JP3792108B2 - Sludge concentration dewatering equipment - Google Patents

Sludge concentration dewatering equipment Download PDF

Info

Publication number
JP3792108B2
JP3792108B2 JP2000216986A JP2000216986A JP3792108B2 JP 3792108 B2 JP3792108 B2 JP 3792108B2 JP 2000216986 A JP2000216986 A JP 2000216986A JP 2000216986 A JP2000216986 A JP 2000216986A JP 3792108 B2 JP3792108 B2 JP 3792108B2
Authority
JP
Japan
Prior art keywords
sludge
concentration
tank
filtration
concentrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000216986A
Other languages
Japanese (ja)
Other versions
JP2002028699A (en
Inventor
春男 木村
誠 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanki Engineering Co Ltd
Nippon Steel Corp
Original Assignee
Sanki Engineering Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanki Engineering Co Ltd, Nippon Steel Corp filed Critical Sanki Engineering Co Ltd
Priority to JP2000216986A priority Critical patent/JP3792108B2/en
Publication of JP2002028699A publication Critical patent/JP2002028699A/en
Application granted granted Critical
Publication of JP3792108B2 publication Critical patent/JP3792108B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Filtration Of Liquid (AREA)
  • Filtering Materials (AREA)
  • Treatment Of Sludge (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は上水、下水、工業用水などの水処理において発生する高含水汚泥を効率よく濃縮し脱水するために行なう汚泥の濃縮脱水装置に関する。
【0002】
【従来技術】
下水などの水処理は、流入水――最初沈殿池――反応タンク――最終沈殿池――分離水という工程が一般的である。
この水処理工程において発生する汚泥は、最初沈殿池で除去される汚泥(以下「生汚泥」と言う。)と最終沈殿池で除去される汚泥(以下「余剰汚泥」と言う。)があるが、目的に応じてそれぞれを処理する場合や、生汚泥と余剰汚泥を混ぜた混合汚泥にして処理する場合などがある。
これらの汚泥は99パーセント以上(余剰汚泥は99.5〜99.2パーセント)と含水率が高いが、含水率を99パーセントから98パーセントへと1パーセント減少させることで、その容積は半分になる。
したがって汚泥はできるだけ含水率を低くした方が(濃縮した方が)、脱水等の後工程を効率化することができる。
【0003】
汚泥を濃縮する方法には、重力濃縮、遠心濃縮、浮上濃縮の3方法が知られている。
重力濃縮は、タンクに汚泥を滞留させ重力を利用して濃縮をおこなうもので、重力濃縮汚泥の含水率は97パーセント程度である。
遠心濃縮は、遠心濃縮機により汚泥を遠心力(1000〜2000G)を利用して濃縮するもので、遠心濃縮汚泥の含水率は96パーセント程度である。
浮上濃縮は、汚泥に加圧水を加えて浮上タンクに導き、汚泥粒子に微細気泡を付着させ汚泥の水に対する見かけ比重を小さくして浮上分離させ濃縮するもので、浮上濃縮汚泥の含水率は96〜97パーセント程度である。
汚泥を濃縮する他の方法として、スクリーン濃縮法がある。これは、金網や布などのスクリーンを回転させて、スクリーンに汚泥を付着させ、すくい上げて濃縮汚泥を得るもので、トロンメル式や振動篩が知られている。
また、ベルトプレス脱水機で濾布が重力脱水部において同様な作用効果を果たしている。
汚泥処理において脱水は、汚泥の焼却・溶融、肥料化などの処理・処分の前工程として重要な処理工程である。
脱水機はベルトプレス型、遠心脱水機、フィルタープレスなどの機種が採用されている。
【0004】
特開平9−150200号公報に「汚泥の濃縮装置並びにその洗浄方法」が開示されている。
この技術は、給泥槽(濃縮槽)の中に筒容器状のスクリーンドラムを立設したものである。凝集剤と汚泥を混合させて生成したフロック化汚泥を給泥槽に貯留し、汚泥中の水分をスクリーンドラム内にろ過分離させて給泥槽内のフロック化汚泥を濃縮して濃縮汚泥を生成しそれをフィルタープレスに移して脱水する。スクリーンドラムが目詰りした場合には、ドラムを回転させながら内側から洗浄水をスクリーンに噴射して付着汚泥等を剥がし、汚泥中に分散させるというものである。
また、特開平9−313817号公報に「汚泥等の濃縮装置におけるフロックの掬上装置」が開示されている。
この技術は、半円筒形状の濃縮槽内に下方を該濃縮槽内に納め上方を気中に出した円筒状のスクリーンドラムを回転するように設け、スクリーンドラムには下向き状態ではスクリーンドラムから突き出し上向き状態ではスクリーンドラム内に没するように設けられたスクリーンドラムとほぼ同じ長さの掬上板を有し、装置上方にスクリーンドラムに付着した汚泥を掻き取るスクレーバーを設けたものである。
凝集剤と汚泥を混合させて生成したフロック化汚泥を濃縮槽に貯留し、ろ過されてスクリーンドラム内に流れ込んだ分離水を抜いて汚泥を濃縮して行く。一方スクリーンドラムをゆっくりと回転させることにより、掬上板が下方になると自重で突出して濃縮槽内の汚泥粒子を掬上げて行き、汚泥を気中でスクリーンドラム上に載せる。スクリーンドラム上の汚泥は水分をスクリーンドラム内に抜かれながら濃縮されて行く。掬上板は真上あたりに到達すると自重でスクリーンドラム内に没してしまい、その後スクリーンドラム上の濃縮汚泥はスクレーバーにより回収されるというものである。
【0005】
【発明が解決しようとする課題】
高含水汚泥を高濃度に濃縮することは、脱水、焼却などの後工程への負担(処理施設の処理能力、施設規模など)を軽減し、エネルギー効率の高い運転をもたらす重要な技術的課題である。
(1)従来技術で述べた遠心濃縮や浮上濃縮は、混合生汚泥を遠心濃縮機や浮上濃縮設備で濃縮する場合、生汚泥中の渣分が悪影響を及ぼすことがあったり、無薬注の場合SS回収率に問題があることから薬注+遠心濃縮や浮上濃縮方式が採用されているが、電力消費量が大きく、設備機器が大規模(重量が大)などの問題を持つものである。
(2)スクリーン濃縮法は、スクリーンが金網である場合は、微細な開口寸法になると、使用する金網素線が細くなり、強度が低くなるとともに、磨耗に対して耐久性が悪くなる。また、金網素線に対して汚泥中の渣が巻きやすくなり、目詰まりを生じろ過能力が早く低下する。また、スクリーンを濾布繊維とすると、開口面積が小さく、大きなろ過速度が得難いので施設規模が大きくなるという問題をもつものであった。
【0006】
(3)脱水機に供給する汚泥の濃度を高くするために、分離濃縮による余剰汚泥の機械濃縮や、混合汚泥の機械濃縮を導入しているケースが多い。脱水機の能力は、投入される汚泥の状態に影響されるが、特に汚泥濃度がその脱水効率に大きく影響する。すなわち汚泥の含水率が高い(低濃縮汚泥)と、脱水機を増やすか、脱水機の処理能力を超えた分を貯留しておかなければならず、維持管理面で負担が増大するという問題をもつものであった。
(4)特開平9−150200号公報に開示の技術及び特開平9−313817号公報に開示の技術は、汚泥と凝集剤を混合して生成したフロック化汚泥を回転するスクリーンドラムにてろ過濃縮するというものであるが、使用されるスクリーンを特定する示唆がないものであるので、水圧耐久性などから一般的に使用される金網やパンチメタル(鋼板に小孔を多数打ち抜いたもの)と考えられる。
こうした従来のスクリーンは、前記したようなろ過性能(開孔率が小さい)が低い、渣が絡みつくなどの問題を持つ(パンチメタルは最もろ過能力が低い)ものである。
【0007】
本発明は以上のような従来技術の持つ問題点に鑑みてなされたものであって、その目的は、高い汚泥濃縮能力を実現する共に大幅な経費削減を可能とする汚泥の濃縮脱水装置を提供するにある。
【0008】
【課題を解決するための手段】
上述した目的を達成するために、本発明の汚泥の濃縮脱水装置は、生汚泥、余剰汚泥、混合汚泥等の高含水汚泥を貯留する汚泥貯留槽と、該汚泥貯留槽の高含水汚泥と凝集剤を受入れ混合してフロック化汚泥を生成する凝集槽と、ろ過手段を備えたろ過槽内に前記凝集槽から供給されたフロック化汚泥を受入れ、濃縮汚泥を生成する汚泥濃縮部と、汚泥濃縮部から送られた濃縮汚泥を脱水する脱水機を備えた汚泥の濃縮脱水処理装置であって、濃縮汚泥を生成するろ過手段に金属製平箔部材と金属製波箔部材を交互に積層して多数の小孔を形成し、且つ適宜な厚さを有するメタルハニカムからなるストレーナーを用いたことを特徴としている。
【0009】
また、汚泥濃縮部の構成において、メタルハニカムからなるろ過手段の円盤状ストレーナーがろ過槽に軸支された水平軸に直交固定されて回転自在とされ、且つ円盤状ストレーナーの下部がろ過槽の上流側と下流側を仕切ってフロック化汚泥内に没水され、円盤状ストレーナー上部の気中部には付着汚泥を除去する手段が設けられ、さらに前記円盤状ストレーナーを軸支した水平軸が減速モーターにて回転駆動可能とされており、円盤状ストレーナーを低速回転しながらろ過槽に受入れたフロック化汚泥をろ過し、円盤状ストレーナーに付着した汚泥を除去しながらろ過槽の上流側に濃縮した汚泥を貯留するようにしたものもよい。
【0010】
また、メタルハニカムからなるろ過手段の円盤状ストレーナーがろ過槽に軸支された水平軸に間隔をおいて複数枚直交固定されてなるものもよい。
【0011】
また、円盤状ストレーナー上部の気中部に設けた付着汚泥を除去する手段が、円盤状ストレーナー背面に対面して配置されたノズルから下流側から上流側に向かって圧縮空気を噴出して除去するようにしてなるものもよい。
【0012】
【発明の実施の形態】
本発明の実施の形態を図面を参照しながら説明する。
<実施の形態1>
図1は本発明の実施の形態1の汚泥の濃縮脱水装置の全体を示す概念図、図2は同じ実施の形態1のろ過手段メタルハニカムストレーナーを示す正面図、図3は同じ実施の形態1のろ過手段の中央縦断面図、図4は同じ実施の形態1のろ過手段のハニカム部分の部分拡大図、図5は同じ実施の形態1の汚泥濃縮部のろ過手段の正断面図である。
【0013】
図1において、汚泥の濃縮脱水装置1は、混合汚泥2(生汚泥や余剰汚泥だけの場合もある)を貯留しておく汚泥貯留槽3と、該貯留槽3から混合汚泥2を他へ供給するポンプ、供給管などからなる汚泥供給手段4と、凝集剤供給部12と、汚泥供給手段4から供給される混合汚泥2と凝集剤供給部12から供給される凝集剤5を攪拌混合し、混合汚泥2の汚泥粒子を凝集してフロック化汚泥6を生成するための凝集槽7(汚泥粒子フロック化工程)と、凝集槽7から自然流下手段8によって自然流下供給されたフロック化汚泥6をろ過濃縮するための汚泥濃縮部9(汚泥濃縮工程)と、汚泥濃縮部9で生成された濃縮汚泥20を自然流下供給により脱水機に供給する濃縮汚泥供給手段41と、該供給手段41から供給される濃縮汚泥20を脱水するロータリープレス脱水機43とからなっている。10、11はモーター駆動の攪拌手段である。
余剰汚泥の含水率は99.5〜99.2パーセントと高く、この余剰汚泥を凝集沈殿する凝集剤には、カチオン系ポリマー、両性高分子凝集剤、水道用アルミニウム、水道用ポリ塩化アルミニウム塩、ミョウバン類、鉄塩類等がある。本実施の形態1は、カチオン系ポリマーのみを使用した凝集フロック化工程と、それを固液分離濃縮する、メタルハニカムストレーナーを主体とした濃縮工程を採用している。
【0014】
汚泥濃縮部9は、フロック化汚泥6を重力ろ過濃縮する濃縮槽15と、該濃縮槽15のフロック化汚泥6をろ過する、円盤状の適宜な厚み(汚泥の渣が絡み巻き付かず且つ必要十分な強度が得られる厚み)を有するメタルハニカムストレーナー部材からなり、低速で回転するろ過手段16と、ろ過手段16のもう一方の側に設けられた、ろ過生成された分離液17を貯留する分離液貯留槽部18と、ろ過手段16にろ過され付着して気中に搬送された付着汚泥を圧縮空気によりろ過手段16から吹き剥がし、濃縮槽15内に落とすための圧縮空気供給手段手段42と、圧縮空気供給手段手段42からの圧縮空気制御部19とからなっている。
凝集槽7から自然流下手段8によってフロック化汚泥6は汚泥濃縮槽に静かに供給されるので、フロック状態が破壊されないでフロック化汚泥の濃縮を行なうことができる。
【0015】
図2、図3、図4及び表1、表2に示すろ過手段16は、SUS304、SUS316、Tiなどの耐食性の強い金属製部材からなる直径800〜1000ミリ、円盤状のメタルハニカムストレーナーで、中心の軸32を汚泥濃縮部で支持し、槽内を0.5〜1.0rpm程度で回転させている。
このメタルハニカムストレーナーからなるろ過手段16は、図2、図3に示すように前後幅、数10mmの強靱な外リング25と、外リング25内に幅20ミリ、厚み50ミクロン(20〜100ミクロンの任意の厚みのものが使用できる)の金属箔平板26と金属箔波板27を交互に積層してなるスクリーン部28が形成されている。
このスクリーン部28は表1、表2に示すごとく、35番メッシュ、36番メッシュ(金網)においてその開口率が、金網が33〜53パーセントであるのに対して、本実施の形態に使用のメタルハニカムストレーナーは83パーセントであり、金網よりそのろ過能力が1.5〜2.5倍となっている。更に、20番メッシュ以下のメタルハニカムの開口率は90%を超える。
29は目開き部である。
【表1】

Figure 0003792108
【表2】
Figure 0003792108
【0016】
以上の如き、本発明に用いるメタルハニカムストレーナーは次のような特徴がある。
孔形状が面の直角方向(水流方向)に直線状に適宜な奥行き(厚み)を有しているため、渣などが素線(繊維)に巻き付くことができず、目詰まりを起こしても反対側から空気の送風や洗浄水の噴射により簡単に除去できるものである。
また、開口率を80%〜90%にできるので、微細な汚泥粒子の捕捉ろ過と優れたろ過速度(処理量が大)を得るという相対立する条件をクリアし、且つ圧力損失が小さい。
その結果、設備スペースがコンパクトで、十分な強度を確保し、信頼性、ろ過品質、長期の運転性能に優れたろ過装置を実現した。
なおメタルハニカムストレーナーは、金属箔は厚さ20〜100ミクロンのステンレス製部材がよく、その開孔率(開孔面積/全断面積)は80〜90パーセントが好ましい。80パーセントより圧力損失が大となり、90パーセントより大きくなるとストレーナーとして構造的に弱くなるからである。
【0017】
本実施の形態で使用するメタルハニカムストレーナーの開孔の大きさは、図4に示すように、開孔に内接する円の直径Dで0.3〜1mmの範囲が好ましい。0.3mmとするのは製造上からの範囲であり、1mmとするのは、ストレーナーにより除去する汚泥粒子の大きさからの範囲である。
ストレーナーの厚さ(水流方向の幅)は、10〜50mmとするのが好ましい。10mmより小さくするとストレーナーとしての強度が弱くなり、50mm以上になると圧力損失が大きくなり、かつ重くなるからである。
ストレーナーに付着した付着汚泥を除去する手段として、スクレーバー装置あるいはスプレー装置がある。スプレー装置の場合、水あるいは圧縮空気を噴射する手段があるが、圧縮空気を用いた方がフロックを壊さないで除去できる。
【0018】
ろ過手段16はモーター30により0.5〜1.0rpmの速度で低速回転していて、その下方をフロック化汚泥6に浸した状態となっている。ろ過手段で捕捉されたフロック化汚泥は濃縮槽15に滞留して濃縮される。ろ過手段16を通過した分離液17は分離液貯留槽18に流れ込む。汚泥面からろ過手段16に付着したまま気中に出た付着汚泥は、圧縮空気供給手段42からの圧縮空気の直射により吹き剥がし落とされて濃縮槽15に戻される。31は支持材である。
【0019】
図6は同じ実施の形態1のロータリープレス脱水機の投入汚泥濃度と脱水機のろ過速度の関係を示すグラフ、図7は同じの実施の形態1の実験結果で薬品注入率と固形物回収率の関係を示すグラフ、図8は同じ実施の形態1の実験結果で薬品注入率と濃縮汚泥濃度の関係を示すグラフである。
脱水機のろ過(脱水)能力と汚泥濃度の関係は、ロータリープレス脱水機を例にとれば、図6に示すように投入汚泥濃度が1%に比べて4%では5倍のろ過(脱水)速度が得られ脱水効率が著しく良好になる。
本発明は、高含水汚泥から水分のみを除き、濃縮して高濃度汚泥とすることにより脱水効率を良好にするものである。汚泥濃度は高める程脱水効率がよくなるが、望ましくは約4%濃度に濃縮して脱水することを目標とする。
【0020】
図7、図8は本発明の汚泥濃縮処理における実験結果を示すものである。
実験に用いた汚泥は余剰汚泥、混合生汚泥で濃度は0.5〜1%程度である。メタルハニカムストレーナーは目開き0.3、0.5、1mmのものを使用し、凝集薬品は高分子凝集剤とした。
図7は薬品注入率(薬注率)と固形物(SS)回収率の関係を示したもの、図8は薬品注入率と濃縮汚泥濃度の関係を示したものである。
上記の実験結果によると、余剰汚泥、混合生汚泥とも0.3%の薬品注入率でほぼ100%の固形物(SS)回収率が得られている。
また、濃縮汚泥濃度は0.3%薬品注入率で約2%以上、0.5%薬品注入率ではデータのばらつきは大きいが、平均値で見ると目標の濃度4%が得られた。
【0021】
以上より、約0.5%〜1%濃度の余剰汚泥、混合生汚泥を凝集剤でフロック化したものを、目開き0.3、0.5、1mmのメタルハニカムストレーナーを用いて濃縮すれば、0.3%以上の薬品注入率でほぼ100%の固形物(SS)回収率が得られる。
また、約0.5%の薬品注入率でフロック化することにより約4%濃度に濃縮でき、前記脱水機のろ過(脱水)能力と汚泥濃度の関係に照らせば、約5倍の脱水効率アップが得られる。
【0022】
また、本実施の形態の方式と従来技術の濃縮方式との電力消費量の比較を試算してみると、次のような試算結果が得られる。
比較のための処理能力は50m3/台・時間・、24時間運転とした。
(試算結果)
本実施の形態の汚泥濃縮脱水装置についての使用薬剤量は前述したカラムテストの結果により算定した。
従来技術の遠心濃縮機によるものは269.639kw/年、浮上式分離槽によるものは96.145kw/年、本実施の形態の汚泥濃縮脱水装置よるものは53.228kwであり、本実施の形態の装置は遠心濃縮機の約5分の1の消費電力であり、安価、軽量であって、エネルギー消費の大幅な低減を実現するものである。
【0023】
<実施の形態2>
図9は本発明の実施の形態2の汚泥濃縮部を示す側面概念図、図10は同じ実施の形態2の汚泥濃縮部を示す内部正面概念図である。 以下の説明において実施の形態1の構成と同じ構成には同じ符号を付しその説明を省略する。
濃縮脱水装置50は濃縮脱水装置1の構成の汚泥濃縮部9を汚泥濃縮部51に変えたものである。
汚泥濃縮部51は、濃縮部本体52の内部を仕切るようにろ過手段16と同じ構成のメタルハニカムストレーナーからなるろ過手段53、54、55、56、57、58が適宜な間隔で直列に配設され、回転軸60により連結されモーター30により低速で回転するようになっている。
ろ過手段53の外側は分離液槽61、ろ過手段53とろ過手段54により形成された空間はろ過槽62、ろ過手段54とろ過手段55により形成された空間は分離液層63、ろ過手段55とろ過手段56により形成された空間はろ過槽64、
ろ過手段56とろ過手段57により形成された空間は分離液層65、ろ過手段57とろ過手段58により形成された空間はろ過槽66、ろ過手段58の外側は分離液槽67を構成している。
【0024】
分離液槽61、63、65、67にはそれぞれ排出部68が設けられ、分離液集約手段69(水路や管)に排出される。また、ろ過槽62、64、66の上方にはフロック化汚泥6を,それぞれのろ過槽内に供給するための汚泥供給部73が連絡されている。
ろ過槽62、64、66にはそれぞれ排出部70が設けられ、濃縮汚泥集約手段71(水路や管)に排出されるようになっていて、自動制御される電磁バルブ72が排出部70に連絡して設けられ、処理完了した濃縮汚泥を自動的に排出するようになっている。
ろ過手段53、54、55、56、57、58、59に付着した付着汚泥を濃縮槽内に風圧により吹き剥がし落とすための送風手段74がろ過手段に対応するように設けられている。
【0025】
【発明の効果】
本発明の汚泥の濃縮脱水装置は、以上述べたように、汚泥粒子をフロック化したフロック化汚泥と、メタルハニカムスクリーンの組み合わせにより、従来にない高効率で省エネルギーの汚泥濃縮処理を実現するものである。具体的には、次に述べるような効果を奏する。
凝縮沈殿したフロック化汚泥を濃縮するメタルハニカムからなるストレーナーは、 ▲1▼ 極めて高い開口率が得られる、▲2▼ 圧力損失が小さい(80%〜90%以上)、▲3▼ コンパクト、▲4▼ 適当な幅(奥行き)のものを製作できる、▲5▼ 高い強度が得られ変形しにくい、▲6▼ 目詰まりし難く付着物が剥離しやすい、▲7▼洗浄容易などの特徴をもつものであるので、渣の絡みつきで目詰まりを起こすことがなく、且つ高い汚泥濃縮能力を有する汚泥の濃縮脱水装置を実現するものである。それは、効率的に含水率96パーセント以下(濃縮率4%以上)の高濃縮汚泥を生成することを可能とし、且つ、固形物回収率を100%にすることを可能とするものである。
またそれは、含水率の低い濃縮汚泥を脱水機で脱水することになり、効率的な脱水をも実現するものでもある。
また、遠心濃縮方法のような高価、高重量、消費電力大という方法に比べて、安価、軽量、約5分の1の電力消費という汚泥濃縮脱水装置を実現するものである。
【0026】
ろ過手段を回転自在の円盤状ストレーナーとしたものは、円盤状ストレーナーで付着汚泥を除去しながら、連続して濃縮汚泥を貯留できるという効果を奏するものである。
【0027】
円盤状ストレーナーに付着した付着汚泥を、圧縮空気を噴出させて除去するものは、フロック化汚泥のフロツク状態を壊さないで汚泥濃縮部に戻すという効果を奏する。
【0028】
ろ過手段である回転自在の円盤状ストレーナーを複数個所に設置したものは、フロック化汚泥を効率よく捕捉でき、短時間で濃縮汚泥を生成することが出来る。
【図面の簡単な説明】
【図1】本発明の実施の形態1の汚泥の濃縮脱水装置の概念図。
【図2】本発明の実施の形態1のろ過手段を示す正面図。
【図3】本発明の実施の形態1のろ過手段の中央縦断面図。
【図4】本発明の実施の形態1のろ過手段のハニカム部分の部分拡大図。
【図5】本発明の実施の形態1の汚泥濃縮部のろ過手段の側面縦断面図。
【図6】本発明の実施の形態1のロータリープレス脱水機の投入汚泥濃度と脱水機のろ過速度の関係を示すグラフ。
【図7】本発明の実施の形態1の実験結果で薬品注入率と固形物回収率の関係を示すグラフ。
【図8】本発明の実施の形態1の実験結果で薬品注入率と濃縮汚泥濃度の関係を示すグラフ。
【図9】本発明の実施の形態2の汚泥濃縮部を示す側面概念図。
【図10】本発明の実施の形態2の汚泥濃縮部を示す内部正面概念図。
【符号の説明】
1・・・・・汚泥処理システム
2・・・・・混合汚泥(生汚泥、余剰汚泥)
3・・・・・汚泥貯留槽
4・・・・・汚泥供給手段
5・・・・・高分子凝集剤
6・・・・・フロック化汚泥
7・・・・・凝集槽
8・・・・・自然流下手段
9・・・・・汚泥濃縮部
10・・・・・攪拌手段
11・・・・・攪拌手段
12・・・・・凝集剤供給部
15・・・・・濃縮槽
16・・・・・ろ過手段
17・・・・・分離液
18・・・・・分離液貯留槽
19・・・・・風制御部
20・・・・・濃縮汚泥
21・・・・・濃縮汚泥供給手段
25・・・・・外リング
26・・・・・金属箔平板
27・・・・・金属箔波板
28・・・・・スクリーン部
29・・・・・目開き部
30・・・・・モーター
31・・・・・支持材
32・・・・・軸
40・・・・・汚泥処理システム
41・・・・・濃縮汚泥供給手段
42・・・・・圧縮空気供給手段
43・・・・・ロータリープレス脱水機
50・・・・・濃縮脱水装置
51・・・・・汚泥濃縮部
52・・・・・濃縮部本体
53・・・・・ろ過手段
54・・・・・ろ過手段
55・・・・・ろ過手段
56・・・・・ろ過手段
57・・・・・ろ過手段
58・・・・・ろ過手段
60・・・・・回転軸
61・・・・・分離液槽
62・・・・・ろ過槽
63・・・・・分離液槽
64・・・・・ろ過槽
65・・・・・分離液槽
66・・・・・ろ過槽
67・・・・・分離液槽
68・・・・・排出部
69・・・・・分離液集約手段
70・・・・・排出部
71・・・・・濃縮汚泥集約手段
72・・・・・電磁バルブ
73・・・・・汚泥供給部
74・・・・・送風手段[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sludge concentration and dewatering apparatus for efficiently concentrating and dewatering a high water content sludge generated in water treatment such as clean water, sewage, and industrial water.
[0002]
[Prior art]
Water treatment such as sewage is generally performed by the process of influent water-first sedimentation tank-reaction tank-final sedimentation tank-separated water.
Sludge generated in this water treatment process includes sludge removed in the first sedimentation basin (hereinafter referred to as “raw sludge”) and sludge removed in the final sedimentation basin (hereinafter referred to as “excess sludge”). There are cases where each is treated according to the purpose, or mixed sludge mixed with raw sludge and surplus sludge.
These sludges have a high water content of over 99 percent (excess sludge is 99.5-99.2 percent), but reducing the water content by 1 percent from 99 percent to 98 percent reduces the volume by half. .
Therefore, sludge can be made as efficient as possible in subsequent processes such as dehydration if the moisture content is as low as possible (concentrated).
[0003]
As a method for concentrating sludge, three methods of gravity concentration, centrifugal concentration, and levitation concentration are known.
Gravity concentration is a method in which sludge is retained in a tank and concentrated using gravity, and the water content of gravity concentration sludge is about 97%.
Centrifugal concentration is a method of concentrating sludge with a centrifugal concentrator using centrifugal force (1000 to 2000 G), and the water content of centrifugal concentrated sludge is about 96 percent.
In the levitation concentration, pressurized water is added to the sludge and led to the levitation tank. Fine bubbles are attached to the sludge particles to reduce the apparent specific gravity of the sludge to the water and separate and concentrate. The water content of the levitation concentration sludge is 96- It is about 97 percent.
Another method for concentrating sludge is a screen concentration method. In this method, a screen such as a wire mesh or cloth is rotated to deposit sludge on the screen, and scooped up to obtain concentrated sludge. A trommel type or vibrating sieve is known.
In the belt press dehydrator, the filter cloth achieves the same function and effect in the gravity dewatering section.
In the sludge treatment, dehydration is an important treatment process as a pre-process of treatment / disposal such as incineration / melting of sludge and fertilizer.
As the dehydrator, belt press type, centrifugal dehydrator, filter press and other models are adopted.
[0004]
Japanese Patent Laid-Open No. 9-150200 discloses “sludge concentration apparatus and cleaning method thereof”.
In this technique, a cylindrical container-like screen drum is erected in a mud supply tank (concentration tank). Flocked sludge generated by mixing flocculant and sludge is stored in a sludge tank, and water in the sludge is filtered and separated in a screen drum to concentrate the flocked sludge in the sludge tank and produce concentrated sludge. Then it is transferred to a filter press and dehydrated. When the screen drum is clogged, the cleaning water is sprayed from the inside to the screen while rotating the drum, and the adhered sludge is peeled off and dispersed in the sludge.
Japanese Patent Application Laid-Open No. 9-313817 discloses a “floc hoisting device in a concentrating device such as sludge”.
This technology is provided in a semi-cylindrical concentrating tank so that the cylindrical screen drum is placed in the concentrating tank and the upper part is exposed to the air. The screen drum is projected downward from the screen drum. In the upward state, a scissor plate having almost the same length as the screen drum provided so as to be immersed in the screen drum is provided, and a scraper for scraping off the sludge adhering to the screen drum is provided above the apparatus.
Flocked sludge generated by mixing flocculant and sludge is stored in a concentration tank, and the separated water that has been filtered and flowed into the screen drum is removed to concentrate the sludge. On the other hand, by slowly rotating the screen drum, when the upper plate is lowered, it protrudes by its own weight and lifts up the sludge particles in the concentration tank, and the sludge is put on the screen drum in the air. The sludge on the screen drum is concentrated while water is drawn into the screen drum. When the upper plate reaches the position just above, it sinks into the screen drum under its own weight, and then the concentrated sludge on the screen drum is recovered by a scraper.
[0005]
[Problems to be solved by the invention]
Concentrating high-moisture sludge to a high concentration is an important technical issue that reduces the burden on post-processing such as dehydration and incineration (treatment facility capacity, facility scale, etc.) and leads to energy-efficient operation. is there.
(1) Centrifugal concentration and levitation concentration as described in the prior art may cause the residue in raw sludge to have an adverse effect when mixed raw sludge is concentrated with a centrifugal concentrator or levitation concentration equipment. In some cases, there is a problem with the SS recovery rate, so the chemical injection + centrifugal concentration and levitation concentration methods are adopted, but the power consumption is large and the equipment is large (heavy). .
(2) In the screen concentration method, when the screen is a wire mesh, the wire mesh element wire to be used becomes thin and the strength is reduced and the durability against wear is deteriorated when the screen has a fine opening size. In addition, the residue in the sludge is easily wound around the wire mesh wire, resulting in clogging and a rapid reduction in the filtration capacity. Further, when the screen is made of filter cloth fibers, the opening area is small, and it is difficult to obtain a large filtration speed, so that the facility scale becomes large.
[0006]
(3) In order to increase the concentration of sludge supplied to the dehydrator, there are many cases in which mechanical concentration of excess sludge by separation and concentration or mechanical concentration of mixed sludge is introduced. The capacity of the dehydrator is affected by the state of the sludge that is input, but the sludge concentration has a great influence on the dewatering efficiency. In other words, if the moisture content of sludge is high (low-concentrated sludge), it is necessary to increase the number of dehydrators or to store the amount exceeding the capacity of the dehydrators, which increases the maintenance burden. It had.
(4) The technology disclosed in Japanese Patent Laid-Open No. 9-150200 and the technology disclosed in Japanese Patent Laid-Open No. 9-313817 are filtered and concentrated with a screen drum rotating a floc sludge produced by mixing sludge and a flocculant. However, since there is no suggestion to specify the screen to be used, it is considered to be a commonly used wire mesh or punch metal (made by punching many small holes in a steel plate) from the viewpoint of hydraulic durability. It is done.
Such conventional screens have problems such as low filtration performance (small porosity) and tangling of residue (punch metal has the lowest filtration ability).
[0007]
The present invention has been made in view of the above-described problems of the prior art, and the object thereof is to provide a sludge concentration and dewatering device that realizes a high sludge concentration capability and enables significant cost reduction. There is.
[0008]
[Means for Solving the Problems]
In order to achieve the above-described object, the sludge concentration and dewatering apparatus of the present invention includes a sludge storage tank for storing high water content sludge such as raw sludge, surplus sludge, mixed sludge, and the high water content sludge and agglomeration of the sludge storage tank. A coagulation tank that receives and mixes the agent to produce flocked sludge, a sludge concentrating section that receives the flocked sludge supplied from the coagulation tank in a filtration tank equipped with filtration means, and generates concentrated sludge; and sludge concentration This is a sludge concentration and dewatering device equipped with a dehydrator for dewatering the concentrated sludge sent from the section, wherein metal flat foil members and metal corrugated foil members are alternately laminated on the filtration means for generating concentrated sludge. A strainer made of a metal honeycomb having a large number of small holes and an appropriate thickness is used.
[0009]
In addition, in the configuration of the sludge concentrating section, the disk-shaped strainer of the filtering means made of a metal honeycomb is fixed orthogonally to the horizontal axis supported by the filter tank so as to be rotatable, and the lower part of the disk-shaped strainer is located upstream of the filter tank. It is submerged in flocked sludge by dividing the side and the downstream side, and a means for removing the attached sludge is provided in the air in the upper part of the disk-shaped strainer, and a horizontal shaft that supports the disk-shaped strainer is a reduction motor. The flocated sludge received in the filtration tank is filtered while rotating the disk-shaped strainer at a low speed, and the sludge concentrated on the upstream side of the filtration tank is removed while removing the sludge adhering to the disk-shaped strainer. What was made to store is also good.
[0010]
Further, a disk-shaped strainer of the filtering means made of a metal honeycomb may be fixed at right angles with a horizontal axis supported by the filtration tank at intervals.
[0011]
Further, the means for removing the attached sludge provided in the aerial part of the upper part of the disc-shaped strainer is configured to eject the compressed air from the downstream side to the upstream side from the nozzle arranged facing the back side of the disc-shaped strainer. The thing which becomes is good.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the drawings.
<Embodiment 1>
FIG. 1 is a conceptual diagram showing the entire sludge concentration and dewatering apparatus according to Embodiment 1 of the present invention, FIG. 2 is a front view showing a filtration means metal honeycomb strainer of the same Embodiment 1, and FIG. FIG. 4 is a partially enlarged view of the honeycomb portion of the filtration means of the first embodiment, and FIG. 5 is a front sectional view of the filtration means of the sludge concentrating section of the same embodiment 1.
[0013]
In FIG. 1, the sludge concentration and dewatering device 1 supplies a mixed sludge 2 (which may be only raw sludge or surplus sludge) and a mixed sludge 2 from the storage tank 3 to the other. Agitation and mixing of the sludge supply means 4 composed of a pump, a supply pipe, etc., the flocculant supply unit 12, the mixed sludge 2 supplied from the sludge supply means 4 and the flocculant 5 supplied from the flocculant supply unit 12, A coagulation tank 7 (sludge particle flocking step) for agglomerating the sludge particles of the mixed sludge 2 to produce a flocked sludge 6, and a flocked sludge 6 supplied from the coagulation tank 7 by natural flow means 8 by natural flow A sludge concentrating section 9 (sludge concentrating step) for filtering and concentrating, a concentrated sludge supplying means 41 for supplying the concentrated sludge 20 generated in the sludge concentrating section 9 to the dehydrator by natural downflow supply, and supplying from the supplying means 41 Concentrated sludge 20 It is made from rotary press dewatering machine 43 to water. Reference numerals 10 and 11 denote motor-driven stirring means.
The water content of the excess sludge is as high as 99.5 to 99.2%, and the coagulant for coagulating and precipitating the excess sludge includes a cationic polymer, an amphoteric polymer flocculant, water supply aluminum, a polyaluminum chloride salt for water supply, There are alums and iron salts. The first embodiment employs an aggregation flocking process using only a cationic polymer and a concentration process mainly using a metal honeycomb strainer that separates and concentrates it.
[0014]
The sludge concentrating section 9 has a concentration tank 15 for gravity-filtering and concentrating the floc sludge 6 and an appropriate disc-shaped thickness for filtering the floc sludge 6 in the concentration tank 15 (the sludge residue is not entangled and necessary) A separation means for storing a filtration means 16 rotating at a low speed and a filtration-separated separation liquid 17 provided on the other side of the filtration means 16, which is made of a metal honeycomb strainer member having a sufficient thickness) A liquid storage tank section 18; a compressed air supply means means 42 for blowing off attached sludge that has been filtered and adhered to the filtration means 16 and carried in the air from the filtration means 16 by compressed air, and dropped into the concentration tank 15; And a compressed air control unit 19 from the compressed air supply means 42.
Since the floc sludge 6 is gently supplied from the coagulation tank 7 to the sludge concentration tank by the natural flow means 8, the floc sludge can be concentrated without destroying the floc state.
[0015]
The filtration means 16 shown in FIG. 2, FIG. 3, FIG. 4 and Tables 1 and 2 is a disk-shaped metal honeycomb strainer having a diameter of 800 to 1000 mm and made of a highly corrosion-resistant metal member such as SUS304, SUS316, or Ti. The central shaft 32 is supported by the sludge concentrating part, and the inside of the tank is rotated at about 0.5 to 1.0 rpm.
As shown in FIGS. 2 and 3, the filtration means 16 comprising this metal honeycomb strainer includes a tough outer ring 25 having a width of several tens of millimeters, a width of 20 mm, and a thickness of 50 microns (20 to 100 microns). The screen portion 28 is formed by alternately laminating the metal foil flat plates 26 and the metal foil corrugated plates 27.
As shown in Tables 1 and 2, the screen portion 28 has a mesh size of 35-mesh and 36-mesh (wire mesh), and the wire mesh is 33 to 53 percent, whereas the screen mesh 28 is used in the present embodiment. The metal honeycomb strainer is 83%, and its filtration capacity is 1.5 to 2.5 times that of the wire mesh. Furthermore, the opening ratio of a metal honeycomb of 20th mesh or less exceeds 90%.
Reference numeral 29 denotes an opening portion.
[Table 1]
Figure 0003792108
[Table 2]
Figure 0003792108
[0016]
As described above, the metal honeycomb strainer used in the present invention has the following characteristics.
Since the hole shape has an appropriate depth (thickness) in a straight line in the direction perpendicular to the surface (water flow direction), residues cannot be wound around the strands (fibers) and clogging occurs. It can be easily removed from the opposite side by blowing air or washing water.
In addition, since the opening ratio can be 80% to 90%, the relative conditions of obtaining fine filtration of fine sludge particles and obtaining an excellent filtration rate (high throughput) are cleared, and the pressure loss is small.
As a result, the equipment space was compact, sufficient strength was ensured, and a filtration device with excellent reliability, filtration quality, and long-term operation performance was realized.
In the metal honeycomb strainer, the metal foil is preferably a stainless steel member having a thickness of 20 to 100 microns, and the opening ratio (opening area / total cross-sectional area) is preferably 80 to 90 percent. This is because the pressure loss becomes larger than 80%, and when it exceeds 90%, it becomes structurally weak as a strainer.
[0017]
As shown in FIG. 4, the size of the opening of the metal honeycomb strainer used in the present embodiment is preferably in the range of 0.3 to 1 mm in the diameter D of the circle inscribed in the opening. 0.3 mm is a range from the production, and 1 mm is a range from the size of the sludge particles to be removed by the strainer.
The thickness of the strainer (width in the water flow direction) is preferably 10 to 50 mm. This is because if it is less than 10 mm, the strength as a strainer becomes weak, and if it is 50 mm or more, the pressure loss increases and becomes heavy.
As a means for removing the attached sludge adhering to the strainer, there is a scraper device or a spray device. In the case of a spray device, there is means for injecting water or compressed air, but using compressed air can be removed without breaking the floc.
[0018]
The filtering means 16 is rotated at a low speed by a motor 30 at a speed of 0.5 to 1.0 rpm, and the lower part is immersed in the floc sludge 6. Flocked sludge captured by the filtering means stays in the concentration tank 15 and is concentrated. The separation liquid 17 that has passed through the filtering means 16 flows into the separation liquid storage tank 18. The adhering sludge that comes out in the air while adhering to the filtering means 16 from the sludge surface is blown off by direct injection of the compressed air from the compressed air supply means 42 and returned to the concentration tank 15. 31 is a support material.
[0019]
FIG. 6 is a graph showing the relationship between the input sludge concentration of the rotary press dehydrator and the filtration rate of the dehydrator in the same Embodiment 1, and FIG. 7 shows the chemical injection rate and solids recovery rate in the experimental results of the same Embodiment 1. FIG. 8 is a graph showing the relationship between the chemical injection rate and the concentrated sludge concentration in the same experimental results as in the first embodiment.
The relationship between the filtration (dehydration) capacity of the dehydrator and the sludge concentration is as follows. In the case of the rotary press dehydrator, as shown in FIG. 6, when the input sludge concentration is 4%, the filtration is 5 times (dehydration). Speed is obtained and dewatering efficiency is remarkably improved.
The present invention improves the dewatering efficiency by removing only water from the highly water-containing sludge and concentrating it into a high-concentration sludge. The higher the sludge concentration, the better the dehydration efficiency, but it is desirable to concentrate it to a concentration of about 4% for dehydration.
[0020]
7 and 8 show experimental results in the sludge concentration treatment of the present invention.
The sludge used in the experiment is surplus sludge and mixed raw sludge, and the concentration is about 0.5 to 1%. A metal honeycomb strainer having an aperture of 0.3, 0.5, or 1 mm was used, and the aggregating chemical was a polymer aggregating agent.
FIG. 7 shows the relationship between the chemical injection rate (chemical injection rate) and the solid matter (SS) recovery rate, and FIG. 8 shows the relationship between the chemical injection rate and the concentrated sludge concentration.
According to the above experimental results, the surplus sludge and the mixed raw sludge have a solids (SS) recovery rate of almost 100% with a chemical injection rate of 0.3%.
Concentrated sludge concentration was about 2% or more at the 0.3% chemical injection rate, and the data variation was large at the 0.5% chemical injection rate.
[0021]
From the above, if the excess sludge and mixed raw sludge having a concentration of about 0.5% to 1% are flocified with a flocculant, and concentrated using a metal honeycomb strainer with an opening of 0.3, 0.5, 1 mm A solids (SS) recovery rate of almost 100% can be obtained with a chemical injection rate of 0.3% or more.
In addition, it can be concentrated to about 4% concentration by flocking at a chemical injection rate of about 0.5%. In view of the relationship between the filtration (dehydration) capacity of the dehydrator and the sludge concentration, the dewatering efficiency is increased about 5 times. Is obtained.
[0022]
Moreover, when the comparison of the electric power consumption of the system of this embodiment and the concentration method of the prior art is estimated, the following calculation result is obtained.
The processing capacity for comparison was 50 m3 / unit / hour / 24-hour operation.
(Estimated result)
The amount of chemicals used for the sludge concentration and dehydration apparatus of the present embodiment was calculated based on the result of the column test described above.
The one using the centrifugal concentrator of the prior art is 269.639 kw / year, the one using the floating separation tank is 96.145 kw / year, and the one using the sludge concentration and dehydration apparatus of this embodiment is 53.228 kw. This device consumes about one-fifth the power consumption of a centrifugal concentrator, is inexpensive and lightweight, and realizes a significant reduction in energy consumption.
[0023]
<Embodiment 2>
FIG. 9 is a side conceptual diagram showing the sludge concentrating part of the second embodiment of the present invention, and FIG. 10 is an internal front conceptual diagram showing the sludge concentrating part of the same second embodiment. In the following description, the same reference numerals are given to the same components as those in the first embodiment, and the description thereof is omitted.
The concentration dewatering device 50 is obtained by replacing the sludge concentration unit 9 of the configuration of the concentration dewatering device 1 with a sludge concentration unit 51.
In the sludge concentrating part 51, filtration means 53, 54, 55, 56, 57, 58 comprising metal honeycomb strainers having the same configuration as the filtration means 16 are arranged in series at appropriate intervals so as to partition the inside of the concentration part main body 52. The motor 30 is connected to the rotary shaft 60 and is rotated at a low speed by the motor 30.
The outside of the filter means 53 is the separation liquid tank 61, the space formed by the filtration means 53 and the filtration means 54 is the filtration tank 62, and the space formed by the filtration means 54 and the filtration means 55 is the separation liquid layer 63, the filtration means 55 and The space formed by the filtration means 56 is a filtration tank 64,
The space formed by the filtering means 56 and the filtering means 57 constitutes the separation liquid layer 65, the space formed by the filtering means 57 and the filtration means 58 constitutes the filtration tank 66, and the outside of the filtration means 58 constitutes the separation liquid tank 67. .
[0024]
Each of the separation liquid tanks 61, 63, 65, and 67 is provided with a discharge portion 68 and discharged to a separation liquid collecting means 69 (water channel or pipe). In addition, a sludge supply unit 73 for supplying the floc sludge 6 into each filtration tank is connected above the filtration tanks 62, 64, and 66.
Each of the filtration tanks 62, 64, and 66 is provided with a discharge unit 70, and is discharged to a concentrated sludge concentrating means 71 (water channel or pipe), and an automatically controlled electromagnetic valve 72 communicates with the discharge unit 70. The concentrated sludge that has been processed is automatically discharged.
Blowing means 74 for blowing off the attached sludge adhering to the filtering means 53, 54, 55, 56, 57, 58, 59 into the concentration tank by wind pressure is provided so as to correspond to the filtering means.
[0025]
【The invention's effect】
As described above, the sludge concentration and dewatering device of the present invention realizes unprecedented high-efficiency and energy-saving sludge concentration treatment by combining a floc sludge obtained by flocking sludge particles and a metal honeycomb screen. is there. Specifically, the following effects can be obtained.
The strainer made of a metal honeycomb that concentrates the flocs sludge that has condensed and settled is as follows: (1) Extremely high aperture ratio is obtained, (2) Pressure loss is small (80% to 90% or more), (3) Compact, (4) ▼ Products with appropriate width (depth) can be manufactured. ▲ 5 ▼ High strength is obtained and is not easily deformed. ▲ 6 ▼ It is hard to clog and the deposits are easy to peel off. Therefore, a sludge concentration and dewatering device that does not cause clogging due to entanglement of the residue and has high sludge concentration capability is realized. This makes it possible to efficiently produce highly concentrated sludge having a water content of 96% or less (concentration rate of 4% or more), and to make it possible to achieve a solids recovery rate of 100%.
In addition, the concentrated sludge having a low water content is dehydrated by a dehydrator, which also realizes efficient dehydration.
Moreover, compared with the method of expensiveness, high weight, and large power consumption like the centrifugal concentration method, it realizes a sludge concentration and dewatering device that is inexpensive, lightweight, and consumes about one fifth of the power.
[0026]
When the filtering means is a rotatable disk-shaped strainer, the concentrated sludge can be continuously stored while removing the adhered sludge with the disk-shaped strainer.
[0027]
What removes adhering sludge adhering to the disk-shaped strainer by jetting compressed air has the effect of returning to the sludge concentrating part without breaking the floc state of the floc sludge.
[0028]
A filter provided with a plurality of rotatable disk strainers as filtration means can efficiently capture flocked sludge and generate concentrated sludge in a short time.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram of a sludge concentration and dewatering device according to a first embodiment of the present invention.
FIG. 2 is a front view showing a filtering means according to the first embodiment of the present invention.
FIG. 3 is a central longitudinal sectional view of the filtering means according to the first embodiment of the present invention.
FIG. 4 is a partially enlarged view of a honeycomb portion of the filtering means according to the first embodiment of the present invention.
FIG. 5 is a side longitudinal sectional view of the filtering means of the sludge concentrating unit according to the first embodiment of the present invention.
FIG. 6 is a graph showing the relationship between the input sludge concentration of the rotary press dehydrator and the filtration rate of the dehydrator according to the first embodiment of the present invention.
FIG. 7 is a graph showing the relationship between the chemical injection rate and the solids recovery rate in the experimental results of Embodiment 1 of the present invention.
FIG. 8 is a graph showing the relationship between the chemical injection rate and the concentrated sludge concentration in the experimental results of Embodiment 1 of the present invention.
FIG. 9 is a conceptual side view showing a sludge concentrating unit according to Embodiment 2 of the present invention.
FIG. 10 is an internal front conceptual diagram showing a sludge concentrating part according to a second embodiment of the present invention.
[Explanation of symbols]
1 ... Sludge treatment system 2 ... Mixed sludge (raw sludge, surplus sludge)
3 ... Sludge storage tank 4 ... Sludge supply means 5 ... Polymer flocculant 6 ... Flocked sludge 7 ... Coagulation tank 8 ... -Natural flow-down means 9 ... Sludge concentration section 10 ... Stirring means 11 ... Stirring means 12 ... Flocculant supply section 15 ... Concentration tank 16 ... ... Filtration means 17 ... Separation liquid 18 ... Separation liquid storage tank 19 ... Wind control unit 20 ... Concentrated sludge 21 ... Concentrated sludge supply means 25 ... Outer ring 26 ... Metal foil flat plate 27 ... Metal foil corrugated sheet 28 ... Screen part 29 ... Opening part 30 ... Motor 31 ... Support material 32 ... Shaft 40 ... Sludge treatment system 41 ... Concentrated sludge supply means 42 ... Compressed air supply means 43 ... .. Rotary press dehydrator 50... Concentration dewatering device 51... Sludge concentration section 52... Concentration section main body 53. ... Filtration means 56 ... Filtration means 57 ... Filtration means 58 ... Filtration means 60 ... Rotating shaft 61 ... Separation liquid tank 62 ····· Filtration tank 63 ··· Separation liquid tank 64 ··· Filtration tank 65 ··· Separation liquid tank 66 ··· Filtration tank 67 ··· Separation liquid tank 68 …… Discharge part 69 …… Separated liquid concentrating means 70 …… Discharge part 71 …… Concentrated sludge consolidating means 72 …… Electromagnetic valve 73 …… Sludge Supply part 74 .. blowing means

Claims (4)

生汚泥、余剰汚泥、混合汚泥等の高含水汚泥を貯留する汚泥貯留槽と、該汚泥貯留槽の高含水汚泥と凝集剤を受入れ混合してフロック化汚泥を生成する凝集槽と、ろ過手段を備えたろ過槽内に前記凝集槽から供給されたフロック化汚泥を受入れ、濃縮汚泥を生成する汚泥濃縮部と、汚泥濃縮部から送られた濃縮汚泥を脱水する脱水機を備えた汚泥の濃縮脱水処理装置であって、濃縮汚泥を生成するろ過手段に金属製平箔部材と金属製波箔部材を交互に積層して多数の小孔を形成し、且つ適宜な厚さを有するメタルハニカムからなるストレーナーを用いたことを特徴とする汚泥の濃縮脱水処理装置。A sludge storage tank for storing high water content sludge such as raw sludge, surplus sludge, mixed sludge, a coagulation tank for receiving and mixing the high water content sludge and the flocculant in the sludge storage tank to generate flocked sludge, and a filtering means. The sludge concentration dewatering unit which receives the floc sludge supplied from the coagulation tank in the filtration tank provided and generates the concentrated sludge and the dewatering machine for dewatering the concentrated sludge sent from the sludge concentration unit. It is a treatment device, and is composed of a metal honeycomb having an appropriate thickness formed by alternately laminating metal flat foil members and metal corrugated foil members on a filtration means for generating concentrated sludge, and forming a large number of small holes. A sludge concentration and dewatering treatment apparatus characterized by using a strainer. 汚泥濃縮部の構成において、メタルハニカムからなるろ過手段の円盤状ストレーナーがろ過槽に軸支された水平軸に直交固定されて回転自在とされ、且つ円盤状ストレーナーの下部がろ過槽の上流側と下流側を仕切ってフロック化汚泥内に没水され、円盤状ストレーナー上部の気中部には付着汚泥を除去する手段が設けられ、さらに前記円盤状ストレーナーを軸支した水平軸が減速モーターにて回転駆動可能とされており、円盤状ストレーナーを低速回転しながらろ過槽に受入れたフロック化汚泥をろ過し、円盤状ストレーナーに付着した汚泥を除去しながらろ過槽の上流側に濃縮した汚泥を貯留するようにしたことを特徴とする請求項1記載の汚泥の濃縮脱水処理装置。In the configuration of the sludge concentrating section, the disk-shaped strainer of the filtering means made of a metal honeycomb is fixed orthogonally to the horizontal axis that is pivotally supported by the filtration tank, and the lower part of the disk-shaped strainer is connected to the upstream side of the filtration tank. The downstream side is partitioned into submerged floc sludge, and a means for removing the attached sludge is provided in the air in the upper part of the disk-shaped strainer. It can be driven, and the floc sludge received in the filtration tank is filtered while rotating the disk-shaped strainer at a low speed, and the concentrated sludge is stored upstream of the filtration tank while removing the sludge adhering to the disk-shaped strainer. The sludge concentration and dewatering apparatus according to claim 1, wherein the apparatus is configured as described above. メタルハニカムからなるろ過手段の円盤状ストレーナーがろ過槽に軸支された水平軸に間隔をおいて複数枚直交固定されていることを特徴とする請求項2記載の汚泥の濃縮脱水処理装置。3. The sludge concentration and dewatering apparatus according to claim 2, wherein a plurality of disc-shaped strainers of the filtering means made of metal honeycomb are fixed at right angles to a horizontal axis supported by the filtration tank at intervals. 円盤状ストレーナー上部の気中部に設けた付着汚泥を除去する手段が、円盤状ストレーナー背面に対面して配置されたノズルから下流側から上流側に向かって圧縮空気を噴出して除去するようにしたことを特徴とする請求項2又は3のいずれかに記載の汚泥の濃縮脱水処理装置。The means for removing the attached sludge provided in the aerial part of the upper part of the disk-shaped strainer was removed by ejecting compressed air from the downstream side to the upstream side from the nozzle arranged facing the back surface of the disk-shaped strainer. 4. The sludge concentration and dewatering apparatus according to claim 2, wherein the sludge is concentrated and dehydrated.
JP2000216986A 2000-07-18 2000-07-18 Sludge concentration dewatering equipment Expired - Lifetime JP3792108B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000216986A JP3792108B2 (en) 2000-07-18 2000-07-18 Sludge concentration dewatering equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000216986A JP3792108B2 (en) 2000-07-18 2000-07-18 Sludge concentration dewatering equipment

Publications (2)

Publication Number Publication Date
JP2002028699A JP2002028699A (en) 2002-01-29
JP3792108B2 true JP3792108B2 (en) 2006-07-05

Family

ID=18712163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000216986A Expired - Lifetime JP3792108B2 (en) 2000-07-18 2000-07-18 Sludge concentration dewatering equipment

Country Status (1)

Country Link
JP (1) JP3792108B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103168007A (en) * 2010-04-21 2013-06-19 促进信托(第1信托13337/99) Sludge treatment system and method
CN103626373A (en) * 2012-08-21 2014-03-12 绍兴县永通丝绸印染有限公司 Sludge dewatering system for printing and dyeing mill

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4664628B2 (en) * 2004-07-08 2011-04-06 三機工業株式会社 Sludge concentration part structure
US7736497B2 (en) * 2006-08-02 2010-06-15 M-I L.L.C. Dewatering system
JP4922803B2 (en) * 2007-03-26 2012-04-25 三機工業株式会社 Sludge distribution and supply equipment
JP5502655B2 (en) * 2009-09-30 2014-05-28 シスメックス株式会社 Sample preparation apparatus, cell analysis apparatus, and analyte concentration method
CN103958827B (en) 2011-09-30 2018-02-06 M-I有限公司 Deal With Drilling Fluid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103168007A (en) * 2010-04-21 2013-06-19 促进信托(第1信托13337/99) Sludge treatment system and method
CN103626373A (en) * 2012-08-21 2014-03-12 绍兴县永通丝绸印染有限公司 Sludge dewatering system for printing and dyeing mill

Also Published As

Publication number Publication date
JP2002028699A (en) 2002-01-29

Similar Documents

Publication Publication Date Title
WO2011001819A1 (en) Water treatment device and method for cleaning filtration material layer for water treatment device
JP2009082822A (en) Filter separation apparatus
JP4317668B2 (en) Membrane magnetic separator
JP3792108B2 (en) Sludge concentration dewatering equipment
JP4181440B2 (en) Filtration apparatus and filtration method using the same
CN213738964U (en) Purification and filtration device for wastewater treatment
JP2005111424A (en) Method and apparatus for removing substance to be removed from fluid and sludge separation and recovery apparatus
JP4362771B2 (en) Shell cleaning and grinding equipment
CN201105999Y (en) Down-flow type continuous deep-bed filtration apparatus
JPS6216125B2 (en)
JP4129479B1 (en) Sludge treatment method and treatment system
JP2004066217A (en) Water treatment apparatus and water treatment method
JP2003225518A (en) Solid-liquid separator
JP5481654B2 (en) Sludge treatment method and treatment system
JPH07108110A (en) Method for concentrating slurry and device therefor
CN207435202U (en) A kind of wastewater treatment unit
JP2006297298A (en) Sludge concentration device
KR100606479B1 (en) Horizontal high-speed filter using fiber filter element
JP4217115B2 (en) Fluid nozzle structure and sludge removal method
JPH07116418A (en) Water area purifying apparatus and method
JP2004243185A (en) Solid-liquid separation treatment method and apparatus therefor
JP4664628B2 (en) Sludge concentration part structure
JPH0952003A (en) Solid-liquid separation method and apparatus therefor
JPH11244844A (en) Laver waste water cleaning device
JP2003275510A (en) Solid-liquid separator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060404

R151 Written notification of patent or utility model registration

Ref document number: 3792108

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140414

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350