JP4162512B2 - Vehicle drive device - Google Patents

Vehicle drive device Download PDF

Info

Publication number
JP4162512B2
JP4162512B2 JP2003057011A JP2003057011A JP4162512B2 JP 4162512 B2 JP4162512 B2 JP 4162512B2 JP 2003057011 A JP2003057011 A JP 2003057011A JP 2003057011 A JP2003057011 A JP 2003057011A JP 4162512 B2 JP4162512 B2 JP 4162512B2
Authority
JP
Japan
Prior art keywords
clutch
vehicle
driving
drive
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003057011A
Other languages
Japanese (ja)
Other versions
JP2004266975A (en
Inventor
弘之 湯浅
芳和 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003057011A priority Critical patent/JP4162512B2/en
Publication of JP2004266975A publication Critical patent/JP2004266975A/en
Application granted granted Critical
Publication of JP4162512B2 publication Critical patent/JP4162512B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Arrangement And Driving Of Transmission Devices (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、主駆動輪を駆動する内燃機関と、従駆動輪を駆動する電動機とを備える車両の駆動装置に関する。
【0002】
【従来の技術】
従来、車両の駆動装置として、主駆動輪(例えば前輪)を駆動するエンジンと、従駆動輪(例えば後輪)を駆動するアクチュエータとを備え、エンジン側の変速機の変速切換えが検出されたとき、変速後の変速位置とエンジンのスロットル開度とから目標車速を設定し、前記変速切換えに同期して目標車速になるように前記アクチュエータで車輪を駆動させる構成のものがあった(特許文献1参照)。
【0003】
【特許文献1】
特許第3325632号公報
【0004】
【発明が解決しようとする課題】
ところで、上記従来技術では、変速後の変速位置を推定するが、手動変速機の場合には、厳密に変速後の変速位置を推定するのは不可能であり、目標車速を的確に設定することができないという問題があった。
【0005】
更に、目標車速に追従させるようにアクチュエータ(電動機)で車輪を駆動させる構成では、路面状況(摩擦係数,勾配など)によっては、運転者の意図しない加速やスリップが発生し、車両の安定性を損なってしまう可能性があるという問題があった。
【0006】
本発明は上記問題点に鑑みなされたものであり、主駆動輪を駆動する内燃機関と、従駆動輪を駆動する電動機とを備えると共に、前記内燃機関による駆動トルクがクラッチ及び手動変速機を介して主駆動輪に伝達される構成の車両の駆動装置において、変速中の車両安定性を改善することを目的とする。
【0007】
【課題を解決するための手段】
そのため請求項1記載の発明では、内燃機関と手動変速機との間に介装されるクラッチの解放状態において、前記車両の加速度が負に反転してから、前記クラッチのスリップ率の増大変化が減少に転じて前記クラッチの解放状態での最大値を示すようになるまでの間、解放前の手動変速機の変速比に応じて、従駆動輪を駆動する電動機の駆動トルクを決定し、該駆動トルクに応じて電動機を制御する構成とした。
【0008】
かかる構成によると、主駆動輪への動力伝達が遮断されるクラッチ解放時に、車両の加速度が負に反転してから、前記クラッチのスリップ率の増大変化が減少に転じて前記クラッチの解放状態での最大値を示すようになるまでの間において、クラッチ解放直前の変速比に応じて電動機による従駆動輪の駆動トルクを決定して電動機を制御する。
【0009】
従って、変速段によって異なる主駆動輪の駆動トルクに応じて、クラッチ解放時に車両の加速度が負に反転してから、前記クラッチのスリップ率の増大変化が減少に 転じて前記クラッチの解放状態での最大値を示すようになるまでの間において従駆動輪を駆動させるので、クラッチの解放に伴って車両の加速度が負に反転して大きく落ち込むことを回避でき、かつ、主駆動輪の駆動が戻りつつあるときに過剰に従駆動輪が駆動されることがなく、運転者の意図しない加速の発生を回避できる。
【0010】
請求項2記載の発明では、前記手動変速機の変速比が低速側であるほど、電動機の駆動トルクを大きくする構成とした。
かかる構成によると、クラッチ解放前の手動変速機の変速比が低速側で、クラッチ解放前の内燃機関による主駆動輪の駆動トルクが大きいほど、クラッチ解放中の電動機による従駆動輪の駆動トルクを大きくする。
【0011】
従って、主駆動輪の駆動トルクが大きく、クラッチ解放による加速度変動が大きいときほど、従駆動輪の駆動トルクを大きくして、加速度変動を確実に抑制できる。
【0012】
請求項3記載の発明では、前記クラッチのスリップ率を検出し、手動変速機の変速比に応じた電動機の駆動トルクを、前記スリップ率で補正する構成とした。
かかる構成によると、クラッチのスリップ率から、主駆動輪側の駆動トルクの変化を推定し、該変化に応じて電動機による従駆動輪の駆動トルクを補正する。
【0013】
従って、主駆動輪側の駆動トルクの変化に応じて従駆動輪側の駆動トルクを変化させることができ、主駆動輪側の駆動トルクの変化に見合った適切な駆動トルクで従駆動輪を駆動させることができる。
【0014】
【発明の実施の形態】
以下に、本発明の実施形態を図に基づいて説明する。図1は、実施形態における車両の駆動装置のシステム構成図である。
【0015】
図1において、エンジン(内燃機関)1による駆動トルクは、図示省略したクラッチペダルの踏み込みによって解放される摩擦クラッチ2、手動変速機3及びディファレンシャル4を介して前輪(主駆動輪)FWに伝達される。
【0016】
即ち、エンジン1,摩擦クラッチ2,手動変速機3,ディファレンシャル4からなる動力系は、いわゆるマニュアルトランスミッション(MT)の前輪駆動車と同様に構成される。
【0017】
前記エンジン1には、該エンジン1により駆動される発電機5が設けられ、該発電機5から直接電力が供給されるモータ(電動機)6が設けられる。
前記モータ6の発生トルクは、減速機7、電磁クラッチ8及びディファレンシャル9を介して後輪(従駆動輪)RWに伝達される。
【0018】
マイクロコンピュータを含んで構成される後輪駆動力コントロールユニット10は、前記発電機5、モータ6及び電磁クラッチ8の制御機能を有する。
前記後輪駆動力コントロールユニット10には、各種センサからの検出信号が入力される。
【0019】
前記各種センサとしては、前輪(主駆動輪)FW,後輪(従駆動輪)RWそれぞれの車輪速を検出する車輪速センサ11a,11b、摩擦クラッチ2の締結・解放を検出するクラッチスイッチ12、摩擦クラッチ2の出力側の回転速度Ntを検出する出力側回転センサ13、エンジン1の回転速度Ne(摩擦クラッチ2の入口側の回転速度)を検出するエンジン回転センサ14などが設けられている。
【0020】
そして、前記後輪駆動力コントロールユニット10は、図2のフローチャートに示すようにして、モータ6による後輪(従駆動輪)RWの駆動を制御する。
図2のフローチャートにおいて、ステップS1では、クラッチスイッチ12の検出結果から、前記摩擦クラッチ2の解放状態であるか否かを判別する。
【0021】
そして、前記摩擦クラッチ2の締結状態であれば、ステップS2へ進む。
ステップS2では、車輪速センサ11aの検出結果から判断される手動変速機3の出力軸回転速度と、出力側回転センサ13で検出される摩擦クラッチ2の出力側の回転速度Nt、即ち、手動変速機3の入力軸回転速度とから、手動変速機3の変速比を演算する。
【0022】
尚、手動変速機3のギヤ位置(変速位置)を検出するセンサ,スイッチを備える構成であっても良い。一方、ステップS1で摩擦クラッチ2の解放状態であると判断されると、ステップS3へ進む。
【0023】
ステップS3では、前記摩擦クラッチ2のスリップ率を演算する。
前記スリップ率は、エンジン回転センサ14で検出されるエンジン回転速度Ne(即ち、摩擦クラッチ2の入力側の回転速度)、及び、出力側回転センサ13で検出される摩擦クラッチ2の出力側の回転速度Ntから、以下のようにして算出される。
【0024】
スリップ率=(Ne−Nt)/Nt
次のステップS4では、車両の加速度を演算する。前記車両加速度は、車速の微分値として求められ、車速は、車輪速センサ11a,11bで検出される車輪速から求められる。また、加速度センサを備える構成であっても良い。
【0025】
ステップS5では、車両加速度が最初にプラスからマイナスに反転した時点から、摩擦クラッチ2のスリップ率が最大値を示すまでの間であるか否かを判別する。
【0026】
加速中にシフトアップすべく摩擦クラッチ2が運転者によって解放操作されると、車両の加速度がプラスからマイナスに反転し、その後、前記スリップ率は漸増し、摩擦クラッチ2が再度締結され始めると、前記スリップ率は減少に転じる(図3参照)。
【0027】
従って、摩擦クラッチ2のスリップ率が解放状態での最大値を示すのは、摩擦クラッチ2の解放状態から締結し始めへの切り替わりタイミングとなる。ステップS5で、前記車両加速度がマイナスに反転してから、摩擦クラッチ2のスリップ率が最大値に上昇するまでの区間内であると判別されると(図3参照)、ステップS6へ進む。
【0028】
ステップS6では、前記ステップS2で求めておいた摩擦クラッチ2の解放直前における手動変速機3における変速比(ギヤ位置)に基づいて、モータ6による後輪RWの基本駆動トルクを設定する。
【0029】
ここでは、図中に示すように、手動変速機3における変速比が低速側であるほど、より大きな基本駆動トルクが設定される。尚、摩擦クラッチ2の解放前がニュートラル状態であった場合には、前記基本駆動トルクを0として、モータ6による後輪RWの駆動は行わない。
【0030】
ステップS7では、前記摩擦クラッチ2のスリップ率に応じて、前記基本駆動トルクを補正するための補正係数kを設定する。ここでは、図中に示すように、スリップ率が大きくなるほど、補正係数kとして大きな値が設定され、前記基本駆動トルクがより大きく増大補正されるようになっている。
【0031】
そして、ステップS8では、前記基本駆動トルク×補正係数kを、モータ6による後輪RWの要求駆動トルクとして算出し、ステップS9では、前記要求駆動トルクに従ってモータ6及び発電機5を制御する。
【0032】
即ち、摩擦クラッチ2が解放される前の変速比が低速側であるときほど、モータ6による後輪RWの駆動トルクは大きく設定され、かつ、摩擦クラッチ2のスリップ率が大きくなるほど、モータ6による後輪RWの駆動トルクは大きく設定される。
【0033】
これは、摩擦クラッチ2が解放される前の変速比(ギヤ位置)が低速側であるほど、主駆動輪である前輪FWの駆動トルクが大きく、モータ6で補うべき駆動トルクの要求が大きくなり、また、スリップ率が大きくなるほど、前輪FWの駆動トルクが低下しているものと推定されるためである。
【0034】
上記のようにして、摩擦クラッチ2が解放され前輪FWへの動力伝達が遮断されるときに、モータ6で後輪RWを駆動すれば、変速のための摩擦クラッチ2の解放によって車両加速度がマイナス側に大きく変動することを抑止でき、以って、変速時におけるショックの発生を防止できる。
【0035】
尚、上記実施形態では、前輪をエンジン1で駆動し、後輪をモータ6で駆動する構成としたが、後輪をエンジン1で駆動し、前輪をモータ6で駆動する構成であっても良いことは明らかである。
【0036】
また、モータ6による従駆動輪の駆動を、変速に伴う摩擦クラッチ2の解放中の他、摩擦クラッチ2が締結されている状態においても行わせ、所謂4輪駆動状態で走行させる構成としても良い。
【0037】
また、クラッチの解放中にモータ6による後輪駆動の継続時間が所定時間以上になった場合には、モータ6による駆動トルクを強制的に0に戻し、その後は、モータ6による後輪の駆動を行わないようにすると良い。
【図面の簡単な説明】
【図1】実施形態における車両の駆動装置のシステム構成図。
【図2】同上装置における後輪(従駆動輪)RWの駆動制御を示すフローチャート。
【図3】同上装置における摩擦クラッチ解放時のスリップ率,車両加速度等の変化を示すタイムチャート。
【符号の説明】
1…エンジン(内燃機関)、2…摩擦クラッチ、3…手動変速機、5…発電機、6…モータ(電動機)、8…電磁クラッチ、10…後輪駆動力コントロールユニット、11a,11b…車輪速センサ、12…クラッチスイッチ、13…出力側回転センサ、14…エンジン回転センサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vehicle drive device including an internal combustion engine that drives main drive wheels and an electric motor that drives slave drive wheels.
[0002]
[Prior art]
Conventionally, as a vehicle drive device, an engine that drives a main drive wheel (for example, a front wheel) and an actuator that drives a slave drive wheel (for example, a rear wheel) have been detected. There is a configuration in which a target vehicle speed is set from the shift position after the shift and the throttle opening of the engine, and the wheels are driven by the actuator so as to reach the target vehicle speed in synchronization with the shift switching (Patent Document 1). reference).
[0003]
[Patent Document 1]
Japanese Patent No. 3325632 [0004]
[Problems to be solved by the invention]
By the way, in the above prior art, the shift position after the shift is estimated, but in the case of a manual transmission, it is impossible to strictly estimate the shift position after the shift, and the target vehicle speed is set accurately. There was a problem that could not.
[0005]
Furthermore, in the configuration in which the wheels are driven by actuators (electric motors) so as to follow the target vehicle speed, depending on the road surface conditions (friction coefficient, gradient, etc.), acceleration and slip that are not intended by the driver may occur, and the stability of the vehicle may be reduced. There was a problem that it might be damaged.
[0006]
The present invention has been made in view of the above-described problems, and includes an internal combustion engine that drives main drive wheels and an electric motor that drives slave drive wheels, and the driving torque of the internal combustion engine is transmitted via a clutch and a manual transmission. An object of the present invention is to improve vehicle stability during shifting in a vehicle drive device configured to be transmitted to main drive wheels.
[0007]
[Means for Solving the Problems]
Therefore, according to the first aspect of the present invention, in the released state of the clutch interposed between the internal combustion engine and the manual transmission , the increase in the slip ratio of the clutch is changed after the acceleration of the vehicle is negatively reversed. until comes to show maximum values in the released state of the clutch started to decline, in response to the transmission ratio of release before the manual transmission, and determines the drive torque of the motor for driving the subordinate drive wheels, the The electric motor is controlled according to the driving torque.
[0008]
According to this configuration, when the clutch is disengaged in which the power transmission to the main drive wheel is interrupted , the increase in the slip ratio of the clutch starts to decrease after the vehicle acceleration is negatively reversed, and the clutch is disengaged. Until the maximum value is reached, the drive torque of the driven wheels by the motor is determined according to the gear ratio immediately before the clutch is released, and the motor is controlled.
[0009]
Therefore, according to the driving torque of the main driving wheel, which varies depending on the shift speed, the acceleration of the vehicle is negatively reversed when the clutch is released, and then the increase in the slip ratio of the clutch starts to decrease and the clutch is released in the released state. Since the driven wheels are driven until the maximum value is reached, it is possible to avoid the vehicle's acceleration from reversing negatively with the release of the clutch and avoiding a significant drop, and the driving of the main driving wheels returns. When the vehicle is being driven, the excessively driven wheels are not excessively driven, and the occurrence of acceleration not intended by the driver can be avoided.
[0010]
In the invention according to claim 2, the driving torque of the electric motor is increased as the gear ratio of the manual transmission is lower.
According to such a configuration, the driving torque of the driven wheel by the motor during clutch release increases as the gear ratio of the manual transmission before the clutch release is on the low speed side and the driving torque of the main drive wheel by the internal combustion engine before the clutch release increases. Enlarge.
[0011]
Therefore, as the driving torque of the main driving wheel is larger and the acceleration fluctuation due to the clutch release is larger, the driving torque of the slave driving wheel is increased, and the acceleration fluctuation can be reliably suppressed.
[0012]
According to a third aspect of the present invention, the slip ratio of the clutch is detected, and the driving torque of the electric motor according to the gear ratio of the manual transmission is corrected by the slip ratio.
According to this configuration, a change in the driving torque on the main driving wheel side is estimated from the slip ratio of the clutch, and the driving torque of the driven wheel by the electric motor is corrected according to the change.
[0013]
Therefore, the drive torque on the driven wheel side can be changed according to the change in the drive torque on the main drive wheel side, and the driven wheel is driven with an appropriate drive torque commensurate with the change in the drive torque on the main drive wheel side. Can be made.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a system configuration diagram of a vehicle drive device according to an embodiment.
[0015]
In FIG. 1, the drive torque from the engine (internal combustion engine) 1 is transmitted to the front wheels (main drive wheels) FW via the friction clutch 2, the manual transmission 3 and the differential 4 which are released by depression of a clutch pedal (not shown). The
[0016]
That is, the power system including the engine 1, the friction clutch 2, the manual transmission 3, and the differential 4 is configured in the same manner as a so-called manual transmission (MT) front wheel drive vehicle.
[0017]
The engine 1 is provided with a generator 5 driven by the engine 1 and a motor (electric motor) 6 to which electric power is directly supplied from the generator 5.
The torque generated by the motor 6 is transmitted to the rear wheel (secondary drive wheel) RW via the speed reducer 7, the electromagnetic clutch 8 and the differential 9.
[0018]
A rear wheel driving force control unit 10 including a microcomputer has control functions for the generator 5, the motor 6 and the electromagnetic clutch 8.
Detection signals from various sensors are input to the rear wheel driving force control unit 10.
[0019]
Examples of the various sensors include wheel speed sensors 11a and 11b that detect wheel speeds of the front wheels (main driving wheels) FW and rear wheels (secondary driving wheels) RW, clutch switches 12 that detect engagement / release of the friction clutch 2, An output side rotation sensor 13 that detects the rotation speed Nt on the output side of the friction clutch 2, an engine rotation sensor 14 that detects the rotation speed Ne of the engine 1 (rotation speed on the inlet side of the friction clutch 2), and the like are provided.
[0020]
The rear wheel driving force control unit 10 controls driving of the rear wheels (secondary driving wheels) RW by the motor 6 as shown in the flowchart of FIG.
In the flowchart of FIG. 2, in step S1, it is determined from the detection result of the clutch switch 12 whether or not the friction clutch 2 is in a released state.
[0021]
If the friction clutch 2 is engaged, the process proceeds to step S2.
In step S2, the output shaft rotation speed of the manual transmission 3 determined from the detection result of the wheel speed sensor 11a and the output side rotation speed Nt of the friction clutch 2 detected by the output side rotation sensor 13, that is, manual shift. The gear ratio of the manual transmission 3 is calculated from the input shaft rotation speed of the machine 3.
[0022]
In addition, the structure provided with the sensor and switch which detect the gear position (shift position) of the manual transmission 3 may be sufficient. On the other hand, if it is determined in step S1 that the friction clutch 2 is released, the process proceeds to step S3.
[0023]
In step S3, the slip ratio of the friction clutch 2 is calculated.
The slip ratio includes the engine rotation speed Ne detected by the engine rotation sensor 14 (that is, the rotation speed on the input side of the friction clutch 2) and the rotation on the output side of the friction clutch 2 detected by the output side rotation sensor 13. From the speed Nt, it is calculated as follows.
[0024]
Slip rate = (Ne−Nt) / Nt
In the next step S4, the acceleration of the vehicle is calculated. The vehicle acceleration is obtained as a differential value of the vehicle speed, and the vehicle speed is obtained from the wheel speed detected by the wheel speed sensors 11a and 11b. Moreover, the structure provided with an acceleration sensor may be sufficient.
[0025]
In step S5, it is determined whether or not the vehicle acceleration is between the time when the vehicle acceleration is first reversed from plus to minus until the slip ratio of the friction clutch 2 reaches the maximum value.
[0026]
When the friction clutch 2 is released by the driver to shift up during acceleration, the acceleration of the vehicle reverses from positive to negative. Thereafter, the slip ratio gradually increases, and when the friction clutch 2 starts to be engaged again, The slip ratio starts to decrease (see FIG. 3).
[0027]
Therefore, the slip ratio of the friction clutch 2 indicates the maximum value in the released state at the timing of switching from the released state of the friction clutch 2 to the start of engagement. If it is determined in step S5 that the vehicle acceleration is within the interval from when the vehicle acceleration is reversed to a negative value until the slip ratio of the friction clutch 2 increases to the maximum value (see FIG. 3), the process proceeds to step S6.
[0028]
In step S6, the basic drive torque of the rear wheel RW by the motor 6 is set based on the speed ratio (gear position) in the manual transmission 3 immediately before the release of the friction clutch 2 obtained in step S2.
[0029]
Here, as shown in the figure, a larger basic drive torque is set as the gear ratio in the manual transmission 3 is lower. If the friction clutch 2 is in a neutral state before being released, the basic drive torque is set to 0, and the rear wheel RW is not driven by the motor 6.
[0030]
In step S7, a correction coefficient k for correcting the basic drive torque is set according to the slip ratio of the friction clutch 2. Here, as shown in the drawing, as the slip ratio increases, a larger value is set as the correction coefficient k, and the basic driving torque is corrected to increase more.
[0031]
In step S8, the basic driving torque × correction coefficient k is calculated as a required driving torque of the rear wheel RW by the motor 6, and in step S9, the motor 6 and the generator 5 are controlled according to the required driving torque.
[0032]
That is, as the speed ratio before the friction clutch 2 is released is lower, the driving torque of the rear wheel RW by the motor 6 is set larger, and as the slip ratio of the friction clutch 2 becomes larger, the motor 6 The driving torque of the rear wheel RW is set large.
[0033]
This is because the lower the gear ratio (gear position) before the friction clutch 2 is released, the greater the driving torque of the front wheels FW that are the main driving wheels, and the greater the demand for driving torque to be compensated by the motor 6. Moreover, it is because it is estimated that the driving torque of the front wheel FW decreases as the slip ratio increases.
[0034]
As described above, when the rear clutch RW is driven by the motor 6 when the friction clutch 2 is released and the transmission of power to the front wheels FW is interrupted, the vehicle acceleration is negative due to the release of the friction clutch 2 for shifting. It is possible to suppress a large fluctuation to the side, and thus it is possible to prevent the occurrence of shock at the time of shifting.
[0035]
In the above embodiment, the front wheels are driven by the engine 1 and the rear wheels are driven by the motor 6. However, the rear wheels may be driven by the engine 1 and the front wheels may be driven by the motor 6. It is clear.
[0036]
Further, the driven wheels may be driven by the motor 6 while the friction clutch 2 is engaged in addition to the release of the friction clutch 2 that accompanies a shift, and the vehicle 6 may be driven in a so-called four-wheel drive state. .
[0037]
Further, when the duration of the rear wheel drive by the motor 6 exceeds a predetermined time during the release of the clutch, the drive torque by the motor 6 is forcibly returned to 0, and thereafter the rear wheel drive by the motor 6 is performed. It is better not to do.
[Brief description of the drawings]
FIG. 1 is a system configuration diagram of a vehicle drive device according to an embodiment.
FIG. 2 is a flowchart showing drive control of a rear wheel (secondary drive wheel) RW in the apparatus.
FIG. 3 is a time chart showing changes in slip ratio, vehicle acceleration, and the like when the friction clutch is released in the apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Engine (internal combustion engine), 2 ... Friction clutch, 3 ... Manual transmission, 5 ... Generator, 6 ... Motor (electric motor), 8 ... Electromagnetic clutch, 10 ... Rear-wheel drive force control unit, 11a, 11b ... Wheel Speed sensor, 12 ... clutch switch, 13 ... output side rotation sensor, 14 ... engine rotation sensor

Claims (3)

主駆動輪を駆動する内燃機関と、従駆動輪を駆動する電動機とを備えると共に、前記内燃機関による駆動トルクがクラッチ及び手動変速機を介して主駆動輪に伝達される構成の車両の駆動装置であって、
前記クラッチの解放状態において、前記車両の加速度が負に反転してから、前記クラッチのスリップ率の増大変化が減少に転じて前記クラッチの解放状態での最大値を示すようになるまでの間、解放前の前記手動変速機の変速比に応じて前記電動機の駆動トルクを決定し、該駆動トルクに応じて前記電動機を制御することを特徴とする車両の駆動装置。
A vehicle drive device comprising an internal combustion engine for driving main drive wheels and an electric motor for driving slave drive wheels, and configured to transmit drive torque from the internal combustion engine to the main drive wheels via a clutch and a manual transmission. Because
In the released state of the clutch, during the period from when the acceleration of the vehicle is inverted to the negative, to increase the change in the slip ratio of the clutch exhibits a maximum value at the released state of the clutch started to decline, A driving apparatus for a vehicle, wherein a driving torque of the electric motor is determined in accordance with a gear ratio of the manual transmission before release, and the electric motor is controlled in accordance with the driving torque.
前記手動変速機の変速比が低速側であるほど、前記電動機の駆動トルクを大きくすることを特徴とする請求項1記載の車両の駆動装置。2. The vehicle drive device according to claim 1, wherein the drive torque of the electric motor is increased as the gear ratio of the manual transmission is lower. 前記クラッチのスリップ率を検出し、前記手動変速機の変速比に応じた前記電動機の駆動トルクを、前記スリップ率で補正することを特徴とする請求項1又は2記載の車両の駆動装置。3. The vehicle drive device according to claim 1, wherein a slip ratio of the clutch is detected, and a drive torque of the electric motor according to a gear ratio of the manual transmission is corrected by the slip ratio. 4.
JP2003057011A 2003-03-04 2003-03-04 Vehicle drive device Expired - Fee Related JP4162512B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003057011A JP4162512B2 (en) 2003-03-04 2003-03-04 Vehicle drive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003057011A JP4162512B2 (en) 2003-03-04 2003-03-04 Vehicle drive device

Publications (2)

Publication Number Publication Date
JP2004266975A JP2004266975A (en) 2004-09-24
JP4162512B2 true JP4162512B2 (en) 2008-10-08

Family

ID=33120530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003057011A Expired - Fee Related JP4162512B2 (en) 2003-03-04 2003-03-04 Vehicle drive device

Country Status (1)

Country Link
JP (1) JP4162512B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015037891A (en) * 2010-12-08 2015-02-26 アイシン・エーアイ株式会社 Power transmission control device for vehicle
CN103568814B (en) * 2013-07-24 2017-04-19 安徽工程大学 Drive system for hybrid power vehicle

Also Published As

Publication number Publication date
JP2004266975A (en) 2004-09-24

Similar Documents

Publication Publication Date Title
JP4108265B2 (en) Vehicular clutch connection state determination device and shift control device using the same
JP3573202B2 (en) Hybrid vehicle torque control device
JP3560363B2 (en) Automatic clutch control method for starting and ending a coasting phase of a vehicle
EP1255656B1 (en) A method and a system for controlling the propulsion of a hybrid motor vehicle
JP2009220712A (en) Clutch transmission torque controller for hybrid car
JP4223255B2 (en) Slip control device for four-wheel drive vehicles
US5954778A (en) Four-wheel drive transfer case controller with torque decrement strategy
JP4162512B2 (en) Vehicle drive device
JP3769547B2 (en) Vehicle drive device
JP4185923B2 (en) Clutch control device and clutch control method
JP3060752B2 (en) Method and apparatus for controlling vehicle drive device
EP2177412B1 (en) Control system and method for internal combustion engine
US7290636B2 (en) Device and method for controlling distribution of drive force of four-wheel drive car
WO2023047587A1 (en) Travel drive control device for four-wheel-drive vehicle
JP2003220847A (en) Four-wheel drive unit
JP4848914B2 (en) Control device for torque transmission mechanism, control method, program for realizing the control method, and recording medium recording the program
JP4023435B2 (en) Vehicle drive control device
JP2004274917A (en) Drive for vehicle
EP3483482B1 (en) Driving-force control device
JP3590919B2 (en) Control method for continuously variable transmission
WO2023047586A1 (en) Travel drive control device for four-wheel-drive vehicle
JP4162521B2 (en) Vehicle drive device
JP5163481B2 (en) Apparatus and method for controlling motor torque of a four-wheel drive vehicle
JP2004262372A (en) Driving device of vehicle
JP2004266960A (en) Drive unit of vehicle

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041216

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060922

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061213

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070105

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080722

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees