JP4164747B2 - Magnetic exploration method - Google Patents

Magnetic exploration method Download PDF

Info

Publication number
JP4164747B2
JP4164747B2 JP2003096384A JP2003096384A JP4164747B2 JP 4164747 B2 JP4164747 B2 JP 4164747B2 JP 2003096384 A JP2003096384 A JP 2003096384A JP 2003096384 A JP2003096384 A JP 2003096384A JP 4164747 B2 JP4164747 B2 JP 4164747B2
Authority
JP
Japan
Prior art keywords
magnetic
axis direction
axis
foundation pile
geomagnetism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003096384A
Other languages
Japanese (ja)
Other versions
JP2004301745A (en
Inventor
英俊 西岡
洋 羽矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2003096384A priority Critical patent/JP4164747B2/en
Publication of JP2004301745A publication Critical patent/JP2004301745A/en
Application granted granted Critical
Publication of JP4164747B2 publication Critical patent/JP4164747B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、磁気探査方法に関し、特に基礎杭の先端位置を検出する磁気探査方法に関する。
【0002】
【従来の技術】
施行年度の古い構造物の耐震性判定のためや、老朽化した構造物の更新のためには、基礎杭の杭長を確認しておく必要があるが、図面等が存在しない場合には、基礎杭の杭長を調査しなければならない。
【0003】
従来、基礎杭の杭長の調査には、両コイル型磁気傾度計を用いた磁気探査方法が行われている。磁気探査方法は、基礎杭の残留磁気や地球磁場による感応磁気を測定することによって杭長を特定するもので、ロータリーボーリング等によって測定対象の基礎杭の近傍に探査孔を掘削し、当該探査孔に両コイル型磁気傾度計を挿入して一定速度で移動させることによって磁気傾度、すなわち磁場の強さの変化率を測定し、杭長を特定する(例えば、非特許文献1参照)。
【0004】
【非特許文献1】
「磁気探査を用いた橋梁基礎の形状調査法マニュアル」建設省土木研究所、平成11年3月
【0005】
【発明が解決しようとする課題】
しかしながら、従来技術の両コイル型磁気傾度計のような磁場強さの勾配を測定する手法では、コイルを一定速度で移動させて生じる起電圧の変化から磁気傾度、すなわち磁場の強さの変化率を測定しているため、H型鋼杭等の比較的鋼材量が多く、残留磁気量が大きい物に対しては実績が得られているものの、場所打ち杭等のように鉄筋量が少ない杭や、フーチングによって探査孔を杭から離れたところに配置しなければならない場合には、高い検知精度が期待できないという問題点があった。
【0006】
本発明は斯かる問題点を鑑みてなされたものであり、その目的とするところは、場所打ち杭等のように鉄筋量が少ない杭や、フーチングによって探査孔を杭から離れたところに配置しなければならない場合にも、杭長を正確に検出することができる磁気探査方法を提供する点にある。
【0007】
【課題を解決するための手段】
本発明は上記課題を解決すべく、以下に掲げる構成とした。
請求項1記載の発明の要旨は、鋼材を含む基礎杭の近傍の磁気探査を行って、基礎杭の先端位置を非接触で検出する磁気探査方法であって、互いに直交するx軸、y軸およびz軸の磁気量を測定可能な3次元磁気センサをz軸が前記基礎杭と平行になるように位置決めした状態でz軸方向に移動させ、前記3次元磁気センサによってz軸方向の複数の箇所でそれぞれx軸方向の磁気量BX、y軸方向の磁気量BYおよびz軸方向の磁気量BZを測定し、前記磁気量BXと前記磁気量BYとから前記基礎杭に対して垂直な面上の磁気量BHを算出し、当該磁気量BHと前記磁気量BZとから予め測定しておいた地磁気をそれぞれ除去して地磁気を除去した前記基礎杭に対して垂直な面上の磁気量Bhと地磁気を除去したz軸方向の磁気量Bzとをそれぞれ算出し、前記磁気量Bhと前記磁気量Bzとに基づく形状解析結果を前記z軸方向の複数の箇所毎に出力することを特徴とする磁気探査方法に存する。
また請求項2記載の発明の要旨は、鋼材を含む基礎杭の近傍の磁気探査を行って、前記基礎杭の先端位置を非接触で検出する磁気探査方法であって、互いに直交するx軸、y軸およびz軸の磁気量を測定可能な3次元磁気センサをz軸が前記基礎杭と平行になると共にx軸およびy軸が変位しないように位置決めした状態でz軸方向に移動させ、前記3次元磁気センサによってz軸方向の複数の箇所でそれぞれx軸方向の磁気量BX、y軸方向の磁気量BYおよびz軸方向の磁気量BZを測定し、前記磁気量BX、前記磁気量BYおよび前記磁気量BZとから予め測定しておいた地磁気をそれぞれ除去して地磁気を除去したx軸方向の磁気量Bx、地磁気を除去したy軸方向の磁気量Byおよび地磁気を除去したz軸方向の磁気量Bzをそれぞれ算出し、前記磁気量Bxと前記磁気量Byとから前記基礎杭に対して垂直な面上の磁気量Bhを算出し、前記磁気量Bhと前記磁気量Bzとに基づく形状解析結果を前記z軸方向の複数の箇所毎に出力することを特徴とする磁気探査方法に存する。
また請求項3記載の発明の要旨は、前記形状解析結果は、前記磁気量Bhと前記磁気量Bzとの比を表す情報であることを特徴とする請求項1又は2記載の磁気探査方法に存する。
また請求項4記載の発明の要旨は、前記3次元磁気センサは、互いに直交する向きに配置された3つのホール素子からなることを特徴とする請求項1乃至3のいずれかに記載の磁気探査方法に存する。
また請求項5記載の発明の要旨は、鋼材を含む基礎杭の近傍の磁気探査を行って、前記基礎杭の先端位置を非接触で検出する磁気探査方法であって、互いに直交するx軸およびz軸の磁気量を測定可能な2次元磁気センサをz軸が前記基礎杭と平行になると共にx軸が変位しないように位置決めした状態でz軸方向に移動させ、
前記2次元磁気センサによってz軸方向の複数の箇所でそれぞれx軸方向の磁気量BXおよびz軸方向の磁気量BZを測定し、前記磁気量BXと前記磁気量BZとから予め測定しておいた地磁気をそれぞれ除去して地磁気を除去したx軸方向の磁気量Bxと地磁気を除去したz軸方向の磁気量Bzとをそれぞれ算出し、前記磁気量Bxと前記磁気量Bzとに基づく形状解析結果を前記z軸方向の複数の箇所毎に出力することを特徴とする磁気探査方法に存する。
また請求項6記載の発明の要旨は、前記形状解析結果は、前記磁気量Bxと前記磁気量Bzとの比を表す情報であることを特徴とする請求項5記載の磁気探査方法に存する。
また請求項7記載の発明の要旨は、前記2次元磁気センサは、互いに直交する向きに配置された2つのホール素子からなることを特徴とする請求項5又は6記載の磁気探査方法に存する。
【0008】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて詳細に説明する。
【0009】
図1は、本発明に係る磁気探査方法の実施の形態で使用する機器構成を示す図であり、図2は、図1に示す形状解析装置の構成を示すブロック図であり、図3は、図2に示す水平磁界算出部における水平磁界の算出方法を説明するための図であり、図4は、図2に示す探査結果算出部において算出された探査結果を説明するための図である。
【0010】
本実施の形態では、互いに直交する向き(x軸、y軸、z軸)の磁界の強さを測定可能な3次元磁気センサ4を使用して磁場の分布を測定する。本実施の形態で使用する3次元磁気センサ4は、例えば互いに直交する向きに配置された3つのホール素子からなるもので、静止状態で互いに直交する向きの磁界の強さを測定することが可能な構成となっている。なお、ホール素子の替わりにフラックスゲート型センサやSQUID型センサ等を用いることもできる。
【0011】
図1を参照すると、測定対象の基礎杭1の近傍に基礎杭1と平行(鉛直)な探査孔2を掘削し、探査孔2の全長にわたってアルミや塩化ビニール等の非磁性ガイド管3を挿入する。次に非磁性ガイド管3に3次元磁気センサ4を挿入し、基礎杭1の軸方向に深さを変えながらx軸方向、y軸方向、z軸方向の磁界の強さをそれぞれ測定していく。なお、測定対象の基礎杭1としては、具体的には、杭(鋼杭,場所打ち杭)の他、ケーソン(鋼製,鉄筋コンクリート製)、井筒(鉄筋コンクリート製)等が考えられる。
【0012】
3次元磁気センサ4は、図1に示すようにz軸が基礎杭1に平行(鉛直)になるように位置決めされ、x軸およびy軸がz軸と垂直な平面(水平面)上に位置する。なお、3次元磁気センサ4は、吊り下げることによって鉛直方向がz軸になるように構成されており、図1に示すように吊り下げるだけでも各軸の位置決めが可能であるが、より精度良く位置決めする場合には、探査孔2内に基礎杭1と平行なガイド棒を設置し、当該ガイド棒でガイドしながらz軸方向を移動させるようにすれば良い。
【0013】
3次元磁気センサ4からの出力は、増幅器6で増幅され、プーリー5に接続されたカウンタ7からの深さ情報と共にデータ収集器8に入力される。従って、データ収集器8には、深さ毎のx軸方向、y軸方向およびz軸方向の磁界の強さが探査データとして収集されることになる。
【0014】
形状解析装置9は、図2を参照すると、データ収集器8からの探査データが入力される探査データ入力部91と、予め測定しておいた地磁気データが記憶される地磁気記憶部92と、地磁気記憶部92に記憶されている地磁気データに基づいて探査データから地磁気を除去する地磁気除去部93と、水平磁界算出部94と、探査結果算出部95と、データ出力部96とからなる。
【0015】
探査データ入力部91には、データ収集器8から探査データとして深さ毎のx軸方向の磁界の強さBXと、y軸方向の磁界の強さBYと、z軸方向の磁界の強さBZとが入力される。
【0016】
地磁気記憶部92に記憶される地磁気は、周囲の磁性体から十分離れた位置に3次元磁気センサ4を置き、z軸が鉛直方向になるように調整し、x軸方向、y軸方向、z軸方向の3方向成分の磁界の強さ(μT)をそれぞれ測定し、当該測定結果をそれぞれ地磁気Bx、By、Bzとして記憶させておく。
【0017】
水平磁界算出部94は、以下に示す式によって水平成分の磁界の強さBHを算出する。すなわち、図3に示すように、3次元磁気センサ4が回転してx軸およびy軸が変化しても、x軸方向の磁界の強さBXと、y軸方向の磁界の強さBYとから正確な水平成分の磁界の強さBHを算出する。
【0018】

Figure 0004164747
【0019】
地磁気除去部93は、以下に示す式によって水平成分の地磁気Bhを算出し、地磁気を除去した水平成分の磁界の強さBh=BH−Bhと、地磁気を除去した鉛直方向の磁界の強さBz=BZ−Bzを算出する。
【0020】
Figure 0004164747
【0021】
探査結果算出部95は、地磁気を除去した水平成分の磁界の強さBhと、地磁気を除去した鉛直方向の磁界の強さBzとからtanθ=Bh/Bzを算出する。
このようにして深さ毎のtanθ=Bh/Bzを算出してプリンタ等のデータ出力部96にグラフや表として出力する。
【0022】
基礎杭1を磁石してみなすと、基礎杭1からは、図4に示すような磁力線がでていることになり、tanθ=Bh/Bzを算出して水平成分の磁界の強さBhと鉛直方向の磁界の強さBzとの比として捉えることにより、磁力線の角度の変化を検出できるため、データ出力部96から出力されるグラフや表には、基礎杭1の先端位置を中心とした明らかな変動が確認でき、基礎杭1の杭長を検出することが可能になる。
【0023】
また、鉛直方向の磁界の強さBzのみでは、基礎杭1と3次元磁気センサ4との離隔が大きいときに誤差が大きくなるが、水平成分の磁界の強さBh、鉛直方向の磁界の強さBzとも同じレベルで磁気量が低下するため、tanθ=Bh/Bzとすれば、磁気量が小さくても精度が良く基礎杭1の先端位置を検出することが可能になる。さらに、tanθ=Bh/Bzとすることで、θ=0で正負が入れ替わり、検出の信頼性が向上する。
【0024】
なお、本実施の形態では、3次元磁気センサ4の回転を考慮して水平成分の磁界の強さBHを、x軸方向の磁界の強さBXと、y軸方向の磁界の強さBYとから算出するように構成したが、z軸(鉛直方向)の移動に際して3次元磁気センサ4が回転しないように、すなわちx軸およびy軸が動かないように位置決めすると、地磁気の除去をより正確に行うことができる。
【0025】
この場合には、地磁気除去部93によって、成分毎に地磁気を除去し、地磁気を除去したx軸方向の磁界の強さBx=BX−Bxと、地磁気を除去したy軸方向の磁界の強さBy=BY−Byと、地磁気を除去したz軸方向(鉛直方向)の磁界の強さBz=BZ−Bzをそれぞれ算出し、水平磁界算出部94によって、地磁気を除去したx軸方向の磁界の強さBxと、地磁気を除去したy軸方向の磁界の強さByとから以下に示す式によって水平成分の磁界の強さBhを算出するようにすれば良い。
【0026】
Figure 0004164747
【0027】
また、x軸およびy軸が動かないように位置決めした場合には、水平成分の磁界の強さBhを算出することなく、探査結果算出部95において、地磁気を除去したx軸方向の磁界の強さBxもしくは地磁気を除去したy軸方向の磁界の強さByを用いてtanθ=Bx/Bzもしくはtanθ=By/Bzを算出するようにしても良く、この場合には、3次元磁気センサ4の替わりに互いに直交する向き(x軸もしくはy軸、z軸)の磁界の強さを測定可能な2次元磁気センサを用いることができる。
【0028】
以上説明したように、本実施の形態によれば、互いに直交する向き(x軸、y軸、z軸)の磁界の強さを測定可能な3次元磁気センサ4を使用して磁場の分布を測定し、測定結果を水平成分の磁界の強さBhと鉛直方向の磁界の強さBzとの比として捉えることにより、場所打ち杭等のように、鋼杭と比べて鋼材量が少ない杭や、フーチングによって探査孔を杭から離れたところに配置しなければならない場合にも、杭長を正確に検出することができるという効果を奏する。
【0029】
さらに、本実施の形態によれば、x軸方向の磁界の強さBxと、y軸方向の磁界の強さByとから水平成分の磁界の強さBhを算出することにより、3次元磁気センサ4の複雑な位置決めを必要とせず、簡易な装備で磁気探査を行うことができるという効果を奏する。
【0030】
【実施例】
(実施例1)
図5は、本発明に係る磁気探査方法の実施例1の測定条件を示す図であり、(a)は、側面図であり、(b)は、正面図であり、(c)は、上面図である。図6および図7は、本発明に係る磁気探査方法の実施例1の探査結果を示すグラフである。
【0031】
図5に示すように、横に寝かせた鉄筋篭10から距離Lを離して、3次元磁気センサ4(ホール素子)を固定するセンサ固定用治具11を設置し、当該センサ固定用治具11上を50mmピッチで3次元磁気センサ4を移動させながら、各位置での磁界強さを測定した。この測定を鉄筋篭10から3次元磁気センサ4までの距離LがL=10cm、L=50cm、L=100cmに3ケースについてそれぞれ行った。3次元磁気センサ4によって測定する磁界の座標は、3次元磁気センサ4の移動軸をz軸、鉛直方向をx軸、水平方向がy軸となるようにし、各位置でx軸方向、y軸方向、z軸方向の3方向成分をそれぞれ測定し、各測定結果から地磁気を除去した結果をBx、By、Bz(μT)とした。地磁気としては、鉄筋篭10がない状態でx軸方向、y軸方向、z軸方向の3方向成分(μT)の磁界の強さ(μT)をそれぞれ測定し、当該測定結果をそれぞれ地磁気Bx、By、Bzとして地磁気の除去を行った。なお、同一位置では、2回以上計測を行い、磁場の定常性を確認した。
【0032】
このようにして測定したBx、Byに基づいて、
処理A:鉄筋篭軸方向(z軸方向)の磁気量分布勾配(dBz/dz)、
処理B:鉄筋篭軸方向(z軸方向)の磁界の強さ/鉄筋篭直角軸方向水平成分(y軸方向)の磁界の強さ、の2通りの形状解析処理を行い、両者を比較した。
ここで処理Aは、鉄筋篭軸方向成分の一階微分であり、磁気傾度計を用いた従来方式の計測で得られる値と同等のものとなり、処理Bは、本実施の形態において、3次元磁気センサ4のx軸およびy軸を位置決めして測定し、水平成分中のy軸成分に基づいて探査結果を算出した場合に相当する。
【0033】
その結果、図6(a)に示すようにL=10cmでは、処理Aおよび処理Bのいずれにおいても鉄筋篭10の先端位置を中心とした明らかな変動が確認できるが、L=50cmおよびL=100cmでは、図6(b)および図7にそれぞれ示すように、処理Bのみ鉄筋篭10の先端位置を中心とした明らかな変動が確認できる。
【0034】
(実施例2)
図8は、本発明に係る磁気探査方法の実施例2の測定条件を示す図であり、(a)は、側面図であり、(b)は、上面図である。図9は、本発明に係る磁気探査方法の実施例2の測定結果を示すグラフである。
【0035】
図8に示すように、土中に鉄筋12(D32)と計測用パイプ13(アルミ製)とを埋設し、計測用パイプ13内に3次元磁気センサ4(ホール素子)を固定するセンサ固定用治具11を設置し、当該センサ固定用治具上で3次元磁気センサ4を移動させながら、各位置での磁界強さを測定した。鉄筋12から3次元磁気センサ4までの距離Lは、L=12cmに設定した。3次元磁気センサ4によつて測定する磁界の座標は、3次元磁気センサ4の移動軸(鉛直方向)をz軸に、水平面は、南北方向がy軸、東西方向がx軸になるようにし、各位置でx軸方向、y軸方向、z軸方向の3方向成分をそれぞれ測定し、各測定結果から地磁気を除去した結果をBx、By、Bz(μT)とした。地磁気としては、鉄筋篭がない状態でx軸方向、y軸方向、z軸方向の3方向成分(μT)でそれぞれ測定し、当該測定結果をそれぞれ地磁気Bx、By、Bzとして地磁気の除去を行った。なお、同一位置では、2回以上計測を行い、磁場の定常性を確認した。
【0036】
このようにして測定したBx、By、Bzに基づいて、
処理A:鉄筋軸方向(z軸方向)の磁気量分布勾配(dBz/dz)、
処理B:鉄筋直角軸方向水平成分の磁界の強さBh/鉄筋軸方向(z軸方向)の磁界の強さBz、の2通りの形状解析処理を行い、両者を比較した。
ここで処理Aは、鉄筋軸方向成分の一階微分であり、磁気傾度計を用いた従来方式の計測で得られる値と同等のものとなり、処理Bは、本実施の形態において、3次元磁気センサ4のx軸およびy軸を位置決めして測定し、水平成分中のx軸成分およびy軸成分に基づいて探査結果を算出した場合に相当する。
【0037】
その結果、図9に示すように、処理Bでは、鉄筋12の先端位置を中心とした明らかな変動が確認できるが、処理Aでは、明確な違いは得られなかった。
【0038】
なお、本発明が上記各実施の形態に限定されず、本発明の技術思想の範囲内において、各実施の形態は適宜変更され得ることは明らかである。また、上記構成部材の数、位置、形状等は上記実施の形態に限定されず、本発明を実施する上で好適な数、位置、形状等にすることができる。なお、各図において、同一構成要素には同一符号を付している。
【0039】
【発明の効果】
本発明の磁気探査方法は、互いに直交する向き(x軸、y軸、z軸)の磁界の強さを測定可能な3次元磁気センサを使用して磁場の分布を測定し、測定結果を水平成分の磁界の強さと鉛直方向の磁界の強さとの比として捉えることにより、場所打ち杭等のように、鋼杭と比べて鋼材量が少ない杭や、フーチングによって探査孔を杭から離れたところに配置しなければならない場合にも、杭長を正確に検出することができるという効果を奏する。
【0040】
さらに、本発明の磁気探査方法は、x軸方向の磁界の強さと、y軸方向の磁界の強さとから水平成分の磁界の強さを算出することにより、3次元磁気センサの複雑な位置決めを必要とせず、簡易な装備で磁気探査を行うことができるという効果を奏する。
【図面の簡単な説明】
【図1】本発明に係る磁気探査方法の実施の形態で使用する機器構成を示す図である。
【図2】図1に示す形状解析装置の構成を示すブロック図である。
【図3】図2に示す水平磁界算出部における水平磁界の算出方法を説明するための図である。
【図4】図2に示す探査結果算出部において算出された探査結果を説明するための図である。
【図5】本発明に係る磁気探査方法の実施例1の測定条件を示す図であり、(a)は、側面図であり、(b)は、正面図であり、(c)は、上面図である。
【図6】本発明に係る磁気探査方法の実施例1の探査結果を示すグラフである。
【図7】本発明に係る磁気探査方法の実施例1の探査結果を示すグラフである。
【図8】本発明に係る磁気探査方法の実施例2の測定条件を示す図であり、(a)は、側面図であり、(b)は、上面図である。
【図9】本発明に係る磁気探査方法の実施例2の測定結果を示すグラフである。
【符号の説明】
1 基礎杭
2 探査孔
3 非磁性ガイド管
4 3次元磁気センサ
5 プーリー
6 増幅器
7 カウンタ
8 データ収集器
9 形状解析装置
10 鉄筋篭
11 センサ固定用治具
12 鉄筋
13 計測用パイプ
91 探査データ入力部
92 地磁気記憶部
93 地磁気除去部
94 水平磁界算出部
95 探査結果算出部
96 データ出力部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a magnetic exploration method, and more particularly to a magnetic exploration method for detecting a tip position of a foundation pile.
[0002]
[Prior art]
It is necessary to confirm the pile length of the foundation pile for the seismic assessment of the old structure in the year of enforcement or for the replacement of an aged structure. The pile length of the foundation pile must be investigated.
[0003]
Conventionally, in order to investigate the pile length of a foundation pile, a magnetic exploration method using a double-coil magnetic inclinometer has been performed. The magnetic exploration method specifies the pile length by measuring the residual magnetism of the foundation pile and the sensitive magnetism due to the earth's magnetic field. The exploration hole is excavated in the vicinity of the foundation pile to be measured by rotary boring, etc. The magnetic gradient, that is, the rate of change in the strength of the magnetic field is measured by inserting a double coil type magnetic inclinometer and moving at a constant speed, and the pile length is specified (for example, see Non-Patent Document 1).
[0004]
[Non-Patent Document 1]
"Manual of shape survey method for bridge foundation using magnetic exploration", Ministry of Construction, Public Works Research Institute, March 1999 [0005]
[Problems to be solved by the invention]
However, in the method of measuring the gradient of the magnetic field strength, such as the conventional double-coil magnetic inclinometer, the magnetic gradient, that is, the rate of change of the magnetic field strength, from the change in electromotive force generated by moving the coil at a constant speed. However, piles with a small amount of rebar, such as cast-in-place piles, have been used for items with a relatively large amount of steel, such as H-shaped steel piles, and a large amount of residual magnetism. When the exploration hole must be arranged away from the pile by footing, there is a problem that high detection accuracy cannot be expected.
[0006]
The present invention has been made in view of such problems. The purpose of the present invention is to place the exploration hole away from the pile by footing such as a cast-in-place pile or the like with a small amount of reinforcing bars. It is in providing a magnetic exploration method capable of accurately detecting the pile length even when it is necessary.
[0007]
[Means for Solving the Problems]
In order to solve the above problems, the present invention has the following configuration.
The gist of the invention described in claim 1 is a magnetic exploration method for detecting the tip position of a foundation pile in a non-contact manner by conducting a magnetic exploration in the vicinity of the foundation pile including the steel material, the x axis and the y axis being orthogonal to each other. And a three-dimensional magnetic sensor capable of measuring the magnetic amount of the z-axis is moved in the z-axis direction while being positioned so that the z-axis is parallel to the foundation pile, and a plurality of z-axis directions are moved by the three-dimensional magnetic sensor. Measure the magnetic quantity BX in the x-axis direction, the magnetic quantity BY in the y-axis direction, and the magnetic quantity BZ in the z-axis direction at each location, and a plane perpendicular to the foundation pile from the magnetic quantity BX and the magnetic quantity BY The upper magnetic amount BH is calculated, and the magnetic amount Bh on the plane perpendicular to the foundation pile from which the geomagnetism is removed by removing the geomagnetism measured in advance from the magnetic amount BH and the magnetic amount BZ. And the magnetic quantity Bz in the z-axis direction from which the geomagnetism is removed, Each calculated resides in magnetic survey method and outputting the magnetic charge Bh and the magnetic charge Bz and shape analysis results based on each of a plurality of positions of the z-axis direction.
The gist of the invention described in claim 2 is a magnetic exploration method for detecting the tip position of the foundation pile in a non-contact manner by conducting a magnetic exploration in the vicinity of the foundation pile including the steel material. moving the three-dimensional magnetic sensor capable of measuring the magnetic quantity of the y-axis and the z-axis in the z-axis direction in a state where the z-axis is parallel to the foundation pile and the x-axis and the y-axis are not displaced, A magnetic quantity BX in the x-axis direction, a magnetic quantity BY in the y-axis direction, and a magnetic quantity BZ in the z-axis direction are measured at a plurality of locations in the z-axis direction by a three-dimensional magnetic sensor, and the magnetic quantity BX and the magnetic quantity BY are measured. And the magnetic quantity Bx in the x-axis direction from which the previously measured geomagnetism is removed from the magnetic quantity BZ to remove the geomagnetism, the magnetic quantity By in the y-axis direction from which the geomagnetism is removed, and the z-axis direction from which the geomagnetism is removed Magnetic quantity Bz of it Is calculated, the calculated magnetic quantity Bh on a plane perpendicular to the foundation piles from magnetic quantity Bx and the magnetic charge By, the said magnetic charge Bh and the magnetic charge Bz and shape analysis results based on The present invention resides in a magnetic exploration method characterized by outputting data at a plurality of locations in the z-axis direction.
The gist of the invention according to claim 3 is the magnetic exploration method according to claim 1 or 2, wherein the shape analysis result is information representing a ratio between the magnetic quantity Bh and the magnetic quantity Bz. Exist.
According to a fourth aspect of the present invention, in the magnetic exploration according to any one of the first to third aspects, the three-dimensional magnetic sensor includes three Hall elements arranged in directions orthogonal to each other. Lies in the way.
The gist of the invention of claim 5 is a magnetic exploration method for detecting the tip position of the foundation pile in a non-contact manner by conducting a magnetic exploration in the vicinity of the foundation pile including the steel material, A two-dimensional magnetic sensor capable of measuring the magnetic amount of the z-axis is moved in the z-axis direction in a state where the z-axis is parallel to the foundation pile and the x-axis is not displaced,
The two-dimensional magnetic sensor measures a magnetic quantity BX in the x-axis direction and a magnetic quantity BZ in the z-axis direction at a plurality of locations in the z-axis direction, and measures in advance from the magnetic quantity BX and the magnetic quantity BZ. The magnetic quantity Bx in the x-axis direction from which the geomagnetism was removed by removing the existing geomagnetism and the magnetic quantity Bz in the z-axis direction from which the geomagnetism was removed are respectively calculated, and shape analysis based on the magnetic quantity Bx and the magnetic quantity Bz The present invention resides in a magnetic exploration method characterized by outputting a result for each of a plurality of locations in the z-axis direction.
The gist of the invention according to claim 6 resides in the magnetic exploration method according to claim 5, wherein the shape analysis result is information representing a ratio between the magnetic quantity Bx and the magnetic quantity Bz.
The gist of the invention according to claim 7 resides in the magnetic exploration method according to claim 5 or 6, wherein the two-dimensional magnetic sensor comprises two Hall elements arranged in directions orthogonal to each other.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0009]
FIG. 1 is a diagram showing a device configuration used in an embodiment of a magnetic exploration method according to the present invention, FIG. 2 is a block diagram showing a configuration of the shape analysis apparatus shown in FIG. 1, and FIG. FIG. 4 is a diagram for explaining a horizontal magnetic field calculation method in the horizontal magnetic field calculation unit shown in FIG. 2, and FIG. 4 is a diagram for explaining a search result calculated in the search result calculation unit shown in FIG.
[0010]
In the present embodiment, the distribution of the magnetic field is measured using the three-dimensional magnetic sensor 4 that can measure the strength of the magnetic field in directions (x axis, y axis, z axis) orthogonal to each other. The three-dimensional magnetic sensor 4 used in the present embodiment is composed of, for example, three Hall elements arranged in directions orthogonal to each other, and can measure the strength of magnetic fields in directions orthogonal to each other in a stationary state. It has become a structure. Note that a fluxgate type sensor, a SQUID type sensor, or the like can be used instead of the Hall element.
[0011]
Referring to FIG. 1, an exploration hole 2 parallel (vertical) to the foundation pile 1 is excavated in the vicinity of the foundation pile 1 to be measured, and a nonmagnetic guide tube 3 such as aluminum or vinyl chloride is inserted over the entire length of the exploration hole 2 To do. Next, the three-dimensional magnetic sensor 4 is inserted into the nonmagnetic guide tube 3, and the magnetic field strengths in the x-axis direction, the y-axis direction, and the z-axis direction are respectively measured while changing the depth in the axial direction of the foundation pile 1. Go. As the foundation pile 1 to be measured, specifically, a pile (steel pile, cast-in-place pile), a caisson (made of steel, reinforced concrete), a well (made of reinforced concrete), and the like can be considered.
[0012]
As shown in FIG. 1, the three-dimensional magnetic sensor 4 is positioned so that the z axis is parallel (vertical) to the foundation pile 1, and the x axis and the y axis are located on a plane (horizontal plane) perpendicular to the z axis. . The three-dimensional magnetic sensor 4 is configured such that the vertical direction becomes the z-axis by being suspended, and each axis can be positioned by simply suspending as shown in FIG. When positioning, a guide bar parallel to the foundation pile 1 may be installed in the exploration hole 2 and moved in the z-axis direction while being guided by the guide bar.
[0013]
The output from the three-dimensional magnetic sensor 4 is amplified by the amplifier 6 and input to the data collector 8 together with the depth information from the counter 7 connected to the pulley 5. Therefore, the data collector 8 collects the strength of the magnetic field in the x-axis direction, the y-axis direction, and the z-axis direction for each depth as exploration data.
[0014]
Referring to FIG. 2, the shape analysis device 9 includes an exploration data input unit 91 for inputting exploration data from the data collector 8, a geomagnetic storage unit 92 for storing previously measured geomagnetic data, and a geomagnetism. It comprises a geomagnetism removing unit 93 that removes geomagnetism from exploration data based on the geomagnetic data stored in the storage unit 92, a horizontal magnetic field calculating unit 94, an exploration result calculating unit 95, and a data output unit 96.
[0015]
In the search data input unit 91, the magnetic field strength BX in the x-axis direction at every depth, the magnetic field strength BY in the y-axis direction, and the magnetic field strength in the z-axis direction as the search data from the data collector 8. BZ is input.
[0016]
For the geomagnetism stored in the geomagnetism storage unit 92, the three-dimensional magnetic sensor 4 is placed at a position sufficiently away from the surrounding magnetic body and adjusted so that the z-axis is in the vertical direction, and the x-axis direction, y-axis direction, z The magnetic field strengths (μT) of the three-direction components in the axial direction are measured, and the measurement results are stored as geomagnetisms Bx 0 , By 0 , and Bz 0 , respectively.
[0017]
The horizontal magnetic field calculation unit 94 calculates the magnetic field strength BH of the horizontal component by the following equation. That is, as shown in FIG. 3, even if the three-dimensional magnetic sensor 4 rotates and the x-axis and the y-axis change, the magnetic field strength BX in the x-axis direction and the magnetic field strength BY in the y-axis direction From the above, the magnetic field strength BH of an accurate horizontal component is calculated.
[0018]
Figure 0004164747
[0019]
The geomagnetism removing unit 93 calculates the horizontal component geomagnetism Bh 0 by the following formula, and the horizontal component magnetic field strength Bh = BH−Bh 0 from which the geomagnetism has been removed and the vertical magnetic field strength from which the geomagnetism has been removed. Bz = BZ−Bz 0 is calculated.
[0020]
Figure 0004164747
[0021]
The exploration result calculation unit 95 calculates tan θ = Bh / Bz from the horizontal component magnetic field strength Bh from which the geomagnetism has been removed and the vertical magnetic field strength Bz from which the geomagnetism has been removed.
In this way, tan θ = Bh / Bz for each depth is calculated and output to the data output unit 96 such as a printer as a graph or a table.
[0022]
When the foundation pile 1 is regarded as a magnet, magnetic lines of force as shown in FIG. 4 are generated from the foundation pile 1, and tan θ = Bh / Bz is calculated to calculate the horizontal component magnetic field strength Bh and vertical Since the change in the angle of the magnetic lines of force can be detected by grasping it as a ratio with the magnetic field strength Bz in the direction, the graph and table output from the data output unit 96 are clearly centered on the tip position of the foundation pile 1 Therefore, it is possible to detect the pile length of the foundation pile 1.
[0023]
Further, when the magnetic field strength Bz in the vertical direction alone is used, the error increases when the separation between the foundation pile 1 and the three-dimensional magnetic sensor 4 is large. However, the magnetic field strength Bh in the horizontal component and the magnetic field strength in the vertical direction are large. Since the magnetic amount decreases at the same level as the height Bz, if tan θ = Bh / Bz, the tip position of the foundation pile 1 can be detected with high accuracy even if the magnetic amount is small. Furthermore, by setting tan θ = Bh / Bz, positive and negative are switched at θ = 0, and the detection reliability is improved.
[0024]
In the present embodiment, considering the rotation of the three-dimensional magnetic sensor 4, the horizontal component magnetic field strength BH is set to x-axis direction magnetic field strength BX and y-axis direction magnetic field strength BY. If the positioning is performed so that the three-dimensional magnetic sensor 4 does not rotate during the movement of the z-axis (vertical direction), that is, the x-axis and the y-axis do not move, the removal of the geomagnetism can be performed more accurately. It can be carried out.
[0025]
In this case, the geomagnetism removing unit 93 removes the geomagnetism for each component, and the magnetic field strength in the x-axis direction Bx = BX−Bx 0 from which the geomagnetism is removed and the strength of the magnetic field in the y-axis direction from which the geomagnetism is removed. By = BY−By 0 and the magnetic field strength Bz = BZ−Bz 0 in the z-axis direction (vertical direction) from which geomagnetism is removed are calculated, respectively, and the horizontal magnetic field calculation unit 94 removes the geomagnetism. The horizontal component magnetic field strength Bh may be calculated from the following magnetic field strength Bx and the magnetic field strength By in the y-axis direction with the earth magnetism removed.
[0026]
Figure 0004164747
[0027]
Further, when positioning is performed so that the x axis and the y axis do not move, the search result calculation unit 95 does not calculate the strength Bh of the horizontal component magnetic field, and the magnetic field strength in the x axis direction from which the geomagnetism is removed is calculated. Tan θ = Bx / Bz or tan θ = By / Bz may be calculated using the strength Bx or the magnetic field strength By in the y-axis direction from which geomagnetism is removed. In this case, the three-dimensional magnetic sensor 4 Instead, it is possible to use a two-dimensional magnetic sensor capable of measuring the strength of the magnetic field in the directions orthogonal to each other (x axis, y axis, z axis).
[0028]
As described above, according to the present embodiment, the distribution of the magnetic field is determined by using the three-dimensional magnetic sensor 4 that can measure the strength of the magnetic field in the directions orthogonal to each other (x axis, y axis, z axis). By measuring and capturing the measurement result as the ratio of the horizontal component magnetic field strength Bh and the vertical magnetic field strength Bz, a pile with less steel material than a steel pile, such as cast-in-place piles, etc. Even when the exploration hole must be arranged away from the pile by footing, the pile length can be accurately detected.
[0029]
Furthermore, according to the present embodiment, the three-dimensional magnetic sensor is obtained by calculating the horizontal component magnetic field strength Bh from the magnetic field strength Bx in the x-axis direction and the magnetic field strength By in the y-axis direction. Thus, there is an effect that magnetic exploration can be performed with simple equipment without requiring the complicated positioning of 4.
[0030]
【Example】
(Example 1)
FIG. 5 is a diagram showing measurement conditions of Example 1 of the magnetic exploration method according to the present invention, (a) is a side view, (b) is a front view, and (c) is an upper surface. FIG. 6 and 7 are graphs showing the search results of Example 1 of the magnetic search method according to the present invention.
[0031]
As shown in FIG. 5, a sensor fixing jig 11 for fixing the three-dimensional magnetic sensor 4 (Hall element) is installed at a distance L from the reinforcing bar 10 laid sideways, and the sensor fixing jig 11 is installed. The magnetic field strength at each position was measured while moving the three-dimensional magnetic sensor 4 at a pitch of 50 mm. This measurement was performed for the three cases with the distance L from the reinforcing bar 10 to the three-dimensional magnetic sensor 4 being L = 10 cm, L = 50 cm, and L = 100 cm. The coordinates of the magnetic field measured by the three-dimensional magnetic sensor 4 are such that the moving axis of the three-dimensional magnetic sensor 4 is the z-axis, the vertical direction is the x-axis, and the horizontal direction is the y-axis. The three direction components in the direction and the z-axis direction were measured, and the result of removing the geomagnetism from each measurement result was defined as Bx, By, Bz (μT). As the geomagnetism, the magnetic field strength (μT) of the three-direction component (μT) in the x-axis direction, the y-axis direction, and the z-axis direction is measured in the absence of the reinforcing bar 10, and the measurement results are respectively represented by the geomagnetism Bx 0. , By 0 and Bz 0 were used to remove the geomagnetism. In addition, at the same position, the measurement was performed twice or more to confirm the continuity of the magnetic field.
[0032]
Based on Bx and By measured in this way,
Process A: Magnetic quantity distribution gradient (dBz / dz) in the rebar vertical axis direction (z-axis direction),
Process B: Two types of shape analysis processing were performed: the strength of the magnetic field in the rebar saddle axis direction (z-axis direction) / the strength of the magnetic field in the horizontal direction of the reinforcing steel bar perpendicular axis direction (y-axis direction). .
Here, the process A is a first-order derivative of the rebar axial direction component and is equivalent to a value obtained by the conventional measurement using the magnetic inclinometer, and the process B is three-dimensional in the present embodiment. This corresponds to the case where the x-axis and y-axis of the magnetic sensor 4 are positioned and measured, and the search result is calculated based on the y-axis component in the horizontal component.
[0033]
As a result, as shown in FIG. 6 (a), when L = 10 cm, clear fluctuations centering on the tip position of the rebar rod 10 can be confirmed in both the processing A and the processing B, but L = 50 cm and L = At 100 cm, as shown in FIG. 6B and FIG. 7, only the processing B can be confirmed to have a clear fluctuation centered on the tip position of the reinforcing bar rod 10.
[0034]
(Example 2)
8A and 8B are diagrams showing measurement conditions of Example 2 of the magnetic exploration method according to the present invention, in which FIG. 8A is a side view and FIG. 8B is a top view. FIG. 9 is a graph showing measurement results of Example 2 of the magnetic exploration method according to the present invention.
[0035]
As shown in FIG. 8, the reinforcing bar 12 (D32) and the measurement pipe 13 (made of aluminum) are buried in the soil, and the three-dimensional magnetic sensor 4 (Hall element) is fixed in the measurement pipe 13. The jig 11 was installed, and the magnetic field strength at each position was measured while moving the three-dimensional magnetic sensor 4 on the sensor fixing jig. The distance L from the reinforcing bar 12 to the three-dimensional magnetic sensor 4 was set to L = 12 cm. The coordinates of the magnetic field measured by the three-dimensional magnetic sensor 4 are such that the moving axis (vertical direction) of the three-dimensional magnetic sensor 4 is the z-axis, and the horizontal plane is the y-axis in the north-south direction and the x-axis in the east-west direction. The three-direction components in the x-axis direction, the y-axis direction, and the z-axis direction were measured at each position, and the result of removing the geomagnetism from each measurement result was defined as Bx, By, Bz (μT). The geomagnetism is measured with three components (μT) in the x-axis direction, the y-axis direction, and the z-axis direction in the absence of reinforcing bar rods, and the measurement results are indicated as geomagnetism Bx 0 , By 0 , Bz 0 , respectively. Removal was performed. In addition, at the same position, the measurement was performed twice or more to confirm the continuity of the magnetic field.
[0036]
Based on Bx, By, Bz measured in this way,
Process A: Magnetic quantity distribution gradient (dBz / dz) in the rebar axis direction (z-axis direction),
Process B: Two types of shape analysis processes were performed, ie, the strength Bh of the horizontal component in the direction perpendicular to the rebar and the strength Bz of the magnetic field in the direction of the rebar (z-axis), and the two were compared.
Here, the process A is a first-order derivative of the rebar axial direction component, which is equivalent to a value obtained by the conventional measurement using a magnetic inclinometer, and the process B is a three-dimensional magnetic field in the present embodiment. This corresponds to the case where the x-axis and y-axis of the sensor 4 are positioned and measured, and the search result is calculated based on the x-axis component and the y-axis component in the horizontal component.
[0037]
As a result, as shown in FIG. 9, in Process B, a clear fluctuation centered on the tip position of the reinforcing bar 12 can be confirmed, but in Process A, a clear difference was not obtained.
[0038]
Note that the present invention is not limited to the above-described embodiments, and it is obvious that the embodiments can be appropriately changed within the scope of the technical idea of the present invention. In addition, the number, position, shape, and the like of the constituent members are not limited to the above-described embodiment, and can be set to a suitable number, position, shape, and the like in practicing the present invention. In each figure, the same numerals are given to the same component.
[0039]
【The invention's effect】
In the magnetic exploration method of the present invention, the magnetic field distribution is measured using a three-dimensional magnetic sensor capable of measuring the magnetic field strengths in the directions orthogonal to each other (x-axis, y-axis, z-axis), and the measurement result is leveled. By looking at the ratio of the strength of the magnetic field of the component to the strength of the magnetic field in the vertical direction, the place where the exploration hole is separated from the pile by footing, such as cast-in-place piles, etc. Even if it is necessary to arrange the piles, it is possible to accurately detect the pile length.
[0040]
Furthermore, the magnetic exploration method of the present invention calculates the strength of the horizontal component magnetic field from the strength of the magnetic field in the x-axis direction and the strength of the magnetic field in the y-axis direction, thereby performing complex positioning of the three-dimensional magnetic sensor. There is an effect that magnetic exploration can be performed with simple equipment without the need.
[Brief description of the drawings]
FIG. 1 is a diagram showing a device configuration used in an embodiment of a magnetic exploration method according to the present invention.
FIG. 2 is a block diagram showing a configuration of the shape analysis apparatus shown in FIG.
3 is a diagram for explaining a horizontal magnetic field calculation method in a horizontal magnetic field calculation unit shown in FIG. 2; FIG.
4 is a diagram for explaining a search result calculated by a search result calculation unit shown in FIG. 2; FIG.
5A and 5B are diagrams showing measurement conditions of Example 1 of the magnetic exploration method according to the present invention, in which FIG. 5A is a side view, FIG. 5B is a front view, and FIG. FIG.
FIG. 6 is a graph showing a search result of Example 1 of the magnetic search method according to the present invention.
FIG. 7 is a graph showing a search result of Example 1 of the magnetic search method according to the present invention.
8A and 8B are diagrams showing measurement conditions of Example 2 of the magnetic exploration method according to the present invention, wherein FIG. 8A is a side view and FIG. 8B is a top view.
FIG. 9 is a graph showing measurement results of Example 2 of the magnetic exploration method according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Foundation pile 2 Search hole 3 Nonmagnetic guide pipe 4 Three-dimensional magnetic sensor 5 Pulley 6 Amplifier 7 Counter 8 Data collector 9 Shape analyzer 10 Rebar rod 11 Sensor fixing jig 12 Rebar 13 Measurement pipe 91 Search data input part 92 Geomagnetism storage unit 93 Geomagnetism removal unit 94 Horizontal magnetic field calculation unit 95 Search result calculation unit 96 Data output unit

Claims (7)

鋼材を含む基礎杭の近傍の磁気探査を行って、基礎杭の先端位置を非接触で検出する磁気探査方法であって、
互いに直交するx軸、y軸およびz軸の磁気量を測定可能な3次元磁気センサをz軸が前記基礎杭と平行になるように位置決めした状態でz軸方向に移動させ、
前記3次元磁気センサによってz軸方向の複数の箇所でそれぞれx軸方向の磁気量BX、y軸方向の磁気量BYおよびz軸方向の磁気量BZを測定し、
前記磁気量BXと前記磁気量BYとから前記基礎杭に対して垂直な面上の磁気量BHを算出し、
当該磁気量BHと前記磁気量BZとから予め測定しておいた地磁気をそれぞれ除去して地磁気を除去した前記基礎杭に対して垂直な面上の磁気量Bhと地磁気を除去したz軸方向の磁気量Bzとをそれぞれ算出し、
前記磁気量Bhと前記磁気量Bzとに基づく形状解析結果を前記z軸方向の複数の箇所毎に出力することを特徴とする磁気探査方法。
A magnetic exploration method for detecting the tip position of a foundation pile in a non-contact manner by conducting a magnetic exploration in the vicinity of the foundation pile containing steel,
A three-dimensional magnetic sensor capable of measuring the magnetic amounts of the x-axis, y-axis and z-axis orthogonal to each other is moved in the z-axis direction in a state where the z-axis is positioned parallel to the foundation pile ,
The three-dimensional magnetic sensor measures a magnetic quantity BX in the x-axis direction, a magnetic quantity BY in the y-axis direction, and a magnetic quantity BZ in the z-axis direction at a plurality of locations in the z-axis direction,
A magnetic amount BH on a surface perpendicular to the foundation pile is calculated from the magnetic amount BX and the magnetic amount BY,
The magnetic quantity Bh on the surface perpendicular to the foundation pile from which the geomagnetism was removed by removing the geomagnetism measured in advance from the magnetic quantity BH and the magnetic quantity BZ and the z-axis direction from which the geomagnetism was removed. Calculate the magnetic quantity Bz,
A magnetic exploration method comprising outputting a shape analysis result based on the magnetic quantity Bh and the magnetic quantity Bz for each of a plurality of locations in the z-axis direction.
鋼材を含む基礎杭の近傍の磁気探査を行って、前記基礎杭の先端位置を非接触で検出する磁気探査方法であって、
互いに直交するx軸、y軸およびz軸の磁気量を測定可能な3次元磁気センサをz軸が前記基礎杭と平行になると共にx軸およびy軸が変位しないように位置決めした状態でz軸方向に移動させ、
前記3次元磁気センサによってz軸方向の複数の箇所でそれぞれx軸方向の磁気量BX、y軸方向の磁気量BYおよびz軸方向の磁気量BZを測定し、
前記磁気量BX、前記磁気量BYおよび前記磁気量BZとから予め測定しておいた地磁気をそれぞれ除去して地磁気を除去したx軸方向の磁気量Bx、地磁気を除去したy軸方向の磁気量Byおよび地磁気を除去したz軸方向の磁気量Bzをそれぞれ算出し、
前記磁気量Bxと前記磁気量Byとから前記基礎杭に対して垂直な面上の磁気量Bhを算出し、
前記磁気量Bhと前記磁気量Bzとに基づく形状解析結果を前記z軸方向の複数の箇所毎に出力することを特徴とする磁気探査方法。
A magnetic exploration method for detecting the tip position of the foundation pile in a non-contact manner by conducting a magnetic exploration in the vicinity of the foundation pile including the steel material,
A z-axis with a three-dimensional magnetic sensor capable of measuring the magnetic quantities of the x-axis, y-axis, and z-axis orthogonal to each other positioned so that the z-axis is parallel to the foundation pile and the x-axis and y-axis are not displaced Move in the direction,
The three-dimensional magnetic sensor measures a magnetic quantity BX in the x-axis direction, a magnetic quantity BY in the y-axis direction, and a magnetic quantity BZ in the z-axis direction at a plurality of locations in the z-axis direction,
The magnetic quantity BX, the magnetic quantity BY, and the magnetic quantity BZ, respectively, the magnetic quantity Bx in the x-axis direction obtained by removing the geomagnetism previously measured from the magnetic quantity BZ and the magnetic quantity in the y-axis direction obtained by removing the geomagnetism. Calculate a magnetic quantity Bz in the z-axis direction from which By and geomagnetism are removed,
A magnetic amount Bh on a surface perpendicular to the foundation pile is calculated from the magnetic amount Bx and the magnetic amount By,
A magnetic exploration method comprising outputting a shape analysis result based on the magnetic quantity Bh and the magnetic quantity Bz for each of a plurality of locations in the z-axis direction.
前記形状解析結果は、前記磁気量Bhと前記磁気量Bzとの比を表す情報であることを特徴とする請求項1又は2記載の磁気探査方法。  The magnetic exploration method according to claim 1, wherein the shape analysis result is information representing a ratio between the magnetic quantity Bh and the magnetic quantity Bz. 前記3次元磁気センサは、互いに直交する向きに配置された3つのホール素子からなることを特徴とする請求項1乃至3のいずれかに記載の磁気探査方法。  The magnetic exploration method according to claim 1, wherein the three-dimensional magnetic sensor includes three Hall elements arranged in directions orthogonal to each other. 鋼材を含む基礎杭の近傍の磁気探査を行って、前記基礎杭の先端位置を非接触で検出する磁気探査方法であって、
互いに直交するx軸およびz軸の磁気量を測定可能な2次元磁気センサをz軸が前記基礎杭と平行になると共にx軸が変位しないように位置決めした状態でz軸方向に移動させ、
前記2次元磁気センサによってz軸方向の複数の箇所でそれぞれx軸方向の磁気量BXおよびz軸方向の磁気量BZを測定し、
前記磁気量BXと前記磁気量BZとから予め測定しておいた地磁気をそれぞれ除去して地磁気を除去したx軸方向の磁気量Bxと地磁気を除去したz軸方向の磁気量Bzとをそれぞれ算出し、
前記磁気量Bxと前記磁気量Bzとに基づく形状解析結果を前記z軸方向の複数の箇所毎に出力することを特徴とする磁気探査方法。
A magnetic exploration method for detecting the tip position of the foundation pile in a non-contact manner by conducting a magnetic exploration in the vicinity of the foundation pile including the steel material,
A two-dimensional magnetic sensor capable of measuring the magnetic quantities of the x-axis and z-axis orthogonal to each other is moved in the z-axis direction in a state where the z-axis is parallel to the foundation pile and the x-axis is not displaced,
The two-dimensional magnetic sensor measures a magnetic quantity BX in the x-axis direction and a magnetic quantity BZ in the z-axis direction at a plurality of locations in the z-axis direction,
From the magnetic quantity BX and the magnetic quantity BZ, the magnetic quantity Bx in the x-axis direction and the magnetic quantity Bz in the z-axis direction from which the geomagnetism is removed are respectively calculated by removing the previously measured geomagnetism. And
A magnetic exploration method characterized by outputting a shape analysis result based on the magnetic quantity Bx and the magnetic quantity Bz for each of a plurality of locations in the z-axis direction.
前記形状解析結果は、前記磁気量Bxと前記磁気量Bzとの比を表す情報であることを特徴とする請求項5記載の磁気探査方法。  6. The magnetic exploration method according to claim 5, wherein the shape analysis result is information representing a ratio between the magnetic quantity Bx and the magnetic quantity Bz. 前記2次元磁気センサは、互いに直交する向きに配置された2つのホール素子からなることを特徴とする請求項5又は6記載の磁気探査方法。  The magnetic exploration method according to claim 5 or 6, wherein the two-dimensional magnetic sensor includes two Hall elements arranged in directions orthogonal to each other.
JP2003096384A 2003-03-31 2003-03-31 Magnetic exploration method Expired - Fee Related JP4164747B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003096384A JP4164747B2 (en) 2003-03-31 2003-03-31 Magnetic exploration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003096384A JP4164747B2 (en) 2003-03-31 2003-03-31 Magnetic exploration method

Publications (2)

Publication Number Publication Date
JP2004301745A JP2004301745A (en) 2004-10-28
JP4164747B2 true JP4164747B2 (en) 2008-10-15

Family

ID=33408467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003096384A Expired - Fee Related JP4164747B2 (en) 2003-03-31 2003-03-31 Magnetic exploration method

Country Status (1)

Country Link
JP (1) JP4164747B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015014526A (en) * 2013-07-05 2015-01-22 独立行政法人石油天然ガス・金属鉱物資源機構 Electromagnetic surveying method
KR101322243B1 (en) 2013-07-09 2013-10-28 대한민국 Method for buried of geomagnetic field sensor using plastic cylinder
JP2016188839A (en) * 2015-03-30 2016-11-04 株式会社島津製作所 Nondestructive inspection device

Also Published As

Publication number Publication date
JP2004301745A (en) 2004-10-28

Similar Documents

Publication Publication Date Title
Breiner Applications manual for portable magnetometers
CN109883450A (en) Method for positioning magnetic marker of detector in buried steel pipeline
CN107085240B (en) Slope magnetofluid detection system and method
US20200291766A1 (en) Magnetic distance and direction measurements from a first borehole to a second borehole
JP4164747B2 (en) Magnetic exploration method
CN208219650U (en) A kind of tubular pole inclinometer locating guide device
Herwanger et al. 3-D inversions of magnetic gradiometer data in archeological prospecting: Possibilities and limitations
CN101750632B (en) Method for improving magnet measuring precision of three elements
Burland et al. A simple and precise borehole extensometer
KR100264630B1 (en) Rebar detection and detection method in concrete foundation piles by measuring 3-axis magnetic field in borehole
CN102621506B (en) Total field magnetometer 4-direction determining method and device for magnetic parameters of rock and ore samples
McDowell Detection of clay filled sink-holes in the chalk by geophysical methods
JP5165808B1 (en) Differential magnetic exploration system
CN113050182B (en) Method and system for observing geomagnetic field in water area
CN105937901A (en) Network inclinometry system based on sensor cluster and inclinometry method
JP4164746B2 (en) Penetration tool and magnetic exploration method used for magnetic exploration
JP2005291802A (en) Magnetic prospecting method
JP2005291812A (en) Magnetic prospecting method
KR101496084B1 (en) Verification method of fractured zone by the deviation distribution of magnetic flux density and apparatus thereof
JP2010078585A (en) Method for finding the location of buried magnetic object
JP2005291818A (en) Penetration implement used for magnetic prospecting and magnetic prospecting method
JPS62266484A (en) Inspection for tip position of excavation tube using magnetic sensor
RU2152059C1 (en) Device for positioning of underground pipeline trajectory
CN206863252U (en) Calibrating installation for magnetic logger
JPH05281366A (en) Device for displaying position of metallic body buried in concrete

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080716

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees