JP4162521B2 - Vehicle drive device - Google Patents

Vehicle drive device Download PDF

Info

Publication number
JP4162521B2
JP4162521B2 JP2003082780A JP2003082780A JP4162521B2 JP 4162521 B2 JP4162521 B2 JP 4162521B2 JP 2003082780 A JP2003082780 A JP 2003082780A JP 2003082780 A JP2003082780 A JP 2003082780A JP 4162521 B2 JP4162521 B2 JP 4162521B2
Authority
JP
Japan
Prior art keywords
clutch
torque
vehicle
wheel
drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003082780A
Other languages
Japanese (ja)
Other versions
JP2004297844A (en
Inventor
弘之 湯浅
芳和 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003082780A priority Critical patent/JP4162521B2/en
Publication of JP2004297844A publication Critical patent/JP2004297844A/en
Application granted granted Critical
Publication of JP4162521B2 publication Critical patent/JP4162521B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、主駆動輪を駆動する内燃機関と、従駆動輪を駆動する電動機とを備える車両の駆動装置に関する。
【0002】
【従来の技術】
従来、車両の駆動装置として、主駆動輪(例えば前輪)を駆動するエンジンと、従駆動輪(例えば後輪)を駆動するアクチュエータとを備え、エンジン側の変速機の変速切換えが検出されたとき、変速後の変速位置とエンジンのスロットル開度とから目標車速を設定し、前記変速切換えに同期して目標車速になるように前記アクチュエータで車輪を駆動させる構成のものがあった(特許文献1参照)。
【0003】
【特許文献1】
特許第3325632号公報
【0004】
【発明が解決しようとする課題】
ところで、上記従来技術では、変速後の変速位置を推定するが、手動変速機の場合には、厳密に変速後の変速位置を推定するのは不可能であり、目標車速を的確に設定することができないという問題があった。
【0005】
更に、目標車速に追従させるようにアクチュエータ(電動機)で車輪を駆動させる構成では、路面の摩擦係数によっては従駆動輪がスリップし、車両の安定性を損なってしまう可能性があるという問題があった。
【0006】
本発明は上記問題点に鑑みなされたものであり、主駆動輪を駆動する内燃機関と、従駆動輪を駆動する電動機とを備える車両において、従駆動輪のスリップを回避しつつ、従駆動輪の駆動により車両の安定性を向上させ得る駆動装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
そのため請求項1記載の発明は、主駆動輪を駆動する内燃機関と、従駆動輪を駆動する電動機とを備え、前記内燃機関による駆動トルクがクラッチ及び手動変速機を介して主駆動輪に伝達される車両の駆動装置であって、前記クラッチが解放されてから、前記クラッチのスリップ率の増大変化が減少に転じて前記クラッチの解放状態での最大値を示すようになるまでの間、車両走行路面の摩擦係数の推定値に応じて車両の目標加速度を決定し、前記目標加速度に基づいて前記電動機のトルクを決定する構成とした。
【0008】
かかる構成によると、車両走行路面の摩擦係数から実現可能な目標加速度を求め、クラッチが解放されてから、前記クラッチのスリップ率の増大変化が減少に転じて前記クラッチの解放状態での最大値を示すようになるまでの間、前記目標加速度に基づいて電動機のトルクを決定する。従って、電動機による従駆動輪の駆動トルクが、そのときの路面の摩擦係数に対して過大となって、従駆動輪がスリップすることを回避できると共に、クラッチの解放に伴って車両の加速度が負に反転して大きく落ち込むことを回避でき、かつ、主駆動輪の駆動が戻りつつあるときに過剰に従駆動輪が駆動されることがない。
【0009】
請求項2記載の発明では、主駆動輪の駆動トルクと目標加速度とに応じて電動機のトルクを決定する構成とした。かかる構成によると、目標加速度とするために必要な駆動トルクと、主駆動輪側での実際の駆動トルクとから、従駆動輪側に要求される駆動トルク、即ち、電動機のトルクを決定する。
【0010】
【発明の実施の形態】
以下に、本発明の実施形態を図に基づいて説明する。図1は、実施形態における車両の駆動装置のシステム構成図である。
【0011】
図1において、エンジン(内燃機関)1による駆動トルクは、図示省略したクラッチペダルの踏み込みによって解放される摩擦クラッチ2、手動変速機3及びディファレンシャル4を介して前輪(主駆動輪)FWに伝達される。
【0012】
即ち、エンジン1,摩擦クラッチ2,手動変速機3,ディファレンシャル4からなる動力系は、いわゆるマニュアルトランスミッション(MT)の前輪駆動車と同様に構成される。
【0013】
前記エンジン1には、該エンジン1により駆動される発電機5が設けられ、該発電機5から直接電力が供給されるモータ(電動機)6が設けられる。前記モータ6の発生トルクは、減速機7、電磁クラッチ8及びディファレンシャル9を介して後輪(従駆動輪)RWに伝達される。
【0014】
マイクロコンピュータを含んで構成される後輪駆動力コントロールユニット10は、前記発電機5、モータ6及び電磁クラッチ8の制御機能を有する。前記後輪駆動力コントロールユニット10には、各種センサからの検出信号が入力される。
【0015】
前記各種センサとしては、前輪(主駆動輪)FW,後輪(従駆動輪)RWそれぞれの車輪速を検出する車輪速センサ11a,11b、摩擦クラッチ2の締結・解放を検出するクラッチスイッチ12、摩擦クラッチ2の出力側の回転速度Ntを検出する出力側回転センサ13、エンジン1の回転速度Ne(摩擦クラッチ2の入口側の回転速度)を検出するエンジン回転センサ14などが設けられている。
【0016】
そして、前記後輪駆動力コントロールユニット10は、図2のフローチャートに示すようにして、モータ6による後輪(従駆動輪)RWの駆動を制御する。図2のフローチャートにおいて、ステップS1では、クラッチスイッチ12の検出結果から、前記摩擦クラッチ2の解放状態であるか否かを判別する。
【0017】
そして、前記摩擦クラッチ2の締結状態(クラッチスイッチ12がOFF)であれば、ステップS2へ進む。ステップS2では、そのときの路面の摩擦係数を推定する。
【0018】
前記路面の摩擦係数μは、μ=(1/Mg)・(Fm−Mw・dVw/dt)として算出することができる。
【0019】
ここで、Mは車重、Fmは駆動力、Mwは輪荷重、Vwは車輪速度である。次のステップS3では、エンジン1の出力トルクTeをスロットル開度,エンジン回転速度から推定する。
【0020】
更に、ステップS4では、前記エンジン1の出力トルクTeを、前記変速機のギヤ比に応じて前輪FWの駆動トルクT1に換算する。一方、ステップS1で、摩擦クラッチ2が解放状態(クラッチスイッチ12がON)であると判別されると、ステップS5へ進む。
【0021】
ステップS5では、クラッチ2解放時における目標加速度を前記路面の摩擦係数μに基づいて設定する。前記目標加速度は、路面の摩擦係数μが小さいほど、即ち、路面が滑り易いときほど小さい値に設定される。
【0022】
ステップS6では、クラッチ解放直前における前輪FWの駆動トルクT1を初期値としてクラッチ解放後の駆動トルクT1を推定する。前記クラッチ解放後の駆動トルクT1は、クラッチ下流側のイナーシャによって徐々に減衰することになるので、所定の時定数でステップ応答するものとして推定する。
【0023】
尚、前輪FWの駆動トルクT1は直接トルクセンサで検出させる構成であっても良い。ステップS7では、前記目標加速度に見合う駆動トルクから前記前輪FWの駆動トルクT1を減算した結果を、後輪RWの目標駆動トルクT2として算出する。
【0024】
そして、ステップS8では、前記後輪RWの目標駆動トルクT2を、減速機におけるギヤ比等から、モータ6の要求トルクTmに換算する。ステップS9では、前記要求トルクTmを発生させるべく前記モータ6を制御する。
【0025】
ステップS10では、前記摩擦クラッチ2のスリップ率を演算する。前記スリップ率は、エンジン回転センサ14で検出されるエンジン回転速度Ne(即ち、摩擦クラッチ2の入力側の回転速度)、及び、出力側回転センサ13で検出される摩擦クラッチ2の出力側の回転速度Ntから、以下のようにして算出される。
【0026】
スリップ率=(Ne−Nt)/Nt
次のステップS11では、前記摩擦クラッチ2のスリップ率が最大値を示したか否かを判別する。
【0027】
前記スリップ率はクラッチ解放後に漸増し、摩擦クラッチ2が再度締結され始めると、前記スリップ率は減少に転じるので(図3参照)、摩擦クラッチ2のスリップ率が最大値を示すのは、摩擦クラッチ2の解放状態から締結し始めへの切り替わりタイミングとなる。
【0028】
ステップS11でスリップ率が最大値を示したと判別されるまでは、ステップS6へ戻って、そのときの路面の摩擦係数に応じた目標加速度で走行させるべく、モータ6を駆動する。
【0029】
一方、ステップS11でスリップ率が最大値を示したと判別されたとき、即ち、摩擦クラッチ2が締結し始めてエンジン1の動力が前輪FWに伝達され始めたと判断されると、本ルーチンを終了させ、クラッチ解放時のモータ制御を終了させる。
【0030】
上記のようにして、摩擦クラッチ2が解放され前輪FWへの動力伝達が遮断されるときに、モータ6で後輪RWを駆動すれば、変速のための摩擦クラッチ2の解放によって車両加速度がマイナス側に大きく変動することを抑止でき、以って、変速時におけるショックの発生を防止できる。
【0031】
また、路面の摩擦係数に応じた目標加速度に従って、モータ6のトルクを制御することで、滑り易い路面で後輪RWがスリップすることを回避でき、変速時の車両安定性を確保することができる。
【0032】
尚、上記実施形態では、前輪をエンジン1で駆動し、後輪をモータ6で駆動する構成としたが、後輪をエンジン1で駆動し、前輪をモータ6で駆動する構成であっても良いことは明らかである。
【0033】
また、モータ6による従駆動輪の駆動を、変速に伴う摩擦クラッチ2の解放中の他、摩擦クラッチ2が締結されている状態においても行わせ、所謂4輪駆動状態で走行させる構成としても良い。
【0034】
ここで、上記4輪駆動状態においても、そのときの路面の摩擦係数に応じた目標加速度を上限値としてモータトルクを制御させることができるから、マニュアルトランスミッション車両ではなくオートマチックトランスミッション車両にも適用可能である。
【0035】
また、クラッチの解放中にモータ6による後輪駆動の継続時間が所定時間以上になった場合には、モータ6による駆動トルクを強制的に0に戻し、その後は、モータ6による後輪の駆動を行わないようにすると良い。
【0036】
更に、上記実施形態から把握し得る請求項以外の技術思想について、以下にその効果と共に記載する。
(イ)請求項1〜3のいずれか1つに記載の車両の駆動装置において、
前記摩擦係数が小さいほど前記目標加速度を小さく設定することを特徴とする車両の駆動装置。
【0037】
かかる構成によると、路面の摩擦係数が小さく、滑り易い路面であるほど目標加速度がより小さく設定され、滑り易い路面での過剰な駆動トルクの決定を回避する。
【図面の簡単な説明】
【図1】実施形態における車両の駆動装置のシステム構成図。
【図2】同上装置における後輪(従駆動輪)RWの駆動制御を示すフローチャート。
【図3】同上装置における摩擦クラッチ解放時のスリップ率,車両加速度等の変化を示すタイムチャート。
【符号の説明】
1…エンジン(内燃機関)、2…摩擦クラッチ、3…手動変速機、5…発電機、6…モータ(電動機)、8…電磁クラッチ、10…後輪駆動力コントロールユニット、11a,11b…車輪速センサ、12…クラッチスイッチ、13…出力側回転センサ、14…エンジン回転センサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vehicle drive device including an internal combustion engine that drives main drive wheels and an electric motor that drives slave drive wheels.
[0002]
[Prior art]
Conventionally, as a vehicle drive device, an engine that drives a main drive wheel (for example, a front wheel) and an actuator that drives a slave drive wheel (for example, a rear wheel) have been detected. There is a configuration in which a target vehicle speed is set from the shift position after the shift and the throttle opening of the engine, and the wheels are driven by the actuator so as to reach the target vehicle speed in synchronization with the shift switching (Patent Document 1). reference).
[0003]
[Patent Document 1]
Japanese Patent No. 3325632 [0004]
[Problems to be solved by the invention]
By the way, in the above prior art, the shift position after the shift is estimated, but in the case of a manual transmission, it is impossible to strictly estimate the shift position after the shift, and the target vehicle speed is set accurately. There was a problem that could not.
[0005]
Furthermore, in the configuration in which the wheel is driven by an actuator (electric motor) so as to follow the target vehicle speed, there is a problem that the driven wheel may slip depending on the friction coefficient of the road surface, which may impair the stability of the vehicle. It was.
[0006]
The present invention has been made in view of the above problems, and in a vehicle including an internal combustion engine that drives a main drive wheel and an electric motor that drives the sub drive wheel, the sub drive wheel avoids slippage of the sub drive wheel. An object of the present invention is to provide a drive device that can improve the stability of a vehicle by driving the motor.
[0007]
[Means for Solving the Problems]
Therefore, the invention according to claim 1 includes an internal combustion engine that drives the main drive wheel and an electric motor that drives the slave drive wheel, and driving torque from the internal combustion engine is transmitted to the main drive wheel via the clutch and the manual transmission. The vehicle drive device is a vehicle, from when the clutch is released until the increase in the slip ratio of the clutch starts to decrease to indicate the maximum value in the released state of the clutch. The target acceleration of the vehicle is determined according to the estimated value of the friction coefficient of the traveling road surface, and the torque of the electric motor is determined based on the target acceleration.
[0008]
According to this configuration, the realizable target acceleration is obtained from the friction coefficient of the road surface of the vehicle, and after the clutch is released, the increase in the slip ratio of the clutch starts to decrease, and the maximum value in the released state of the clutch is obtained. Until it is shown, the torque of the motor is determined based on the target acceleration. Therefore, the driving torque of the driven wheels by the electric motor is excessive with respect to the friction coefficient of the road surface at that time, so that the driven wheels can be prevented from slipping, and the vehicle acceleration is negative as the clutch is released. Therefore, it is possible to prevent the main driving wheel from being greatly reduced and to prevent the driven wheel from being excessively driven when the driving of the main driving wheel is returning.
[0009]
The invention according to claim 2 is configured to determine the torque of the electric motor according to the driving torque of the main driving wheel and the target acceleration. According to this configuration, the driving torque required for the driven wheel side, that is, the torque of the electric motor is determined from the driving torque necessary for obtaining the target acceleration and the actual driving torque on the main driving wheel side.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a system configuration diagram of a vehicle drive device according to an embodiment.
[0011]
In FIG. 1, the drive torque from the engine (internal combustion engine) 1 is transmitted to the front wheels (main drive wheels) FW via the friction clutch 2, the manual transmission 3 and the differential 4 which are released by depression of a clutch pedal (not shown). The
[0012]
That is, the power system including the engine 1, the friction clutch 2, the manual transmission 3, and the differential 4 is configured in the same manner as a so-called manual transmission (MT) front wheel drive vehicle.
[0013]
The engine 1 is provided with a generator 5 driven by the engine 1 and a motor (electric motor) 6 to which electric power is directly supplied from the generator 5. The torque generated by the motor 6 is transmitted to the rear wheel (secondary drive wheel) RW via the speed reducer 7, the electromagnetic clutch 8 and the differential 9.
[0014]
A rear wheel driving force control unit 10 including a microcomputer has control functions for the generator 5, the motor 6 and the electromagnetic clutch 8. Detection signals from various sensors are input to the rear wheel driving force control unit 10.
[0015]
Examples of the various sensors include wheel speed sensors 11a and 11b that detect wheel speeds of the front wheels (main driving wheels) FW and rear wheels (secondary driving wheels) RW, clutch switches 12 that detect engagement / release of the friction clutch 2, An output side rotation sensor 13 that detects the rotation speed Nt on the output side of the friction clutch 2, an engine rotation sensor 14 that detects the rotation speed Ne of the engine 1 (rotation speed on the inlet side of the friction clutch 2), and the like are provided.
[0016]
The rear wheel driving force control unit 10 controls driving of the rear wheels (secondary driving wheels) RW by the motor 6 as shown in the flowchart of FIG. In the flowchart of FIG. 2, in step S1, it is determined from the detection result of the clutch switch 12 whether or not the friction clutch 2 is in a released state.
[0017]
If the friction clutch 2 is engaged (the clutch switch 12 is OFF), the process proceeds to step S2. In step S2, the friction coefficient of the road surface at that time is estimated.
[0018]
The friction coefficient μ of the road surface can be calculated as μ = (1 / Mg) · (Fm−Mw · dVw / dt).
[0019]
Here, M is the vehicle weight, Fm is the driving force, Mw is the wheel load, and Vw is the wheel speed. In the next step S3, the output torque Te of the engine 1 is estimated from the throttle opening and the engine speed.
[0020]
Furthermore, in step S4, the output torque Te of the engine 1 is converted into the driving torque T1 of the front wheels FW according to the gear ratio of the transmission. On the other hand, if it is determined in step S1 that the friction clutch 2 is in the released state (the clutch switch 12 is ON), the process proceeds to step S5.
[0021]
In step S5, the target acceleration when the clutch 2 is released is set based on the friction coefficient μ of the road surface. The target acceleration is set to a smaller value as the friction coefficient μ of the road surface is smaller, that is, as the road surface is more slippery.
[0022]
In step S6, the driving torque T1 after releasing the clutch is estimated using the driving torque T1 of the front wheel FW immediately before releasing the clutch as an initial value. Since the driving torque T1 after the clutch is released is gradually attenuated by the inertia on the downstream side of the clutch, it is estimated that the driving torque T1 is step-responsive with a predetermined time constant.
[0023]
The driving torque T1 of the front wheel FW may be directly detected by a torque sensor. In step S7, the result of subtracting the driving torque T1 of the front wheel FW from the driving torque commensurate with the target acceleration is calculated as the target driving torque T2 of the rear wheel RW.
[0024]
In step S8, the target drive torque T2 of the rear wheel RW is converted into the required torque Tm of the motor 6 from the gear ratio in the speed reducer. In step S9, the motor 6 is controlled to generate the required torque Tm.
[0025]
In step S10, the slip ratio of the friction clutch 2 is calculated. The slip ratio includes the engine rotation speed Ne detected by the engine rotation sensor 14 (that is, the rotation speed on the input side of the friction clutch 2) and the rotation on the output side of the friction clutch 2 detected by the output side rotation sensor 13. From the speed Nt, it is calculated as follows.
[0026]
Slip rate = (Ne−Nt) / Nt
In the next step S11, it is determined whether or not the slip ratio of the friction clutch 2 has a maximum value.
[0027]
The slip ratio gradually increases after the clutch is released, and when the friction clutch 2 starts to be engaged again, the slip ratio starts to decrease (see FIG. 3). Therefore, the slip ratio of the friction clutch 2 shows the maximum value. 2 is the switching timing from the released state to the start of fastening.
[0028]
Until it is determined in step S11 that the slip ratio has reached the maximum value, the process returns to step S6, and the motor 6 is driven so as to travel at the target acceleration corresponding to the friction coefficient of the road surface at that time.
[0029]
On the other hand, when it is determined in step S11 that the slip ratio has reached the maximum value, that is, when it is determined that the friction clutch 2 starts to be engaged and the power of the engine 1 starts to be transmitted to the front wheels FW, this routine is terminated. End motor control when releasing clutch.
[0030]
As described above, when the rear clutch RW is driven by the motor 6 when the friction clutch 2 is released and the transmission of power to the front wheels FW is interrupted, the vehicle acceleration is negative due to the release of the friction clutch 2 for shifting. It is possible to suppress a large fluctuation to the side, and thus it is possible to prevent the occurrence of shock at the time of shifting.
[0031]
Further, by controlling the torque of the motor 6 according to the target acceleration corresponding to the friction coefficient of the road surface, the rear wheel RW can be prevented from slipping on a slippery road surface, and vehicle stability at the time of shifting can be ensured. .
[0032]
In the above embodiment, the front wheels are driven by the engine 1 and the rear wheels are driven by the motor 6. However, the rear wheels may be driven by the engine 1 and the front wheels may be driven by the motor 6. It is clear.
[0033]
Further, the driven wheels may be driven by the motor 6 while the friction clutch 2 is engaged in addition to the release of the friction clutch 2 that accompanies a shift, and the vehicle 6 may be driven in a so-called four-wheel drive state. .
[0034]
Here, even in the above-described four-wheel drive state, the motor torque can be controlled with the target acceleration according to the friction coefficient of the road surface at that time as an upper limit value, and therefore it can be applied not only to a manual transmission vehicle but also to an automatic transmission vehicle. is there.
[0035]
Further, when the duration of the rear wheel drive by the motor 6 exceeds a predetermined time during the release of the clutch, the drive torque by the motor 6 is forcibly returned to 0, and thereafter the rear wheel drive by the motor 6 is performed. It is better not to do.
[0036]
Further, technical ideas other than the claims that can be grasped from the above embodiment will be described together with the effects thereof.
(A) In the vehicle drive device according to any one of claims 1 to 3,
The vehicle drive device characterized in that the target acceleration is set smaller as the friction coefficient is smaller.
[0037]
According to this configuration, the target acceleration is set to be smaller as the friction coefficient of the road surface is smaller and the slippery road surface is avoided, and determination of excessive drive torque on the slippery road surface is avoided.
[Brief description of the drawings]
FIG. 1 is a system configuration diagram of a vehicle drive device according to an embodiment.
FIG. 2 is a flowchart showing drive control of a rear wheel (secondary drive wheel) RW in the apparatus.
FIG. 3 is a time chart showing changes in slip ratio, vehicle acceleration, and the like when the friction clutch is released in the apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Engine (internal combustion engine), 2 ... Friction clutch, 3 ... Manual transmission, 5 ... Generator, 6 ... Motor (electric motor), 8 ... Electromagnetic clutch, 10 ... Rear-wheel drive force control unit, 11a, 11b ... Wheel Speed sensor, 12 ... clutch switch, 13 ... output side rotation sensor, 14 ... engine rotation sensor

Claims (2)

主駆動輪を駆動する内燃機関と、従駆動輪を駆動する電動機とを備え、前記内燃機関による駆動トルクがクラッチ及び手動変速機を介して主駆動輪に伝達される車両の駆動装置であって、
前記クラッチが解放されてから、前記クラッチのスリップ率の増大変化が減少に転じて前記クラッチの解放状態での最大値を示すようになるまでの間、車両走行路面の摩擦係数の推定値に応じて車両の目標加速度を決定し、前記目標加速度に基づいて前記電動機のトルクを決定することを特徴とする車両の駆動装置。
A vehicle drive device comprising an internal combustion engine for driving main drive wheels and an electric motor for driving slave drive wheels, wherein drive torque from the internal combustion engine is transmitted to the main drive wheels via a clutch and a manual transmission. ,
Depending on the estimated value of the friction coefficient of the vehicle running road surface after the clutch is released until the increase in the slip ratio of the clutch starts to decrease and reaches the maximum value in the released state of the clutch. Determining a target acceleration of the vehicle, and determining a torque of the electric motor based on the target acceleration.
前記主駆動輪の駆動トルクと前記目標加速度とに応じて前記電動機のトルクを決定することを特徴とする請求項1記載の車両の駆動装置。2. The vehicle drive device according to claim 1, wherein the torque of the electric motor is determined in accordance with a drive torque of the main drive wheel and the target acceleration.
JP2003082780A 2003-03-25 2003-03-25 Vehicle drive device Expired - Fee Related JP4162521B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003082780A JP4162521B2 (en) 2003-03-25 2003-03-25 Vehicle drive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003082780A JP4162521B2 (en) 2003-03-25 2003-03-25 Vehicle drive device

Publications (2)

Publication Number Publication Date
JP2004297844A JP2004297844A (en) 2004-10-21
JP4162521B2 true JP4162521B2 (en) 2008-10-08

Family

ID=33398449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003082780A Expired - Fee Related JP4162521B2 (en) 2003-03-25 2003-03-25 Vehicle drive device

Country Status (1)

Country Link
JP (1) JP4162521B2 (en)

Also Published As

Publication number Publication date
JP2004297844A (en) 2004-10-21

Similar Documents

Publication Publication Date Title
KR100214361B1 (en) Touch point identification for automatic clutch controller
JPH07158667A (en) Equipment and method of determining contact point of clutch
JP2008032231A (en) Method and device for controlling torque transmitting system
JP2001182760A (en) Road surface slope detecting apparatus and starting clutch controller
US7055635B2 (en) Electric power regeneration controller for hybrid vehicle
EP1125783B1 (en) Method for controlling an automatic transmission
JP4082548B2 (en) Driving force control device for four-wheel drive vehicle
JP4398325B2 (en) Driving force control device for four-wheel drive vehicle
JP2004254375A (en) Driving force controller of vehicle
JP5003580B2 (en) Driving force distribution control device for four-wheel drive vehicles
JP2008037422A (en) Control device of hybrid four-wheel drive vehicle, and hybrid four-wheel drive vehicle
JP4162521B2 (en) Vehicle drive device
JP3769547B2 (en) Vehicle drive device
JP2004274917A (en) Drive for vehicle
JP3737281B2 (en) Slope start assist device
JP4093097B2 (en) Control device for hybrid four-wheel drive vehicle and hybrid four-wheel drive vehicle
KR20210032579A (en) Control method for engine clutch open of hybrid electric vehicle
JP4135462B2 (en) Drive system component protection control method
EP1356974B1 (en) Power distribution control method and apparatus for four-wheel drive vehicle
JP3892278B2 (en) Driving force distribution control device for four-wheel drive vehicle
JP2020055407A (en) Cascade lock preventive device
JP4162512B2 (en) Vehicle drive device
JP3622257B2 (en) Vehicle driving force control device
JP2004266960A (en) Drive unit of vehicle
JP4543622B2 (en) Driving force distribution control device for four-wheel drive vehicles

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041216

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060922

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061213

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070105

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080722

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees