JP6915817B1 - Reinforcement structure of joints of wooden structures provided with fracture confirmation - Google Patents

Reinforcement structure of joints of wooden structures provided with fracture confirmation Download PDF

Info

Publication number
JP6915817B1
JP6915817B1 JP2020109462A JP2020109462A JP6915817B1 JP 6915817 B1 JP6915817 B1 JP 6915817B1 JP 2020109462 A JP2020109462 A JP 2020109462A JP 2020109462 A JP2020109462 A JP 2020109462A JP 6915817 B1 JP6915817 B1 JP 6915817B1
Authority
JP
Japan
Prior art keywords
frp sheet
foundation
reinforcing
joint
wooden structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020109462A
Other languages
Japanese (ja)
Other versions
JP2022006894A (en
Inventor
圭 澤田
圭 澤田
貴信 佐々木
貴信 佐々木
麟太郎 上田
麟太郎 上田
坂本 明男
明男 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido University NUC
Original Assignee
Hokkaido University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido University NUC filed Critical Hokkaido University NUC
Priority to JP2020109462A priority Critical patent/JP6915817B1/en
Application granted granted Critical
Publication of JP6915817B1 publication Critical patent/JP6915817B1/en
Publication of JP2022006894A publication Critical patent/JP2022006894A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Working Measures On Existing Buildindgs (AREA)
  • Joining Of Building Structures In Genera (AREA)

Abstract

【課題】破壊が外部から簡単に判別できるとともに、延性の高い破壊モードで破壊される木構造物の接合部の補強構造を提供する。【解決手段】木構造物の複数の構造材(基礎2、土台3、柱4)を接合する木構造物の接合部の補強構造において、一方向繊維材若しくは二方向クロス繊維材を単層又は複数層積層した補強繊維を有するFRPシート5を、前記複数の構造材(基礎2、土台3、柱4)に亘ってそれらの表面に取り付け、FRPシート5の一部に接合部が破壊したか否かを確認できる破壊確認部Aを設け、破壊確認部Aを、FRPシート5が構造材(基礎2)に接着されずに、ビス6で機械的に構造材(基礎2)に止め付けられているものとし、ビス6の周囲のFRPシート5の断裂が他の破壊より先行するように補強繊維の層数及びビスの本数を設定する。【選択図】図1PROBLEM TO BE SOLVED: To provide a reinforcing structure of a joint portion of a wooden structure which is easily discriminated from the outside and is destroyed in a highly ductile fracture mode. SOLUTION: In a reinforcing structure of a joint portion of a wooden structure for joining a plurality of structural materials (foundation 2, foundation 3, pillar 4) of the wooden structure, a unidirectional fiber material or a two-way cross fiber material is used as a single layer or. Whether the FRP sheet 5 having the reinforcing fibers laminated in a plurality of layers was attached to the surfaces of the plurality of structural materials (foundation 2, base 3, pillar 4) and the joint was broken in a part of the FRP sheet 5. A destructive confirmation unit A that can confirm whether or not it is provided is provided, and the destructive confirmation unit A is mechanically fixed to the structural material (foundation 2) with screws 6 without the FRP sheet 5 being adhered to the structural material (foundation 2). The number of layers of reinforcing fibers and the number of screws are set so that the rupture of the FRP sheet 5 around the screw 6 precedes other breaks. [Selection diagram] Fig. 1

Description

本発明は、木造軸組構法、木造枠組壁構法、木質ラーメン構法などの主要構造材を木質材料から構成した木構造物の接合部の補強構造に関するものである。 The present invention relates to a reinforcing structure of a joint portion of a wooden structure in which a main structural material such as a wooden frame construction method, a wooden frame wall construction method, and a wooden rigid frame construction method is made of a wood material.

柱と梁、柱と土台、梁同士などの木構造物の木質材料からなる主要構造材同士を接合している接合部は、釘、ビス、ボルトなどの針状又は棒状の接続具を挿入することで接合されている。例えば、柱と土台を接合する場合は、柱と土台のいずれの構造材の表面にも当接する金属プレートをビスや釘などで取り付けることで接合されている。 Insert needle-shaped or rod-shaped connectors such as nails, screws, and bolts into the joints that join the main structural materials made of wood-based materials such as columns and beams, columns and bases, and beams. It is joined by. For example, when joining a pillar and a base, a metal plate that comes into contact with the surface of any of the structural members of the pillar and the base is joined by attaching with screws or nails.

また、地震や台風などの水平力が作用した際に、柱が浮き上がらないように鉄筋コンクリート製の基礎に緊結する場合は、J字状又はU字状のアンカーボルトを予め基礎に埋設しておき、土台を貫通して露出するアンカーボルトの上端をホールダウン金物を介して柱に固定している。なお、予め基礎に埋設したアンカーボルトを土台にボルト止めし、柱と土台を金属プレートを介して接合することでも、柱を基礎に緊結することができる。 In addition, when connecting to a reinforced concrete foundation so that the columns do not rise when a horizontal force such as an earthquake or typhoon acts, J-shaped or U-shaped anchor bolts should be buried in the foundation in advance. The upper ends of the anchor bolts that are exposed through the base are fixed to the columns via hole-down hardware. The pillar can also be tied to the foundation by bolting the anchor bolts embedded in the foundation in advance to the foundation and joining the pillar and the base via a metal plate.

しかし、金属プレートや釘、ビス、ボルトなどの金属製の接続金具(接続具)は、一般に、木質材料と比べて強度が高く、このような木構造物の接合部に外力が作用した場合は、前記針状又は棒状の接続具に応力が集中してしまう。よって、このような木構造物の接合部に強い引張力が負荷される場合は、木質材料の繊維直交方向の引張強度が低いために、繊維同士を引き離す力に耐えきれず、木構造物の構造材が割裂破壊(繊維方向に沿って裂ける破壊)など脆性的な破壊を引き起こすという問題があった。このような構造材に脆性的な割裂破壊が生じると、木構造物自体が倒壊するおそれもあった。 However, metal connection fittings (connectors) such as metal plates, nails, screws, and bolts are generally stronger than wood materials, and when an external force acts on the joints of such wood structures, , Stress concentrates on the needle-shaped or rod-shaped connector. Therefore, when a strong tensile force is applied to the joint portion of such a wooden structure, the tensile strength of the wood material in the direction perpendicular to the fibers is low, so that the force that pulls the fibers apart cannot be withstood, and the wooden structure cannot withstand the force. There is a problem that the structural material causes brittle fracture such as split fracture (fracture that tears along the fiber direction). If brittle split fracture occurs in such a structural material, the wooden structure itself may collapse.

したがって、前述の木材(木質材料)の強度、木材と接続具との接合強度、金属プレートの強度、基礎と土台や柱との緊結強度など、様々な強度のバランスを取り、脆性的な破壊モードとならず、木構造物の接合部が、充分にエネルギーを吸収して、延性や靭性が高い破壊モードとなるように接合することが要望されている。また、木構造物の接合部や補強部材が、地震や台風などの外力で塑性変形して破壊されており、新しい物に取り替えが必要か否かを簡単に判別できるようにすることも要望されている。 Therefore, the brittle fracture mode balances various strengths such as the strength of the above-mentioned wood (wood-based material), the strength of the joint between the wood and the fitting, the strength of the metal plate, and the strength of the bond between the foundation and the base or pillar. Instead, it is required that the joint portion of the wooden structure absorbs sufficient energy and joins in a fracture mode having high ductility and toughness. It is also requested that the joints and reinforcing members of wooden structures be plastically deformed and destroyed by external forces such as earthquakes and typhoons, so that it can be easily determined whether or not a new one needs to be replaced. ing.

このような木構造物の接合部の補強構造において、腐食して経年劣化してしまう金属部材を用いないで接合することも試みられている。例えば、特許文献1には、木構造物(木造建築物)の柱−梁接合部において、木材の表面に炭素繊維強化プラスチックからなる補強具1が接着されて補強された木材接合部の補強方法及び補強構造が開示されている(特許文献3の明細書の段落[0072]〜[0076]、図面の図10等参照)。 In the reinforcing structure of the joint portion of such a wooden structure, it is also attempted to join without using a metal member that corrodes and deteriorates over time. For example, Patent Document 1 describes a method for reinforcing a wood joint in which a reinforcing tool 1 made of carbon fiber reinforced plastic is adhered to the surface of wood to reinforce the column-beam joint of a wooden structure (wooden building). And the reinforcing structure is disclosed (see paragraphs [0072] to [0076] of the specification of Patent Document 3, FIG. 10 of the drawing, etc.).

しかし、特許文献1に記載の木材接合部の補強方法では、母材である木材で破壊されていればよいと考えられており、必ずしも、木構造物の接合部において、充分にエネルギーを吸収して、延性や靭性が高い破壊モードとなるように接合されてはいなかった。また、新しい物に取り替えが必要か否かを簡単に判別できるように、破壊が外部から簡単に判別できる位置に、延性の高い破壊モードで破壊される弱点部を設けることも行われていなかった。 However, in the method for reinforcing a wood joint portion described in Patent Document 1, it is considered that the wood joint portion may be broken by the wood as the base material, and the joint portion of the wooden structure necessarily absorbs sufficient energy. Therefore, they were not joined so as to have a fracture mode with high ductility and toughness. In addition, in order to easily determine whether or not a new one needs to be replaced, a weak point portion that is destroyed in a highly ductile destruction mode has not been provided at a position where destruction can be easily determined from the outside. ..

特許第6150361号公報Japanese Patent No. 6150361

そこで、本発明は、前述した問題に鑑みて案出されたものであり、その目的とするところは、破壊が外部から簡単に判別できるとともに、延性の高い破壊モードで破壊される木構造物の接合部の補強構造を提供することにある。 Therefore, the present invention has been devised in view of the above-mentioned problems, and an object of the present invention is a wooden structure that can be easily discriminated from the outside and is destroyed in a highly ductile destruction mode. The purpose is to provide a reinforcing structure for the joint.

第1発明に係る木構造物の接合部の補強構造は、木構造物の複数の構造材を接合する木構造物の接合部の補強構造であって、一方向繊維材若しくは二方向クロス繊維材を単層又は複数層積層した補強繊維を有するFRPシートが前記複数の構造材に亘ってそれらの表面に取り付けられ、前記FRPシートの一部に前記接合部が破壊したか否かを確認できる破壊確認部が設けられ、前記破壊確認部は、前記FRPシートが、前記構造材に接着されずに、ビス、釘、タッカーなどの針状の接続具で機械的に前記構造材に止め付けられているとともに、前記接続具の周囲の前記FRPシートの断裂が他の破壊より先行するように前記補強繊維の層数及び前記接続具の本数が設定されていることを特徴とする。 The reinforcing structure of the joint portion of the wooden structure according to the first invention is a reinforcing structure of the joint portion of the wooden structure for joining a plurality of structural materials of the wooden structure, and is a one-way fiber material or a two-way cross fiber material. An FRP sheet having reinforcing fibers in which a single layer or a plurality of layers are laminated is attached to the surface of the plurality of structural materials, and it can be confirmed whether or not the joint portion is broken in a part of the FRP sheet. A confirmation unit is provided, and the FRP sheet is mechanically fastened to the structural material with a needle-shaped connector such as a screw, a nail, or a tacker without the FRP sheet being adhered to the structural material. At the same time, the number of layers of the reinforcing fibers and the number of the connecting tools are set so that the tearing of the FRP sheet around the connecting tool precedes other fractures.

第2発明に係る木構造物の接合部の補強構造は、第1発明において、前記FRPシートの前記破壊確認部を除く部分の少なくとも一部は、前記FRPシートが、前記構造材に接着された上、前記接続具で機械的に前記構造材に止め付けられていることを特徴とする。 In the first invention, the reinforcing structure of the joint portion of the wooden structure according to the second invention is such that the FRP sheet is adhered to the structural material at least a part of the portion of the FRP sheet excluding the fracture confirmation portion. Above, it is characterized in that it is mechanically fixed to the structural material by the connector.

第3発明に係る木構造物の接合部の補強構造は、第2発明において、前記FRPシートは、前記構造材に接着された接着強度が、前記接続具の周囲の前記FRPシートが断裂する強度より高くなっていることを特徴とする。 The reinforcing structure of the joint portion of the wooden structure according to the third invention is the strength in which the FRP sheet is bonded to the structural material and the FRP sheet around the connector is torn. It is characterized by being higher.

第4発明に係る木構造物の接合部の補強構造は、第1発明ないし第3発明のいずれかの発明において、前記接合部は、基礎と土台と柱の3つの構造材を接合する接合部であり、
前記破壊確認部は、前記FRPシートが前記基礎を覆っている部分であることを特徴とする。
The reinforcing structure of the joint portion of the wooden structure according to the fourth invention is the joint portion in which the three structural members of the foundation, the base and the column are joined in the invention of any one of the first invention to the third invention. And
The failure confirmation unit is characterized in that the FRP sheet is a portion covering the foundation.

第1発明〜第4発明によれば、接合部が破壊したか否かを確認できる破壊確認部が設けられているので、破壊が外部から簡単に判別でき、地震や台風による木構造物の被害を把握して修理や修繕の判断が容易となる。また、第1発明〜第4発明によれば、接続具の周囲のFRPシートの断裂が他の破壊より先行するので、当該接合部が延性の高い破壊モードで破壊されることになる。このため、大地震でも木構造物が一気に崩壊に至らず、居住者等が避難する時間を確保することができる。 According to the first to fourth inventions, since the destruction confirmation part for confirming whether or not the joint is destroyed is provided, the destruction can be easily identified from the outside, and the damage to the wooden structure due to the earthquake or typhoon can be easily determined. It becomes easy to make a decision on repair or repair by grasping the above. Further, according to the first to fourth inventions, the fracture of the FRP sheet around the connector precedes other fractures, so that the joint is fractured in a highly ductile fracture mode. For this reason, the wooden structure does not collapse at once even in a large earthquake, and it is possible to secure time for residents and the like to evacuate.

特に、第2発明及び第3発明によれば、機械的な接合に加え、接着強度がプラスされるため、延性破壊する弱点部を設けることが容易となり、確実に接続具の周囲のFRPシートの断裂を他の破壊より先行させることができる。 In particular, according to the second and third inventions, since the adhesive strength is added in addition to the mechanical joining, it becomes easy to provide a weak point portion that causes ductile fracture, and the FRP sheet around the connector is surely provided. Rupture can precede other destruction.

特に、第4発明によれば、木構造物の複数の接合部のなかでも最も死荷重がかかり損傷し易い基礎と土台と柱の接合部において、好ましい破壊モードである延性破壊を仕上げが少なく外部から最も確認し易い基礎に先行的に起こさせることが可能となる。このため、木構造物全体が、地震や台風などの外力で損傷したか否の判断を迅速に行うことができる。 In particular, according to the fourth invention, in the joint between the foundation, the foundation and the column, which is most susceptible to dead load and damage among the plurality of joints of the wooden structure, ductile fracture, which is a preferable fracture mode, is performed with less finish and is external. It is possible to raise the foundation that is easiest to confirm in advance. Therefore, it is possible to quickly determine whether or not the entire wooden structure has been damaged by an external force such as an earthquake or a typhoon.

図1は、本発明の実施形態に係る木構造物の接合部の補強構造を示す斜視図である。FIG. 1 is a perspective view showing a reinforcing structure of a joint portion of a wooden structure according to an embodiment of the present invention. 図2は、同上の補強構造を示す鉛直断面図である。FIG. 2 is a vertical cross-sectional view showing the same reinforcing structure. 図3は、図2の拡大断面図であり、(a)が柱とFRPシートとの接合部を示し、(b)が基礎とFRPシートの接合部を示している。3A and 3B are enlarged cross-sectional views of FIG. 2, where FIG. 3A shows a joint portion between a column and an FRP sheet, and FIG. 3B shows a joint portion between a foundation and an FRP sheet. 図4は、供試体の荷重−変位曲線を示すグラフである。FIG. 4 is a graph showing a load-displacement curve of the specimen. 図5は、試験体の変形メカニズムを示す模式図であり、(a)が正面図、(b)が断面図であり、(1)〜(3)の順に時系列で示している。5A and 5B are schematic views showing the deformation mechanism of the test piece, in which FIG. 5A is a front view and FIG. 5B is a cross-sectional view, and is shown in chronological order in the order of (1) to (3). 図6は、試験体の降伏メカニズムを示す模式図であり、(a)が正面図、(b)が断面図であり、(4)と(4’)は、最終的な降伏(破壊)状態を示している。6A and 6B are schematic views showing the yield mechanism of the test piece, in which FIG. 6A is a front view, FIG. 6B is a cross-sectional view, and FIGS. Is shown. 図7は、土台と柱にFRPを接着してビス止めした接合部の破壊状況を示す写真である。FIG. 7 is a photograph showing the fracture state of the joint portion in which FRP is adhered to the base and the pillar and fastened with screws.

以下、本発明の実施形態に係る木構造物の接合部の補強構造について、図面を参照しながら詳細に説明する。 Hereinafter, the reinforcing structure of the joint portion of the wooden structure according to the embodiment of the present invention will be described in detail with reference to the drawings.

先ず、図1〜図3を用いて、本発明の実施形態に係る木構造物の接合部の補強構造1(以下、単に補強構造1という場合もある)について説明する。図1は、本発明の実施形態に係る木構造物の接合部の補強構造1を示す斜視図であり、図2は、補強構造1を示す鉛直断面図である。また、図3は、図2の拡大断面図であり、(a)が柱とFRPシートとの接合部を示し、(b)が基礎とFRPシートの接合部を示している。 First, with reference to FIGS. 1 to 3, the reinforcing structure 1 of the joint portion of the wooden structure according to the embodiment of the present invention (hereinafter, may be simply referred to as the reinforcing structure 1) will be described. FIG. 1 is a perspective view showing a reinforcing structure 1 of a joint portion of a wooden structure according to an embodiment of the present invention, and FIG. 2 is a vertical cross-sectional view showing the reinforcing structure 1. 3A and 3B are enlarged cross-sectional views of FIG. 2, where FIG. 3A shows a joint portion between a pillar and an FRP sheet, and FIG. 3B shows a joint portion between a foundation and an FRP sheet.

図1に示すように、本実施形態に係る補強構造1は、木構造物として一般の木造軸組構法で建築された戸建の建築物を例示し、その主要構造材である基礎2と土台3と柱4との3つの構造材の接合部に適用した場合を例示して説明する。なお、図示X方向が桁行方向Xであり、Y方向が梁間方向であり、Z方向が上下方向である。 As shown in FIG. 1, the reinforcing structure 1 according to the present embodiment exemplifies a detached building constructed by a general wooden frame construction method as a wooden structure, and the foundation 2 and the foundation which are the main structural materials thereof. The case where it is applied to the joint portion of the three structural materials of 3 and the pillar 4 will be described as an example. The X direction in the drawing is the girder direction X, the Y direction is the inter-beam direction, and the Z direction is the vertical direction.

図1に示すように、本実施形態に係る補強構造1は、桁行方向Xを長手方向として設置された鉄筋コンクリート製の基礎2と、その基礎2上に桁行方向Xを長手方向として設置された土台3と、この土台3上に上下方向Zを長手方向として設置された柱4と、を備えている。また、補強構造1は、地震時や台風時に柱4が土台3から抜け出て倒壊するのを防ぐために、基礎2〜柱4に亘って外側の一面(表面)を覆って接合するFRPシート5を備えている。 As shown in FIG. 1, the reinforcing structure 1 according to the present embodiment has a reinforced concrete foundation 2 installed with the girder direction X as the longitudinal direction, and a foundation installed on the foundation 2 with the girder direction X as the longitudinal direction. 3 and a pillar 4 installed on the base 3 with the vertical direction Z as the longitudinal direction are provided. Further, the reinforcing structure 1 includes an FRP sheet 5 that covers and joins an outer surface (surface) from the foundation 2 to the column 4 in order to prevent the column 4 from coming out of the base 3 and collapsing during an earthquake or a typhoon. I have.

(基礎)
基礎2は、一般的な鉄筋コンクリート製の布基礎又はべた基礎である。勿論、基礎2は、鉄筋コンクリートに限られず、ブロック製などの所定の強度を有した他の材質とすることも可能である。
(Basic)
The foundation 2 is a general reinforced concrete cloth foundation or solid foundation. Of course, the foundation 2 is not limited to reinforced concrete, and may be made of other materials having a predetermined strength, such as those made of blocks.

(土台及び柱)
土台3及び柱4は、建築物の構造耐力上主要な構造材であり、一般的な木材からなる。勿論、土台3及び柱4は、集成材(LW:laminated wood)や単板積層材(LVL:Laminated Veneer Lumber)などの他の木質材としてもよいことは云うまでもない。集成材や単板積層材も、通常の木材と同様に後述のFRPシートを表面に取り付けることで、補強可能であるからである。
(Base and pillar)
The base 3 and the pillar 4 are the main structural materials in terms of the structural strength of the building, and are made of general wood. Of course, it goes without saying that the base 3 and the pillar 4 may be other wood materials such as laminated lumber (LW: laminated wood) and single plate laminated lumber (LVL: Laminated Veneer Lumber). This is because laminated lumber and veneer laminated lumber can be reinforced by attaching an FRP sheet, which will be described later, to the surface in the same manner as ordinary wood.

土台3は、図1に示すように、桁行方向Xを長手方向として基礎2上に設置されているため、木材の繊維方向も桁行方向Xに沿って設置されていることになる。また、柱4は、図1に示すように、上下方向Zを長手方向として土台3上に立設されているため、木材の繊維方向は、上下方向Zに沿った状態で設置されている。 As shown in FIG. 1, since the base 3 is installed on the foundation 2 with the girder direction X as the longitudinal direction, the fiber direction of the wood is also installed along the girder direction X. Further, as shown in FIG. 1, since the pillar 4 is erected on the base 3 with the vertical direction Z as the longitudinal direction, the fiber direction of the wood is installed along the vertical direction Z.

(FRPシート)
FRPシート5は、炭素繊維を補強繊維として、その周りにマトリックス樹脂を含侵させて硬化させた炭素繊維強化プラスチック(CFRP:Carbon Fiber-Reinforced Plastics)からなるシート状の部材である。FRPシート5は、複数層の補強繊維が積層された繊維強化プラスチック(FRP: Fiber-Reinforced Plastics)であり、容易に引張強度や繊維の断裂強度を設定可能となっている。このFRPシート5は、一方向繊維材((UD:Uni-Direction)繊維材)の繊維方向を互い違いに直交させるように積層してマトリックス樹脂を含侵させてもよいし、二方向クロス繊維材にマトリックス樹脂を含侵させてもよい。但し、FRPシート5の補強繊維は、構造材に引張力が掛かった場合にそれに対抗するだけでなく、ビスによるせん断力や繰り返し応力のよる圧縮(座屈)力にも対抗する必要があり、細かい目のクロス材であることが好ましい。
(FRP sheet)
The FRP sheet 5 is a sheet-like member made of carbon fiber-reinforced plastics (CFRP) in which carbon fibers are used as reinforcing fibers and the carbon fibers are impregnated and cured by impregnating them with a matrix resin. The FRP sheet 5 is a fiber-reinforced plastic (FRP: Fiber-Reinforced Plastics) in which a plurality of layers of reinforcing fibers are laminated, and the tensile strength and the tear strength of the fibers can be easily set. The FRP sheet 5 may be laminated so that the fiber directions of the unidirectional fiber material ((UD: Uni-Direction) fiber material) are alternately orthogonal to each other to impregnate the matrix resin, or the bidirectional cross fiber material. May be impregnated with a matrix resin. However, the reinforcing fibers of the FRP sheet 5 need to counter not only the tensile force applied to the structural material but also the shearing force due to the screw and the compressive (buckling) force due to the repeated stress. It is preferably a fine cloth material.

補強繊維は、炭素繊維に限られず、アラミド繊維やガラス繊維であっても構わない、またボロン繊維や金属繊維など他の連続繊維補強材とすることもできる。要するに、補強繊維は、所定の引張強度を有する長尺の連続する繊維であればよい。但し、炭素繊維は、一般的なグレードでも引張強度が2690N/mm程度と非常に高く、比重が鉄の4分の1、比強度が10倍、比弾性率が7倍と軽くて優れた力学的特性を有することから他の連続繊維補強材と比べて好適である。 The reinforcing fiber is not limited to carbon fiber, and may be aramid fiber or glass fiber, or may be another continuous fiber reinforcing material such as boron fiber or metal fiber. In short, the reinforcing fiber may be a long continuous fiber having a predetermined tensile strength. However, carbon fiber has a very high tensile strength of about 2690 N / mm 2 even in a general grade, has a specific gravity of 1/4 that of iron, a specific strength of 10 times, and a specific elastic modulus of 7 times, which is excellent. Since it has mechanical properties, it is more suitable than other continuous fiber reinforcing materials.

また、マトリックス樹脂としては、エポキシ樹脂等の熱硬化性樹脂でも、ポリアミド樹脂などの熱可塑性樹脂でもよい。つまり、マトリックス樹脂は、補強繊維である連続繊維補強材や用途に応じて適宜選択すればよい。 The matrix resin may be a thermosetting resin such as an epoxy resin or a thermoplastic resin such as a polyamide resin. That is, the matrix resin may be appropriately selected depending on the continuous fiber reinforcing material which is a reinforcing fiber and the application.

図1に示すように、このFRPシート5は、所定厚さの縦長な長方形の板状に成形されているとともに、後述のビス6でねじ止めするための複数のビス孔5aが穿設されている。 As shown in FIG. 1, the FRP sheet 5 is formed into a vertically long rectangular plate having a predetermined thickness, and a plurality of screw holes 5a for screwing with screws 6 described later are bored. There is.

そして、図2,図3に示すように、このFRPシート5の上部は、柱4に接着剤7で接着された上、ビス6で機械的にねじ止めされて止め付けられている。また、FRPシート5の下部は、基礎2に接着されずにビス6で機械的にねじ止めされて止め付けられているだけである。また、FRPシート5の下部で基礎2を覆う図1,図2のA部が、接合部が破壊したか否かを確認できる破壊確認部Aとなっている。 Then, as shown in FIGS. 2 and 3, the upper portion of the FRP sheet 5 is bonded to the pillar 4 with an adhesive 7 and then mechanically screwed with a screw 6 to be fixed. Further, the lower portion of the FRP sheet 5 is not adhered to the foundation 2 but is only mechanically screwed and fastened with screws 6. Further, the portion A in FIGS. 1 and 2 that covers the foundation 2 at the lower part of the FRP sheet 5 is a fracture confirmation portion A that can confirm whether or not the joint portion has been destroyed.

なお、FRPシート5は、土台3には、固定されていない。完全に接合する柱4とFRPシート5との接合部と、延性破壊するように弱点部として接合する基礎2とFRPシート5との接合部と、それら2つの接合部の間のバッファーゾーンとして土台3の挙動で破壊確認部Aに影響がでないようにするためである。 The FRP sheet 5 is not fixed to the base 3. The joint between the column 4 and the FRP sheet 5 that are completely joined, the joint between the foundation 2 and the FRP sheet 5 that are joined as weak points so as to cause ductile fracture, and the base as a buffer zone between the two joints. This is so that the behavior of 3 does not affect the destruction confirmation unit A.

(ビス:接続具)
ビス6は、各構造材とFRPシート5とを接続する針状の接続具として例示する木ビスであり、図示形態では、角ビットビスを例示している。勿論、本発明に係る接続具は、ビス6に限られず、釘、タッカーなどの針状の接続具で機械的に各構造材とFRPシート5とを接続できるものであれば、素材等は特に限定されるものではない。
(Screw: Connector)
The screw 6 is a wood screw exemplified as a needle-shaped connector for connecting each structural material and the FRP sheet 5, and in the illustrated form, a square bit screw is exemplified. Of course, the connecting tool according to the present invention is not limited to the screw 6, and the material and the like are particularly as long as each structural material and the FRP sheet 5 can be mechanically connected by a needle-shaped connecting tool such as a nail or a tacker. It is not limited.

(接着剤)
接着剤7は、各構造材とFRPシート5を接着する接着剤であり、変性シリコン樹脂やエポキシ樹脂などの接着剤が好ましい。但し、本発明に係る接着剤は、木材である柱4と樹脂であるFRPシート5との接着性がよいものであれば特に限定されるものではない。なお、接着剤7は、木材である柱4とFRPシート5との接着性が高くなるものを選定するとともに、補強繊維の層数等を選択することでビス6による周囲のFRPシート5の補強繊維の断裂が先行して起こるように柱4とFRPシート5との接着強度をビス6の周囲のFRPシート5が断裂する強度より高くする。
(glue)
The adhesive 7 is an adhesive that adheres each structural material to the FRP sheet 5, and an adhesive such as a modified silicon resin or an epoxy resin is preferable. However, the adhesive according to the present invention is not particularly limited as long as it has good adhesiveness between the pillar 4 made of wood and the FRP sheet 5 made of resin. The adhesive 7 is selected so that the adhesiveness between the pillar 4 made of wood and the FRP sheet 5 is high, and the surrounding FRP sheet 5 is reinforced by the screws 6 by selecting the number of layers of the reinforcing fibers and the like. The adhesive strength between the column 4 and the FRP sheet 5 is made higher than the strength at which the FRP sheet 5 around the screw 6 is ruptured so that the fiber rupture occurs first.

<破壊の進捗状況確認試験>
次に、土台と柱の接合部にFRPを接着した上、ビス止めした場合の破壊の進捗状況を確認すべく行った試験結果について説明する。
<Destruction progress confirmation test>
Next, the results of a test conducted to confirm the progress of fracture when FRP is adhered to the joint between the base and the column and then screwed will be described.

図4は、供試体の荷重−変位曲線を示すグラフである。図4に示すグラフは、前述の柱4と土台3との接合部と同様の柱脚接合部の供試体を作成し、そこに、前述のFRPシート5と同様のFRPシートを接着した上、ビスで止め付けて、柱が土台から引き抜ける方向である上方へ繰り返しロードセルを用いて荷重(kN)を付加し、変位の平均であるすべり量(mm)を計測した試験結果である。 FIG. 4 is a graph showing a load-displacement curve of the specimen. In the graph shown in FIG. 4, a specimen of a column base joint portion similar to the joint portion between the column 4 and the base 3 described above is prepared, and an FRP sheet similar to the FRP sheet 5 described above is adhered thereto. This is a test result in which a load (kN) is repeatedly applied upward using a load cell in the direction in which the pillar is pulled out from the base by fixing with a screw, and the slip amount (mm), which is the average displacement, is measured.

本試験は、木造軸組工法住宅の許容応力度設計(2017年度版:日本住宅・木材技術センター)に準拠したものであり、荷重の加力方法は、上方の一方向繰り返し加力であり、予め単調引張試験で求めた降伏変位の0.5倍,1倍,2倍,4倍,6倍,8倍,12倍,16倍まで引張り、戻す、を繰り返した上、最後に荷重が最大荷重の50%に低下するまで単調引張を行った。 This test is based on the allowable stress design of wooden frame construction method housing (2017 version: Japan Housing and Wood Technology Center), and the load applying method is upward one-way repeated applying. After repeating pulling and returning to 0.5 times, 1 time, 2 times, 4 times, 6 times, 8 times, 12 times, and 16 times the yield displacement obtained in the monotonic tensile test in advance, the maximum load is finally reached. Monotonic tension was applied until the load was reduced to 50%.

また、FRPシートは、補強繊維の層数を変えるとともに、表面の仕上げを型で押圧して平滑にしたものと、補強繊維の束の凹凸を残したものなど、複数種類を用意して試験した。その上、接着剤も変性シリコン樹脂系を2種類と、エポキシ樹脂系を1種類の計3種類の接着剤を用意して、木材とFRPシートとの相性等を確認しながら行った。 In addition, a plurality of types of FRP sheets were prepared and tested, such as one in which the number of layers of the reinforcing fibers was changed and the surface finish was pressed with a mold to make it smooth, and one in which the unevenness of the bundle of reinforcing fibers was left. .. In addition, two types of modified silicone resin-based adhesives and one type of epoxy resin-based adhesives were prepared, and the compatibility between the wood and the FRP sheet was confirmed.

図5は、試験体の変形メカニズムを示す模式図であり、(a)が正面図、(b)が断面図であり、(1)〜(3)の順に時系列で示している。また、図6は、試験体の降伏メカニズムを示す模式図であり、(a)が正面図、(b)が断面図であり、(4)と(4’)は、最終的な降伏(破壊)状態を示している。 5A and 5B are schematic views showing the deformation mechanism of the test piece, in which FIG. 5A is a front view and FIG. 5B is a cross-sectional view, and is shown in chronological order in the order of (1) to (3). Further, FIG. 6 is a schematic view showing the yield mechanism of the test piece, (a) is a front view, (b) is a cross-sectional view, and (4) and (4') are final yields (destruction). ) Indicates the state.

土台と柱にFRPを接着してビス止めした接合部の繰り返し荷重による変形の進行状況は、先ず、図5(2)に示すように、FRPシートと土台の接着剤層が破壊し、FRPシートの下部が土台の表面から剥離する。このとき、図4に示すように、最大荷重を示し、降伏する。 As for the progress of deformation due to the repeated load of the joint where FRP is bonded to the base and the pillar and fastened with screws, first, as shown in FIG. 5 (2), the adhesive layer between the FRP sheet and the base is broken, and the FRP sheet is broken. The lower part of the base peels off from the surface of the base. At this time, as shown in FIG. 4, the maximum load is shown and the yield occurs.

しかし、接着剤層が破壊してFRPシートが部分的に剥離しても、FRPシートの下部は、ビスにより土台に止め付けられている。このため、図5(3)に示すように、さらに変形が進行して柱が浮き上がることにより、固定されているビスによりFRPシートの補強繊維の断裂が進行していくことになる。このとき、図4の楕円で示す範囲において、引張強度の高い補強繊維が部分的に断裂するため、一定程度の荷重ですべり量が発生し、エネルギーを吸収しつつ変形が進行する延性破壊の性状を示すことが確認できる。 However, even if the adhesive layer is broken and the FRP sheet is partially peeled off, the lower part of the FRP sheet is fixed to the base by screws. Therefore, as shown in FIG. 5 (3), the deformation progresses further and the pillars are lifted, so that the reinforcing fibers of the FRP sheet are torn by the fixed screws. At this time, in the range shown by the ellipse in FIG. 4, the reinforcing fibers having high tensile strength are partially torn, so that a slip amount is generated under a certain load, and the properties of ductile fracture in which deformation progresses while absorbing energy. Can be confirmed to indicate.

このように、木構造物の接合部においてFRPシートを接着とビス止めを併用した場合、木構造物の接合部は、エネルギーを吸収して、延性や靭性が高い破壊モードとなるように接合することができると言える。 In this way, when the FRP sheet is bonded and screwed together at the joint of the wooden structure, the joint of the wooden structure absorbs energy and joins in a fracture mode with high ductility and toughness. It can be said that it can be done.

これに対して、背景技術で述べたように、従来のホールダウン金物などの金属製の棒状又は針状の接続具を木材に止め付けて接合する場合は、強度が高い金属の接続金具(接続具)に応力が集中してしまう。このため、接続具から伝達される外側に向かって繊維同士を引き離す力に耐えきれず、木構造物の構造材が割裂破壊など脆性的な破壊を引き起こすというおそれがあった。 On the other hand, as described in the background technology, when a metal rod-shaped or needle-shaped connecting tool such as a conventional hole-down metal fitting is fixed to wood for joining, a metal connecting metal fitting (connection) having high strength is used. Stress is concentrated on the tool). For this reason, the force transmitted from the connector to pull the fibers apart from each other cannot be withstood, and there is a risk that the structural material of the wooden structure may cause brittle fracture such as split fracture.

一方、木構造物の接合部においてFRPシートを接着とビス止めを併用する場合は、最終的な破壊形態は、図6(4)に示すように、FRPシートの断裂の進行により、ビス頭がFRPシートをくぐり抜けてパンチングアウトするか、図6(4’)に示すように、FRPシートの断裂が端部まで進行し、ビスが引き抜けてしまう状態となる(図7も参照)。図7は、土台と柱にFRPを接着してビス止めした接合部の破壊状況を示す写真である。 On the other hand, when the FRP sheet is bonded and screwed together at the joint of the wooden structure, the final fracture form is as shown in FIG. 6 (4). Either the FRP sheet is passed through and punched out, or as shown in FIG. 6 (4'), the FRP sheet is torn to the end and the screw is pulled out (see also FIG. 7). FIG. 7 is a photograph showing the fracture state of the joint portion in which FRP is adhered to the base and the pillar and fastened with screws.

このようなFRPにビス止めを併用することにより、エネルギーを吸収しつつ変形が進行する延性破壊となるという見地を踏まえて、本願発明者は、さらに、考えを進め、通常接着するFRPシートをビス止めのみとすることで、延性の高い破壊モードで破壊される弱点部を設けることができることを想到するに至った。そして、新しい物に取り替えが必要か否かを簡単に判別できるように、破壊が外部から簡単に判別できる位置に、この弱点部を設けて破壊確認部Aとすることにした。 Based on the viewpoint that the combined use of screwing with such FRP results in ductile fracture in which deformation progresses while absorbing energy, the inventor of the present application further advances the idea and screws the FRP sheet that is normally bonded. We came up with the idea that a weak point that can be destroyed in a highly ductile destruction mode can be provided by using only a stop. Then, in order to easily determine whether or not it is necessary to replace the new one, this weak point portion is provided at a position where the destruction can be easily determined from the outside to serve as the destruction confirmation unit A.

<破壊確認部>
次に、破壊確認部Aについて詳細に説明する。前述のように、本発明の実施形態に係る補強構造1の破壊確認部Aは、FRPシート5の下部で基礎2を覆う図1,図2のA部である。通常、木造建築物の基礎2は、仕上げ材としモルタル等を塗って不陸(凹凸)を調整する程度の仕上げしかせず、柱4の外側に外壁を取り付けるのと比べて仕上げ材が少ない。このため、破壊確認部AであるFRPシート5の下部は、外部からFRPシート5の破壊状況を簡単に確認することができる。
<Destruction confirmation section>
Next, the destruction confirmation unit A will be described in detail. As described above, the fracture confirmation portion A of the reinforcing structure 1 according to the embodiment of the present invention is the A portion of FIGS. 1 and 2 in which the foundation 2 is covered with the lower part of the FRP sheet 5. Normally, the foundation 2 of a wooden building is finished by applying mortar or the like as a finishing material to adjust the unevenness (unevenness), and the amount of finishing material is less than that of attaching the outer wall to the outside of the pillar 4. Therefore, the lower part of the FRP sheet 5 which is the destruction confirmation unit A can easily confirm the destruction state of the FRP sheet 5 from the outside.

具体的には、FRPシート5のビス6がパンチングアウトしているか、FRPシート5の破断が端部まで進行し、ビス6が引き抜けているかを目視により確認する(図7参照)。このとき、破壊が進行している場合は、基礎2に塗ったモルタル等も剥がれ落ちており、建物の外部から簡単に目視確認が可能である。また、破壊が進行していない場合でも、モルタル等を叩き落とせば簡単に建物外部からの目視確認が可能となる。 Specifically, it is visually confirmed whether the screw 6 of the FRP sheet 5 is punched out, or whether the FRP sheet 5 is broken to the end and the screw 6 is pulled out (see FIG. 7). At this time, if the destruction is progressing, the mortar or the like applied to the foundation 2 is also peeled off, and it can be easily visually confirmed from the outside of the building. Even if the destruction is not progressing, it is possible to easily visually check from the outside of the building by knocking down the mortar or the like.

また、破壊確認部AであるFRPシート5の下部は、基礎2に接着されずにビス6で機械的にねじ止めされて止め付けられているだけである。これに対して、FRPシート5の上部は、柱4に接着剤7で接着された上、ビス6で機械的にねじ止めされて止め付けられており、FRPシート5の上部の接合強度は、接着剤7の接着力がプラスされているのは明らかである。 Further, the lower portion of the FRP sheet 5, which is the fracture confirmation portion A, is not adhered to the foundation 2, but is only mechanically screwed and fastened with screws 6. On the other hand, the upper part of the FRP sheet 5 is bonded to the pillar 4 with an adhesive 7 and then mechanically screwed with a screw 6 to be fixed. It is clear that the adhesive strength of the adhesive 7 is added.

このため、破壊確認部Aでは、図4〜図6で示したように、接続具であるビス6の周囲のFRPシート5の断裂が他の破壊より先行するので、当該接合部が延性の高い破壊モードで破壊されることになる。 Therefore, in the fracture confirmation unit A, as shown in FIGS. 4 to 6, the fracture of the FRP sheet 5 around the screw 6 which is the connector precedes other fractures, so that the joint portion has high ductility. It will be destroyed in destroy mode.

なお、FRPシート5は、複数層の補強繊維が積層された繊維強化プラスチックであり、補強繊維の層数を増やしたり、減らしたりすることで、FRPシート5の断裂が他の破壊より先行するよう容易に設定することができる。また、FRPシート5を固定するビス6の本数等を増減することでも、破壊モードのコントロールができる。具体的には、各パターンの供試体を作成し、前述の繰り返し荷重の加力試験等を行って、荷重とすべり量を把握することで、木構造物の構造計算に応じた最適な補強繊維の層数やビス6の本数等を設定する。木造建築物は、各構造材の寸法等もある程度規格化されており、これらの把握も容易と考えられる。 The FRP sheet 5 is a fiber reinforced plastic in which a plurality of layers of reinforcing fibers are laminated, and by increasing or decreasing the number of layers of the reinforcing fibers, the FRP sheet 5 may be torn before other fractures. It can be set easily. The destruction mode can also be controlled by increasing or decreasing the number of screws 6 for fixing the FRP sheet 5. Specifically, by creating specimens for each pattern and conducting the above-mentioned repeated load loading test to grasp the load and slip amount, the optimum reinforcing fiber according to the structural calculation of the wooden structure. Set the number of layers, the number of screws 6, and the like. In wooden buildings, the dimensions of each structural material are standardized to some extent, and it is considered easy to grasp these.

これに対して、従来のホールダウン金物のような金属プレートは、木材より強度が高く、薄鋼板を使用したとしても破壊モードをコントロールするような極めて細かな微調整を行うことはできない。 On the other hand, a metal plate such as a conventional hole-down metal plate has higher strength than wood, and even if a thin steel plate is used, it is not possible to make extremely fine adjustments for controlling the fracture mode.

要するに、補強構造1は、接着剤7の接着力がないため、破壊確認部Aが明らかな弱点部であり、この部位においてFRPシート5のビス6がパンチングアウトも、FRPシート5の破断が端部まで進行していないことが確認できれば、補強構造1は降伏に至っておらす、使用し続けることができると結論付けることができる。このため、この破壊確認部Aを外部から目視するだけで簡単に補強構造1の修繕や修理の必要の有無を判別することができる。 In short, since the reinforcing structure 1 does not have the adhesive force of the adhesive 7, the fracture confirmation portion A is a clearly weak point portion, and even if the screw 6 of the FRP sheet 5 punches out at this portion, the breakage of the FRP sheet 5 ends. If it can be confirmed that the reinforcement structure 1 has not progressed to the part, it can be concluded that the reinforcing structure 1 has reached yield and can be used continuously. Therefore, it is possible to easily determine whether or not the reinforcing structure 1 needs to be repaired or repaired simply by visually observing the destruction confirmation unit A from the outside.

以上説明した本発明の実施形態に係る木構造物の接合部の補強構造1によれば、破壊確認部Aが設けられているので、破壊が外部から簡単に判別でき、地震や台風による木構造物の被害を把握して修理や修繕の判断が容易となる。 According to the reinforcing structure 1 of the joint portion of the wooden structure according to the embodiment of the present invention described above, since the fracture confirmation portion A is provided, the fracture can be easily identified from the outside, and the wooden structure due to an earthquake or a typhoon can be easily identified. It becomes easy to grasp the damage of an object and make a decision on repair or repair.

また、補強構造1によれば、接続具であるビス6の周囲のFRPシート5の断裂が他の破壊より先行するので、延性の高い破壊モードで破壊されることになる。このため、大地震でも木構造物が一気に崩壊に至らず、居住者等が避難する時間を確保することができる。 Further, according to the reinforcing structure 1, since the FRP sheet 5 around the screw 6 which is the connector is torn ahead of other fractures, the FRP sheet 5 is destroyed in a highly ductile fracture mode. For this reason, the wooden structure does not collapse at once even in a large earthquake, and it is possible to secure time for residents and the like to evacuate.

しかも、補強構造1は、木構造物の複数の接合部のなかでも死荷重が最もかかり損傷し易い基礎と土台と柱の接合部である。このため、破壊確認部Aを目視により確認するだけで、木構造物全体が、地震や台風などの外力で損傷したか否の判断を迅速に行うことができる。 Moreover, the reinforcing structure 1 is a joint between a foundation, a base, and a column, which is most susceptible to dead load and damage among a plurality of joints of a wooden structure. Therefore, it is possible to quickly determine whether or not the entire wooden structure has been damaged by an external force such as an earthquake or a typhoon simply by visually checking the destruction confirmation unit A.

それに加え、補強構造1は、ビス6を使用しているものの、主な構造材は、木材とコンクリートとFRPだけであり、従来のホールダウン金物のような金属材を使用しおらず、錆びたりして経年劣化するおそれが格段に遅く、木構造物の耐久性を向上させることができる。なお、ビス6も、ステンレスや樹脂材とすることもできる。また、FRPシート5は、極めて軽量で補強することができ、木構造物の自重を低減することができる。 In addition, although the reinforcing structure 1 uses screws 6, the main structural materials are only wood, concrete, and FRP, and it does not use metal materials such as conventional hole-down hardware, and it rusts. As a result, the risk of deterioration over time is extremely slow, and the durability of the wooden structure can be improved. The screw 6 can also be made of stainless steel or a resin material. Further, the FRP sheet 5 is extremely lightweight and can be reinforced, and the weight of the wooden structure itself can be reduced.

以上、本発明の実施形態に係る木構造物の接合部の補強構造1について詳細に説明した。しかし、前述した又は図示した実施形態は、いずれも本発明を実施するにあたって具体化した一実施形態を示したものに過ぎない。よって、例示した実施形態によって本発明の技術的範囲が限定的に解釈されてはならないものである。 The reinforcing structure 1 of the joint portion of the wooden structure according to the embodiment of the present invention has been described in detail above. However, the above-mentioned or illustrated embodiments are merely one embodiments embodied in carrying out the present invention. Therefore, the technical scope of the present invention should not be construed in a limited manner by the illustrated embodiments.

特に、木構造物として一般の木造軸組構法で建築された戸建の建築物を例示して説明したが、木造軸組構法、木造枠組壁構法、木質ラーメン構法などの主要構造材を木質材料から構成した木構造物の接合部の補強構造には、本発明を適用することができる。また、土台と柱と基礎の接合を例示して説明したが、木構造物の構造材同士の接合部には、本発明を適用することができる。 In particular, as a wooden structure, a detached building constructed by a general wooden frame construction method was explained as an example, but the main structural materials such as the wooden frame construction method, the wooden frame wall construction method, and the wooden ramen construction method are made of wood. The present invention can be applied to the reinforcing structure of the joint portion of the wooden structure composed of. Further, although the joint between the base, the pillar and the foundation has been described as an example, the present invention can be applied to the joint between the structural members of the wooden structure.

1:木構造物の接合部の補強構造
2:基礎(構造材)
3:土台(構造材)
4:柱(構造材)
5:FRPシート
5a:ビス孔
6:ビス(接続具)
7:接着剤(接着剤層)
X:桁行方向
Y:梁間方向
Z:上下方向
1: Reinforcing structure of the joint of the wooden structure 2: Foundation (structural material)
3: Base (structural material)
4: Pillar (structural material)
5: FRP sheet 5a: Screw hole 6: Screw (connector)
7: Adhesive (adhesive layer)
X: Girder direction Y: Inter-beam direction Z: Vertical direction

Claims (4)

木構造物の複数の構造材を接合する木構造物の接合部の補強構造であって、
一方向繊維材若しくは二方向クロス繊維材を単層又は複数層積層した補強繊維を有するFRPシートが前記複数の構造材に亘ってそれらの表面に取り付けられ、
前記FRPシートの一部に前記接合部が破壊したか否かを確認できる破壊確認部が設けられ、
前記破壊確認部は、前記FRPシートが、前記構造材に接着されずに、ビス、釘、タッカーなどの針状の接続具で機械的に前記構造材に止め付けられているとともに、前記接続具の周囲の前記FRPシートの断裂が他の破壊より先行するように前記補強繊維の層数及び前記接続具の本数が設定されていること
を特徴とする木構造物の接合部の補強構造。
It is a reinforcing structure of the joint part of the wooden structure that joins a plurality of structural materials of the wooden structure.
An FRP sheet having reinforcing fibers in which one-way fiber material or two-way cross fiber material is laminated in a single layer or a plurality of layers is attached to the surface of the plurality of structural materials.
A fracture confirmation unit is provided on a part of the FRP sheet so that it can be confirmed whether or not the joint portion has been destroyed.
In the destruction confirmation unit, the FRP sheet is not adhered to the structural material, but is mechanically fixed to the structural material with a needle-shaped connector such as a screw, a nail, or a tacker, and the connector is attached. A reinforcing structure for a joint portion of a wooden structure, characterized in that the number of layers of the reinforcing fibers and the number of connecting tools are set so that the tearing of the FRP sheet around the FRP sheet precedes other fractures.
前記FRPシートの前記破壊確認部を除く部分の少なくとも一部は、前記FRPシートが、前記構造材に接着された上、前記接続具で機械的に前記構造材に止め付けられていること
を特徴とする請求項1に記載の木構造物の接合部の補強構造。
At least a part of the FRP sheet other than the fracture confirmation portion is characterized in that the FRP sheet is adhered to the structural material and then mechanically fixed to the structural material by the connector. The reinforcing structure of the joint portion of the wooden structure according to claim 1.
前記FRPシートは、前記構造材に接着された接着強度が、前記接続具の周囲の前記FRPシートが断裂する強度より高くなっていること
を特徴とする請求項2に記載の木構造物の接合部の補強構造。
The joining of the wooden structure according to claim 2, wherein the FRP sheet has an adhesive strength adhered to the structural material higher than the strength at which the FRP sheet around the fitting is torn. Reinforcing structure of the part.
前記接合部は、基礎と土台と柱の3つの構造材を接合する接合部であり、
前記破壊確認部は、前記FRPシートが前記基礎を覆っている部分であること
を特徴とする請求項1ないし3のいずれかに記載の木構造物の接合部の補強構造。
The joint is a joint that joins three structural materials, a foundation, a foundation, and a column.
The reinforcing structure for a joint portion of a wooden structure according to any one of claims 1 to 3, wherein the fracture confirmation portion is a portion where the FRP sheet covers the foundation.
JP2020109462A 2020-06-25 2020-06-25 Reinforcement structure of joints of wooden structures provided with fracture confirmation Active JP6915817B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020109462A JP6915817B1 (en) 2020-06-25 2020-06-25 Reinforcement structure of joints of wooden structures provided with fracture confirmation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020109462A JP6915817B1 (en) 2020-06-25 2020-06-25 Reinforcement structure of joints of wooden structures provided with fracture confirmation

Publications (2)

Publication Number Publication Date
JP6915817B1 true JP6915817B1 (en) 2021-08-04
JP2022006894A JP2022006894A (en) 2022-01-13

Family

ID=77057548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020109462A Active JP6915817B1 (en) 2020-06-25 2020-06-25 Reinforcement structure of joints of wooden structures provided with fracture confirmation

Country Status (1)

Country Link
JP (1) JP6915817B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7491606B2 (en) * 2022-10-14 2024-05-28 株式会社I-deate&eng. Structural base materials, structural members and structures

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3091629U (en) * 2002-07-24 2003-02-07 ジェイ建築システム株式会社 Joint member and joint structure
JP4024686B2 (en) * 2003-02-05 2007-12-19 ジェイ建築システム株式会社 Joint reinforcement material and joint reinforcement structure for wooden buildings
JP3102245U (en) * 2003-12-12 2004-07-02 ジェイ建築システム株式会社 Construction structure of building members using fiber sheet
JP2012136912A (en) * 2010-12-28 2012-07-19 Yoshikuni Okura Connection structure
JP6857519B2 (en) * 2017-03-15 2021-04-14 帝人株式会社 Joint structure

Also Published As

Publication number Publication date
JP2022006894A (en) 2022-01-13

Similar Documents

Publication Publication Date Title
Schneider et al. Experimental assessment of a novel steel tube connector in cross-laminated timber
US6811861B2 (en) Structural reinforcement using composite strips
JP4926509B2 (en) Reinforcement structure for steel structure pillar / beam joints
Zhang et al. Mechanical performance of GFRP-profiled steel sheeting composite sandwich beams in four-point bending
Nowak et al. Strength enhancement of timber beams using steel plates–review and experimental tests
Mathison et al. Novel pin jointed moment connection for cold-formed steel trusses
JP6915817B1 (en) Reinforcement structure of joints of wooden structures provided with fracture confirmation
Sallam et al. Prevention of peeling failure in plated beams
Shioya et al. An innovative hybrid timber structure in Japan: Performance of column and beam
KR20160120114A (en) Fiber Reinforced Concrete Structure With End Slip Prevention
Abdalla et al. Shear Strengthening of Reinforced Concrete T-Beams using Carbon Fiber Reinforced Polymer (CFRP) Anchored with CFRP Spikes
Mahini et al. A new method for improving ductility in existing RC ordinary moment resisting frames using FRPs
US7246473B2 (en) Anchorage system for structural reinforcement of fiber reinforced plastic materials and the like
EP2513390B1 (en) Construction system for strengthening an existing structure with tension sheets and a respective anchoring device and method therefore
Morrell et al. Experimental Assessment of Alternative Shear Connections in Cross-Laminated Timber-Concrete Floor Systems
JP2014201870A (en) Cwood
Rizzo et al. Strengthening concrete structures with mechanically fastened pultruded strips
JP6948642B1 (en) Reinforcement structure of joints of wooden structures
JP7097560B2 (en) Reinforcement structure of joints of wooden structures
CA2463363C (en) Anchorage system for structural reinforcement of fiber reinforced plastic materials and the like
JP7491606B2 (en) Structural base materials, structural members and structures
Song et al. An evaluation of strength performance of the edge connections between cross-laminated timber panels reinforced with glass fiber-reinforced plastic
JP7267167B2 (en) Column-beam frame with wooden beams
Ataei et al. Cyclic behaviour of shear connectors in steel-timber composite beams
JP7405640B2 (en) Wooden building materials and structures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210426

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210706

R150 Certificate of patent or registration of utility model

Ref document number: 6915817

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150