JP2004262372A - Driving device of vehicle - Google Patents

Driving device of vehicle Download PDF

Info

Publication number
JP2004262372A
JP2004262372A JP2003056003A JP2003056003A JP2004262372A JP 2004262372 A JP2004262372 A JP 2004262372A JP 2003056003 A JP2003056003 A JP 2003056003A JP 2003056003 A JP2003056003 A JP 2003056003A JP 2004262372 A JP2004262372 A JP 2004262372A
Authority
JP
Japan
Prior art keywords
clutch
motor
vehicle
drive
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003056003A
Other languages
Japanese (ja)
Inventor
Hiroyuki Yuasa
弘之 湯浅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Hitachi Unisia Automotive Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Unisia Automotive Ltd filed Critical Hitachi Unisia Automotive Ltd
Priority to JP2003056003A priority Critical patent/JP2004262372A/en
Publication of JP2004262372A publication Critical patent/JP2004262372A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Arrangement And Driving Of Transmission Devices (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress fluctuation of the vehicle driving force while a clutch is uncoupled for gear shifting. <P>SOLUTION: A motor to drive rear wheels is provided in a vehicle to drive front wheels through combination of a manual transmission with an engine. While a clutch is uncoupled for manual gear shifting, the drive torque by the motor is determined according to the differentiated value of the engine speed, and the rear wheels are driven by the motor. The drive torque of the motor is reduced more as the absolute value of the differentiated value of engine speed is larger. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、主駆動輪を駆動する内燃機関と、従駆動輪を駆動する電動機とを備える車両の駆動装置に関する。
【0002】
【従来の技術】
従来、車両の駆動装置として、主駆動輪(例えば前輪)を駆動するエンジンと、従駆動輪(例えば後輪)を駆動するアクチュエータとを備え、エンジン側の変速機の変速切換えが検出されたとき、変速後の変速位置とエンジンのスロットル開度とから目標車速を設定し、前記変速切換えに同期して目標車速になるように前記アクチュエータで車輪を駆動させる構成のものがあった(特許文献1参照)。
【0003】
【特許文献1】
特許第3325632号公報
【0004】
【発明が解決しようとする課題】
ところで、上記従来技術では、変速後の変速位置を推定するが、手動変速機の場合には、厳密に変速後の変速位置を推定するのは不可能であり、目標車速を的確に設定することができないという問題があった。
【0005】
更に、目標車速に追従させるようにアクチュエータ(電動機)で車輪を駆動させる構成では、路面状況(摩擦係数,勾配など)によっては、運転者の意図しない加速やスリップが発生し、車両の安定性を損なってしまう可能性があるという問題があった。
【0006】
本発明は上記問題点に鑑みなされたものであり、主駆動輪を駆動する内燃機関と、従駆動輪を駆動する電動機とを備えると共に、前記内燃機関による駆動トルクがクラッチ及び手動変速機を介して主駆動輪に伝達される構成の車両の駆動装置において、変速中の車両安定性を改善することを目的とする。
【0007】
【課題を解決するための手段】
そのため請求項1記載の発明では、クラッチの解放中に、電動機による駆動トルクを内燃機関の回転速度の微分値に応じて決定し、電動機で従駆動輪を駆動する構成とした。
【0008】
内燃機関の回転速度の微分値は、クラッチの完全解放状態と、クラッチが再度繋がる過程とで異なる傾向を示す一方、車両全体の駆動トルクの変動を抑制するためには、クラッチの完全解放状態で電動機により駆動トルクを大きく補い、クラッチが再度繋がる過程では、主駆動輪の駆動力が回復しつつあるから、電動機によって補うべき駆動トルクは小さくなる。
【0009】
そこで、電動機による駆動トルクを内燃機関の回転速度の微分値に応じて決定することで、クラッチの完全解放状態とクラッチが再度繋がる過程とで異なるトルク要求に対応できるようにした。
【0010】
従って、クラッチの解放による駆動トルクの落ち込みを抑止しつつ、過剰に電動機で駆動されることを回避でき、クラッチ解放時における車両の加速度変動(ショック)を抑制できる。
【0011】
請求項2記載の発明では、内燃機関の回転速度の微分値の絶対値に応じて電動機による駆動トルクを決定する構成とした。
かかる構成によると、クラッチを解放すると機関回転は機関のイナーシャで徐々に変化(低下)するのに対し、クラッチが繋がり始めると、変速後の回転速度に向けて機関回転速度が引き込まれるので、より速い速度で変化することになり、回転速度の微分値の絶対値から、完全解放状態とクラッチの繋がり始めとに区別できる。
【0012】
請求項3記載の発明では、内燃機関の回転速度の微分値の絶対値が大きいほど、電動機による駆動トルクを小さくする構成とした。
かかる構成によると、上記のように、内燃機関の回転速度の微分値の絶対値が大きい状態は、クラッチの繋がり始めの状態であり、このときには、主駆動輪の駆動トルクが復活し始めており、電動機で補うべき駆動トルクの要求が小さくなるから、前記絶対値が大きいほど従駆動輪の駆動トルクを小さくする。
【0013】
【発明の実施の形態】
以下に、本発明の実施形態を図に基づいて説明する。
図1は、実施形態における車両の駆動装置のシステム構成図である。
【0014】
図1において、エンジン(内燃機関)1による駆動トルクは、図示省略したクラッチペダルの踏み込みによって解放される摩擦クラッチ2、手動変速機3及びディファレンシャル4を介して前輪(主駆動輪)FWに伝達される。
【0015】
即ち、エンジン1,摩擦クラッチ2,手動変速機3,ディファレンシャル4からなる動力系は、いわゆるマニュアルトランスミッション(MT)の前輪駆動車と同様に構成される。
【0016】
前記エンジン1には、該エンジン1により駆動される発電機5が設けられ、該発電機5から直接電力が供給されるモータ(電動機)6が設けられる。
前記モータ6の発生トルクは、減速機7、電磁クラッチ8及びディファレンシャル9を介して後輪(従駆動輪)RWに伝達される。
【0017】
マイクロコンピュータを含んで構成される後輪駆動力コントロールユニット10は、前記発電機5、モータ6及び電磁クラッチ8の制御機能を有する。
前記後輪駆動力コントロールユニット10には、各種センサからの検出信号が入力される。
【0018】
前記各種センサとしては、エンジン1の回転速度を検出するエンジン回転センサ12、摩擦クラッチ2の締結・解放を検出するクラッチスイッチ13が設けられている。
【0019】
そして、前記後輪駆動力コントロールユニット10は、図2のフローチャートに示すようにして、モータ6による後輪(従駆動輪)RWの駆動を制御する。
図2のフローチャートにおいて、ステップS1では、前記クラッチスイッチ13の信号に基づいて、摩擦クラッチ2の締結・解放を検出する。
【0020】
ここで、摩擦クラッチ2の締結状態で、手動変速機3にエンジン1の駆動力が伝達される状態であるときには、そのまま本ルーチンを終了させ、モータ6による従駆動輪の駆動は行わない。
【0021】
一方、ステップS1で摩擦クラッチ2の解放状態で、手動変速機3側へのエンジン駆動力の伝達が遮断されていると判断されたときには、ステップS2へ進み、前記エンジン回転センサ12で検出されるエンジン回転速度Neの微分値(単位時間当たりの変化量)ΔNeを演算する。
【0022】
次のステップS3では、図3に示すように、前記微分値ΔNeの絶対値に応じて、モータ6による従駆動輪の駆動トルク(トルクアシスト量)を設定する。
前記モータ6による従駆動輪の駆動トルクは、前記微分値ΔNeの絶対値が大きいほど、小さい値に設定される。
【0023】
そして、ステップS4では、前記電磁クラッチ8を締結させると共に、前記ステップS3で設定された駆動トルクが発生するように前記モータ6及び発電機5を制御し、後輪RWを駆動する。
【0024】
図4に示すように、摩擦クラッチ2が解放されると、エンジン回転速度Neはエンジン1のイナーシャで徐々に変化(低下)するのに対し、摩擦クラッチ2が繋がり始めると、変速後の回転速度に向けて機関回転速度が引き込まれるので、エンジン回転速度Neはより速い速度で変化することになり、前記微分値ΔNeの絶対値から、摩擦クラッチ2の完全解放状態と繋がり始めとに大別できる。
【0025】
一方、変速時における車両駆動力の変動を抑制するには、主駆動輪である前輪FWの駆動トルクが低下した分を、従駆動輪である後輪RW側で補うようにすれば良いから、完全解放状態に比べて摩擦クラッチ2が繋がり始めた後は、従駆動輪である後輪RWに与えるべき駆動トルクはより小さくてよい。
【0026】
従って、前記微分値ΔNeの絶対値が大きいほど、モータ6による後輪RWの駆動トルクを小さくすれば、完全解放状態での前輪FW側の駆動トルクが抜ける分を、後輪RW側の駆動で補うことができる一方、摩擦クラッチ2が繋がり始めて前輪FWの駆動トルクが復活するのに合わせて、モータ6による後輪RWの駆動トルクを小さくすることになる。
【0027】
このため、本実施形態によると、変速時の車両駆動力の変動を抑制し、変速時におけるショックの発生を回避できる。
図4は、本実施形態によるモータ6による後輪駆動を行わない場合の加速度変化を示すものであり、本実施形態による後輪駆動を行うことで、加速度の変動がより小さく抑制される。
【0028】
尚、上記実施形態では、前輪をエンジン1で駆動し、後輪をモータ6で駆動する構成としたが、後輪をエンジン1で駆動し、前輪をモータ6で駆動する構成であっても良いことは明らかである。
【0029】
また、モータ6による従駆動輪の駆動を、変速に伴う摩擦クラッチ2の解放中の他、摩擦クラッチ2が締結されている状態においても行わせ、所謂4輪駆動状態で走行させる構成としても良い。
【0030】
また、クラッチの解放中にモータ6による後輪駆動の継続時間が所定時間以上になった場合には、モータ6による駆動トルクを強制的に0に戻し、その後は、モータ6による後輪の駆動を行わないようにすると良い。
【0031】
更に、上記実施形態から把握し得る請求項以外の技術思想について、以下にその効果と共に記載する。
(イ)請求項1〜3のいずれか1つに記載の車両の駆動装置において、
前記内燃機関で駆動される発電機を備え、前記電動機が前記発電機から直接電力を供給されると共に、前記電動機の駆動トルクが減速機及び電磁クラッチを介して従駆動輪に伝達される構成であることを特徴とする車両の駆動装置。
【0032】
かかる構成によると、主駆動輪側のクラッチが解放されたときに、前記電磁クラッチを締結させ、機関駆動される発電機から直接電力が供給される電動機の駆動トルクを、機関回転速度の微分値に応じて制御することで、クラッチの解放に伴う駆動トルクの変動を抑制する。
【図面の簡単な説明】
【図1】実施形態における車両の駆動装置のシステム構成図。
【図2】同上装置における後輪(従駆動輪)RWの駆動制御を示すフローチャート。
【図3】同上装置におけるエンジン回転速度の微分値とモータ駆動トルクとの相関を示す線図。
【図4】同上装置における制御特性を示すタイムチャート。
【符号の説明】
1…エンジン(内燃機関)、2…摩擦クラッチ、3…手動変速機、5…発電機、6…モータ(電動機)、8…電磁クラッチ、10…後輪駆動力コントロールユニット、12…エンジン回転センサ、13…クラッチスイッチ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a drive device for a vehicle including an internal combustion engine that drives main drive wheels and an electric motor that drives slave drive wheels.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a drive device for a vehicle includes an engine that drives a main drive wheel (for example, a front wheel) and an actuator that drives a slave drive wheel (for example, a rear wheel), and when a shift change of a transmission on the engine side is detected. There has been a configuration in which a target vehicle speed is set based on a shift position after a shift and a throttle opening degree of an engine, and wheels are driven by the actuator so as to reach the target vehicle speed in synchronization with the shift switching (Patent Document 1). reference).
[0003]
[Patent Document 1]
Japanese Patent No. 3325632
[Problems to be solved by the invention]
By the way, in the above prior art, the shift position after the shift is estimated. However, in the case of a manual transmission, it is impossible to accurately estimate the shift position after the shift, and the target vehicle speed must be accurately set. There was a problem that can not be.
[0005]
Furthermore, in a configuration in which the wheels are driven by an actuator (electric motor) so as to follow the target vehicle speed, depending on the road surface conditions (friction coefficient, gradient, etc.), unintended acceleration or slippage of the driver occurs, and the stability of the vehicle is reduced. There was a problem that it could be damaged.
[0006]
The present invention has been made in view of the above problems, and includes an internal combustion engine that drives a main drive wheel and an electric motor that drives a sub drive wheel, and a drive torque by the internal combustion engine is transmitted through a clutch and a manual transmission. It is an object of the present invention to improve vehicle stability during gear shifting in a vehicle drive device configured to transmit power to main drive wheels.
[0007]
[Means for Solving the Problems]
Therefore, according to the first aspect of the invention, the driving torque of the electric motor is determined according to the differential value of the rotation speed of the internal combustion engine during the disengagement of the clutch, and the driven motor is driven by the electric motor.
[0008]
The differential value of the rotational speed of the internal combustion engine shows a different tendency between the completely disengaged state of the clutch and the process of reengaging the clutch. In the process in which the driving torque is largely compensated for by the electric motor and the clutch is re-engaged, the driving force of the main drive wheels is being recovered, so that the driving torque to be compensated for by the electric motor is reduced.
[0009]
Therefore, by determining the drive torque of the electric motor according to the differential value of the rotation speed of the internal combustion engine, it is possible to respond to different torque demands in the completely disengaged state of the clutch and the process of re-engaging the clutch.
[0010]
Accordingly, it is possible to prevent the drive torque from being lowered due to the release of the clutch, to avoid excessive driving by the electric motor, and to suppress the fluctuation (shock) of the acceleration of the vehicle when the clutch is released.
[0011]
According to the second aspect of the present invention, the driving torque of the electric motor is determined according to the absolute value of the differential value of the rotation speed of the internal combustion engine.
According to such a configuration, when the clutch is released, the engine speed gradually changes (decreases) due to the inertia of the engine. On the other hand, when the clutch is engaged, the engine speed is pulled toward the speed after the shift, so that the engine speed is reduced. Since the speed changes at a high speed, the absolute value of the differential value of the rotation speed can be distinguished between the completely released state and the start of engagement of the clutch.
[0012]
According to the third aspect of the invention, the configuration is such that the larger the absolute value of the differential value of the rotation speed of the internal combustion engine is, the smaller the driving torque of the electric motor is.
According to this configuration, as described above, the state in which the absolute value of the differential value of the rotation speed of the internal combustion engine is large is the state in which the clutch is starting to be engaged, and at this time, the drive torque of the main drive wheels has begun to recover, Since the demand for the driving torque to be compensated by the electric motor is reduced, the driving torque of the driven wheel is reduced as the absolute value is increased.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a system configuration diagram of a vehicle drive device according to the embodiment.
[0014]
In FIG. 1, a driving torque from an engine (internal combustion engine) 1 is transmitted to a front wheel (main driving wheel) FW via a friction clutch 2, a manual transmission 3, and a differential 4 released by depressing a clutch pedal (not shown). You.
[0015]
That is, the power system including the engine 1, the friction clutch 2, the manual transmission 3, and the differential 4 is configured in the same manner as a so-called manual transmission (MT) front-wheel drive vehicle.
[0016]
The engine 1 is provided with a generator 5 driven by the engine 1 and a motor (electric motor) 6 to which electric power is directly supplied from the generator 5.
The torque generated by the motor 6 is transmitted to a rear wheel (slave drive wheel) RW via a speed reducer 7, an electromagnetic clutch 8 and a differential 9.
[0017]
A rear wheel driving force control unit 10 including a microcomputer has a control function of the generator 5, the motor 6, and the electromagnetic clutch 8.
Detection signals from various sensors are input to the rear wheel driving force control unit 10.
[0018]
As the various sensors, an engine rotation sensor 12 for detecting a rotation speed of the engine 1 and a clutch switch 13 for detecting engagement / disengagement of the friction clutch 2 are provided.
[0019]
The rear wheel driving force control unit 10 controls the driving of the rear wheel (slave driving wheel) RW by the motor 6 as shown in the flowchart of FIG.
In the flowchart of FIG. 2, in step S1, engagement / disengagement of the friction clutch 2 is detected based on the signal of the clutch switch 13.
[0020]
Here, if the driving force of the engine 1 is transmitted to the manual transmission 3 in the engaged state of the friction clutch 2, the present routine is terminated as it is, and the driven wheels are not driven by the motor 6.
[0021]
On the other hand, when it is determined in step S1 that the transmission of the engine driving force to the manual transmission 3 is interrupted in the disengaged state of the friction clutch 2, the process proceeds to step S2, where the engine rotation sensor 12 detects the transmission. A differential value (change amount per unit time) ΔNe of the engine rotation speed Ne is calculated.
[0022]
In the next step S3, as shown in FIG. 3, the driving torque (torque assist amount) of the driven wheels by the motor 6 is set according to the absolute value of the differential value ΔNe.
The driving torque of the driven wheels by the motor 6 is set to a smaller value as the absolute value of the differential value ΔNe becomes larger.
[0023]
In step S4, the electromagnetic clutch 8 is engaged, and the motor 6 and the generator 5 are controlled so as to generate the drive torque set in step S3, thereby driving the rear wheel RW.
[0024]
As shown in FIG. 4, when the friction clutch 2 is disengaged, the engine rotation speed Ne gradually changes (decreases) due to the inertia of the engine 1, whereas when the friction clutch 2 starts to be engaged, the rotation speed after the shift is changed. , The engine rotational speed Ne changes at a higher speed, and the absolute value of the differential value ΔNe can be roughly classified into the state where the friction clutch 2 is completely connected to the completely released state. .
[0025]
On the other hand, in order to suppress the fluctuation of the vehicle driving force at the time of shifting, it is only necessary to compensate for the decrease in the driving torque of the front wheel FW, which is the main drive wheel, on the rear wheel RW side, which is the slave drive wheel. After the friction clutch 2 starts to be engaged as compared with the completely disengaged state, the driving torque to be applied to the rear wheel RW, which is the driven wheel, may be smaller.
[0026]
Therefore, if the drive torque of the rear wheel RW by the motor 6 is reduced as the absolute value of the differential value ΔNe increases, the drive torque of the front wheel FW in the completely released state is reduced by the drive of the rear wheel RW. On the other hand, the driving torque of the rear wheel RW by the motor 6 is reduced as the driving torque of the front wheel FW is restored when the friction clutch 2 starts to be engaged.
[0027]
Therefore, according to the present embodiment, it is possible to suppress the fluctuation of the vehicle driving force at the time of shifting, and to avoid the occurrence of a shock at the time of shifting.
FIG. 4 shows an acceleration change in the case where the rear wheel drive by the motor 6 according to the present embodiment is not performed. By performing the rear wheel drive according to the present embodiment, the fluctuation of the acceleration is suppressed to be smaller.
[0028]
In the above embodiment, the front wheels are driven by the engine 1 and the rear wheels are driven by the motor 6, but the rear wheels may be driven by the engine 1 and the front wheels may be driven by the motor 6. It is clear.
[0029]
Further, the driving of the driven wheels by the motor 6 may be performed not only while the friction clutch 2 is being disengaged due to the shift, but also in a state in which the friction clutch 2 is engaged, and the vehicle may be driven in a so-called four-wheel drive state. .
[0030]
If the duration of the rear wheel drive by the motor 6 exceeds the predetermined time while the clutch is disengaged, the drive torque by the motor 6 is forcibly returned to 0, and thereafter, the drive of the rear wheel by the motor 6 is performed. It is good not to do.
[0031]
Further, technical ideas other than the claims that can be grasped from the above embodiment will be described below together with their effects.
(A) The vehicle drive device according to any one of claims 1 to 3,
A generator driven by the internal combustion engine, wherein the motor is directly supplied with power from the generator, and a driving torque of the motor is transmitted to a driven wheel via a speed reducer and an electromagnetic clutch. A driving device for a vehicle, comprising:
[0032]
According to this configuration, when the clutch on the main drive wheel side is released, the electromagnetic clutch is engaged, and the drive torque of the electric motor to which electric power is supplied directly from the generator driven by the engine is determined by the differential value of the engine rotation speed. , The fluctuation of the driving torque due to the release of the clutch is suppressed.
[Brief description of the drawings]
FIG. 1 is a system configuration diagram of a vehicle drive device according to an embodiment.
FIG. 2 is a flowchart showing drive control of a rear wheel (slave drive wheel) RW in the above device.
FIG. 3 is a diagram showing a correlation between a differential value of an engine rotation speed and a motor drive torque in the above device.
FIG. 4 is a time chart showing control characteristics of the above device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Engine (internal combustion engine), 2 ... Friction clutch, 3 ... Manual transmission, 5 ... Generator, 6 ... Motor (electric motor), 8 ... Electromagnetic clutch, 10 ... Rear wheel drive force control unit, 12 ... Engine rotation sensor , 13 ... Clutch switch

Claims (3)

主駆動輪を駆動する内燃機関と、従駆動輪を駆動する電動機とを備えると共に、前記内燃機関による駆動トルクがクラッチ及び手動変速機を介して主駆動輪に伝達される構成の車両の駆動装置であって、
前記クラッチの解放中に、前記電動機による駆動トルクを前記内燃機関の回転速度の微分値に応じて決定し、前記電動機で従駆動輪を駆動することを特徴とする車両の駆動装置。
A drive device for a vehicle that includes an internal combustion engine that drives main drive wheels and an electric motor that drives slave drive wheels, and that is configured to transmit drive torque from the internal combustion engine to the main drive wheels via a clutch and a manual transmission. And
A driving device for a vehicle, wherein a driving torque of the electric motor is determined according to a differential value of a rotation speed of the internal combustion engine during disengagement of the clutch, and a driven wheel is driven by the electric motor.
前記内燃機関の回転速度の微分値の絶対値に応じて前記電動機による駆動トルクを決定することを特徴とする請求項1記載の車両の駆動装置。2. The vehicle driving apparatus according to claim 1, wherein a driving torque by the electric motor is determined according to an absolute value of a differential value of a rotation speed of the internal combustion engine. 前記内燃機関の回転速度の微分値の絶対値が大きいほど、前記電動機による駆動トルクを小さくすることを特徴とする請求項2記載の車両の駆動装置。3. The vehicle driving apparatus according to claim 2, wherein the driving torque by the electric motor is reduced as the absolute value of the differential value of the rotation speed of the internal combustion engine is increased.
JP2003056003A 2003-03-03 2003-03-03 Driving device of vehicle Pending JP2004262372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003056003A JP2004262372A (en) 2003-03-03 2003-03-03 Driving device of vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003056003A JP2004262372A (en) 2003-03-03 2003-03-03 Driving device of vehicle

Publications (1)

Publication Number Publication Date
JP2004262372A true JP2004262372A (en) 2004-09-24

Family

ID=33119854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003056003A Pending JP2004262372A (en) 2003-03-03 2003-03-03 Driving device of vehicle

Country Status (1)

Country Link
JP (1) JP2004262372A (en)

Similar Documents

Publication Publication Date Title
JP4135107B2 (en) Hybrid vehicle drive device and control method thereof
US20060266569A1 (en) Controller for electric four-wheel-drive vehicle, electric driving system, and electric four-wheel-drive vehicle
JP2010060079A (en) Transmission control system and vehicle
US20100250080A1 (en) Control apparatus for automated manual transmission
JP6247468B2 (en) Engine control device
JP2006123642A (en) Driving device for hybrid vehicle, its control method and controller
JP3033487B2 (en) Torque estimation method, torque calculation data correction method, and torque estimation device
JP2004254375A (en) Driving force controller of vehicle
JP2008037422A (en) Control device of hybrid four-wheel drive vehicle, and hybrid four-wheel drive vehicle
JP3769547B2 (en) Vehicle drive device
JP2004262372A (en) Driving device of vehicle
JP4000857B2 (en) Four-wheel drive device
JP2004274917A (en) Drive for vehicle
JP4185923B2 (en) Clutch control device and clutch control method
JP4162512B2 (en) Vehicle drive device
JP2004266960A (en) Drive unit of vehicle
JP4010441B2 (en) Speed limiter device
JP4162521B2 (en) Vehicle drive device
JP2009204129A (en) Speed change control device and speed change control method of automatic transmission
JP2004266959A (en) Drive unit of vehicle
JP2006088907A (en) Control device for four-wheel drive vehicle
JP2020082891A (en) Vehicular control apparatus, and control method
JP2004262373A (en) Driving device of vehicle
JP2008126864A (en) Controller for motor-driven vehicle and motor-driven vehicle
EP1356974A2 (en) Power distribution control method and apparatus for four-wheel drive vehicle

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041216