JP4164156B2 - Wastewater treatment method - Google Patents

Wastewater treatment method Download PDF

Info

Publication number
JP4164156B2
JP4164156B2 JP12981698A JP12981698A JP4164156B2 JP 4164156 B2 JP4164156 B2 JP 4164156B2 JP 12981698 A JP12981698 A JP 12981698A JP 12981698 A JP12981698 A JP 12981698A JP 4164156 B2 JP4164156 B2 JP 4164156B2
Authority
JP
Japan
Prior art keywords
waste liquid
washing waste
ultraviolet
washing
foaming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12981698A
Other languages
Japanese (ja)
Other versions
JPH11319890A (en
Inventor
正美 歳国
伸行 高橋
哲史 宮本
一二三 川村
裕司 山崎
秀之 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Tohoku Electric Power Co Inc
Original Assignee
JGC Corp
Tohoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp, Tohoku Electric Power Co Inc filed Critical JGC Corp
Priority to JP12981698A priority Critical patent/JP4164156B2/en
Publication of JPH11319890A publication Critical patent/JPH11319890A/en
Application granted granted Critical
Publication of JP4164156B2 publication Critical patent/JP4164156B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/002Grey water, e.g. from clothes washers, showers or dishwashers

Landscapes

  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、洗濯廃液の処理方法に関し、例えば原子力施設等において生じる洗濯廃液及び手洗い廃液を環境放出可能なレベルにまで処理する方法に関する。
【0002】
【従来の技術】
従来のドライクリーニング方式の洗浄剤にはフロンが使用されており、これが環境汚染の要因となるために、例えば、原子力発電所のような原子力施設においては、洗濯方式がドライクリーニングから水洗いに移行している。微量の放射能を含む洗濯廃液及び手洗い廃液は、そのまま環境に放出すると放射能濃度及びCOD成分が放出基準に抵触する。従って、環境への放出を前提にすると、微量放射能の除去と併せてCOD成分及びBOD成分の除去が必要である。現在では、廃液中のCOD成分及びBOD成分の主成分たる界面活性剤の環境中への放出を極力減少させるために活性炭処理を行っている場合が多い。しかしながら、使用済活性炭の二次廃棄物が多量に発生し、また使用済活性炭の含水率が高く、焼却処理に困難を伴っているのが現状である。
【0003】
一方、洗濯廃液及び手洗い廃液を蒸発濃縮し、凝縮水と濃縮水とに分け、凝縮水のCODと放射能濃度を放出基準値まで下げて環境放出する一方、濃縮液を固化処理する方法も採用されている。この場合、洗濯廃液及び手洗い廃液を直接蒸発濃縮すると濃縮処理時に激しく発泡し、高濃度のCOD成分あるいは放射性核種が飛沫となって凝縮水系へ移行する問題が生じる。現在ではこれを防ぐため、前処理として活性炭と凝集剤で発泡成分を減少させて、蒸発濃縮を行うようにしている。しかしながら、凝集剤を使用する場合も二次廃棄物が多量に発生し問題がある。
上述のごとく、原子力発電所等の原子力施設等における洗濯廃液の処理方法に関して、放射能成分はもとよりCOD成分及びBOD成分も極力少なくし、環境中への放出を可能にし、かつ、二次廃棄物発生量を少なくする処理方法の開発が要求されている。
【0004】
また紫外線(UV)照射と過酸化水素水又はオゾンによる有機物酸化分解処理方法が公知の技術としてある。しかしながらこの公知の処理法は、有機物を徹底的に分解することを目的としており、発泡因子を取り除くことについては全く追求されていない。
例えば、「紫外線とオゾンを用いたランドリ廃液処理法のシステム成立性」(日本原子力学会「1997春の年会」予稿集)において、原子力発電所内の洗濯廃液及び手洗い廃水に含まれる有機物を紫外線とオゾンを用いて分解する技術が開示されているが、ここではTOC濃度の減少のみを追求しているだけであって、この処理液をどのようにするかについては言及していない。
また、「オゾン/紫外線併用による有機物の酸化分解」(化学工学会第62回年会(1997)予稿集)に開示された技術においても、TOC濃度の減少のみを追求しており、蒸発濃縮時の発泡までは何ら言及していない。
【0005】
【発明が解決しようとする課題】
本発明は、上述のごとき実情に鑑みてなされたもので、洗濯廃液を環境中へ放出可能なあるいは再利用可能な水質とするように処理する処理方法において、二次廃棄物の発生を抑制し、かつ発生した二次廃棄物を容易に廃棄処理することができ、連続安定性と高い安全性をもって処理を実行でき、さらに処理装置をコンパクト化できる洗濯廃液の処理方法を提供することを目的とするものである。
【0006】
【課題を解決するための手段】
請求項1の発明は、洗濯廃液を加熱濃縮し、蒸発分を凝縮することにより、該洗濯廃液を濃縮液と凝縮液とに分離する蒸発濃縮工程を含む洗濯廃液の処理方法において、酸化剤として過酸化水素水及び/またはオゾンを添加した洗濯廃液に紫外線の照射処理を行う紫外線処理工程を前記蒸発濃縮工程の前に付加することを特徴としたものである。
【0007】
請求項2の発明は、請求項1の発明において、前記蒸発濃縮工程における濃縮倍率を100〜500倍とすることを特徴としたものである。
【0008】
請求項3の発明は、請求項1または2の発明において、前記蒸発濃縮工程で得られる濃縮液及び凝縮液のうち、該濃縮液を固化処理する一方、前記凝縮液を環境中に放出または再利用することを特徴としたものである。
【0009】
請求項4の発明は、請求項1ないし3いずれか1の発明において、前記紫外線処理工程における洗濯廃液の処理速度を10m3/h/kW以下とすることを特徴としたものである。
【0010】
請求項5の発明は、請求項1ないし4いずれか1記載の発明において、前記紫外線処理工程に用いる紫外線の主波長を253.7nmまたは184.9nmとすることを特徴としたものである。
【0011】
請求項6の発明は、請求項1ないし5いずれか1記載の発明において、前記紫外線処理工程の前に洗濯廃液をろ過するろ過工程を付加することを特徴としたものである。
【0012】
請求項7の発明は、請求項1ないし6いずれか1記載の発明において、前記紫外線酸処理工程における酸化剤の添加量を、洗濯廃液の全有機炭素濃度から求めた炭素のモル数の0.3倍モル量以上とすることを特徴としたものである。
【0013】
【発明の実施の形態】
本発明の処理方法においては、洗濯廃液,手洗い廃液,もしくはこれらの混合廃液に、酸化剤として過酸化水素水またはオゾンを添加して紫外線照射を行うことにより、廃液中に含有している発泡因子を脱離するとともに、TOC成分の一部も酸化分解する。従来、紫外線酸化処理しない廃液を蒸発濃縮器に送って濃縮すると、蒸発濃縮時に激しく発泡し、一部のTOC成分と放射性核種が環境放出する凝縮液側へ移行してしまう問題が生じるが、本発明の処理方法により紫外線酸化処理された廃液は、少なくとも500倍まで濃縮しても発泡が生じない。
【0014】
図1は、本発明による洗濯廃液の処理方法を適用する処理システムの構成例を示す図である。図1において、1はろ過器、2は紫外線(UV)酸化反応器、2aは紫外線(UV)ランプ、3は蒸発濃縮器である。
ろ過器1は、洗濯廃液及び手洗い廃液中に含まれる衣類等の糸屑又は汚垢を除去する機能を有し、これにより紫外線ランプの表面を汚さないようにするものである。なお、このろ過器1としては、10〜100μmの粒子が捕集可能なものを用いることが好適である。UV酸化反応器2は、発泡因子の脱離及びCOD成分の分解を行い、また雑菌繁殖を抑制する機能を有する。蒸発濃縮器3は、処理廃液の残留COD成分及び放射性核種を濃縮して、濃縮水と凝縮水とに分離するものである。得られた凝縮液(回収液)は再利用するか、もしくは環境へ放出し、一方、高濃度CODと放射能核種を含む濃縮液はセメント等で固化する。
【0015】
本発明においては、紫外線照射ランプにより照射される紫外線の主波長として、253.7nm,もしくは184.9nm(より好ましくは253.7nm)の波長光を用いることが特に有効である。また本発明では、TOC成分の一部の発泡因子を脱離すればよいために、TOCを90%以上分解するときの処理速度に比較して、約6倍の処理速度で処理可能である。
【0016】
以下に本発明の処理方法の実施例を説明する。
(実施例1)
本実施例は、模擬洗濯廃液に30分間UVを照射した後、濃縮発泡試験を実施したものである。
図2に本実施例で用いたUV酸化反応装置のダイアグラムの一例を示す。図2において、11は電源箱、12は紫外線(UV)反応器、12aは紫外線(UV)ランプ、13は循環ポンプ、14は循環流量計、15は冷却機、16は模擬洗濯廃液タンク、17は過酸化水素水供給ポンプ、18は過酸化水素水計量器である。
また図3に、本実施例で用いた濃縮発泡試験装置の概略構成図を示す。図3において、21は補給液容器、22はゴム栓、23はスケール、24は発泡塔、25は熱電対保護管、26は廃液、27はマントルヒータ、28は冷却器、29はメスシリンダ、30は温度記録計、31はA/Vメータ、32はスライダックである。マントルヒータ27は、使用電源が100Vで400Wの電力量をもち、その有効長は400mm,塔径は55φ,塔長は1000mm,塔の材質はパイレックスであり、またゴム栓22の材質はシリコーンゴムである。
【0017】
本実施例による処理試験方法を以下に説明する。まず図2に示す模擬洗濯廃液タンク16に調整した模擬洗濯廃液20Lを充填し、次いで充填した模擬洗濯廃液を循環ポンプ13を使用して紫外線反応器12に送る。なお本実施例における模擬洗濯廃液としては、家庭用洗濯機に、洗剤,着用済衣類,及び水を入れて洗濯して得たものを用いる。また本実施例における洗剤としては、直鎖アルキルベンゼンスルフォン酸ナトリウム,アルキル硫酸エステルナトリウム,硫酸塩,アルミノケイ酸塩,酵素,蛍光剤等を成分として含むものを用いる。
【0018】
紫外線反応器12の内部に模擬洗濯廃液が満たされた後に、2kWの紫外線ランプ12aを点灯し、同時に過酸化水素水供給ポンプ17を作動させて過酸化水素水(35%)を13.7ml/hの流量で模擬洗濯廃液タンク16に送出する。過酸化水素水と模擬洗濯廃液の混合液は、循環ポンプ13により循環し、紫外線反応器12で酸化分解される。この酸化分解処理を30分間行った後、模擬洗濯廃液タンク16内部及び紫外線反応器12内部の模擬洗濯廃液を抜き出す。
【0019】
次いで抜き出した模擬洗濯廃液500mlを、図3に示した濃縮発泡試験装置の発泡塔24に充填する。そしてマントルヒータ27の電源を入れ、模擬洗濯廃液を加熱して蒸発させる。このときの蒸発速度は160ml/hに設定する。沸騰させることにより発生する蒸発分を冷却器28へ導入して凝縮し、得られる凝縮液をメスシリンダ29に導いて、時間毎の蒸発量を測定する。加熱により模擬洗濯廃液が発泡すれば、発泡塔で観察される。その時の泡が上昇する高さをスケールで測定する。蒸発した模擬洗濯廃液は、常時補給されるシステムになっている。
【0020】
濃縮発泡試験の結果を図4に示す。図4に示すごとくに、紫外線処理を施さない模擬洗濯廃液においては、廃液の温度が加熱によって水の沸点に到達すると同時に廃液の発泡が始まり、忽ち発泡塔をオーバフローした。ここで発泡高80cmはスケールの最頂部を示す。一方、紫外線処理を30分施した模擬洗濯廃液は100倍濃縮後も全く発泡が起こらなかった。
【0021】
本試験で得られた各液の性状分析表を表1に示す。
【0022】
【表1】

Figure 0004164156
【0023】
凝縮液(留出液)のTOC,CODは5ppm付近であり、環境放出可能な値であった。また、pHも7.8であり、pH調整することなくそのまま放出可能であった。
【0024】
(実施例2)
本実施例は、模擬洗濯廃液に3時間紫外線を照射した後、濃縮発泡試験を実施したものである。
本実施例は、実施例1と同じ方法で調整した模擬洗濯廃液を、実施例1で用いた試験装置により3時間紫外線処理し、500倍まで濃縮したものである。
濃縮発泡試験の結果を図5に示す。実施例1と同様に、未処理液は沸騰と同時に激しい発泡が生じたが、3時間の紫外線処理を施したものは、500倍まで濃縮しても発泡が全く見られなかった。
【0025】
本試験で得られた各液の性状分析表を表2に示す。
【0026】
【表2】
Figure 0004164156
【0027】
凝縮液(留出液)のTOC,CODの値は1ppm前後であり、実施例1よりも更に低い値となった。即ち、放出基準を十分クリア可能な値が得られた。
【0028】
このように、紫外線酸化処理を施すことで発泡が抑制される現象は、発泡要因となる成分が初期に脱離あるいは切断されることにより得られるものと考えられる。その機構の一つとして、洗剤に含まれる直鎖アルキルベンゼンスルフォン酸ナトリウムのスルフォン基の脱離が考えられる。図6に紫外線照射時間に対する硫酸イオン及び塩素イオンの経時変化を示した。図6に示すごとくに、紫外線照射と同時に硫酸イオンの脱離が始まっている。この傾向は発泡状況と整合している。
【0029】
(実施例3)
本実施例は、模擬手洗い廃液に3時間紫外線を照射した後、濃縮発泡試験を実施したものである。模擬手洗廃液としては、水20Lに手洗い洗剤(主成分:ヤシ油カリ,イソプロピルメチルフェノール)を所定量添加し、その液で30人が手を洗ったものを用いた。この模擬手洗い廃液により、実施例2と同様の条件で濃縮発泡試験を行った。
濃縮発泡試験の結果を図7に示す。未処理液は沸騰と同時に激しい発泡が生じたが、3時間の紫外線処理を施したものは、500倍まで濃縮しても発泡が全く見られなかった。
【0030】
本試験で得られた各液の性状分析表を表3に示す。
【0031】
【表3】
Figure 0004164156
【0032】
この結果、模擬手洗い廃液においても、模擬洗濯廃液とほとんど同じ傾向を示した。
【0033】
(実施例4)
本実施例は、実洗濯廃液に3時間UVを照射した後、濃縮発泡試験を実施したものである。実洗濯廃液とは、模擬洗濯したものと同じ洗剤を用いて、原子力発電所内で作業した衣類を既設の洗濯機で実際に洗濯して得たものである。
本実施例では、模擬洗濯廃液で使用したUV酸化装置を原子力発電所に持ち込んで実洗濯廃液による濃縮発泡試験を実施した。試験条件は、模擬洗濯廃液の実施例に準じた。
濃縮発泡試験の結果を図8に示す。未処理液は沸騰と同時に激しい発泡が生じたが、3時間の紫外線処理を施したものは、200倍まで濃縮しても発泡が全く見られなかった。
【0034】
本試験で得られた各液の性状分析表を表4に示す。
【0035】
【表4】
Figure 0004164156
【0036】
この結果、凝縮液(留出液)のTOCは1ppmであり、またCODは測定限界値以下であった。このことから、凝縮液の環境放出は十分可能であることが確認された。
【0037】
(実施例5)
本実施例は、酸化剤としてオゾンを用い、模擬洗濯廃液に3時間紫外線を照射した後、濃縮発泡試験を実施したものである。
本実施例では、実施例2と同じ方法で調製した模擬洗濯廃液(TOC;178ppm)にオゾンを0.75O3Nl/hの割合で送入すると同時に、254nm波長の紫外線を照射する。オゾンの送入法は図2に示すように、紫外線反応器12の下部より吹き込む方式を採用した。
【0038】
模擬洗濯廃液は、洗剤20gと水道水30Lとを混合した洗濯液により、洗濯物(着用作業着)2kgを洗濯して得た。この模擬洗濯廃液650mlとり、オゾンを送入しながら水銀ランプにより254nm波長の紫外線を照射して酸化処理を行った。このときのオゾン送入量は、0.75O3Nl/hとし、酸化処理の時間は3時間とした。この処理により、模擬洗濯廃液のTOCが178ppmから53ppmまで低下した。
【0039】
次に上述の酸化処理を行った模擬洗濯廃液を600mlとり、実施例1と同様の方法で濃縮発泡試験を行った。濃縮倍率は100倍とし、凝縮液(留出液)が594ml,濃縮液が6mlが得られたが、このとき発泡は全く確認できなかった。
【0040】
以上、本発明においては、洗濯廃液,手洗い廃液またはその混合液において、酸化剤の添加量は、TOCの90%を分解できる量の約1/6で十分であり、このような少量の酸化剤を添加した廃液を紫外線照射で処理することにより、500倍濃縮しても発泡が生じないことが見い出された。本発明は、一般産業界,及び一般家庭から発生する界面活性剤処理にも適用可能であり、今後環境規制が強まるに従って、本方法の採用が望まれる可能性が強い。
【0041】
【発明の効果】
以上の説明から明らかなように、本発明によれば、洗濯廃液に酸化剤を添加して紫外線酸化処理を行うことにより、蒸発濃縮時の発泡現象を抑制することが可能となり、発泡に起因するCOD成分及び放射性核種成分の凝縮液への移行を防ぐことができ、信頼性の高い洗濯廃液の処理を行うことができる。また、凝集剤,活性炭等を使用する必要がないため二次廃棄物の発生がなく、合理的な処理を行うことができ、また常温・常圧の条件で廃液処理が可能であるため安全性が高い。また発泡を抑制するためには、COD,TOC成分の一部の発泡因子を脱離させればよいので、ランニングコスト,装置コストを大幅に削減することができる。さらにCOD,TOC濃度が減少するため濃縮蒸発後の濃縮側の固化処理量を低減することができる。
【図面の簡単な説明】
【図1】 本発明による洗濯廃液の処理方法を適用する処理システムの一例を示す図である。
【図2】 本発明の実施例で用いたUV酸化反応装置のダイアグラムを示す図である。
【図3】 本発明の実施例で用いた濃縮発泡試験装置の概略構成図である。
【図4】 実施例1における濃縮発泡試験の結果を示す図である。
【図5】 実施例2における濃縮発泡試験の結果を示す図である。
【図6】 紫外線照射時における硫酸イオンの経時変化の一例を示す図である。
【図7】 実施例3における濃縮発泡試験の結果を示す図である。
【図8】 実施例4における濃縮発泡試験の結果を示す図である。
【符号の説明】
1…ろ過器、2…紫外線(UV)酸化反応器、2a…紫外線(UV)ランプ、3…蒸発濃縮器、11…電源箱、12…紫外線(UV)反応器、12a…紫外線(UV)ランプ、13…循環ポンプ、14…循環流量計、15…冷却機、16…模擬洗濯廃液タンク、17…過酸化水素水供給ポンプ、18…過酸化水素水計量器、21…補給液容器、22…ゴム栓、23…スケール、24…発泡塔、25…熱電対保護管、26…廃液、27…マントルヒータ、28…冷却器、29…メスシリンダ、30…温度記録計、31…A/Vメータ、32…スライダック。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for treating washing waste liquid, for example, a method for treating washing waste liquid and hand washing waste liquid generated in a nuclear facility or the like to a level capable of environmental release.
[0002]
[Prior art]
Conventional dry cleaning cleaning agents use chlorofluorocarbon, which causes environmental pollution. For example, in nuclear facilities such as nuclear power plants, the washing method has shifted from dry cleaning to washing with water. ing. When washing waste liquid and hand washing waste liquid containing a small amount of radioactivity are released into the environment as they are, the radioactivity concentration and COD components violate the release standard. Therefore, assuming release to the environment, it is necessary to remove the COD component and the BOD component together with the removal of the minute amount of radioactivity. Currently, activated carbon treatment is often performed in order to reduce as much as possible the release of the surfactant, which is the main component of the COD component and BOD component, into the environment. However, a large amount of secondary waste of used activated carbon is generated, and the water content of the used activated carbon is high, which makes it difficult to incinerate.
[0003]
On the other hand, washing waste liquid and hand washing waste liquid are concentrated by evaporation, separated into condensed water and concentrated water, COD and radioactivity concentration of condensed water is reduced to the release standard value, and the method of solidifying the concentrated liquid is also adopted. Has been. In this case, if the washing waste liquid and the hand washing waste liquid are directly evaporated and concentrated, foaming occurs violently during the concentration treatment, and a problem arises in that high-concentration COD components or radionuclides are splashed and transferred to the condensed water system. At present, in order to prevent this, evaporative concentration is performed by reducing the foaming component with activated carbon and a flocculant as a pretreatment. However, when a flocculant is used, a large amount of secondary waste is generated.
As mentioned above, regarding the waste liquid treatment method in nuclear facilities such as nuclear power plants, COD and BOD components as well as radioactive components are reduced as much as possible, enabling release into the environment and secondary waste. Development of a processing method that reduces the amount of generation is required.
[0004]
Further, there are known methods for oxidative decomposition treatment of organic matter using ultraviolet (UV) irradiation and hydrogen peroxide water or ozone. However, this known treatment method is aimed at thoroughly decomposing organic substances, and no attempt has been made to remove the foaming factor.
For example, in “Establishment of the Landry Wastewater Treatment Method Using Ultraviolet and Ozone” (Annual Collection of the 1997 Annual Meeting of the Atomic Energy Society of Japan), organic substances contained in washing wastewater and handwashing wastewater in nuclear power plants are treated with ultraviolet and ozone. Although the technique of decomposing | disassembling using is disclosed, it is only pursuing the reduction | decrease of TOC density | concentration here, It does not mention how this processing liquid is made.
The technology disclosed in “Oxidation / decomposition of organic matter by ultraviolet rays” (Proceedings of the 62nd Annual Meeting of the Chemical Engineering Society (1997)) is also pursuing only a reduction in TOC concentration. No mention is made until foaming.
[0005]
[Problems to be solved by the invention]
The present invention has been made in view of the above-described circumstances, and suppresses the generation of secondary waste in a treatment method for treating washing waste liquid so as to have a water quality that can be discharged into the environment or reused. In addition, it is an object of the present invention to provide a treatment method for washing waste liquid that can easily dispose of the generated secondary waste, can perform the treatment with continuous stability and high safety, and can further downsize the treatment device. To do.
[0006]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided a laundry waste liquid treatment method comprising an evaporation and concentration step of separating a laundry waste liquid into a concentrate and a condensate by condensing the laundry waste liquid by heating and condensing the evaporated component, An ultraviolet treatment process for performing an ultraviolet irradiation process on a washing waste liquid to which hydrogen peroxide solution and / or ozone is added is added before the evaporation and concentration process.
[0007]
The invention of claim 2 is characterized in that, in the invention of claim 1, the concentration ratio in the evaporative concentration step is 100 to 500 times.
[0008]
The invention of claim 3 is the invention of claim 1 or 2, wherein the concentrate is solidified among the concentrate and the condensate obtained in the evaporative concentration step, while the condensate is discharged or recycled into the environment. It is characterized by use.
[0009]
The invention of claim 4 is characterized in that, in the invention of any one of claims 1 to 3, the processing speed of the washing waste liquid in the ultraviolet treatment step is 10 m 3 / h / kW or less.
[0010]
A fifth aspect of the invention is characterized in that, in the invention of any one of the first to fourth aspects, the main wavelength of ultraviolet rays used in the ultraviolet treatment step is 253.7 nm or 184.9 nm.
[0011]
The invention of claim 6 is characterized in that, in the invention of any one of claims 1 to 5, a filtration step of filtering the washing waste liquid is added before the ultraviolet treatment step.
[0012]
The invention of claim 7 is the invention of any one of claims 1 to 6, wherein the addition amount of the oxidizing agent in the ultraviolet acid treatment step is set to 0. 0 of the number of moles of carbon obtained from the total organic carbon concentration of the washing waste liquid. It is characterized by being 3 times the molar amount or more.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
In the treatment method of the present invention, the foaming factor contained in the waste liquid is obtained by adding a hydrogen peroxide solution or ozone as an oxidant to the washing waste liquid, hand washing waste liquid, or a mixed waste liquid thereof and irradiating with ultraviolet rays. And a part of the TOC component is also oxidatively decomposed. Conventionally, when waste liquid that has not been subjected to UV oxidation treatment is sent to an evaporative concentrator and concentrated, foaming occurs violently during evaporative concentration, and some TOC components and radionuclides migrate to the condensate side where the environment is released. The waste liquid that has been subjected to the ultraviolet oxidation treatment by the treatment method of the present invention does not cause foaming even when concentrated to at least 500 times.
[0014]
FIG. 1 is a diagram showing a configuration example of a processing system to which a method for processing a washing waste liquid according to the present invention is applied. In FIG. 1, 1 is a filter, 2 is an ultraviolet (UV) oxidation reactor, 2a is an ultraviolet (UV) lamp, and 3 is an evaporation concentrator.
The filter 1 has a function of removing lint or dirt such as clothes contained in the washing waste liquid and the hand washing waste liquid, thereby preventing the surface of the ultraviolet lamp from being soiled. In addition, as this filter 1, it is suitable to use what can collect 10-100 micrometers particle | grains. The UV oxidation reactor 2 has functions of desorbing foaming factors and decomposing COD components, and suppressing the growth of germs. The evaporative concentrator 3 concentrates the residual COD component and the radionuclide of the treatment waste liquid and separates them into concentrated water and condensed water. The resulting condensed liquid (recovered liquid) is reused or released to the environment, while the concentrated liquid containing high-concentration COD and radionuclide is solidified with cement or the like.
[0015]
In the present invention, it is particularly effective to use light having a wavelength of 253.7 nm or 184.9 nm (more preferably 253.7 nm) as the main wavelength of the ultraviolet light irradiated by the ultraviolet irradiation lamp. Further, in the present invention, since a part of the foaming factor of the TOC component may be removed, the processing can be performed at a processing speed about 6 times as high as the processing speed when TOC is decomposed by 90% or more.
[0016]
Examples of the processing method of the present invention will be described below.
(Example 1)
In this example, a simulated foaming waste liquid was irradiated with UV for 30 minutes and then subjected to a concentrated foaming test.
FIG. 2 shows an example of a diagram of the UV oxidation reaction apparatus used in this example. In FIG. 2, 11 is a power supply box, 12 is an ultraviolet (UV) reactor, 12a is an ultraviolet (UV) lamp, 13 is a circulation pump, 14 is a circulation flow meter, 15 is a cooler, 16 is a simulated laundry waste tank, 17 Is a hydrogen peroxide supply pump, and 18 is a hydrogen peroxide meter.
FIG. 3 shows a schematic configuration diagram of the concentration foaming test apparatus used in this example. In FIG. 3, 21 is a replenisher container, 22 is a rubber stopper, 23 is a scale, 24 is a foaming tower, 25 is a thermocouple protective tube, 26 is a waste liquid, 27 is a mantle heater, 28 is a cooler, 29 is a graduated cylinder, 30 is a temperature recorder, 31 is an A / V meter, and 32 is a slider. The mantle heater 27 has a power consumption of 100 W at a power source of 100 V, an effective length of 400 mm, a tower diameter of 55 φ, a tower length of 1000 mm, a tower material of Pyrex, and a rubber plug 22 made of silicone rubber. It is.
[0017]
A processing test method according to this embodiment will be described below. First, the simulated laundry waste liquid 20 L shown in FIG. 2 is filled with the adjusted simulated waste liquid 20 L, and then the filled simulated laundry waste liquid is sent to the ultraviolet reactor 12 using the circulation pump 13. In addition, as a simulated washing waste liquid in a present Example, what was obtained by putting a detergent, worn clothes, and water into a washing machine for home use and washing is used. Further, as the detergent in this embodiment, a detergent containing sodium alkylbenzene sulfonate, sodium alkyl sulfate ester, sulfate, aluminosilicate, enzyme, fluorescent agent and the like as components is used.
[0018]
After the inside of the ultraviolet reactor 12 is filled with the simulated laundry waste liquid, the 2 kW ultraviolet lamp 12a is turned on, and at the same time, the hydrogen peroxide solution supply pump 17 is operated to supply hydrogen peroxide solution (35%) to 13.7 ml / The simulated washing waste liquid tank 16 is sent out at a flow rate of h. The mixed solution of hydrogen peroxide water and simulated laundry waste liquid is circulated by the circulation pump 13 and oxidatively decomposed by the ultraviolet reactor 12. After performing this oxidative decomposition treatment for 30 minutes, the simulated laundry waste liquid inside the simulated laundry waste liquid tank 16 and the ultraviolet reactor 12 is extracted.
[0019]
Next, 500 ml of the extracted simulated laundry waste liquid is filled into the foaming tower 24 of the concentrated foaming test apparatus shown in FIG. Then, the mantle heater 27 is turned on to heat and evaporate the simulated laundry waste liquid. The evaporation rate at this time is set to 160 ml / h. The evaporation generated by boiling is introduced into the cooler 28 for condensation, and the resulting condensate is led to the graduated cylinder 29 to measure the amount of evaporation per time. If the simulated laundry waste liquid is foamed by heating, it is observed in the foaming tower. The height at which the bubbles rise is measured on a scale. The evaporated simulated laundry waste liquid is a system that is constantly replenished.
[0020]
The results of the concentrated foam test are shown in FIG. As shown in FIG. 4, in the simulated laundry waste liquid not subjected to the ultraviolet treatment, the waste liquid started to foam as soon as the temperature of the waste liquid reached the boiling point of water by heating, and overflowed the foaming tower. Here, the foam height of 80 cm indicates the top of the scale. On the other hand, the simulated laundry waste liquid that had been subjected to UV treatment for 30 minutes did not foam at all even after being concentrated 100 times.
[0021]
Table 1 shows a property analysis table of each liquid obtained in this test.
[0022]
[Table 1]
Figure 0004164156
[0023]
The TOC and COD of the condensate (distillate) were around 5 ppm, and were values that could be released into the environment. Further, the pH was 7.8 and could be released as it was without adjusting the pH.
[0024]
(Example 2)
In this example, a simulated foaming waste liquid was irradiated with ultraviolet rays for 3 hours and then subjected to a concentrated foaming test.
In this example, the simulated laundry waste liquid prepared by the same method as in Example 1 was subjected to UV treatment for 3 hours using the test apparatus used in Example 1 and concentrated to 500 times.
The result of the concentrated foaming test is shown in FIG. In the same manner as in Example 1, the untreated liquid bubbled vigorously as soon as it boiled, but no foaming was observed in the sample that had been subjected to UV treatment for 3 hours even when concentrated to 500 times.
[0025]
Table 2 shows a property analysis table of each liquid obtained in this test.
[0026]
[Table 2]
Figure 0004164156
[0027]
The TOC and COD values of the condensate (distillate) were around 1 ppm, which was even lower than that of Example 1. That is, a value that can sufficiently clear the release standard was obtained.
[0028]
As described above, it is considered that the phenomenon in which foaming is suppressed by performing the ultraviolet oxidation treatment is obtained when the component that causes foaming is initially detached or cut. As one of the mechanisms, elimination of the sulfone group of the linear alkylbenzene sodium sulfonate contained in the detergent can be considered. FIG. 6 shows changes with time of sulfate ions and chloride ions with respect to the ultraviolet irradiation time. As shown in FIG. 6, the desorption of sulfate ions started simultaneously with the irradiation with ultraviolet rays. This trend is consistent with the foaming situation.
[0029]
(Example 3)
In this example, a simulated foaming waste liquid was irradiated with ultraviolet rays for 3 hours and then subjected to a concentrated foaming test. As a simulated hand washing waste liquid, a predetermined amount of hand washing detergent (main components: coconut oil potassium, isopropylmethylphenol) was added to 20 L of water, and 30 people washed their hands with the liquid. Using this simulated hand washing waste liquid, a concentrated foaming test was conducted under the same conditions as in Example 2.
The result of the concentrated foaming test is shown in FIG. In the untreated liquid, intense foaming occurred at the same time as boiling, but the foam which had been subjected to ultraviolet treatment for 3 hours did not show any foaming even when concentrated to 500 times.
[0030]
Table 3 shows a property analysis table of each liquid obtained in this test.
[0031]
[Table 3]
Figure 0004164156
[0032]
As a result, the simulated hand washing waste liquid showed almost the same tendency as the simulated washing waste liquid.
[0033]
Example 4
In this example, the concentrated foaming test was carried out after irradiating the actual laundry waste liquid with UV for 3 hours. The actual washing waste liquid is obtained by actually washing clothes that have been worked in the nuclear power plant with an existing washing machine using the same detergent as that used for the simulated washing.
In this example, the UV oxidizer used in the simulated laundry waste liquid was brought into a nuclear power plant, and a concentrated foaming test using the actual laundry waste liquid was performed. The test conditions were in accordance with the example of simulated laundry waste liquid.
The result of the concentrated foaming test is shown in FIG. In the untreated liquid, intense foaming occurred at the same time as boiling, but no foaming was observed even when the UV-treated liquid for 3 hours was concentrated up to 200 times.
[0034]
Table 4 shows a property analysis table of each liquid obtained in this test.
[0035]
[Table 4]
Figure 0004164156
[0036]
As a result, the TOC of the condensate (distillate) was 1 ppm, and the COD was below the measurement limit value. From this, it was confirmed that the environmental discharge of the condensate is sufficiently possible.
[0037]
(Example 5)
In this example, ozone was used as an oxidizing agent, and the concentrated washing test was performed after irradiating the simulated laundry waste liquid with ultraviolet rays for 3 hours.
In this example, ozone was introduced into a simulated laundry waste liquid (TOC; 178 ppm) prepared in the same manner as in Example 2 at a rate of 0.75 O 3 Nl / h, and at the same time, ultraviolet rays having a wavelength of 254 nm were irradiated. As shown in FIG. 2, ozone was introduced from the lower part of the ultraviolet reactor 12 as shown in FIG. 2.
[0038]
The simulated laundry waste liquid was obtained by washing 2 kg of laundry (wearing work clothes) with a laundry liquid in which 20 g of detergent and 30 L of tap water were mixed. 650 ml of this simulated laundry waste liquid was taken and subjected to oxidation treatment by irradiating ultraviolet rays with a wavelength of 254 nm with a mercury lamp while feeding ozone. At this time, the amount of ozone delivered was 0.75 O 3 Nl / h, and the oxidation treatment time was 3 hours. This treatment reduced the TOC of the simulated laundry waste liquid from 178 ppm to 53 ppm.
[0039]
Next, 600 ml of the simulated laundry waste liquid subjected to the above-described oxidation treatment was taken, and a concentrated foaming test was conducted in the same manner as in Example 1. The concentration ratio was 100 times, and 594 ml of the condensate (distillate) and 6 ml of the concentrate were obtained, but no foaming was confirmed at this time.
[0040]
As described above, in the present invention, in the washing waste liquid, the hand washing waste liquid or the mixed liquid thereof, the addition amount of the oxidizing agent is sufficient to be about 1/6 of the amount capable of decomposing 90% of the TOC, and such a small amount of the oxidizing agent. It has been found that by treating the waste liquid with added UV rays by irradiation with ultraviolet rays, no foaming occurs even if it is concentrated 500 times. The present invention can also be applied to the treatment of surfactants generated from the general industry and general households, and it is highly likely that the adoption of this method is desired as environmental regulations become stronger in the future.
[0041]
【The invention's effect】
As is clear from the above description, according to the present invention, it is possible to suppress the foaming phenomenon at the time of evaporation and concentration by adding an oxidizing agent to the washing waste liquid and performing the ultraviolet oxidation treatment, resulting from foaming. The transition of the COD component and the radionuclide component to the condensate can be prevented, and the treatment of the waste liquid with high reliability can be performed. In addition, since there is no need to use a flocculant, activated carbon, etc., there is no generation of secondary waste, it can be handled rationally, and waste liquid treatment is possible under normal temperature and normal pressure conditions. Is expensive. Moreover, in order to suppress foaming, it is only necessary to desorb part of the foaming factors of the COD and TOC components, so that the running cost and device cost can be greatly reduced. Furthermore, since the COD and TOC concentrations are reduced, the solidification processing amount on the concentration side after concentration and evaporation can be reduced.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of a treatment system to which a method for treating washing waste liquid according to the present invention is applied.
FIG. 2 is a diagram showing a diagram of a UV oxidation reaction apparatus used in an example of the present invention.
FIG. 3 is a schematic configuration diagram of a concentration foaming test apparatus used in an example of the present invention.
4 is a diagram showing the results of a concentration foaming test in Example 1. FIG.
5 is a graph showing the results of a concentration foaming test in Example 2. FIG.
FIG. 6 is a diagram showing an example of a change with time of sulfate ions during ultraviolet irradiation.
7 is a graph showing the results of a concentration foaming test in Example 3. FIG.
8 is a graph showing the results of a concentration foaming test in Example 4. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Filter, 2 ... Ultraviolet (UV) oxidation reactor, 2a ... Ultraviolet (UV) lamp, 3 ... Evaporation concentrator, 11 ... Power supply box, 12 ... Ultraviolet (UV) reactor, 12a ... Ultraviolet (UV) lamp , 13 ... Circulation pump, 14 ... Circulation flow meter, 15 ... Cooling machine, 16 ... Simulated washing waste liquid tank, 17 ... Hydrogen peroxide water supply pump, 18 ... Hydrogen peroxide water meter, 21 ... Replenisher container, 22 ... Rubber plug, 23 ... Scale, 24 ... Foam tower, 25 ... Thermocouple protection tube, 26 ... Waste liquid, 27 ... Mantle heater, 28 ... Cooler, 29 ... Female cylinder, 30 ... Temperature recorder, 31 ... A / V meter 32 ... Slidac.

Claims (7)

洗濯廃液を加熱濃縮し、蒸発分を凝縮することにより、該洗濯廃液を濃縮液と凝縮液とに分離する蒸発濃縮工程を含む洗濯廃液の処理方法において、酸化剤として過酸化水素水及び/またはオゾンを添加した洗濯廃液に紫外線の照射処理を行う紫外線処理工程を前記蒸発濃縮工程の前に付加することを特徴とする洗濯廃液の処理方法。In a method for treating a washing waste liquid comprising an evaporation concentration step of separating the washing waste liquid into a concentrated liquid and a condensed liquid by concentrating the laundry waste liquid by heating and condensing the evaporated component, hydrogen peroxide and / or as an oxidant A method for treating laundry waste liquid, comprising adding an ultraviolet treatment step of performing irradiation treatment of ultraviolet light to washing waste liquid to which ozone is added before the evaporation concentration step. 前記蒸発濃縮工程における濃縮倍率を100〜500倍とすることを特徴とする請求項1記載の洗濯廃液の処理方法。The method for treating a washing waste liquid according to claim 1, wherein a concentration ratio in the evaporative concentration step is 100 to 500 times. 前記蒸発濃縮工程で得られる濃縮液及び凝縮液のうち、該濃縮液を固化処理する一方、前記凝縮液を環境中に放出または再利用することを特徴とする請求項1または2記載の洗濯廃液の処理方法。3. The laundry waste liquid according to claim 1, wherein the concentrate is solidified from the concentrate and the condensate obtained in the evaporation concentration step, and the condensate is discharged or reused in the environment. Processing method. 前記紫外線処理工程における洗濯廃液の処理速度を10m3/h/kW以下とすることを特徴とする請求項1ないし3いずれか1記載の洗濯廃液の処理方法。The processing method of the washing waste liquid according to any one of claims 1 to 3, wherein a processing speed of the washing waste liquid in the ultraviolet treatment step is 10 m 3 / h / kW or less. 前記紫外線処理工程に用いる紫外線の主波長を253.7nmまたは184.9nmとすることを特徴とする請求項1ないし4いずれか1記載の洗濯廃液の処理方法。The method for treating a washing waste liquid according to any one of claims 1 to 4, wherein a main wavelength of ultraviolet rays used in the ultraviolet treatment step is 253.7 nm or 184.9 nm. 前記紫外線処理工程の前に洗濯廃液をろ過するろ過工程を付加することを特徴とする請求項1ないし5いずれか1記載の洗濯廃液の処理方法。6. The method for treating washing waste liquid according to claim 1, further comprising a filtration step of filtering the washing waste liquid before the ultraviolet treatment step. 前記紫外線処理工程における酸化剤の添加量を、洗濯廃液の全有機炭素濃度から求めた炭素のモル数の0.3倍モル量以上とすることを特徴とする請求項1ないし6いずれか1記載の洗濯廃液の処理方法。The addition amount of the oxidizing agent in the ultraviolet ray treatment step is set to be not less than 0.3 times the mole number of carbon obtained from the total organic carbon concentration of the washing waste liquid. Of washing waste liquids.
JP12981698A 1998-05-13 1998-05-13 Wastewater treatment method Expired - Fee Related JP4164156B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12981698A JP4164156B2 (en) 1998-05-13 1998-05-13 Wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12981698A JP4164156B2 (en) 1998-05-13 1998-05-13 Wastewater treatment method

Publications (2)

Publication Number Publication Date
JPH11319890A JPH11319890A (en) 1999-11-24
JP4164156B2 true JP4164156B2 (en) 2008-10-08

Family

ID=15018941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12981698A Expired - Fee Related JP4164156B2 (en) 1998-05-13 1998-05-13 Wastewater treatment method

Country Status (1)

Country Link
JP (1) JP4164156B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014032127A (en) * 2012-08-03 2014-02-20 So Innovation Co Ltd Treatment method and treatment apparatus for reducing radioactive materials taken into contaminant to safety level in living environment
CN104495973B (en) * 2015-01-12 2016-08-24 东北石油大学 The fall of oilfield sewage middle and high concentration polyacrylamide sticks reaction unit and fall sticking method
CN112924267A (en) * 2019-12-06 2021-06-08 南京理工大学 Method for detecting nuclide volatilization ratio in evaporation and concentration process of simulated high-level radioactive waste liquid

Also Published As

Publication number Publication date
JPH11319890A (en) 1999-11-24

Similar Documents

Publication Publication Date Title
Jamil et al. A comparative study among different photochemical oxidation processes to enhance the biodegradability of paper mill wastewater
US6462250B1 (en) Method for decomposing halogenated aliphatic hydrocarbon compounds having adsorption process and apparatus for decomposition having adsorption means
EP0671363B1 (en) Method and system for treating polluted water
Wang et al. Advanced oxidation of bromide-containing drinking water: A balance between bromate and trihalomethane formation control
JP4164156B2 (en) Wastewater treatment method
JPH09159798A (en) Bubble decontamination and method for treating decontamination waste liquid
KR101204707B1 (en) Corrosion product chemical dissolution process
KR100919771B1 (en) Treatment Process and Equipment of Steam Generator Chemical Cleaning Wastewater Contained Chelate Chemicals and radioactive materials
JP2545946B2 (en) Waste liquid treatment method and treatment device
JP3043199B2 (en) Method and apparatus for treating recovered water to obtain reused water
EP1029328A1 (en) Treatment of organic materials
Matsuo et al. Compatibility of the ultraviolet light-ozone system for laundry waste water treatment in nuclear power plants
JPH0123192B2 (en)
JP2002365397A (en) Decontamination method of radioactive member
JPS6020720B2 (en) Decontamination method for metal materials contaminated with radioactivity
Cifci et al. COMPARISON OF TREATMENT OF TEXTILE WASTEWATER WITH ADSORPTION PROCESS, SULFATE AND HYDROXYL RADICAL-BASED OXIDATION PROCESSES.
JP3547573B2 (en) Water treatment method
Liu et al. Coking wastewater physico-chemical treatment technology evolvement review
JPS6051680B2 (en) How to dispose of radioactive waste liquid
JP3325921B2 (en) Printed board cleaning water reclamation equipment
JPS6082892A (en) Method of treating organic group chemical decontaminated radioactive waste liquor
JPS571497A (en) Disposal of water containing slight amount of organic substance
Kikuchi et al. Development of a laundry waste treatment system
JP5049843B2 (en) Method and apparatus for removing radioactive substances and TOC
JPH03186800A (en) Radioactive waste liquid treatment facilities

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080728

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees