JP4164003B2 - Sludge thickening part structure - Google Patents

Sludge thickening part structure Download PDF

Info

Publication number
JP4164003B2
JP4164003B2 JP2003187134A JP2003187134A JP4164003B2 JP 4164003 B2 JP4164003 B2 JP 4164003B2 JP 2003187134 A JP2003187134 A JP 2003187134A JP 2003187134 A JP2003187134 A JP 2003187134A JP 4164003 B2 JP4164003 B2 JP 4164003B2
Authority
JP
Japan
Prior art keywords
sludge
concentration
concentrated sludge
tank
concentration tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003187134A
Other languages
Japanese (ja)
Other versions
JP2005021741A (en
Inventor
誠 松田
大介 半田
時雄 野中
健一 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanki Engineering Co Ltd
Tokyo Metropolitan Sewerage Service Corp
Original Assignee
Sanki Engineering Co Ltd
Tokyo Metropolitan Sewerage Service Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanki Engineering Co Ltd, Tokyo Metropolitan Sewerage Service Corp filed Critical Sanki Engineering Co Ltd
Priority to JP2003187134A priority Critical patent/JP4164003B2/en
Publication of JP2005021741A publication Critical patent/JP2005021741A/en
Application granted granted Critical
Publication of JP4164003B2 publication Critical patent/JP4164003B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Sludge (AREA)
  • Filtration Of Liquid (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は汚泥濃縮部構造に関する。
【0002】
【従来の技術】
上水、下水、工業用水等の水処理において発生する高含水汚泥を効率よく濃縮し脱水する汚泥の濃縮脱水処理設備としては、図3〜図5に示すごときものがある。
【0003】
図3において、汚泥の濃縮脱水処理設備1は、混合汚泥2(生汚泥や余剰汚泥だけの場合もある)を貯留しておく汚泥貯留槽3と、汚泥貯留槽3から混合汚泥2を他へ供給するポンプや供給管等からなる汚泥供給手段4と、凝集剤供給部5と、汚泥供給手段4から供給される混合汚泥2と凝集剤供給部5から供給される高分子凝集剤6をモータ駆動の撹拌手段7により撹拌混合し、混合汚泥2の汚泥粒子を凝集してフロック化汚泥8を生成するための凝集槽9と、凝集槽9から管路等の自然落下手段10を介して自然流下供給されたフロック化汚泥8を濾過濃縮するための汚泥濃縮部11と、汚泥濃縮部11で生成された濃縮汚泥12を自然流下供給によりロータリプレス等の脱水機13に供給する濃縮汚泥供給手段14とを備えている。15は汚泥貯留槽3に設けたモータ駆動の撹拌手段である。
【0004】
図3、図4において、汚泥濃縮部11は、自然落下手段10から供給されたフロック化汚泥8を重力濾過濃縮する濃縮槽16と、濃縮槽16内のフロック化汚泥8を濾過する、円盤状の適宜な厚み(汚泥の渣が絡み巻き付かず且つ必要十分な強度が得られる厚み)を有するハニカムスクリーン17a及びハニカムスクリーン17aが固設された水平駆動軸17cに連結されてハニカムスクリーン17aを低速で回転させる駆動モータ17bを備えた濾過手段17と、ハニカムスクリーン17aにより濾過生成された分離液18を貯留するよう濃縮槽16に接続された分離液貯留槽部19と、ハニカムスクリーン17aの分離液流れ方向下流側(裏面側)に圧縮空気を吹き付ける圧縮空気供給手段20と、圧縮空気供給手段20からの圧縮空気の吹出し部(圧縮空気吹出し部)21とからなっている。
【0005】
図5において、自然落下手段10は、濃縮槽16におけるハニカムスクリーン17aの面に対し略平行な水平方向の一方側に、ハニカムスクリーンの下方における回転方向の上流側となるよう、略水平に接続されている。又、濃縮汚泥供給手段14は、濃縮槽16の底部に固設した下部ホッパ部31に接続されている。
【0006】
図5に拡大して示す濾過手段17のハニカムスクリーン17aは、SUS304、SUS316、Tiなどの耐食性の強い金属製部材からなる直径700〜1000ミリで且つ円盤状のメタルハニカムストレーナーであり、中心の水平駆動軸17cを濃縮槽16で支持されており、槽内を最大20rpm程度のゆっくりとした速度で回転させられるようになっている。ハニカムスクリーン17aは、幅約20mmの強靱な外リングと、外リング内に幅20ミリ、厚み50ミクロン(20〜100ミクロンの任意の厚みのものが使用できる)の金属箔平板と金属箔波板が交互に積層されている。
【0007】
上述の濃縮脱水処理設備1においては、汚泥貯留槽3に貯留された混合汚泥2は汚泥供給手段4により凝集槽9に供給されると共に、凝集剤供給部5からは高分子凝集剤6が凝集槽9に供給される。
【0008】
凝集槽9では、撹拌手段7により混合汚泥2と高分子凝集剤6が撹拌混合され、汚泥粒子が凝集してフロック化汚泥8が生成され、生成されたフロック化汚泥8は、自然落下手段10により汚泥濃縮部11の濃縮槽16へその側方から回転方向Dへ低速回転しているハニカムスクリーン17aの前面に、供給方向が回転方向Dと略平行となるよう供給される。
【0009】
濃縮槽16に導入されたフロック化汚泥8は、回転方向Dへ低速回転するハニカムスクリーン17aにより濾過され、ハニカムスクリーン17aを表面側から裏面側へ通過した分離液18は分離液貯留槽部19へ流入する。又、ハニカムスクリーン17aに付着した汚泥は、濃縮槽16に濃縮汚泥12が溜まっている場合は、濃縮汚泥12により掻取られて濃縮槽16内に供給され、濃縮槽16に濃縮汚泥12が溜まっていない場合、或いは、濃縮汚泥12により掻取られなかった場合は、ハニカムスクリーン17aにより液中から気中へ搬送されて、圧縮空気吹き出し部21から吹き付けられる圧縮空気により吹き剥がされて除去され、濃縮槽16に落下する。このため、濃縮槽16の汚泥は濃縮されて濃縮汚泥12が得られ、濃縮汚泥12は濃縮槽16の下部に設けた下部ホッパ部31から濃縮汚泥供給手段14により脱水機13へ送給され脱水される。
【0010】
ところが、上述の濃縮脱水処理設備1の汚泥濃縮部11にあっては、濃縮汚泥12は図5に示すように濃縮槽16内において、自然落下手段10接続部とは反対側の側部に蓄積される傾向がある。しかるに、汚泥濃縮部11においては、濃縮汚泥12は、濃縮槽16の下部に設けた下部ホッパ部31の下方から濃縮汚泥供給手段14へ引抜くようにしているため、濃縮汚泥12を引抜きにくく、従って引抜かれる濃縮汚泥12には液が混入し、その結果、濃縮汚泥12の濃度が低くなり、又、濃縮槽16に供給されたフロック化汚泥8の一部も濃縮汚泥12と一緒に濃縮汚泥供給手段14へ引抜かれてしまう。このため、濃縮汚泥12の脱水機13での脱水処理を効率的に行うことができない。
【0011】
そこで、本願出願人は、汚泥濃縮部の濃縮槽においてフロック化汚泥の脱水を行って得た濃度の高い濃縮汚泥を確実に濃縮槽から排出し得るようにした汚泥濃縮部構造を提供するべく、出願を行った(先行出願1)。
【0012】
【先行出願1】
特願2003−78623号明細書
【0013】
先行出願1の汚泥濃縮部構造においては、例えば図6、図7に示すごとく、自然落下手段10は、濃縮槽16におけるハニカムスクリーン17aの面に対し略平行な水平方向の一方側に、ハニカムスクリーン17aの下方における回転方向Dの上流側となるよう、略水平に接続されており、濃縮汚泥供給手段14は、濃縮槽16におけるハニカムスクリーン17aの面に対し略平行な水平方向の他方側、すなわち、濃縮槽16の自然落下手段10接続部とは反対側の他方側に、ハニカムスクリーン17aの下方における回転方向Dの下流側となるよう、略水平に接続されている。
【0014】
又、濃縮槽16内の底部には、水平方向においてハニカムスクリーン17aの径方向中間位置で水平駆動軸17cの下方に位置するよう、縦向きの仕切り板22が固設されている。仕切り板22は板厚方向がハニカムスクリーン17aの面と略平行になっていると共に、幅方向がハニカムスクリーン17aの面に対し直交する方向へ向いており、仕切り板22とハニカムスクリーン17aとの間には隙間Gが形成されている(図7参照)。
【0015】
フロック化汚泥8の濾過時には、自然落下手段10から濃縮槽16に供給されたフロック化汚泥8中の液はハニカムスクリーン17aを表面側から裏面側へ通過してフロック化汚泥8から分離され、分離液18として分離液貯留槽部19へ流入する。又、フロック化汚泥8から液の分離された汚泥は、ハニカムスクリーン17aの表側の面に付着し、ハニカムスクリーン17aに付着した汚泥は、濃縮槽16に濃縮汚泥12が溜まっている場合は、濃縮汚泥12により掻取られて濃縮槽16内に供給され、濃縮槽16に濃縮汚泥12が溜まっていない場合、或いは、濃縮汚泥12により掻取られなかった場合は、液中から気中へ搬送され、図4に示す圧縮空気吹き出し部21から吹付けられる圧縮空気により吹き剥がされ、濃縮槽16の仕切り板22の上流側或は下流側に落下する。このため、濃縮槽16の汚泥は濃縮されて濃縮汚泥12が得られる。
【0016】
濃縮槽16の仕切り板22よりも上流側に落下した濃縮汚泥12は、ハニカムスクリーン17aによる回転方向Dへの作用により、仕切り板22とハニカムスクリーン17aとの間の隙間Gを通って仕切り板22の下流側、すなわち濃縮槽16内の濃縮汚泥供給手段14が接続された側に送給される。又、濃縮槽16の仕切り板22よりも下流側に蓄積された濃縮汚泥12は、ハニカムスクリーン17aによる回転方向Dへの作用により濃縮汚泥供給手段14に排出され、脱水機13へ送給される。
【0017】
【発明が解決しようとする課題】
図6、図7に示す汚泥濃縮部11においては、濃縮汚泥供給手段14は配管であるうえ、濃縮汚泥12の濃度は4%程度以上であるため、濃縮汚泥12は濃縮汚泥供給手段14を自然流下できず、従って、ポンプによる吸引が必要となる。ところが、ポンプを設けた場合には、濃縮汚泥12の生成量と濃縮汚泥供給手段14における濃縮汚泥12の流量とが釣合わないと、濃縮汚泥12の濃度が不安定となり、図3に示す脱水機13の安定した運転が困難となる。
【0018】
そこで本願発明者等は、ハニカムスクリーンの回転中心を挟んで、濃縮槽の自然落下手段を設けた側とは反対の側に、濃縮汚泥を円滑且つ確実に濃縮槽から排出し得るよう、昇降可能な堰板を設けた濃縮汚泥排出用開口部を備えると共に、濃縮槽内の濃縮汚泥排出用開口部近傍に、濃縮汚泥が濃縮汚泥排出用開口部側から濃縮槽内に戻らないよう、濃縮汚泥排出用開口部に向いた面が船舶でいうモノハルのラウンドタイプの船尾形状に近似した多次曲線状に形成された仕切り体を備えた汚泥濃縮部構造について提案を行った。
【0019】
上記自然落下手段10から濃縮槽16に供給されたフロック化汚泥8は、例えば下水処理工程で生成されるが、フロック化汚泥8の生成過程の状況は逐次変化している場合が多く、このため、フロック化汚泥8の濃度やフロック形成の状態が安定していない。一方、上記の提案した汚泥濃縮部構造においては、濃縮槽16から排出される濃縮汚泥12の濃度は、後処理のことを考慮した場合、ある濃度であることが望ましい。又、前記濃縮汚泥排出用開口部の堰高さが高いほど、排出される濃縮汚泥12の濃度が高くなり、堰高さが低いほど、排出される濃縮汚泥12の濃度が低くなる傾向が分っている。しかるに、堰板の高さ位置を、例えば、作業員が手動で調整するのでは、濃縮汚泥12の濃度を常時、好ましい濃度に保持することはできない。
【0020】
本発明は斯かる実情に鑑み、濃縮槽から排出される濃縮汚泥の濃度を常時、所望の濃度に調整し得るようにした汚泥濃縮部構造を提供することを目的としてなしたものである。
【0021】
【課題を解決するための手段】
請求項1の汚泥濃縮部構造は、濃縮槽内に配置された回転可能なハニカムスクリーンを備え、前記濃縮槽のハニカムスクリーン径方向の一方側には、フロック化汚泥を濃縮槽内に供給するための手段が接続され、前記濃縮槽のハニカムスクリーン径方向の他方側には、フロック化汚泥がハニカムスクリーンにより濾過されて生成された濃縮汚泥を濃縮槽の外部に排出する濃縮汚泥排出用開口部が形成され、該濃縮汚泥排出用開口部には、駆動手段により昇降可能な堰板が設けられた汚泥濃縮部構造であって、前記濃縮槽から排出された濃縮汚泥の濃度を検出するための濃度検出手段と、検出した濃度検出値を基に堰板の昇降量を求め、前記駆動手段に堰板昇降指令を与え得るようにした演算制御装置を設けたものである。
【0022】
請求項2の汚泥濃縮部構造においては、駆動手段は、堰板に固設されたナット体と、該ナット体に螺合されたねじ軸と、ねじ軸を駆動するための駆動装置を備えたものである。
【0023】
請求項3の汚泥濃縮部構造においては、濃度検出器は、濃縮槽から排出された濃縮汚泥内で回転し得るようにした羽根と、羽根を回転駆動する駆動装置とを備え、駆動装置からは濃度検出値を演算制御装置に与え得るよう構成したものである。
【0024】
濃縮汚泥が濃縮槽外を送給される際には、濃度検出器により濃縮汚泥の濃度が検出され、濃度検出値は演算制御装置へ与えられる。演算制御装置では濃度検出値を基に堰板の昇降量が堰板昇降指令として求められ、求められた堰板昇降指令は駆動手段に与えられる。従って、駆動手段により堰板は所定高さまで昇降する。
【0025】
その結果、濃縮槽から排出される濃縮汚泥を所定の濃度に保持することができ、又、堰板の高さを濃縮脱水処理設備全体の自動運転のための制御因子として使用することができる。
【0026】
【発明の実施の形態】
以下、本発明の実施の形態を添付図面を参照して説明する。
図1及び図2は本発明を実施する形態の一例で、ハニカムスクリーンを2枚設けた例である。すなわち、汚泥濃縮部11における濃縮槽16内には、前後方向へ所定の間隔を置くと共に、前側の側板16a及び後側の側板16bとの間に所定の間隔を置いて2枚のハニカムスクリーン17aが平行配置され、2枚のハニカムスクリーン17aは濃縮槽16内を前後に延在するよう設けた水平駆動軸17cに固設されている。水平駆動軸17cは、濃縮槽16の前後外側方において、濃縮槽16の側板16a,16bに取付けた軸受23に支持され、且つ、水平駆動軸17cの一端には、駆動モータ17bが接続されている。
【0027】
濃縮槽16におけるハニカムスクリーン17aの面に対し略平行な水平方向の一方の側部、すなわち、濃縮槽16のハニカムスクリーン17a下方における回転方向上流側の側部には、2枚のハニカムスクリーン17a間により挟まれた濃縮槽16内空間にフロック化汚泥8を導入し得るよう、略水平に管路等の自然落下手段10が接続されている。
【0028】
又、濃縮槽16の自然落下手段10接続側に対し反対側の他方の側部、すなわち、濃縮槽16のハニカムスクリーンの下方における回転方向下流側の側部には、水平駆動軸17cよりも下方に位置し、且つ、2枚のハニカムスクリーン17a間により挟まれた濃縮槽16内空間から濃縮汚泥12を排出し得るよう濃縮汚泥排出用開口部16cが形成されている。又、濃縮槽16における濃縮汚泥排出用開口部16cの外方には、濃縮槽16と並んでホッパ24が配設されており、ホッパ24の下端には、図3に示す脱水機13に濃縮汚泥12を送給するための樋状の濃縮汚泥供給手段14が配置されている。
【0029】
濃縮槽16における側板16aと一方のハニカムスクリーン17aとの間の底部、及び濃縮槽16における側板16bと他方のハニカムスクリーン17aとの間の底部には、フロック化汚泥8が濾過されてハニカムスクリーン17aを通過してきた分離液18を排出するための管路25が接続され、濃縮槽16の自然落下手段10を接続した位置よりも上部には、管路等のオーバフロー汚泥回収手段26が接続されている。
【0030】
濃縮槽16内の濃縮汚泥排出用開口部16c外側には、濃縮汚泥排出用開口部16cの開度を調整するようにした堰板27が配置されており、堰板27は駆動装置28により回転駆動されるねじ軸29により昇降し得るようになっている。30はねじ軸29が螺合するよう堰板27に固設されたナット体である。
【0031】
濃縮槽16内の濃縮汚泥排出用開口部16cの近傍には、2枚のハニカムスクリーン17a間に水平駆動軸17cよりも下方に位置するよう配置されると共に、濃縮槽16内でフロック化汚泥8が濾過されて生成された濃縮汚泥12を濃縮汚泥排出用開口部16cへ案内して円滑にホッパ24へ排出でき、しかも、濃縮汚泥12が濃縮汚泥排出用開口部16c側から濃縮槽16内に戻るのを防止するようにした仕切り体32が設置されている。
【0032】
仕切り体32の水平駆動軸17cに向いた面(背面)は、図1に示すように、垂直壁状に形成され、濃縮汚泥排出用開口部16cに向いた面(腹部)は、船舶でいうモノハルのラウンドタイプの船尾形状に近似の多次曲線形状に形成されている。すなわち、図2に示すように、仕切り体32の上面は、濃縮汚泥排出用開口部16cに向けて凸の山型に形成され、図1に示すように、頂部から下方へ向かって、側面形状が円弧を含む多次曲線となるよう、除々に絞られている。
【0033】
而して、仕切り体32を濃縮槽16内の所定位置に設置した場合には、図1に示すように、仕切り体32下端と濃縮槽16底面の円弧状部との間、仕切り体32の腹部側と濃縮槽16底面から濃縮汚泥排出用開口部16cへかけての円弧状部との間、仕切り体32の腹部側と濃縮汚泥排出用開口部16cとの間、に夫々所定の隙間及び空間が形成されるようになっている。又、図2に示すように、仕切り体32と各ハニカムスクリーン17aとの間に所定の隙間及び空間が形成されるようになっている。
【0034】
仕切り体32の大きさ、すなわち、隙間及び空間の大きさは、濃縮汚泥12が濃縮槽16から濃縮汚泥排出用開口部16cへ送給されて、濃縮汚泥排出用開口部16cから堰板27を乗り越え排出される際に、濃縮汚泥12が濃縮槽16内へ戻ることなくホッパ24へ円滑に排出される寸法とする。
【0035】
樋状の濃縮汚泥供給手段14には、濃縮汚泥供給手段14を送給される濃縮汚泥12の濃度を検出するための濃度検出手段33が設置されている。濃度検出手段33は、羽根34と羽根34が取付けられた縦軸35と縦軸35を駆動するための駆動装置36とを備え、濃縮汚泥12内で羽根34を駆動する際の抵抗値により値の変化する、駆動装置36の駆動トルクを濃度検出値V1として演算制御装置37へ与え得るようになっている。
【0036】
濃度検出値V1としては、濃縮汚泥12内で羽根34を駆動する際の抵抗値により値が変化する因子なら、駆動トルク以外に、例えば、駆動装置36が電動モータの場合は電流値を、又、駆動装置36が油圧モータの場合は油圧力を、濃縮汚泥12の濃度検出値V1として用いることができる。
【0037】
而して、駆動トルクや電流値や油圧力と濃度検出値V1との関係は予め求められており、濃縮汚泥12の水分が少なくて濃度が濃い場合には、濃度検出値V1は大きい値として、又、濃縮汚泥12の水分が多くて濃度が薄い場合には、濃度検出値V1は小さい値として、検出し得るようになっている。
【0038】
演算制御装置37には、例えば、濃縮汚泥12の所望の濃度Voが設定されており、駆動装置36からの濃度検出値V1と設定された濃度Voの偏差ΔVに対応して堰板27の昇降量が堰板昇降指令V2として求められ、求められた堰板昇降指令V2は駆動装置28へ与え得るようになっている。
【0039】
なお、濃縮汚泥12の濃度検出値V1と堰板27の高さとは相関関係があり、堰板27の高さが高いと濃縮汚泥12の濃度は濃く、堰板27の高さが低いと濃縮汚泥12の濃度は薄くなる傾向がある。従って、濃度検出値V1が高い場合、すなわち、濃縮汚泥12の濃度が濃い場合には、堰板27は下降させられ、濃度検出値V1が低い場合、すなわち、濃縮汚泥12の濃度が薄い場合には、堰板27は上昇させられるようになっている。
【0040】
なお、図1、図2中、38は両ハニカムスクリーン17aの裏面側に配置された空気ヘッダであり、空気ヘッダ38は、図1に示すように、ハニカムスクリーン17aが回転して上方から下方へ向かう側の水平駆動軸17c取付け位置よりも若干上方位置に、ハニカムスクリーン17aの径方向へ向けて水平に配置されている。
【0041】
次に、上記図示例の作動を説明する。
汚泥濃縮運転時には、堰板27は予め所定の高さに位置調整され、このため、濃縮汚泥排出用開口部16cは所定の開度に調整されている。而して、自然落下手段10から濃縮槽16内の2枚のハニカムスクリーン17a間の空間に導入されたフロック化汚泥8は、回転方向Dへ低速回転する2枚のハニカムスクリーン17aにより濾過される。
【0042】
ハニカムスクリーン17aを通過してハニカムスクリーン17aの裏面側に送給された分離液18は管路25から排出されて後工程の装置へ送給される。又、ハニカムスクリーン17aの表面側に付着した汚泥は、濃縮槽16に濃縮汚泥12が溜まっている場合は、濃縮汚泥12により掻取られて濃縮槽16内に供給され、濃縮槽16に濃縮汚泥12が溜まっていない場合、或いは、濃縮汚泥12により掻取られなかった場合は、ハニカムスクリーン17aにより液中から気中へ搬送される。
【0043】
一方、空気ヘッダ38から圧縮空気をハニカムスクリーン17aの裏面側に吹き付けると、圧縮空気はハニカムスクリーン17aの表面側へ流出する。このため、ハニカムスクリーン17aに付着していた汚泥は吹き剥がされて除去され、濃縮槽16内に落下する。
【0044】
而して、濃縮槽16内の濃縮汚泥12は、仕切り体32とハニカムスクリーン17aとの間の隙間や空間、仕切り体32と濃縮槽16の底面との間の隙間を案内されて濃縮汚泥排出用開口部16c側へ送給され、濃縮汚泥排出用開口部16cから堰板27を湧き上がるように乗り越えてホッパ24へ排出され、ホッパ24から濃縮汚泥供給手段14を介して図3の脱水機13へ送給される。濃縮槽16内に供給されたフロック化汚泥8の一部は、供給量が多い場合には、管路等のオーバフロー汚泥回収手段26から回収される。
【0045】
濃縮汚泥12が濃縮汚泥供給手段14を送給される際には、濃度検出手段33の駆動装置36により濃縮汚泥12内で羽根34が回転駆動されており、そのときの駆動装置36の駆動トルク或は電流値若しくは油圧力が濃度検出値V1として演算制御装置37へ与えられる。演算制御装置37では濃度検出値V1を基に堰板27の昇降量が堰板昇降指令V2として求められ、求められた堰板昇降指令V2は駆動装置28に与えられる。
【0046】
従って、駆動装置28が駆動されることにより、ねじ軸29が回転し、堰板27が所定高さまで昇降する。堰板27昇降時の堰板27の高さは図示してないが演算制御装置37へフィードバックされ、堰板27が堰板昇降指令V2に対応した高さになると、駆動装置28は停止する。このため、濃縮槽16からは所定のの濃度の濃縮汚泥12が堰板27を乗り越えて濃縮汚泥排出用開口部16cからホッパ24へ排出され、濃縮汚泥供給手段14から図3に示す脱水機13へ送給される。又、堰板27の高さは濃縮脱水処理設備1全体の自動運転のための制御因子として使用することができる。
【0047】
なお、本発明の汚泥濃縮部構造は、上記した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
【0048】
【発明の効果】
以上、説明したように本発明の請求項1〜3記載の汚泥濃縮部構造によれば、濃縮槽から排出される濃縮汚泥の濃度を所定の濃度にすることができ、又、堰板の高さを濃縮脱水処理設備全体の自動運転のための制御因子として使用することができる、という優れた効果を奏し得る。
【図面の簡単な説明】
【図1】本発明の汚泥濃縮部構造の実施の形態の一例の縦断側面図である。
【図2】図1の平面図である。
【図3】濃縮脱水処理設備の一般的なブロック図である。
【図4】図3のIV−IV方向矢視図である。
【図5】図3、図4に示す濃縮脱水処理設備に用いられる汚泥濃縮部の斜視図である。
【図6】先行出願で提案した汚泥濃縮部の一例の斜視図である。
【図7】図6の平面図である。
【符号の説明】
8 フロック化汚泥
10 自然落下手段
12 濃縮汚泥
16 濃縮槽
16c 濃縮汚泥排出用開口部
17a ハニカムスクリーン
27 堰板
28 駆動装置(駆動手段)
29 ねじ軸(駆動手段)
30 ナット体(駆動手段)
33 濃度検出手段
34 羽根
35 縦軸
36 駆動装置
37 演算制御装置
V1 濃度検出値
V2 堰板昇降指令
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sludge concentration part structure.
[0002]
[Prior art]
As sludge concentration and dewatering treatment equipment for efficiently concentrating and dewatering high water content sludge generated in water treatment such as clean water, sewage, and industrial water, there are those shown in FIGS.
[0003]
In FIG. 3, the sludge concentration and dewatering treatment facility 1 includes a sludge storage tank 3 for storing mixed sludge 2 (which may be only raw sludge and excess sludge), and the mixed sludge 2 from the sludge storage tank 3 to the other. A sludge supply means 4 comprising a pump, a supply pipe and the like, a flocculant supply section 5, a mixed sludge 2 supplied from the sludge supply means 4 and a polymer flocculant 6 supplied from the flocculant supply section 5 are motorized. Agitation tank 9 for agitation and mixing by driving agitation means 7 to agglomerate sludge particles of mixed sludge 2 to generate flocified sludge 8 and natural agitation tank 9 through natural dropping means 10 such as a pipe line A sludge concentrating section 11 for filtering and concentrating the floc sludge supplied downstream, and a concentrated sludge supplying means for supplying the concentrated sludge 12 generated by the sludge concentrating section 11 to a dehydrator 13 such as a rotary press by natural downstream supply. 14. Reference numeral 15 denotes a motor-driven stirring means provided in the sludge storage tank 3.
[0004]
3 and 4, the sludge concentrating unit 11 is a disk-like shape that filters the flocated sludge 8 supplied from the natural dropping means 10 by gravity filtration and filters the flocked sludge 8 in the concentration tank 16. Are connected to a honeycomb screen 17a having a proper thickness (thickness where sludge residue does not entangle and wind and sufficient strength is obtained) and a horizontal drive shaft 17c on which the honeycomb screen 17a is fixed. Filtration means 17 provided with a drive motor 17b rotated by the separator, a separation liquid storage tank portion 19 connected to the concentration tank 16 so as to store the separation liquid 18 filtered and produced by the honeycomb screen 17a, and a separation liquid of the honeycomb screen 17a. Compressed air supply means 20 for blowing compressed air to the downstream side (back side) in the flow direction, and compressed air from the compressed air supply means 20 It consists blowing unit (compressed air outlet part) 21..
[0005]
In FIG. 5, the natural dropping means 10 is connected substantially horizontally so as to be on the upstream side in the rotational direction below the honeycomb screen on one side in the horizontal direction substantially parallel to the surface of the honeycomb screen 17a in the concentration tank 16. ing. The concentrated sludge supply means 14 is connected to a lower hopper portion 31 fixed to the bottom of the concentration tank 16.
[0006]
The honeycomb screen 17a of the filtering means 17 shown in an enlarged manner in FIG. 5 is a disk-shaped metal honeycomb strainer having a diameter of 700 to 1000 mm and made of a metal member having strong corrosion resistance such as SUS304, SUS316, Ti, etc. The drive shaft 17c is supported by the concentration tank 16, and the inside of the tank can be rotated at a slow speed of about 20 rpm at the maximum. The honeycomb screen 17a includes a strong outer ring having a width of about 20 mm, a metal foil flat plate and a metal foil corrugated plate having a width of 20 mm and a thickness of 50 microns (any thickness of 20 to 100 microns can be used) in the outer ring. Are stacked alternately.
[0007]
In the above-described concentration dehydration treatment facility 1, the mixed sludge 2 stored in the sludge storage tank 3 is supplied to the coagulation tank 9 by the sludge supply means 4, and the polymer coagulant 6 coagulates from the coagulant supply unit 5. It is supplied to the tank 9.
[0008]
In the agglomeration tank 9, the mixed sludge 2 and the polymer flocculant 6 are agitated and mixed by the agitation means 7, and the sludge particles agglomerate to generate flocked sludge 8. The generated flocked sludge 8 is the natural dropping means 10. Thus, the feed direction is supplied to the front surface of the honeycomb screen 17a rotating at a low speed in the rotation direction D from the side to the concentration tank 16 of the sludge concentration unit 11 so that the supply direction is substantially parallel to the rotation direction D.
[0009]
The floc sludge 8 introduced into the concentration tank 16 is filtered by the honeycomb screen 17a that rotates at a low speed in the rotation direction D, and the separation liquid 18 that has passed through the honeycomb screen 17a from the front surface side to the back surface side enters the separation liquid storage tank section 19. Inflow. Further, when the concentrated sludge 12 is accumulated in the concentration tank 16, the sludge adhering to the honeycomb screen 17 a is scraped by the concentrated sludge 12 and supplied into the concentration tank 16, and the concentrated sludge 12 is accumulated in the concentration tank 16. If it is not scraped off by the concentrated sludge 12, it is transported from the liquid to the air by the honeycomb screen 17a and blown off by the compressed air blown from the compressed air blowing portion 21 and removed. It falls into the concentration tank 16. For this reason, the sludge in the concentration tank 16 is concentrated to obtain the concentrated sludge 12, and the concentrated sludge 12 is fed from the lower hopper portion 31 provided at the bottom of the concentration tank 16 to the dehydrator 13 by the concentrated sludge supply means 14. Is done.
[0010]
However, in the sludge concentration unit 11 of the above-described concentration dewatering treatment facility 1, the concentrated sludge 12 accumulates in the side opposite to the connection part of the natural dropping means 10 in the concentration tank 16, as shown in FIG. Tend to be. However, in the sludge concentration unit 11, the concentrated sludge 12 is pulled out from the lower hopper portion 31 provided in the lower part of the concentration tank 16 to the concentrated sludge supply means 14, so that the concentrated sludge 12 is difficult to pull out. Accordingly, liquid is mixed in the concentrated sludge 12 to be withdrawn. As a result, the concentration of the concentrated sludge 12 is lowered, and a part of the flocified sludge 8 supplied to the concentration tank 16 is also concentrated with the concentrated sludge 12. It will be pulled out to the supply means 14. For this reason, the dewatering process of the concentrated sludge 12 by the dehydrator 13 cannot be performed efficiently.
[0011]
Therefore, the applicant of the present application is to provide a sludge concentrating part structure capable of reliably discharging the concentrated sludge having a high concentration obtained by dehydrating flocified sludge in the concentrating tank of the sludge concentrating part, An application was filed (prior application 1).
[0012]
[Prior Application 1]
Japanese Patent Application No. 2003-78623 Specification
In the sludge concentrating part structure of the prior application 1, for example, as shown in FIGS. 6 and 7, the natural dropping means 10 is disposed on one side of the horizontal direction substantially parallel to the surface of the honeycomb screen 17 a in the concentration tank 16. The concentrated sludge supply means 14 is connected substantially horizontally so as to be upstream in the rotational direction D below 17a, and the concentrated sludge supply means 14 is the other side in the horizontal direction substantially parallel to the surface of the honeycomb screen 17a in the concentration tank 16, that is, The other side of the concentrating tank 16 opposite to the connection part of the natural dropping means 10 is connected substantially horizontally so as to be downstream in the rotational direction D below the honeycomb screen 17a.
[0014]
In addition, a vertical partition plate 22 is fixed to the bottom of the concentration tank 16 so as to be positioned below the horizontal drive shaft 17c at a radial intermediate position of the honeycomb screen 17a in the horizontal direction. The partition plate 22 has a plate thickness direction substantially parallel to the surface of the honeycomb screen 17a and a width direction in a direction perpendicular to the surface of the honeycomb screen 17a. A gap G is formed in (see FIG. 7).
[0015]
During filtration of the floc sludge 8, the liquid in the floc sludge 8 supplied from the natural dropping means 10 to the concentration tank 16 passes through the honeycomb screen 17a from the front surface side to the back surface side and is separated from the flock sludge 8 and separated. The liquid 18 flows into the separation liquid reservoir 19. Further, the sludge from which the liquid has been separated from the flocked sludge 8 adheres to the front surface of the honeycomb screen 17a, and the sludge adhering to the honeycomb screen 17a is concentrated when the concentrated sludge 12 is accumulated in the concentration tank 16. When the concentrated sludge 12 is scraped off by the sludge 12 and supplied into the concentration tank 16 and the concentrated sludge 12 is not collected in the concentration tank 16 or when the concentrated sludge 12 is not scraped off, it is transported from the liquid to the air. 4 is blown off by the compressed air blown from the compressed air blowing portion 21 shown in FIG. 4 and falls to the upstream side or the downstream side of the partition plate 22 of the concentration tank 16. For this reason, the sludge of the concentration tank 16 is concentrated and the concentrated sludge 12 is obtained.
[0016]
The concentrated sludge 12 that has dropped to the upstream side of the partition plate 22 of the concentration tank 16 passes through the gap G between the partition plate 22 and the honeycomb screen 17a due to the action in the rotation direction D by the honeycomb screen 17a. To the downstream side, that is, the side to which the concentrated sludge supply means 14 in the concentration tank 16 is connected. Further, the concentrated sludge 12 accumulated on the downstream side of the partition plate 22 of the concentration tank 16 is discharged to the concentrated sludge supply means 14 by the action in the rotation direction D by the honeycomb screen 17 a and is supplied to the dehydrator 13. .
[0017]
[Problems to be solved by the invention]
In the sludge concentration unit 11 shown in FIGS. 6 and 7, the concentrated sludge supply means 14 is a pipe and the concentration of the concentrated sludge 12 is about 4% or more. It cannot flow down, and therefore suction by a pump is required. However, when a pump is provided, the concentration of the concentrated sludge 12 becomes unstable unless the amount of the concentrated sludge 12 produced and the flow rate of the concentrated sludge 12 in the concentrated sludge supply means 14 are balanced, and the dehydrator shown in FIG. 13 stable operation becomes difficult.
[0018]
Therefore, the inventors of the present application can move up and down so that the concentrated sludge can be smoothly and reliably discharged from the concentration tank on the side opposite to the side of the concentration tank where the natural dropping means is provided across the center of rotation of the honeycomb screen. Concentrated sludge is provided with an opening for discharging the concentrated sludge with a dam plate so that the concentrated sludge does not return from the concentrated sludge discharge opening to the concentration tank in the vicinity of the concentrated sludge discharge opening in the concentration tank. We proposed a sludge concentrator structure with a partition that was formed in a multi-curve shape that approximated the monohull round type stern shape of the ship with the surface facing the discharge opening.
[0019]
The flocked sludge 8 supplied from the natural dropping means 10 to the concentrating tank 16 is generated, for example, in a sewage treatment process. However, the state of the generation process of the flocked sludge 8 often changes sequentially, and thus The concentration of floc sludge 8 and the state of floc formation are not stable. On the other hand, in the proposed sludge concentrating part structure, the concentration of the concentrated sludge 12 discharged from the concentration tank 16 is preferably a certain concentration in consideration of the post-treatment. Further, the higher the weir height of the concentrated sludge discharge opening, the higher the concentration of the concentrated sludge 12 discharged, and the lower the weir height, the lower the concentration of the concentrated sludge 12 discharged. ing. However, for example, if the operator manually adjusts the height position of the barrier plate, the concentration of the concentrated sludge 12 cannot always be maintained at a preferable concentration.
[0020]
The present invention has been made in view of such a situation, and an object of the present invention is to provide a sludge concentrating part structure that can always adjust the concentration of concentrated sludge discharged from a concentration tank to a desired concentration.
[0021]
[Means for Solving the Problems]
The sludge concentrating part structure according to claim 1 includes a rotatable honeycomb screen disposed in the concentrating tank, and the flocified sludge is supplied to the concentrating tank on one side of the concentrating tank in the radial direction of the honeycomb screen. And a concentrating sludge discharge opening for discharging the concentrated sludge generated by filtering the flocified sludge through the honeycomb screen to the outside of the concentrating tank. The concentrated sludge discharge opening is formed with a sludge concentrating portion structure provided with a weir plate that can be moved up and down by a driving means, and a concentration for detecting the concentration of the concentrated sludge discharged from the concentration tank According to the present invention, there is provided a detection means and an arithmetic control device which obtains the elevation amount of the dam plate based on the detected concentration detection value and can give a dam plate elevation command to the drive means.
[0022]
In the sludge concentration part structure according to claim 2, the driving means includes a nut body fixed to the dam plate, a screw shaft screwed to the nut body, and a driving device for driving the screw shaft. Is.
[0023]
In the sludge concentration part structure according to claim 3, the concentration detector includes a blade that can rotate in the concentrated sludge discharged from the concentration tank, and a drive device that rotationally drives the blade. The density detection value can be given to the arithmetic and control unit.
[0024]
When the concentrated sludge is fed out of the concentration tank, the concentration detector detects the concentration of the concentrated sludge, and the concentration detection value is given to the arithmetic and control unit. In the arithmetic and control unit, the elevation amount of the dam plate is obtained as a dam plate elevation command based on the detected concentration value, and the obtained dam plate elevation command is given to the driving means. Therefore, the barrier plate is raised and lowered to a predetermined height by the driving means.
[0025]
As a result, the concentrated sludge discharged from the concentration tank can be maintained at a predetermined concentration, and the height of the weir plate can be used as a control factor for automatic operation of the entire concentration and dewatering treatment facility.
[0026]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the accompanying drawings.
1 and 2 show an example of an embodiment of the present invention, which is an example in which two honeycomb screens are provided. That is, two honeycomb screens 17a are provided in the concentration tank 16 in the sludge concentrating unit 11 with a predetermined interval in the front-rear direction and with a predetermined interval between the front side plate 16a and the rear side plate 16b. Are arranged in parallel, and the two honeycomb screens 17a are fixed to a horizontal drive shaft 17c provided so as to extend back and forth in the concentration tank 16. The horizontal drive shaft 17c is supported by bearings 23 attached to the side plates 16a and 16b of the concentration tank 16 on the front and rear outer sides of the concentration tank 16, and a drive motor 17b is connected to one end of the horizontal drive shaft 17c. Yes.
[0027]
One side portion in the horizontal direction substantially parallel to the surface of the honeycomb screen 17 a in the concentration tank 16, that is, the side portion on the upstream side in the rotational direction below the honeycomb screen 17 a of the concentration tank 16 is between the two honeycomb screens 17 a. Natural dropping means 10 such as a pipe line is connected substantially horizontally so that the floc sludge 8 can be introduced into the space in the concentration tank 16 sandwiched between the two.
[0028]
Further, the other side of the concentrating tank 16 opposite to the connection side of the natural dropping means 10, that is, the side of the concentrating tank 16 on the downstream side in the rotational direction below the honeycomb screen is lower than the horizontal drive shaft 17 c. The concentrated sludge discharge opening 16c is formed so that the concentrated sludge 12 can be discharged from the space in the concentration tank 16 sandwiched between the two honeycomb screens 17a. Further, a hopper 24 is arranged outside the concentrated sludge discharge opening 16c in the concentration tank 16 along with the concentration tank 16, and concentrated at the lower end of the hopper 24 in the dehydrator 13 shown in FIG. A bowl-shaped concentrated sludge supply means 14 for feeding the sludge 12 is disposed.
[0029]
Flocked sludge 8 is filtered at the bottom portion between the side plate 16a and the one honeycomb screen 17a in the concentration tank 16, and the bottom portion between the side plate 16b and the other honeycomb screen 17a in the concentration tank 16, and the honeycomb screen 17a. A pipe 25 for discharging the separation liquid 18 that has passed through the pipe is connected, and an overflow sludge recovery means 26 such as a pipe is connected above the position of the concentration tank 16 where the natural drop means 10 is connected. Yes.
[0030]
A dam plate 27 is arranged outside the concentrated sludge discharge opening 16 c in the concentration tank 16 so as to adjust the opening of the concentrated sludge discharge opening 16 c, and the dam plate 27 is rotated by a drive device 28. The screw shaft 29 can be moved up and down. Reference numeral 30 denotes a nut body fixed to the dam plate 27 so that the screw shaft 29 is screwed together.
[0031]
In the vicinity of the concentrated sludge discharge opening 16 c in the concentration tank 16, it is disposed between the two honeycomb screens 17 a so as to be positioned below the horizontal drive shaft 17 c, and the flocified sludge 8 in the concentration tank 16. The concentrated sludge 12 produced by the filtration is guided to the concentrated sludge discharge opening 16c and smoothly discharged to the hopper 24, and the concentrated sludge 12 enters the concentration tank 16 from the concentrated sludge discharge opening 16c side. A partition 32 that prevents the return is provided.
[0032]
As shown in FIG. 1, the surface (back surface) of the partition 32 facing the horizontal drive shaft 17c is formed in a vertical wall shape, and the surface (abdomen) facing the concentrated sludge discharge opening 16c is a ship. It is formed in a multi-curve shape that approximates the monohull round type stern shape. That is, as shown in FIG. 2, the upper surface of the partition 32 is formed in a convex mountain shape toward the concentrated sludge discharge opening 16c, and as shown in FIG. Is gradually narrowed down to be a multi-order curve including an arc.
[0033]
Thus, when the partition 32 is installed at a predetermined position in the concentration tank 16, as shown in FIG. 1, between the lower end of the partition 32 and the arc-shaped portion on the bottom of the concentration tank 16, Between the abdomen side and the arcuate part extending from the bottom surface of the concentration tank 16 to the concentrated sludge discharge opening 16c, and between the abdomen side of the partition 32 and the concentrated sludge discharge opening 16c, a predetermined gap and A space is formed. In addition, as shown in FIG. 2, a predetermined gap and space are formed between the partition body 32 and each honeycomb screen 17a.
[0034]
The size of the partition 32, that is, the size of the gap and the space, is determined so that the concentrated sludge 12 is fed from the thickening tank 16 to the concentrated sludge discharge opening 16c, and the weir plate 27 is moved from the concentrated sludge discharge opening 16c. The size is such that the concentrated sludge 12 is smoothly discharged to the hopper 24 without returning into the concentration tank 16 when getting over and discharging.
[0035]
The bowl-shaped concentrated sludge supply means 14 is provided with a concentration detection means 33 for detecting the concentration of the concentrated sludge 12 fed to the concentrated sludge supply means 14. The concentration detection means 33 includes a blade 34, a vertical axis 35 to which the blade 34 is attached, and a drive device 36 for driving the vertical axis 35, and the value is determined by a resistance value when driving the blade 34 in the concentrated sludge 12. The drive torque of the drive device 36 that changes can be applied to the arithmetic control device 37 as the concentration detection value V1.
[0036]
The concentration detection value V1 is a factor whose value changes depending on the resistance value when driving the blades 34 in the concentrated sludge 12, for example, in addition to the drive torque, the current value when the drive device 36 is an electric motor, When the drive device 36 is a hydraulic motor, the oil pressure can be used as the concentration detection value V1 of the concentrated sludge 12.
[0037]
Thus, the relationship between the drive torque, current value, oil pressure, and concentration detection value V1 is obtained in advance, and when the concentration of the concentrated sludge 12 is low and the concentration is high, the concentration detection value V1 is set to a large value. In addition, when the concentration of the concentrated sludge 12 is high and the concentration is low, the concentration detection value V1 can be detected as a small value.
[0038]
For example, a desired concentration Vo of the concentrated sludge 12 is set in the arithmetic control device 37, and the weir plate 27 is moved up and down corresponding to the detected concentration value V1 from the driving device 36 and the deviation ΔV of the set concentration Vo. The amount is obtained as the dam plate raising / lowering command V2, and the obtained dam plate raising / lowering command V2 can be given to the drive device 28.
[0039]
The concentration detection value V1 of the concentrated sludge 12 has a correlation with the height of the dam plate 27. If the height of the dam plate 27 is high, the concentration of the concentrated sludge 12 is high, and if the height of the dam plate 27 is low, the concentration is high. The concentration of sludge 12 tends to be thin. Therefore, when the concentration detection value V1 is high, that is, when the concentration of the concentrated sludge 12 is high, the weir plate 27 is lowered, and when the concentration detection value V1 is low, that is, when the concentration of the concentrated sludge 12 is low. The dam plate 27 can be raised.
[0040]
1 and 2, reference numeral 38 denotes an air header disposed on the back side of both honeycomb screens 17a. As shown in FIG. 1, the air header 38 rotates from the top to the bottom as the honeycomb screen 17a rotates. It is arranged horizontally toward the radial direction of the honeycomb screen 17a at a position slightly above the mounting position of the horizontal drive shaft 17c on the side toward the side.
[0041]
Next, the operation of the illustrated example will be described.
During the sludge concentration operation, the position of the dam plate 27 is adjusted to a predetermined height in advance, and therefore the concentrated sludge discharge opening 16c is adjusted to a predetermined opening. Thus, the floc sludge 8 introduced into the space between the two honeycomb screens 17a in the concentration tank 16 from the natural dropping means 10 is filtered by the two honeycomb screens 17a rotating at a low speed in the rotation direction D. .
[0042]
The separation liquid 18 that has passed through the honeycomb screen 17a and is fed to the back side of the honeycomb screen 17a is discharged from the pipe 25 and fed to an apparatus in a subsequent process. The sludge adhering to the surface of the honeycomb screen 17a is scraped by the concentrated sludge 12 and supplied into the concentration tank 16 when the concentrated sludge 12 is accumulated in the concentration tank 16, and the concentrated sludge is supplied to the concentration tank 16. When 12 is not accumulated, or when it is not scraped off by the concentrated sludge 12, it is conveyed from the liquid to the air by the honeycomb screen 17a.
[0043]
On the other hand, when compressed air is blown from the air header 38 to the back surface side of the honeycomb screen 17a, the compressed air flows out to the front surface side of the honeycomb screen 17a. For this reason, the sludge adhering to the honeycomb screen 17 a is blown off and removed, and falls into the concentration tank 16.
[0044]
Thus, the concentrated sludge 12 in the concentration tank 16 is guided through the gaps and spaces between the partition 32 and the honeycomb screen 17a, and the gap between the partition 32 and the bottom surface of the concentration tank 16 to discharge the concentrated sludge. 3 through the concentrated sludge discharge opening 16c and over the weir plate 27 so as to spring up, and is discharged to the hopper 24. The dehydrator of FIG. 13 is sent. A part of the flocified sludge 8 supplied into the concentration tank 16 is recovered from the overflow sludge recovery means 26 such as a pipe line when the supply amount is large.
[0045]
When the concentrated sludge 12 is fed to the concentrated sludge supply means 14, the blades 34 are rotationally driven in the concentrated sludge 12 by the driving device 36 of the concentration detecting means 33, and the driving torque of the driving device 36 at that time Alternatively, the current value or the oil pressure is given to the arithmetic and control unit 37 as the concentration detection value V1. In the arithmetic and control unit 37, the elevation amount of the dam plate 27 is obtained as the dam plate elevation command V2 based on the concentration detection value V1, and the obtained dam plate elevation command V2 is given to the drive device 28.
[0046]
Therefore, when the driving device 28 is driven, the screw shaft 29 rotates and the barrier plate 27 moves up and down to a predetermined height. Although the height of the dam plate 27 when raising and lowering the dam plate 27 is not shown, it is fed back to the calculation control device 37, and when the dam plate 27 reaches a height corresponding to the dam plate raising / lowering command V2, the driving device 28 stops. For this reason, the concentrated sludge 12 having a predetermined concentration passes over the weir plate 27 from the concentration tank 16 and is discharged from the concentrated sludge discharge opening 16c to the hopper 24, and the dehydrator 13 shown in FIG. To be sent to. Further, the height of the weir plate 27 can be used as a control factor for automatic operation of the entire concentration and dehydration equipment 1.
[0047]
In addition, the sludge concentration part structure of this invention is not limited to above-described embodiment, Of course, in the range which does not deviate from the summary of this invention, a various change can be added.
[0048]
【The invention's effect】
As described above, according to the sludge concentration part structure according to claims 1 to 3 of the present invention, the concentration of the concentrated sludge discharged from the concentration tank can be set to a predetermined concentration, and the height of the weir plate It is possible to obtain an excellent effect that can be used as a control factor for automatic operation of the entire concentration dehydration processing facility.
[Brief description of the drawings]
FIG. 1 is a longitudinal side view of an example of an embodiment of a sludge concentrating portion structure according to the present invention.
2 is a plan view of FIG. 1. FIG.
FIG. 3 is a general block diagram of a concentration dehydration processing facility.
4 is a view taken in the direction of arrows IV-IV in FIG. 3;
FIG. 5 is a perspective view of a sludge concentration unit used in the concentration and dehydration treatment facility shown in FIGS. 3 and 4;
FIG. 6 is a perspective view of an example of a sludge concentrating section proposed in the prior application.
7 is a plan view of FIG. 6. FIG.
[Explanation of symbols]
8 Flocked sludge 10 Natural dropping means 12 Concentrated sludge 16 Concentrated tank 16c Concentrated sludge discharge opening 17a Honeycomb screen 27 Weir plate 28 Drive device (drive means)
29 Screw shaft (drive means)
30 Nut body (drive means)
33 Concentration detection means 34 Blade 35 Vertical axis 36 Drive device 37 Arithmetic control device V1 Concentration detection value V2 Dam plate elevation command

Claims (3)

濃縮槽内に配置された回転可能なハニカムスクリーンを備え、前記濃縮槽のハニカムスクリーン径方向の一方側には、フロック化汚泥を濃縮槽内に供給するための手段が接続され、前記濃縮槽のハニカムスクリーン径方向の他方側には、フロック化汚泥がハニカムスクリーンにより濾過されて生成された濃縮汚泥を濃縮槽の外部に排出する濃縮汚泥排出用開口部が形成され、該濃縮汚泥排出用開口部には、駆動手段により昇降可能な堰板が設けられた汚泥濃縮部構造であって、前記濃縮槽から排出された濃縮汚泥の濃度を検出するための濃度検出手段と、検出した濃度検出値を基に堰板の昇降量を求め、前記駆動手段に堰板昇降指令を与え得るようにした演算制御装置を設けたことを特徴とする汚泥濃縮部構造。A rotatable honeycomb screen disposed in the concentration tank is provided, and a means for supplying flocified sludge to the concentration tank is connected to one side of the concentration tank in the radial direction of the honeycomb screen. On the other side of the honeycomb screen radial direction, there is formed a concentrated sludge discharge opening for discharging the concentrated sludge generated by filtering the flocked sludge through the honeycomb screen to the outside of the concentration tank, and the concentrated sludge discharge opening. Is a sludge concentrating portion structure provided with a weir plate that can be moved up and down by a driving means, the concentration detecting means for detecting the concentration of the concentrated sludge discharged from the concentration tank, and the detected concentration detection value. A sludge concentrating part structure characterized in that an operation control device is provided which obtains the amount of elevation of the dam plate based on it and can give a dam plate elevation command to the drive means. 駆動手段は、堰板に固設されたナット体と、該ナット体に螺合されたねじ軸と、ねじ軸を駆動するための駆動装置を備えた請求項1記載の汚泥濃縮部構造。The sludge concentrating part structure according to claim 1, wherein the driving means includes a nut body fixed to the dam plate, a screw shaft screwed to the nut body, and a driving device for driving the screw shaft. 濃度検出器は、濃縮槽から排出された濃縮汚泥内で回転し得るようにした羽根と、羽根を回転駆動する駆動装置とを備え、駆動装置からは濃度検出値を演算制御装置に与え得るよう構成した請求項1又は2記載の汚泥濃縮部構造。The concentration detector includes a blade capable of rotating in the concentrated sludge discharged from the concentration tank, and a drive device that rotationally drives the blade, so that the concentration detection value can be given to the arithmetic control device from the drive device. The sludge concentration part structure of Claim 1 or 2 comprised.
JP2003187134A 2003-06-30 2003-06-30 Sludge thickening part structure Expired - Lifetime JP4164003B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003187134A JP4164003B2 (en) 2003-06-30 2003-06-30 Sludge thickening part structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003187134A JP4164003B2 (en) 2003-06-30 2003-06-30 Sludge thickening part structure

Publications (2)

Publication Number Publication Date
JP2005021741A JP2005021741A (en) 2005-01-27
JP4164003B2 true JP4164003B2 (en) 2008-10-08

Family

ID=34186078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003187134A Expired - Lifetime JP4164003B2 (en) 2003-06-30 2003-06-30 Sludge thickening part structure

Country Status (1)

Country Link
JP (1) JP4164003B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4922803B2 (en) * 2007-03-26 2012-04-25 三機工業株式会社 Sludge distribution and supply equipment
DE102018113804A1 (en) * 2018-06-11 2019-12-12 Voith Patent Gmbh disc filter

Also Published As

Publication number Publication date
JP2005021741A (en) 2005-01-27

Similar Documents

Publication Publication Date Title
WO2006112041A1 (en) Sludge concentration device and sludge concentration method
WO2010106838A1 (en) Concentrator-integrated screw press
JP2011005362A (en) Slurry treatment apparatus
WO1999067006A1 (en) Coagulation reaction device
JP6035644B2 (en) Concentration dehydrator
JP5660827B2 (en) Concentrator
JP4978636B2 (en) Concentrator
CA2348189C (en) A fine solids separator
JP4164003B2 (en) Sludge thickening part structure
KR101450772B1 (en) Sludge treating apparatus
JP2010057997A (en) Sludge dewatering apparatus and method
JP2004098048A5 (en)
JP3146280B2 (en) Turbid water treatment equipment
JP2008149256A (en) Sludge flocculation tank and sludge concentration apparatus equipped with it
JP4164002B2 (en) Sludge thickening part structure
JP4664628B2 (en) Sludge concentration part structure
KR200417005Y1 (en) Cohesion mixing device having screen tank
CN107416934A (en) Vibrating air floating pond
JP6478761B2 (en) Treatment apparatus and organic wastewater treatment method
JP3567392B2 (en) Sludge thickener
JPH07108110A (en) Method for concentrating slurry and device therefor
CN209923148U (en) Novel sewage biological reaction and membrane purification device
JP4232607B2 (en) Operation control method for differential speed rotary concentrator
CN212174474U (en) Feeding device for water treatment
JP3951115B2 (en) Sludge concentrator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080725

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4164003

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term