用超音波溶接ホーン。The ultrasonic welding horn for electrolytic capacitors according to claim 1, further comprising a pyramid surface on a peripheral side of the second protrusion, and a chamfered portion at the corner. 前記第2の突部の頂部に平坦面を有することを特徴とする請求項1記載の電解コンデンサ用超音波溶接ホーン。The ultrasonic welding horn for electrolytic capacitors according to claim 1, wherein the second projection has a flat surface at the top. 封口板に貫通させて固定されたリベットにコンデンサ素子から引き出されたタブを重ねて超音波エネルギによって溶接する電解コンデンサの製造方法であって、
前記リベット上に重ねられた前記タブと、中央部に尖鋭部を持つ第1の突部、この第1の突部を包囲して形成され、該第1の突部より低い第2の突部を備えた超音波溶接ホーンとを当接して加圧させる処理と、
前記超音波溶接ホーンから前記タブと前記リベットとの溶接部に超音波エネルギを付与する処理と、
を含むことを特徴とする電解コンデンサの製造方法。
A method of manufacturing an electrolytic capacitor in which a tab drawn from a capacitor element is overlapped on a rivet fixed by penetrating a sealing plate and welded by ultrasonic energy,
The tab overlaid on the rivet, a first protrusion having a sharp point at the center, and a second protrusion formed to surround the first protrusion and lower than the first protrusion A process of abutting and pressurizing an ultrasonic welding horn equipped with
A process of applying ultrasonic energy from the ultrasonic welding horn to the welded portion of the tab and the rivet;
An electrolytic capacitor manufacturing method comprising:
前記リベットと前記タブとを溶接させ、前記第1の突部によって第1の凹部、前記第1及び第2の突部の間隔内に立壁部、前記第2の突部によって前記立壁部を包囲して前記第1の凹部より浅い第2の凹部を形成する処理を含むことを特徴とする請求項7記載の電解コンデンサの製造方法。The rivet and the tab are welded, and the first protrusion surrounds the first recess, the standing wall within the interval between the first and second protrusions, and the second protrusion surrounds the standing wall. The method of manufacturing an electrolytic capacitor according to claim 7, further comprising: forming a second recess shallower than the first recess. 溶接時、前記リベットに重ねられた前記タブを前記超音波溶接ホーンで加圧し、前記タブと前記リベットとの前記溶接部を前記超音波溶接ホーンで包囲することを特徴とする請求項7記載の電解コンデンサの製造方法。8. The welding method according to claim 7, wherein during welding, the tab overlaid on the rivet is pressurized with the ultrasonic welding horn, and the welded portion between the tab and the rivet is surrounded by the ultrasonic welding horn. Manufacturing method of electrolytic capacitor. 溶接時、前記タブに前記超音波溶接ホーンの超音波エネルギを前記タブと同一方向に付与することを特徴とする請求項7記載の電解コンデンサの製造方法。8. The method of manufacturing an electrolytic capacitor according to claim 7, wherein the ultrasonic energy of the ultrasonic welding horn is applied to the tab in the same direction as the tab during welding.
JP2002233465A 2002-08-09 2002-08-09 Ultrasonic welding horn for electrolytic capacitor and method for manufacturing electrolytic capacitor Expired - Lifetime JP4168694B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002233465A JP4168694B2 (en) 2002-08-09 2002-08-09 Ultrasonic welding horn for electrolytic capacitor and method for manufacturing electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002233465A JP4168694B2 (en) 2002-08-09 2002-08-09 Ultrasonic welding horn for electrolytic capacitor and method for manufacturing electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2004079563A JP2004079563A (en) 2004-03-11
JP4168694B2 true JP4168694B2 (en) 2008-10-22

Family

ID=32018592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002233465A Expired - Lifetime JP4168694B2 (en) 2002-08-09 2002-08-09 Ultrasonic welding horn for electrolytic capacitor and method for manufacturing electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP4168694B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4792945B2 (en) * 2005-01-28 2011-10-12 日産自動車株式会社 Ultrasonic bonding apparatus and bonded structure
JP4576271B2 (en) * 2005-03-30 2010-11-04 ニチコン株式会社 Ultrasonic welding horn and method of manufacturing electrolytic capacitor using the same
JP6389709B2 (en) * 2014-09-03 2018-09-12 ニチコン株式会社 Ultrasonic welding horn and electrolytic capacitor manufacturing method
WO2021020032A1 (en) * 2019-07-31 2021-02-04 ビークルエナジージャパン株式会社 Ultrasonic horn, secondary battery, and method for manufacturing secondary battery

Also Published As

Publication number Publication date
JP2004079563A (en) 2004-03-11

Similar Documents

Publication Publication Date Title
EP1685919B1 (en) An apparatus and method for ultrasonically bonding two or more layers of material
JP6845188B2 (en) Electric wire with terminal and its manufacturing method
KR101286821B1 (en) Ultrasonic bonding tool, method for manufacturing ultrasonic bonding tool, ultrasonic bonding method, and ultrasonic bonding apparatus
CN110064836B (en) Joined structure and joining method
CN109108455A (en) Ultrasonic connection method, ultrasonic bonding fixture and connected structure
JP6389709B2 (en) Ultrasonic welding horn and electrolytic capacitor manufacturing method
JP4168694B2 (en) Ultrasonic welding horn for electrolytic capacitor and method for manufacturing electrolytic capacitor
JP5276817B2 (en) Metal bonded body, metal bonding method, and metal bonding apparatus
KR20120067291A (en) Ultrasonic bonding machine
JP2008000638A (en) Ultrasonic horn
JP2004114136A (en) Ultrasonic welding equipment
JP2014213366A (en) Tool hone for metal ultrasonic bonding, and metal bonding device
JP6827386B2 (en) Ultrasonic bonding jig, ultrasonic bonding method and bonding structure
JP5724568B2 (en) Metal member joint and method of manufacturing the same
JP4214737B2 (en) Ultrasonic welding horn for electrolytic capacitor and method for manufacturing electrolytic capacitor
JPH10225779A (en) Ultrasonic joining method for aluminum material
CN111554960A (en) Method for manufacturing electricity storage element, bonding method, and bonded body
JP6975917B2 (en) Joint structure
CN215919405U (en) Anti-cracking ultrasonic welding head structure
JP4609169B2 (en) Ultrasonic bonding method
JP3986625B2 (en) Ultrasonic bonding of uneven metal materials
KR101296993B1 (en) Ultrasonic bonding apparatus
KR19990068220A (en) Semiconductor device and equipment for manufacturing the same as well as method of fabricating the same
JP7241391B2 (en) ELECTRODE LAMINATE, MANUFACTURING METHOD THEREOF, AND BATTERY
JP4310621B2 (en) Electrolytic capacitor manufacturing method and apparatus, and electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080715

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080728

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4168694

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

EXPY Cancellation because of completion of term