JP4162698B1 - Reinforcing member and reinforcing method for concrete structure - Google Patents

Reinforcing member and reinforcing method for concrete structure Download PDF

Info

Publication number
JP4162698B1
JP4162698B1 JP2007227829A JP2007227829A JP4162698B1 JP 4162698 B1 JP4162698 B1 JP 4162698B1 JP 2007227829 A JP2007227829 A JP 2007227829A JP 2007227829 A JP2007227829 A JP 2007227829A JP 4162698 B1 JP4162698 B1 JP 4162698B1
Authority
JP
Japan
Prior art keywords
fiber
fiber sheet
sub
concrete structure
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007227829A
Other languages
Japanese (ja)
Other versions
JP2009057793A (en
Inventor
アブドゥーラ バセム
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WEST HOLDINGS CORPORATION
Original Assignee
WEST HOLDINGS CORPORATION
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WEST HOLDINGS CORPORATION filed Critical WEST HOLDINGS CORPORATION
Priority to JP2007227829A priority Critical patent/JP4162698B1/en
Application granted granted Critical
Publication of JP4162698B1 publication Critical patent/JP4162698B1/en
Publication of JP2009057793A publication Critical patent/JP2009057793A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Working Measures On Existing Buildindgs (AREA)

Abstract

【課題】 コンクリート構造物に対する密着性に優れ比較的廉価なコンクリート構造物の補強部材の実現を課題とする。
【解決手段】 補強対象のコンクリート構造物の表面に接着される繊維シート1と、繊維シート上からコンクリート構造物に所定の間隔を置いて埋め込まれその繊維シート1の側が複数に分割されて放射状に広がって繊維シート1の上面に貼り付けられるファイバーアンカー2と、ファイバーアンカー2の放射状の広がりを覆って貼り付けられる繊維シート片3とを備えたことを特徴とする。
【選択図】 図1
PROBLEM TO BE SOLVED: To realize a relatively inexpensive reinforcing member for a concrete structure having excellent adhesion to the concrete structure.
SOLUTION: A fiber sheet 1 adhered to a surface of a concrete structure to be reinforced, and embedded in the concrete structure from the fiber sheet at a predetermined interval, and the fiber sheet 1 side is divided into a plurality of radial shapes. It is characterized by comprising a fiber anchor 2 that is spread and attached to the upper surface of the fiber sheet 1, and a fiber sheet piece 3 that is attached to cover the radial spread of the fiber anchor 2.
[Selection] Figure 1

Description

本発明は、コンクリート構造物の補強部材および補強方法に関し、特に繊維シートを用いたコンクリート構造物の補強部材および補強方法に関する。   The present invention relates to a reinforcing member and a reinforcing method for a concrete structure, and more particularly to a reinforcing member and a reinforcing method for a concrete structure using a fiber sheet.

建築構造物の基礎などのコンクリート構造物の補強方法として繊維シートを樹脂接着する補強工法が知られている(特許文献1、特許文献2参照)。連続繊維シート接着によるコンクリート構造物の補強は、特殊な補強金具を用いて補強する場合に比べて、施工が簡便で工期が短い等、施工性に優れた特長を有している。また、繊維の目付け量や積層数の増城により柔軟な補強設計が可能であるという長所を有している。
しかしながら、コンクリート構造物と繊維シートとの密着性が悪い場合、繊維シートとコンクリート構造物との間で界面剥離が生じてしまい、強度が低下してしまうという問題があった。
As a method for reinforcing a concrete structure such as a foundation of a building structure, a reinforcing method in which a fiber sheet is bonded to a resin is known (see Patent Document 1 and Patent Document 2). The reinforcement of a concrete structure by continuous fiber sheet bonding has features such as easy construction and a short construction period, as compared with the case where reinforcement is performed using special reinforcing metal fittings. Moreover, it has the advantage that a flexible reinforcement design is possible by increasing the amount of fiber and the number of laminated layers.
However, when the adhesion between the concrete structure and the fiber sheet is poor, there is a problem in that the interfacial peeling occurs between the fiber sheet and the concrete structure, and the strength decreases.

また、繊維シートとして、通常は、高強度かつ高弾性である炭素繊維シートやアラミド繊維シートが多く用いられているが、炭素繊維シートやアラミド繊維シートは比較的高価であるという問題点を有している。一方、ガラス繊維シートは、炭素繊維シートやアラミド繊維シートに比べ材料単価が大幅に安価であるにも関わらず、ヤング係数が過小なため曲げ補強効率が劣るとして、わが国では補強に用いられた例は少ない。しかし、ガラス繊維シートは、炭素繊維シートやアラミド繊維シートに比べ伸びが倍以上であり、靭性率が大きいため、耐震補強効果は充分有り得るものと考えられる。   In addition, carbon fiber sheets and aramid fiber sheets, which are usually high strength and high elasticity, are often used as the fiber sheets, but carbon fiber sheets and aramid fiber sheets have a problem that they are relatively expensive. ing. On the other hand, the glass fiber sheet is used for reinforcement in Japan, because the Young's modulus is too low and the bending reinforcement efficiency is inferior despite the material unit price being significantly cheaper than carbon fiber sheets and aramid fiber sheets. There are few. However, the glass fiber sheet is more than twice as long as the carbon fiber sheet or the aramid fiber sheet, and has a high toughness ratio, so it is considered that the seismic reinforcement effect can be sufficiently obtained.

特開2004−232276号公報JP 2004-232276 A 特開2001−90255号公報JP 2001-90255 A

従来の繊維シートによるコンクリート構造物の補強は、コンクリート構造物と繊維シートとの密着性が悪い場合に強度が低下するという問題があった。また、比較的高価であるという問題があった。
本発明は、このような事情に鑑みてなされたものであって、コンクリート構造物に対する密着性に優れ、比較的廉価なコンクリート構造物の補強部材とその補強材料による補強方法の実現を目的とするものである。
Conventional reinforcement of a concrete structure with a fiber sheet has a problem in that the strength decreases when the adhesion between the concrete structure and the fiber sheet is poor. There is also a problem that it is relatively expensive.
The present invention has been made in view of such circumstances, and an object thereof is to realize a relatively inexpensive reinforcing member for a concrete structure that is excellent in adhesion to a concrete structure and a reinforcing method using the reinforcing material. Is.

上記課題を解決するため、本発明のコンクリート構造物の補強方法は、補強対象のコンクリート構造物のひび割れに沿って複数個の樹脂充填用の注入孔を開ける注入孔開口副工程と、前記注入孔以外の間隙を樹脂で塞ぐシーリング副工程と、前記注入孔に樹脂を充填して所定時間養生する注入孔樹脂充填副工程とを有し、ひび割れ付近に樹脂を充填する樹脂充填工程と、前記コンクリート構造物の表面に接着剤を塗布する接着剤下塗副工程と、前記接着剤が下塗りされた前記コンクリート構造物の表面に前記繊維シートを貼付ける繊維シート貼付副工程と、貼付けられた前記繊維シートの上に接着剤を前記繊維シート中の気泡を抜きながら再度塗布する接着剤中塗副工程と、前記接着剤中塗副工程で塗布した前記接着剤の上にさらに接着剤を塗布して養生する接着剤上塗副工程とを有し、必要に応じて上記各副工程を繰り返して複数層の前記繊維シートを接着するする繊維シート接着工程と、前記繊維シート接着工程終了直後に前記ファイバーアンカーを埋込む埋込孔を前記繊維シート上の複数個所に穿孔する埋込孔穿孔副工程と、前記埋込孔内部の切粉を吸塵して清掃する埋込孔清掃副工程と、前記埋込孔に樹脂を注入して前記ファイバーアンカーを所定長さまで挿入するファイバーアンカー挿入副工程と、所定の養生後、前記ファイバーアンカーの前記埋込孔から出ている残り部分を複数のファイバーに分割して前記繊維シートの上面に放射状に広げて貼付けるファイバー貼付副工程と、前記ファイバー貼付副工程で放射状に広げて貼付けた前記ファイバーを覆う程度の大きさの繊維シートを貼り付けて接着剤を含侵させるファイバー被覆副工程とを有し、前記繊維シートを貼り付けた前記コンクリート構造物の表面にファイバーアンカーを埋込んで固着するファイバーアンカー埋込み工程とを有することを特徴とする。 In order to solve the above-described problems, a concrete structure reinforcing method according to the present invention includes an injection hole opening sub-step of opening a plurality of injection holes for filling a resin along a crack of a concrete structure to be reinforced, and the injection hole. A sealing sub-process for closing a gap other than a resin, and an injection hole resin filling sub-process for filling the injection hole with resin and curing for a predetermined time, and filling the resin in the vicinity of the crack, and the concrete An adhesive primer sub-process for applying an adhesive to the surface of the structure, a fiber sheet sticking sub-process for sticking the fiber sheet to the surface of the concrete structure to which the adhesive is primed, and the fiber sheet applied An adhesive intermediate coating sub-process for applying the adhesive again while removing air bubbles in the fiber sheet, and an adhesive further applied on the adhesive applied in the adhesive intermediate coating sub-process. An adhesive overcoating sub-process to fabricate and cure, and a fiber sheet adhering process for adhering the fiber sheets of a plurality of layers by repeating each sub-process as necessary, and immediately after the fiber sheet adhering process is completed An embedding hole drilling sub-process for drilling an embedding hole for embedding the fiber anchor at a plurality of locations on the fiber sheet, and an embedding hole cleaning sub-process for sucking and cleaning chips inside the embedding hole; A fiber anchor insertion sub-step for injecting resin into the embedding hole and inserting the fiber anchor to a predetermined length, and after a predetermined curing, the remaining portions coming out from the embedding hole of the fiber anchor into a plurality of fibers large enough to cover a split the fiber sheet top surface sticking Keru fibers sticking spread in a radial sub-by step, the fibers adhered spread radially by the fibers sticking substep And a fiber coating sub step of impregnating the adhesive paste fiber sheet piece, the surface of the concrete structure pasted the fiber sheet and a fiber anchor embedding affixing crowded embedding the fibers anchor It is characterized by having.

また、上記課題を解決するため、本発明のコンクリート構造物の補強部材は、補強対象のコンクリート構造物の表面に接着される繊維シートと、前記繊維シート上から前記コンクリート構造物に所定の間隔を置いて埋め込まれその前記繊維シートの側が複数に分割されて放射状に広がって前記繊維シートの上面に貼り付けられるファイバーアンカーと、前記ファイバーアンカーの放射状の広がりを覆って貼り付けられる繊維シート片とを備えたことを特徴とする。   In order to solve the above problems, a reinforcing member for a concrete structure according to the present invention includes a fiber sheet bonded to the surface of a concrete structure to be reinforced, and a predetermined interval from above the fiber sheet to the concrete structure. A fiber anchor that is placed and embedded and the fiber sheet side is divided into a plurality of pieces and spreads radially and is attached to the upper surface of the fiber sheet; and a fiber sheet piece that is attached to cover the radial spread of the fiber anchor. It is characterized by having.

本発明は、以上のように構成し機能するので、比較的簡便容易な作業工程で、大規模な機械装置を必要とせず、廉価に、確実な補強を短い工期で実施可能なコンクリート構造物の補強方法を実現することができるとともに、比較的簡単な構成と少ない素材で、廉価に、確実な補強が可能なコンクリート構造物の補強部材を実現することができる。   Since the present invention is configured and functions as described above, it is a relatively simple and easy work process, does not require a large-scale mechanical device, and can be used for a concrete structure that can be inexpensively and reliably reinforced in a short construction period. A reinforcing method can be realized, and a reinforcing member for a concrete structure that can be reliably reinforced at a low cost with a relatively simple configuration and a small number of materials can be realized.

以下、本発明のコンクリート構造物の補強部材の実施形態と補強方法について、図面、図表に沿って詳細に説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of a reinforcing member for a concrete structure and a reinforcing method according to the present invention will be described in detail with reference to the drawings and diagrams.

図1および図2は、本発明の補強部材と、それと比較する比較試料とに、曲げ補強効果検証実験を実施するための供試体の側面図と断面図である。図1および図2において、符号1は繊維シートで、符号1−1は1層目の繊維シート、符号1−2は2層目の繊維シートを表す。符号2はファイバーアンカー、符号3はファイバーアンカーを覆う繊維シート片である。また符合10は本発明の検証実験のための供試体、符号11は軸方向筋、符号12はせん断筋、符号13は試験中に供試体10を支える支点、符号14は荷重印加点である。また、h1は1層目の繊維シートの高さ、h2は2層目の繊維シートの高さを表す。
図3は、供試体10の種類を示す図表である。供試体10は、既設木造建物の布基礎を想定して過小鉄筋比のT形断面はりとした。ひび割れ損傷を有する基礎を再現するため、全供試体10が同様のひび割れ状態となるように予め中央部の曲げスパン内に、125mm間隔のひび割れ誘導目地を5ケ所設け、それが0.2mm幅程度となるまで4点曲げ載荷を行った。供試体10はType A〜Fの6体である。
初期ひび割れ導入後、すべての供試体10のひび割れにエポキシ樹脂注入によるひび割れ補修を実施した。そうして、Type A はエポキシ樹脂注入のみ、TypeB〜Fはエポキシ樹脂注入後、ガラス繊維シート1を接着して補強した。
さらに本発明の実施形態に対応するTypeE、Fについてはファイバーアンカー2を450mm間隔で6本設置しガラス繊維シート1の剥離を抑制するようにした。
FIG. 1 and FIG. 2 are a side view and a cross-sectional view of a specimen for conducting a bending reinforcement effect verification experiment on the reinforcing member of the present invention and a comparative sample to be compared with the reinforcing member. 1 and 2, reference numeral 1 denotes a fiber sheet, reference numeral 1-1 denotes a first-layer fiber sheet, and reference numeral 1-2 denotes a second-layer fiber sheet. Reference numeral 2 denotes a fiber anchor, and reference numeral 3 denotes a fiber sheet piece covering the fiber anchor. Reference numeral 10 is a specimen for a verification experiment of the present invention, reference numeral 11 is an axial streak, reference numeral 12 is a shear bar, reference numeral 13 is a fulcrum that supports the specimen 10 during the test, and reference numeral 14 is a load application point. H1 represents the height of the first-layer fiber sheet, and h2 represents the height of the second-layer fiber sheet.
FIG. 3 is a chart showing the types of the specimen 10. The specimen 10 was a T-shaped cross-section beam with an under-reinforcing bar ratio assuming a cloth foundation of an existing wooden building. In order to reproduce a foundation having crack damage, five 125 mm-spaced crack guide joints are provided in the bending span of the central portion in advance so that all the specimens 10 are in the same cracked state, which is about 0.2 mm wide. 4 point bending loading was performed until it became. There are six specimens 10 of Type A to F.
After the initial crack was introduced, cracks were repaired by injecting epoxy resin into all the specimens 10. Thus, Type A was only reinforced with epoxy resin, and Type B to F were reinforced by adhering the glass fiber sheet 1 after the epoxy resin was injected.
Furthermore, for TypeE and F corresponding to the embodiment of the present invention, six fiber anchors 2 are installed at intervals of 450 mm so as to suppress the peeling of the glass fiber sheet 1.

本来であれば、曲げ補強には引張側底面にシート1を接着して補強することが望ましいが、本試験で対象としている既設木造建物布基礎では、作業空間が狭小であり補強施工に制約を受けるので、側面かつ片面のみの施工に限定されるため、図1や図3に示したような貼付位置とした。
ガラス繊維シート1は、ガラス繊維を格子状に編込みシート状に加工したものである。ファイバーアンカー2は、ガラス繊維ロービングを束ね、傘部を放射状に広げてシートと含浸させて一体化させたものである。コンクリート、鉄筋、ガラスシートおよび樹脂接着剤の特性を図4の図表に示す。
Originally, it is desirable to reinforce by bending the sheet 1 to the bottom surface of the tension side for bending reinforcement, but the existing wooden building cloth foundation that is the subject of this test has a narrow work space and restricts reinforcement work. Since it is received, it is limited to the construction on the side and only on one side, so the pasting position as shown in FIGS. 1 and 3 was adopted.
The glass fiber sheet 1 is obtained by processing glass fibers into a lattice-like knitted sheet. The fiber anchor 2 is formed by bundling glass fiber rovings, spreading an umbrella portion radially and impregnating the sheet with a sheet. The characteristics of concrete, rebar, glass sheet and resin adhesive are shown in the chart of FIG.

ここで、本発明のコンクリート構造物の補強方法の一実施の形態についてその手順を説明する。図5に、この補強方法の処理フローチャートを示す。
(1)樹脂充填工程
コンクリート構造物のひび割れに沿って数箇所、樹脂充填用の注入孔を開け(注入孔開口副工程:S1)、この注入孔以外の間隙をシーリングする(シーリング副工程:S2)。次に、注入孔に工ポキシ樹脂充填用の治具を取り付け、専用の注入器具を用いてエポキシ樹脂を充填する(注入孔樹脂充填副工程:S3)。
シート接着施工面のみ樹脂注入開始後約5時間経過した時点で、注入器具を外し、コンクリート構造物の表面に表面処理を実施して、シート接着施工へ移行する。
Here, the procedure of an embodiment of the method for reinforcing a concrete structure of the present invention will be described. FIG. 5 shows a processing flowchart of this reinforcing method.
(1) Resin filling process Several injection holes for resin filling are opened along the cracks of the concrete structure (injection hole opening sub-process: S1), and the gaps other than the injection holes are sealed (sealing sub-process: S2). ). Next, a jig for filling the construction resin is installed in the injection hole, and the epoxy resin is filled using a dedicated injection device (injection hole resin filling sub-step: S3).
When about 5 hours have elapsed since the start of resin injection only on the sheet bonding construction surface, the injection tool is removed, the surface of the concrete structure is subjected to surface treatment, and the process proceeds to sheet bonding construction.

(2)繊維シート接着工程
ひび割れ箇所にエポキシ樹脂を充填させたコンクリート構造物の表面にガラス繊維シート1を接着させる工程である。
2層に亙りエポキシ接着剤を下塗り(接着剤下塗副工程:S4)した後、ガラス繊維シート1を貼り付ける(繊維シート貼付副工程:S5)。貼付後、シートの上からエポキシ接着剤を再度塗布し、脱泡用ローラーを用いてシート中の気泡を抜く(接着剤中塗副工程:S6)。最後にエポキシ接着剤を塗布(接着剤上塗副工程:S7)して空気中で養生する。
次に、ガラス繊維シート1を複数層接着するかどうかを判定し(S8)、積層する場合は、S4に戻って上記各副工程を繰り返して複数層のガラス繊維シート1を接着する。
(2) Fiber sheet bonding step This is a step of bonding the glass fiber sheet 1 to the surface of a concrete structure in which an epoxy resin is filled in the cracked portion.
The epoxy adhesive is spread over two layers and the glass fiber sheet 1 is pasted (fiber sheet pasting sub-step: S5) after the primer is subbed (adhesive primer sub-step: S4). After pasting, the epoxy adhesive is applied again from the top of the sheet, and bubbles in the sheet are removed using a defoaming roller (adhesive intermediate coating sub-step: S6). Finally, an epoxy adhesive is applied (adhesive overcoating sub-step: S7) and cured in air.
Next, it is determined whether or not the glass fiber sheet 1 is to be bonded in plural layers (S8). When the glass fiber sheets 1 are laminated, the process returns to S4 and the above sub-process is repeated to bond the glass fiber sheets 1 in the plural layers.

(3)ファイバーアンカー埋め込み工程
ガラス繊維シート1の貼付直後にファイバーアンカー2を50mm埋め込む。
まず、ガラス繊維シート接着工程終了直後に前記ファイバーアンカー2を埋込む埋込孔を所定の間隔を置いて繊維シート上の複数個所に穿孔する(埋込孔穿孔副工程:S9)。
ついで、埋込孔内部の切粉を吸塵して清掃する(埋込孔清掃副工程S10)。
さらに、埋込孔に樹脂を注入してファイバーアンカー2の先端を、ガラス繊維シート1を貫通させてコンクリート構造物に所定長さまで埋め込む(ファイバーアンカー挿入副工程:S11)。
その後、所定の養生後、ファイバーアンカー2の埋込孔から外側に露出したファイバーの残り部分を複数に分割して繊維シートの上面に放射状に広げて貼付ける(ファイバー貼付副工程:S12)。
ついで、放射状に広げて貼付けたファイバーを覆うようにガラス繊維シート片(100*100mm)3を貼付けてエポキシ接着剤で含侵接着する(ファイバー被覆副工程:S13)。
(3) Fiber anchor embedding process Immediately after the glass fiber sheet 1 is stuck, the fiber anchor 2 is embedded by 50 mm.
First, immediately after completion of the glass fiber sheet bonding step, the embedding holes for embedding the fiber anchor 2 are perforated at a plurality of locations on the fiber sheet at a predetermined interval (embedding hole perforating sub-step: S9).
Next, dust inside the embedded hole is sucked and cleaned (embedded hole cleaning sub-process S10).
Further, resin is injected into the embedding hole, and the tip of the fiber anchor 2 is penetrated through the glass fiber sheet 1 and embedded in the concrete structure to a predetermined length (fiber anchor insertion sub-step: S11).
Then, after predetermined curing, the remaining portion of the fiber exposed to the outside from the embedding hole of the fiber anchor 2 is divided into a plurality of pieces and spread radially on the upper surface of the fiber sheet and pasted (fiber pasting sub-step: S12).
Next, a glass fiber sheet piece (100 * 100 mm) 3 is attached so as to cover the fiber that is radially spread and attached, and impregnated with an epoxy adhesive (fiber coating sub-step: S13).

このような一連の工程により、本発明のコンクリート構造物の補強方法が実現され、比較的簡便容易な作業によって、後述するように構造物の曲げ耐力、変形性能を向上することとともに、ガラス繊維シートの剥離を抑制してより効果的な補強を行うことができる。本発明の補強方法が実施された供試体はTypeEおよびTypeFである。   Through such a series of steps, the method for reinforcing a concrete structure according to the present invention is realized, and the bending strength and deformation performance of the structure are improved by a relatively simple and easy operation as will be described later. More effective reinforcement can be performed by suppressing peeling of the resin. Specimens on which the reinforcing method of the present invention was implemented are TypeE and TypeF.

再び、供試体に基づく試験結果に話を戻す。
補修および補強の完了した供試体10についてTypeA〜Eは漸増4点曲げ載荷試験を実施し、TypeFには同じ補強タイプであるTypeEの試験結果により、荷重−たわみ曲線の勾配が変化した点の変位を基準に、その奇数倍となるよう載荷ステップを設定し、各ステップごとに3回の繰返し載荷を実施した。載荷試験中、シート、鉄筋およぴコンクリートのひずみ、スパン中央部の鉛直変位、供試体下面のひび割れ幅を計測した。
Again, we return to the test results based on the specimen.
For the specimen 10 that has been repaired and reinforced, Type A to E are subjected to an incremental 4-point bending load test, and Type F is the displacement of the point where the slope of the load-deflection curve has changed according to the test result of Type E, which is the same reinforcement type. The loading step was set so as to be an odd multiple thereof, and loading was repeated three times for each step. During the loading test, the strain of the sheet, rebar and concrete, vertical displacement at the center of the span, and crack width at the bottom of the specimen were measured.

本発明の実施形態のTypeEおよびTypeFと比較するTypeA〜Dについてその変形および破壊性状を示す。
初期ひび割れ導入箇所で先行的にひび割れ幅が拡大していったが、シート補強を実施したTypeB〜Dはひび割れが次第に分散し、載荷スパン全域に渡って曲げひび割れが進展した。
供試体の破壊は、無補強のTypeAでは荷重が増加せずにたわみおよびひび割れ幅のみが増加していき、たわみが4mmを超えた時点で載荷を終了した。シート補強を実施したTypeB〜Dでは、各最大荷重時にシートの大きな剥離昔が発生して荷重が低下した。この時点で載荷を終了した。
TypeB〜Dの破壊形式は、上縁側コンクリートの圧壊によって終局に至る曲げ圧縮破壊型ではなく、シートの剥離が生じて終局に至る剥離破壊型であった。また全供試体ともに最終的にシートの破断には至っていない。これより本補強供試体の曲げ耐力は、シートの付着強度に依存していると考えられる。
スパン中央部の荷重−たわみ関係を図6に示す。シート補強によって曲げ耐力および靭性が顕著に向上したことが確認できる。また、その補強効果はシートの補強量に依存している。
The deformation | transformation and destruction property are shown about TypeA-D compared with TypeE and TypeF of embodiment of this invention.
Although the crack width expanded in advance at the initial crack introduction site, the cracks gradually disseminated in Type B to D, where the sheet reinforcement was performed, and the bending cracks progressed over the entire loading span.
With respect to the failure of the specimen, with unreinforced Type A, only the deflection and crack width increased without increasing the load, and loading was terminated when the deflection exceeded 4 mm. In types B to D where sheet reinforcement was performed, the sheet was largely peeled off at each maximum load, and the load decreased. At this point, loading was completed.
The type of failure of Type B to D was not a bending compression failure type that reached the end by crushing the upper edge side concrete, but a release failure type that caused the sheet to peel and reached the end. In addition, all the specimens did not eventually break the sheet. From this, it is considered that the bending strength of the reinforcing specimen depends on the adhesion strength of the sheet.
FIG. 6 shows the load-deflection relationship at the center of the span. It can be confirmed that the bending strength and toughness are remarkably improved by sheet reinforcement. Further, the reinforcing effect depends on the reinforcing amount of the sheet.

次に、これらの供試体10でのシートのひずみと剥離状況の関係を示す。TypeB〜Fのスパン中央部最下縁の、荷重−シートひずみ関係を図7に示す。図よりTypeB〜Dでは、ひび割れ発生後にシートのひずみが増加することから、シートが引張抵抗に寄与していることがわかる。
TypeB〜Dの片面に接着したシートは、荷重の増加に伴い徐々にコンクリートから剥離して行った。シートの剥離は、載荷スパン間に生じたコンクリートのひび割れに沿って筋状に発生した後、剥離領域が次第に支点方向へと拡大して行った。コンクリートひび割れおよぴシートの剥離状況を図8に示す。
Next, the relationship between the sheet distortion and the peeling state in these specimens 10 is shown. FIG. 7 shows the load-sheet strain relationship at the lowermost edge of the center of the span of Type B to F. From the figure, it can be seen that in Type B to D, the sheet contributes to the tensile resistance because the distortion of the sheet increases after the occurrence of the crack.
The sheets adhered to one side of Type B to D were gradually peeled off from the concrete as the load increased. Sheet peeling occurred in a streak pattern along the cracks in the concrete that occurred between the loading spans, and then the peeling area gradually expanded in the direction of the fulcrum. FIG. 8 shows a concrete crack and a state of peeling of the sheet.

ついで、本発明の実施の形態に該当するTypeE、Fについてその変形および破壊性状を示す。
TypeEおよびTypeFの荷重−たわみ関係を図9に示す。TypeEは荷重92kN以降、荷主の増減を3回線返した後、95kNで大きな剥離音とともにシートの端部(支点側)がコンクリートから完全に剥離して破壊した。これにより、ファイバーアンカーがシートの剥離を抑制して、曲げ耐力と靭性を大幅に改善できることが明らかとなった。
TypeFはTypeEの試験結果より荷重−たわみ曲線の勾配が変化した点の変位を基準変位∂y=1.32mmとして繰返し載荷を実施した。変位が17∂y(P=89.5kN)までは、TypeEとほぼ同様の挙動を示していることが確認できる。変位を19∂y へと増加させた時点で、大きな剥離昔が発生し、21∂yへ増加させようとしたときに大きな剥離音とともにシートの端部(支点側)がコンクリートから完全に剥離するとTypeEと同様の破壊形式であった。
Next, the deformation and destructive properties of Type E and F corresponding to the embodiment of the present invention are shown.
The load-deflection relationship of TypeE and TypeF is shown in FIG. In TypeE, after the load 92 kN, the ship owner increased and decreased 3 lines, and at 95 kN, the sheet edge part (fulcrum side) was completely peeled from the concrete and destroyed. As a result, it has been clarified that the fiber anchor can significantly improve the bending strength and toughness by suppressing the peeling of the sheet.
TypeF was repeatedly loaded with the displacement at the point where the slope of the load-deflection curve changed from the test result of TypeE as the standard displacement ∂y = 1.32mm. It can be confirmed that the behavior is almost the same as that of Type E until the displacement is 17∂y (P = 89.5 kN). When the displacement is increased to 19 ∂y, a large amount of peeling occurs, and when it is attempted to increase to 21 ∂y, the sheet edge (fulcrum side) completely peels from the concrete along with a loud peeling sound. The destruction type was the same as TypeE.

次に、本発明の実施形態の供試体でのシートのひずみと剥離状況の関係を示す。
図7に示す荷重−シートひずみ曲線からファイバーアンカーを設置したTypeEおよびTypeFは、片面貼付のTypeB、Cに比べ、最大荷重時のひずみが増大し、両面貼付のType Dと同等になっていることがわかる。これより、耐力に大きく影響するシートの剥離をファイバーアンカーの設置により遅延させたTypeE、Fはシートの補強効果をより有効にすることがわかる。
なお、シートの剥離ほTypeB〜Dと同様に載荷スパン間のひび割れに沿って筋状に発生した後、剥離領域が次第に交点方向へ拡大していった。但し、TypeE、Fは片方の支点側最端部のファイバーアンカーl本が、既設コンクリートとガラス繊維シートの界面でせん断破断するとともに、シートが完全にコンクリートと剥離した。
TypeEに発生したひび割れは、ファイバーアンカーを設置していないTypeB〜Dに発生した曲げひび割れに対して、載荷点から支点方向へせん断ひび割れが発生しているのが確認できる。曲げ補強効果を検証するため、曲げ破壊が先行するように供試体を作製したが、ファイバーアンカーの設置によりシートの剥離発生後もシートが引張力を負担し続けるため、曲げ耐力が増大することにともない、せん断ひび割れが発生したものと考えられる。
Next, the relationship between the sheet distortion and the peeling state in the specimen of the embodiment of the present invention is shown.
From the load-sheet strain curve shown in Fig. 7, TypeE and TypeF with fiber anchor installed have increased strain at maximum load compared to TypeB and C applied on one side, and are equivalent to Type D on both sides. I understand. From this, it can be seen that TypeE and F, in which the peeling of the sheet that greatly affects the proof stress is delayed by the installation of the fiber anchor, makes the sheet reinforcing effect more effective.
In addition, after the sheet peeling occurred like streaks along the cracks between the loading spans as in Type B to D, the peeling area gradually expanded in the direction of the intersection. However, in TypeE and F, one fiber anchor at the fulcrum end at one end sheared at the interface between the existing concrete and the glass fiber sheet, and the sheet completely separated from the concrete.
It can be confirmed that the cracks generated in Type E are shear cracks from the loading point toward the fulcrum with respect to the bending cracks generated in Type B to D where the fiber anchor is not installed. In order to verify the bending reinforcement effect, the specimen was prepared so that the bending fracture precedes, but the sheet continues to bear the tensile force even after the peeling of the sheet occurs due to the installation of the fiber anchor, so that the bending strength increases. At the same time, it is considered that shear cracks occurred.

次に、補強効果を各供試体について比較する。
(1)降伏および終局耐力
以下に述べる諸値の定義を図10に示す。
ひび割れ発生箇所の最下段の鉄筋が降伏した時点の荷重を降伏耐力をPy(図10)としてTypeAの降伏耐力(Pya)を基準に相対比較したもの、および各供試体の荷重が最大となる点を終局耐力Pu(図10)として、TypeAの終局耐力を基準に相対比較したものをそれぞれ図11に示す。降伏耐力においてはTypeCを除き、供試体間の相対関係は終局耐力と同様であり、シート補強により降伏耐力は1.4〜1.9倍まで増大していることがわかる。また終局耐力は、両面にシートを施工したTypeDが最も大きくTypeAの3.8倍となった。TypeE、Fは、シートの補強量が同程度のTypeCと比較して終局耐力が大幅に増大していることから、ファイバーアンカーの剥離抑制効果が明らかである。
Next, the reinforcing effect is compared for each specimen.
(1) Yield and ultimate yield strength The definitions of various values described below are shown in FIG.
Relative comparison based on the yield strength (Pya) of Type A with the yield strength as Py (Fig. 10) when the lowermost reinforcing bar at the crack occurrence point yields, and the point where the load of each specimen is maximum 11 is shown in FIG. 11, which is a relative comparison based on the ultimate proof strength of Type A, with the ultimate proof strength Pu (FIG. 10). With respect to the yield strength, except for TypeC, the relative relationship between the specimens is the same as the ultimate strength, and it can be seen that the yield strength is increased by 1.4 to 1.9 times due to sheet reinforcement. The ultimate proof stress was the largest for TypeD, with sheets on both sides, and 3.8 times that of TypeA. TypeE and F have a significant increase in ultimate yield strength compared to TypeC with the same amount of sheet reinforcement, so the fiber anchor delamination suppression effect is clear.

(2)変形性触
降伏耐力時のスパン中央部における変位をδy、最大荷重時の変位をδuとし、δuをδyで除した値を塑性率μ(μ=δu/δy)として各タイプの相対比較を行った。TypeAの塑性率(μa)を基準にそれぞれ比較した塑性率比を図12に、各タイプの塑性率と合わせて示す。
また、荷重−たわみ曲線において、最大荷重時までの曲線で作られる面積をエネルギー吸収能Eと定義し(図10)、TypeAのエネルギー吸収能(Ea)を基準として相対比較したものを図13に示す。
図より、TypeEのエネルギー吸収能がTypeAの約20倍と最も大きく、繰返し載荷を実施したTypeFでも、両面にシートを施工したTypeDと同等程度のエネルギー吸収能を有することが確認できる。これらにより、ファイバーアンカーによるシートの剥離抑制効果に起因するエネルギー吸収能の増大が明らかである。
(2) Deformable touch The displacement at the center of the span during yield strength is δy, the displacement at maximum load is δu, and the value obtained by dividing δu by δy is the plastic modulus μ (μ = δu / δy). A comparison was made. FIG. 12 shows the ratio of plasticity ratios compared with the plasticity ratio (μa) of Type A, together with the plasticity ratio of each type.
In addition, in the load-deflection curve, the area formed by the curve up to the maximum load is defined as energy absorption capacity E (FIG. 10), and a relative comparison based on Type A energy absorption capacity (Ea) is shown in FIG. Show.
From the figure, it can be confirmed that TypeE has the largest energy absorption capacity of about 20 times that of TypeA, and TypeF, which has been repeatedly loaded, has the same energy absorption capacity as TypeD with sheets on both sides. From these, it is clear that the energy absorption capacity is increased due to the sheet peeling suppression effect by the fiber anchor.

図表14および図15に、シートの終局ひずみを2通り、いずれも終局時まで断面の平面保持則が成り立つことを仮定してRC曲げ理論に基づく終局耐力の計算値と実験値を比較した結果を示す。すなわち、計算値(I)は、TypeAでは上縁コンクリートひずみがコンクリートの終局ひずみに達した時を、またTypeB〜Fについては最下端シートひずみが設計破断ひずみの2.2%に達した時をそれぞれ終局状態として、それまではシートは剥離せずに完全合成断面として挙動することを想定して算定した曲げ耐力である。
これにより、ファイバーアンカーを設置していないTypeB〜Dの実験値と計算値(I)の比は0.43〜0.59、またファイバーアンカーを設置したTypeAE、Fの比は0.62〜0.68と、いずれも過小な値を示した。これは、終局時のシートひずみが設計破断ひずみに比べて過小であること、ファイバーアンカーを設置することでシート剥離を遅延させ、引張抵抗力を増加させることを追証したものである。
Figures 14 and 15 show the results of comparing the calculated ultimate proof stress based on the RC bending theory and the experimental value, assuming that there are two types of ultimate strain of the sheet, and that the plane retention law of the cross section holds until the ultimate time. Show. That is, the calculated value (I) is the value when the upper edge concrete strain reaches the ultimate strain of concrete in Type A, and the time when the bottom end sheet strain reaches 2.2% of the design fracture strain for Type B to F. The bending strength was calculated assuming that each sheet is in the final state and the sheet behaves as a completely synthetic cross section without peeling.
As a result, the ratio of the experimental value and the calculated value (I) of Type B to D without the fiber anchor is 0.43 to 0.59, and the ratio of Type AE and F with the fiber anchor is 0.62 to 0 .68, both values were too small. This confirms that the ultimate sheet strain is less than the design breaking strain and that the fiber anchor is installed to delay sheet peeling and increase the tensile resistance.

これに対して計算値(II)は、最大荷重時におけるシートひずみの実測値に基づく曲げ耐力の算定値である。終局時のシートひずみは破断ひずみの40〜60%相当の0.8〜1.3%であり、これに基づく実鼓値と計算値(II)の比は、0.74〜1.34となり計算値(I)に比べて実験値に近い結果となった。特に、ファイバーアンカーを設置したTypeAE、Fでは、シートの終局ひずみは1.2〜1.3%で、これを用いた計算催は実験値と良く一致する結果となった。
以上より、シートの終局時の剥触ひずみが判明すれば、それを用いてRC曲げ理論に基づき、終局曲げ耐力を精度良く推定することが可能であると考えられる。
On the other hand, the calculated value (II) is a calculated value of the bending strength based on the actual measured value of the sheet strain at the maximum load. The final sheet strain is 0.8 to 1.3% corresponding to 40 to 60% of the breaking strain, and the ratio between the actual drum value and the calculated value (II) based on this is 0.74 to 1.34. The result was closer to the experimental value than the calculated value (I). In particular, in TypeAE and F with a fiber anchor installed, the ultimate strain of the sheet was 1.2 to 1.3%, and the calculation using this was in good agreement with the experimental value.
From the above, it is considered that the ultimate bending strength can be accurately estimated based on the RC bending theory if the delamination strain at the end of the sheet is found.

以上に述べたように、本発明のコンクリート構造物の補強部材を用いると、あるいは本発明のコンクリート構造物の補強方法によると、ファイバーアンカーを設置することで、ガラス繊維シートの剥離が抑制され、また、剥離が進展した後もシートが引っ張り力を負担できるので、比較的廉価な構成と簡単な工数によって充分な耐力の向上を得ることができる。作業には大規模な機械装置や熟練工を必要としないのでその点でも優位である。   As described above, when the reinforcing member of the concrete structure of the present invention is used, or according to the reinforcing method of the concrete structure of the present invention, by installing the fiber anchor, peeling of the glass fiber sheet is suppressed, In addition, since the sheet can bear the tensile force even after the separation progresses, a sufficient improvement in yield strength can be obtained with a relatively inexpensive configuration and a simple man-hour. The work does not require a large-scale mechanical device or a skilled worker, and is advantageous in that respect.

本発明は、以上に述べたようにコンクリート構造物の補修に顕著な効果を示すので、建設、建築産業の広い分野で広範な利用の可能性を有している。   As described above, the present invention has a remarkable effect in repairing concrete structures, and thus has a wide range of possibilities for use in a wide range of construction and construction industries.

本発明の補強部材とそれと比較する比較試料とに、曲げ補強効果検証実験を実施するための供試体の側面図である。It is a side view of a specimen for carrying out a bending reinforcement effect verification experiment on a reinforcing member of the present invention and a comparative sample to be compared therewith. 図1に示す供試体の断面図である。It is sectional drawing of the test body shown in FIG. 本発明の効果試験用供試体の種別を示す図表である。It is a chart which shows the kind of specimen for an effect test of the present invention. 図3に示す供試体に用いられる材料の特性値をしめす図表である。4 is a chart showing characteristic values of materials used for the specimen shown in FIG. 3. 本発明の補強方法のフローチャートである。It is a flowchart of the reinforcement method of this invention. 図3に示す供試体におけるスパン中央部の荷重−たわみ関係を示す図表である。It is a chart which shows the load-deflection relationship of the span center part in the test body shown in FIG. 図3に示す供試体におけるスパン中央部最下縁の荷重−シートひずみ関係を示す図表である。It is a chart which shows the load-sheet distortion | strain relationship of the span center lowermost edge in the test body shown in FIG. 図3に示す供試体におけるコンクリートひび割れおよびシートの剥離状況を示す図表である。It is a chart which shows the concrete crack in the test body shown in FIG. 3, and the peeling condition of a sheet | seat. 本発明に対応する供試体におけるスパン中央部の荷重−たわみ関係を示す図表である。It is a graph which shows the load-deflection relationship of the span center part in the test body corresponding to this invention. 補強効果を示す諸値の定義を示す図表であるIt is a chart which shows the definition of various values which show reinforcement effect 図3に示す供試体別に降伏荷重および終局荷重を比較した図表である。4 is a chart comparing yield load and ultimate load for each specimen shown in FIG. 3. 図3に示す供試体別に塑性率を比較した図表である。FIG. 4 is a chart comparing plasticity ratios for each specimen shown in FIG. 3. 図3に示す供試体別にエネルギー吸収能を比較した図表である。FIG. 4 is a chart comparing energy absorption capacity for each specimen shown in FIG. 3. 図3に示す供試体別の補強効果を比較した図表である。FIG. 4 is a chart comparing the reinforcing effects for each specimen shown in FIG. 3. 図3に示す供試体別に終局耐力の計算値を比較した図表である。FIG. 4 is a chart comparing calculated values of ultimate strength for each specimen shown in FIG. 3.

符号の説明Explanation of symbols

1 ガラス繊維シート
2 ファイバーアンカー
3 繊維シート片
10 供試体
11 軸方向筋
12 せん断筋
13 支点
14 荷重印加点
DESCRIPTION OF SYMBOLS 1 Glass fiber sheet 2 Fiber anchor 3 Fiber sheet piece 10 Specimen 11 Axial direction muscle 12 Shear strength 13 Support point 14 Load application point

Claims (6)

補強対象のコンクリート構造物のひび割れに沿って複数個の樹脂充填用の注入孔を開ける注入孔開口副工程と、前記注入孔以外の間隙を樹脂で塞ぐシーリング副工程と、前記注入孔に樹脂を充填して所定時間養生する注入孔樹脂充填副工程とを有し、ひび割れ付近に樹脂を充填する樹脂充填工程と、
前記コンクリート構造物の表面に接着剤を塗布する接着剤下塗副工程と、前記接着剤が下塗りされた前記コンクリート構造物の表面に前記繊維シートを貼付ける繊維シート貼付副工程と、貼付けられた前記繊維シートの上に接着剤を前記繊維シート中の気泡を抜きながら再度塗布する接着剤中塗副工程と、前記接着剤中塗副工程で塗布した前記接着剤の上にさらに接着剤を塗布して養生する接着剤上塗副工程とを有し、必要に応じて前記接着剤下塗副工程から前記接着剤上塗副工程までの各副工程を繰り返して複数層の前記繊維シートを接着するする繊維シート接着工程と、
前記繊維シート接着工程終了直後に前記ファイバーアンカーを埋込む埋込孔を前記繊維シート上の複数個所に穿孔する埋込孔穿孔副工程と、前記埋込孔内部の切粉を吸塵して清掃する埋込孔清掃副工程と、前記埋込孔に樹脂を注入して前記ファイバーアンカーを所定長さまで挿入するファイバーアンカー挿入副工程と、所定の養生後、前記ファイバーアンカーの前記埋込孔から出ている残り部分を複数のファイバーに分割して前記繊維シートの上面に放射状に広げて貼付けるファイバー貼付副工程と、前記ファイバー貼付副工程で放射状に広げて貼付けた前記ファイバーを覆う程度の大きさの繊維シートを貼り付けて接着剤を含侵させるファイバー被覆副工程とを有し、前記繊維シートを貼り付けた前記コンクリート構造物の表面にファイバーアンカーを埋込んで固着するファイバーアンカー埋込み工程とを有することを特徴とするコンクリート構造物の補強方法。
An injection hole opening sub-process for opening a plurality of injection holes for filling the resin along the cracks in the concrete structure to be reinforced, a sealing sub-process for closing a gap other than the injection hole with resin, and a resin in the injection hole A filling process for filling and curing for a predetermined time, and filling a resin in the vicinity of the crack;
Adhesive primer sub-step for applying an adhesive to the surface of the concrete structure, fiber sheet sticking sub-step for sticking the fiber sheet to the surface of the concrete structure primed with the adhesive, and the pasted Applying adhesive on the fiber sheet again while removing air bubbles in the fiber sheet, and applying the adhesive on the adhesive applied in the adhesive intermediate coating sub-process and curing the adhesive. An adhesive overcoating sub-step, and a fiber sheet bonding step in which the sub-steps from the adhesive undercoating sub-step to the adhesive over-coating sub-step are repeated as necessary to bond the fiber sheets of a plurality of layers. When,
Immediately after completion of the fiber sheet bonding step, an embedding hole drilling sub-process in which embedding holes for embedding the fiber anchors are drilled at a plurality of locations on the fiber sheet, and dust inside the embedding holes is sucked and cleaned. A sub-step for cleaning the embedding hole, a sub-step for inserting the fiber anchor into the embedding hole and inserting the fiber anchor to a predetermined length, and after a predetermined curing, exit from the embedding hole of the fiber anchor. and sticking Keru fiber sticking substep spread radially dividing the remainder to a plurality of fibers on the upper surface of the fiber sheet are, the fibers sticking to the extent that the sub step covering said fibers adhered spread radially magnitude of and a fiber coating sub step of impregnating the adhesive paste fiber sheet piece, phi on the surface of the concrete structure pasted the fiber sheet Method for reinforcing concrete structures and having a fiber anchor embedding affixing crowded embedding the over anchor.
前記繊維シートはガラス繊維を格子状に編みこんでシート状に加工したガラス繊維シートであることを特徴とする請求項1に記載のコンクリート構造物の補強方法。   2. The method for reinforcing a concrete structure according to claim 1, wherein the fiber sheet is a glass fiber sheet obtained by knitting glass fibers in a lattice shape and processing into a sheet shape. 前記樹脂充填工程または前記ファイバーアンカー埋込み工程で用いられる樹脂はエポキシ樹脂であることを特徴とする請求項1または2に記載のコンクリート構造物の補強方法。   The method for reinforcing a concrete structure according to claim 1 or 2, wherein the resin used in the resin filling step or the fiber anchor embedding step is an epoxy resin. 前記繊維シート接着工程または前記ファイバーアンカー埋込み工程で用いられる接着剤はエポキシ接着剤であることを特徴とする請求項1ないし3のいずれか1項に記載のコンクリート構造物の補強方法。   The method for reinforcing a concrete structure according to any one of claims 1 to 3, wherein an adhesive used in the fiber sheet bonding step or the fiber anchor embedding step is an epoxy adhesive. 補強対象のコンクリート構造物の表面に接着される繊維シートと、
前記繊維シート上から前記コンクリート構造物に所定の間隔を置いて埋め込まれその前記繊維シートの側が複数に分割されて放射状に広がって前記繊維シートの上面に貼り付けられるファイバーアンカーと、
前記ファイバーアンカーの放射状の広がりを覆って貼り付けられる繊維シート片とを備えたことを特徴とするコンクリート構造物の補強部材。
A fiber sheet bonded to the surface of the concrete structure to be reinforced,
A fiber anchor embedded in the concrete structure at a predetermined interval from above the fiber sheet, and the fiber sheet side is divided into a plurality of pieces and radially spread and attached to the upper surface of the fiber sheet;
A reinforcing member for a concrete structure, comprising: a fiber sheet piece attached to cover a radial spread of the fiber anchor.
前記繊維シートはガラス繊維を格子状に編みこんでシート状に加工したガラス繊維シートであることを特徴とする請求項5に記載のコンクリート構造物の補強部材。   6. The reinforcing member for a concrete structure according to claim 5, wherein the fiber sheet is a glass fiber sheet obtained by knitting glass fibers in a lattice shape and processing into a sheet shape.
JP2007227829A 2007-09-03 2007-09-03 Reinforcing member and reinforcing method for concrete structure Active JP4162698B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007227829A JP4162698B1 (en) 2007-09-03 2007-09-03 Reinforcing member and reinforcing method for concrete structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007227829A JP4162698B1 (en) 2007-09-03 2007-09-03 Reinforcing member and reinforcing method for concrete structure

Publications (2)

Publication Number Publication Date
JP4162698B1 true JP4162698B1 (en) 2008-10-08
JP2009057793A JP2009057793A (en) 2009-03-19

Family

ID=39916202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007227829A Active JP4162698B1 (en) 2007-09-03 2007-09-03 Reinforcing member and reinforcing method for concrete structure

Country Status (1)

Country Link
JP (1) JP4162698B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2553179A4 (en) * 2010-03-24 2014-03-12 Fyfe Europ S A System for reinforcing structure using site-customized materials
CN110284724B (en) * 2019-06-21 2020-06-05 苏州市华丽美登装饰装璜有限公司 GRC plate repairing method

Also Published As

Publication number Publication date
JP2009057793A (en) 2009-03-19

Similar Documents

Publication Publication Date Title
EP3486403B1 (en) Concrete structure using reinforcing panel including embedded reinforcing grid and method of repairing and reinforcing the same
JP4608376B2 (en) Reinforcing structure and reinforcing method for concrete structure
JP4162698B1 (en) Reinforcing member and reinforcing method for concrete structure
KR101052852B1 (en) Soil nail device using pc twisted steel wire and method for reinforcing ground using the same
CN101177934A (en) Concrete reinforcement
KR101502517B1 (en) Fiber composite panel and strengthening method of concrete structure using the same thing
JP2002242126A (en) Columnar structure and construction method therefor
EP3087234A1 (en) A pre-stressing device, and a method for reinforcing a structural member
KR100456378B1 (en) Panel for reinforcing con'c body and reinforcing method using the same
JP3627931B2 (en) Concrete surface repair structure and concrete surface repair method
JP6915817B1 (en) Reinforcement structure of joints of wooden structures provided with fracture confirmation
JP4918280B2 (en) Strengthening structure
KR100838739B1 (en) Bridge pier of earthquake-proof efficiency reinforcement structure and method using the same
KR101713604B1 (en) Concrete structure reinforcement method using composite pannel with key groove and structure of the same
KR20060107256A (en) Reinforcing system for connection of flat plate-column a building
CN210086877U (en) Structure for reinforcing flexural performance of stone beam structure
KR102199131B1 (en) Permanent type anchor
KR101012807B1 (en) Reinforcing method of structural body and reinforced structural body by double-faced complex FRP reinforce plate
JP6886766B2 (en) Wood member joint structure and joint reinforcement
KR100965273B1 (en) Reinforcing methods using apparatus for reinforcing inclined plane
KR101761726B1 (en) Method and device for reinforcement a concrete structure using a pre stressed panel
KR101818153B1 (en) Strengthening Apparatus for Reinforced Concrete Sturcure And Strengthening Method Using the Same
KR102632994B1 (en) A method of reinforcing concrete structures by forming grooves on the concrete reinforcement surface to increase adhesion then prestressing the carbon plate and anchoring the ends with shaped carbon fiber anchors
CN103541559B (en) Reinforced composite board based on concrete bending member
KR20040098316A (en) Prestressed reinforcing structure and construction method for repairing and reinforcing structures using the prestressed reinforcing structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071004

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20071004

A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20071002

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20071121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080328

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080624

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080722

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4162698

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250