JP4161871B2 - Refrigeration cycle equipment - Google Patents

Refrigeration cycle equipment Download PDF

Info

Publication number
JP4161871B2
JP4161871B2 JP2003364267A JP2003364267A JP4161871B2 JP 4161871 B2 JP4161871 B2 JP 4161871B2 JP 2003364267 A JP2003364267 A JP 2003364267A JP 2003364267 A JP2003364267 A JP 2003364267A JP 4161871 B2 JP4161871 B2 JP 4161871B2
Authority
JP
Japan
Prior art keywords
refrigerant
vortex tube
radiator
refrigeration cycle
cycle apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003364267A
Other languages
Japanese (ja)
Other versions
JP2005127624A (en
Inventor
典穂 岡座
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2003364267A priority Critical patent/JP4161871B2/en
Publication of JP2005127624A publication Critical patent/JP2005127624A/en
Application granted granted Critical
Publication of JP4161871B2 publication Critical patent/JP4161871B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/02Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using Joule-Thompson effect; using vortex effect
    • F25B9/04Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using Joule-Thompson effect; using vortex effect using vortex effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/02Centrifugal separation of gas, liquid or oil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators

Description

本発明は、ボルテックスチューブを用いた冷凍サイクル装置、特に給湯器として用いられる冷凍サイクル装置に関するものである。   The present invention relates to a refrigeration cycle apparatus using a vortex tube, and more particularly to a refrigeration cycle apparatus used as a water heater.

一般に良く知られている冷凍サイクル装置は、圧縮機、放熱器、減圧器および蒸発器を順次接続して冷媒回路を構成している。この場合、放熱器において放熱される熱量は、蒸発器において吸熱された熱量と圧縮機の入力量によって定まる。したがって、このような冷凍サイクル装置を高効率化する場合、圧縮機、放熱器、蒸発器や送風機等の個々の機器の性能を向上させるしかなく、性能向上に限界があった。   A generally well-known refrigeration cycle apparatus includes a refrigerant circuit by sequentially connecting a compressor, a radiator, a decompressor, and an evaporator. In this case, the amount of heat dissipated in the radiator is determined by the amount of heat absorbed in the evaporator and the input amount of the compressor. Therefore, in order to increase the efficiency of such a refrigeration cycle apparatus, there is no choice but to improve the performance of individual devices such as a compressor, a radiator, an evaporator and a blower, and there is a limit to the performance improvement.

そこで、ボルテックスチューブを用いて冷凍装置における性能向上の可能性が検討されている。例えば、放熱器出口の冷媒をボルテックスチューブの冷媒供給口へ導入して高速渦流を生成し、高温冷媒と低温冷媒にエネルギー分離して対向する2つの出口から導出し、高温冷媒を放熱器に再度供給し、低温冷媒を減圧器に供給することで、減圧過程を等エントロピー膨張に近づけることにより蒸発能力の向上を図る冷凍サイクルが提案されている(例えば、特許文献1参照)。   Then, the possibility of the performance improvement in a freezing apparatus is examined using a vortex tube. For example, the refrigerant at the outlet of the radiator is introduced into the refrigerant supply port of the vortex tube to generate a high-speed vortex, and the energy is separated into the high-temperature refrigerant and the low-temperature refrigerant and led out from the two outlets facing each other. A refrigeration cycle has been proposed in which evaporating ability is improved by supplying a low-temperature refrigerant to a decompressor so that the decompression process is close to isentropic expansion (see, for example, Patent Document 1).

また、冷凍サイクル装置内に封入される冷媒としては、フッ素原子を含有する炭化水素類(フロン類)が用いられてきた。しかし、フロン類は、オゾン層を破壊する性質を有していたり、大気中での寿命が長いために温室効果が大きいので地球温暖化に影響を与えたりと、必ずしも満足な冷媒とはいえない。そこでフロン類の代わりに、オゾン破壊係数がゼロでありかつ地球温暖化係数もフロン類に比べれば格段に小さい、二酸化炭素やエタンなどを冷媒として用いる冷凍サイクル装置の可能性が検討され、二酸化炭素を冷媒として使用した冷凍サイクル装置が提案されている(例えば、特許文献2参照)。   Further, hydrocarbons containing fluorine atoms (fluorocarbons) have been used as the refrigerant sealed in the refrigeration cycle apparatus. However, chlorofluorocarbons are not always satisfactory refrigerants because they have the property of destroying the ozone layer, and because they have a long life in the atmosphere and have a large greenhouse effect, they affect global warming. . Therefore, instead of chlorofluorocarbons, the possibility of a refrigeration cycle apparatus that uses carbon dioxide, ethane, etc. as a refrigerant, which has an ozone depletion potential of zero and a global warming potential that is much smaller than that of chlorofluorocarbons, has been studied. A refrigeration cycle apparatus that uses as a refrigerant has been proposed (see, for example, Patent Document 2).

さらに、二酸化炭素は、臨界温度が31.06℃と低く、通常の冷凍サイクル装置の高
圧側(圧縮機出口〜放熱器〜減圧器入口)では凝縮が生じず、臨界圧力以上で運転される超臨界サイクルとなるため、この特性を利用し、放熱器で流体(例えば、水)を約60℃以上の高温に加熱する冷凍サイクル装置(例えば、給湯装置)も提案されている。
特開平8−303879号公報(第5頁、第1図) 特公平7−18602号公報
Further, carbon dioxide has a critical temperature as low as 31.06 ° C., and does not condense on the high pressure side (compressor outlet to radiator to decompressor inlet) of a normal refrigeration cycle apparatus, and is operated at a critical pressure or higher. Since it becomes a critical cycle, a refrigeration cycle apparatus (for example, a hot water supply apparatus) that uses this characteristic and heats a fluid (for example, water) to a high temperature of about 60 ° C. or more with a radiator has been proposed.
JP-A-8-303879 (page 5, FIG. 1) Japanese Patent Publication No. 7-18602

ところが、上記特許文献1に示された従来技術の場合、ボルテックスチューブで分離した高温冷媒を放熱器に再度供給するようにしている。このため、この高温冷媒の温度が圧縮機から吐出される冷媒の温度より低い場合には、放熱器入口部での冷媒の温度が低下し、その結果、放熱器において、熱交換する流体と冷媒との温度差が縮小し、逆に放熱量が減少し、冷凍サイクル装置の効率が低下したり、機器が大型化するといった課題が生じていた。   However, in the case of the prior art disclosed in Patent Document 1, the high-temperature refrigerant separated by the vortex tube is supplied again to the radiator. For this reason, when the temperature of this high-temperature refrigerant is lower than the temperature of the refrigerant discharged from the compressor, the temperature of the refrigerant at the radiator inlet portion decreases, and as a result, in the radiator, the heat exchange fluid and refrigerant The temperature difference between the refrigeration cycle apparatus and the heat dissipation amount is reduced, and the efficiency of the refrigeration cycle apparatus is reduced and the equipment is enlarged.

特に、放熱器で流体(例えば、水)を約60℃以上の高温に加熱する、二酸化炭素を冷媒として使用した冷凍サイクル装置(例えば、給湯装置)においては、圧縮機の吐出温度が高くなる可能性が高くなるために、放熱器へ供給される冷媒の温度低下による放熱量の減少は、利用する流体(例えば、水)の温度低下につながり、冷凍サイクル装置の効率が低下したり、機器が大型化するといった課題が生じていた。   In particular, in a refrigeration cycle apparatus (for example, a hot water supply apparatus) that uses carbon dioxide as a refrigerant that heats a fluid (for example, water) to a high temperature of about 60 ° C. or higher with a radiator, the discharge temperature of the compressor can be increased. Therefore, a decrease in the amount of heat released due to a decrease in the temperature of the refrigerant supplied to the radiator leads to a decrease in the temperature of the fluid used (for example, water), and the efficiency of the refrigeration cycle apparatus is reduced. There was a problem of increasing the size.

そこで、本発明は、上記課題を解決した冷凍サイクル装置を構成し、冷凍サイクル装置の効率の向上や機器の小型化を達成することを目的とする。   Then, this invention constitutes the refrigerating cycle device which solved the above-mentioned subject, and it aims at achieving the improvement in efficiency of a refrigerating cycle device, and size reduction of an apparatus.

請求項1記載の本発明の冷凍サイクル装置は、少なくとも、圧縮機、放熱器、ボルテックスチューブおよび蒸発器を接続して冷媒回路を構成するとともに、前記ボルテックスチューブの入口部を前記放熱器の冷媒流路の出口部に接続し、前記ボルテックスチューブの高温出口部を前記放熱器の冷媒流路において前記放熱器の入口部より下流側に位置する第二入口部に接続し、前記ボルテックスチューブの低温出口部を前記蒸発器の冷媒入口部にそれぞれ接続し、前記冷媒流路の冷媒と前記放熱器において冷媒を冷却する流体との温度差が最も小さくなる箇所の近傍に、前記第二入口部が設けられていることを特徴とする冷凍サイクル装置である。 The refrigeration cycle apparatus of the present invention according to claim 1 comprises at least a compressor, a radiator, a vortex tube, and an evaporator to form a refrigerant circuit, and an inlet portion of the vortex tube is connected to a refrigerant flow of the radiator. A high temperature outlet portion of the vortex tube is connected to a second inlet portion located downstream of the inlet portion of the radiator in the refrigerant flow path of the radiator, and the low temperature outlet of the vortex tube Are connected to the refrigerant inlet portion of the evaporator, and the second inlet portion is provided in the vicinity of the point where the temperature difference between the refrigerant in the refrigerant flow path and the fluid that cools the refrigerant in the radiator is minimized. It is the refrigeration cycle apparatus characterized by being provided .

請求項2記載の本発明の冷凍サイクル装置は、前記ボルテックスチューブをバイパスするバイパス流路と、前記バイパス流路に減圧器を備えたことを特徴とする前記本発明の冷凍サイクル装置である。   The refrigeration cycle apparatus according to a second aspect of the present invention is the refrigeration cycle apparatus according to the present invention, characterized in that a bypass passage that bypasses the vortex tube and a decompressor are provided in the bypass passage.

請求項3記載の本発明の冷凍サイクル装置は、前記ボルテックスチューブの低温出口部を減圧器を介して前記蒸発器の冷媒入口部に接続したことを特徴とする前記本発明の冷凍サイクル装置である。   The refrigeration cycle apparatus of the present invention according to claim 3 is the refrigeration cycle apparatus of the present invention, wherein the low temperature outlet portion of the vortex tube is connected to the refrigerant inlet portion of the evaporator via a decompressor. .

請求項4記載の本発明の冷凍サイクル装置は、少なくとも、圧縮機、放熱器、ボルテックスチューブ、気液分離器、減圧器および蒸発器を環状に接続して冷媒回路を構成するとともに、前記ボルテックスチューブの入口部を前記放熱器の冷媒流路の出口部に接続し、前記ボルテックスチューブの高温出口部を前記放熱器の冷媒流路において入口部より下流側に位置する第二入口部に接続し、前記ボルテックスチューブの低温出口部を前記気液分離器の入口部に接続し、前記気液分離器のガス出口部を前記圧縮機の吸入部あるいは中間圧力部に接続し、前記気液分離器の液出口部を前記減圧器を介して前記蒸発器の冷媒入口部にそれぞれ接続し、前記冷媒流路の冷媒と前記放熱器において冷媒を冷却する流体との
温度差が最も小さくなる箇所の近傍に、前記第二入口部が設けられていることを特徴とする冷凍サイクル装置である。
According to a fourth aspect of the present invention, there is provided a refrigeration cycle apparatus according to the present invention, wherein at least a compressor, a radiator, a vortex tube, a gas-liquid separator, a decompressor and an evaporator are connected in a ring shape to constitute a refrigerant circuit, Is connected to the outlet portion of the refrigerant flow path of the radiator, the high temperature outlet portion of the vortex tube is connected to a second inlet portion located downstream of the inlet portion in the refrigerant flow path of the radiator, The low temperature outlet of the vortex tube is connected to the inlet of the gas-liquid separator, the gas outlet of the gas-liquid separator is connected to the suction part or the intermediate pressure part of the compressor, and the gas-liquid separator A liquid outlet portion is connected to the refrigerant inlet portion of the evaporator via the decompressor, and the refrigerant in the refrigerant flow path and the fluid that cools the refrigerant in the radiator
In the refrigeration cycle apparatus, the second inlet portion is provided in the vicinity of a portion where the temperature difference is minimized .

請求項5記載の本発明の冷凍サイクル装置は、前記ボルテックスチューブと前記気液分離器は一体構造となっていることを特徴とする前記本発明の冷凍サイクル装置である。 The refrigeration cycle apparatus of the present invention according to claim 5 is the refrigeration cycle apparatus of the present invention, wherein the vortex tube and the gas-liquid separator have an integral structure .

請求項6記載の本発明の冷凍サイクル装置は、少なくとも、圧縮機、放熱器、ボルテックスチューブ、減圧器および蒸発器を接続して冷媒回路を構成するとともに、前記ボルテックスチューブの入口部を前記放熱器の第一冷媒流路の出口部に接続し、前記ボルテックスチューブの高温出口部を前記放熱器の第二冷媒流路の入口部に接続し、前記第二冷媒流路の出口部を前記減圧器を介して前記蒸発器の冷媒入口部に接続し、前記ボルテックスチューブの低温出口部を前記蒸発器の冷媒入口部にそれぞれ接続し、前記第一冷媒流路の冷媒と前記放熱器において前記冷媒を冷却する流体との温度差が最も小さくなる箇所の近傍に、前記第二流体流路の入口部が設けられていることを特徴とする冷凍サイクル装置である。 The refrigeration cycle apparatus of the present invention according to claim 6 comprises at least a compressor, a radiator, a vortex tube, a decompressor and an evaporator to form a refrigerant circuit, and an inlet portion of the vortex tube is connected to the radiator. Connected to an outlet portion of the first refrigerant flow path, a high temperature outlet portion of the vortex tube is connected to an inlet portion of a second refrigerant flow path of the radiator, and an outlet portion of the second refrigerant flow path is connected to the decompressor. To the refrigerant inlet portion of the evaporator, the low temperature outlet portion of the vortex tube is connected to the refrigerant inlet portion of the evaporator, and the refrigerant in the refrigerant and the radiator in the first refrigerant flow path. in the vicinity of the portion where the temperature difference between the fluid to be cooled is minimum, it is a refrigeration cycle apparatus according to claim inlet portion of the second fluid flow path is provided.

請求項7記載の本発明の冷凍サイクル装置は、前記冷媒回路の高圧側の圧力は冷媒の臨界圧力以上で運転されることを特徴とする前記本発明の冷凍サイクル装置である。 Refrigeration cycle apparatus of the present invention of claim 7, wherein the pressure of the high pressure side of the refrigerant circuit is a refrigeration cycle apparatus of the present invention, characterized in that operating at or above the critical pressure of the refrigerant.

請求項8記載の本発明の冷凍サイクル装置は、前記冷媒回路に封入される冷媒は二酸化炭素であることを特徴とする前記本発明の冷凍サイクル装置である。 The refrigeration cycle apparatus of the present invention according to claim 8 is the refrigeration cycle apparatus of the present invention, wherein the refrigerant sealed in the refrigerant circuit is carbon dioxide.

請求項9記載の本発明の冷凍サイクル装置は、前記放熱器で流体を約60℃以上の高温に加熱することを特徴とする前記本発明の冷凍サイクル装置である。 The refrigeration cycle apparatus of the present invention according to claim 9 is the refrigeration cycle apparatus of the present invention, wherein the fluid is heated to a high temperature of about 60 ° C. or more by the radiator.

本発明によれば、少なくとも、圧縮機、放熱器、ボルテックスチューブおよび蒸発器を環状に接続して冷媒回路を構成するとともに、前記ボルテックスチューブの入口部を前記放熱器の冷媒流路の出口部に接続し、前記ボルテックスチューブの高温出口部を前記放熱器の冷媒流路において前記放熱器の入口部より下流側に位置する第二入口部に接続し、前記ボルテックスチューブの低温出口部を前記蒸発器の冷媒入口部にそれぞれ接続し、前記第一冷媒流路の冷媒と前記放熱器において前記冷媒を冷却する流体との温度差が最も小さくなる箇所の近傍に、前記第二入口部が設けられていることにより、圧縮機へ吸入される冷媒量は凝縮器へ再供給された分だけ減少することとなり、圧縮機の入力量が低減される。さらに、ボルテックスチューブでの等エントロピ膨張に近い膨張により、蒸発能力が増大することとなり、蒸発圧力(すなわち、圧縮機の吸入圧力)が上昇するため、圧縮機の入力量が低減される。さらに、ボルテックスチューブから導出される高温冷媒が、放熱器の中間部に再供給されるため、冷媒と流体の温度差が小さい区間の冷媒温度を上昇させることができる。したがって、冷凍サイクル装置の効率の良い運転が可能となり、さらには、機器の小型化も可能となる。 According to the present invention, at least a compressor, a radiator, a vortex tube, and an evaporator are connected in an annular shape to form a refrigerant circuit, and the inlet portion of the vortex tube is connected to the outlet portion of the refrigerant flow path of the radiator. And connecting the high temperature outlet of the vortex tube to a second inlet located downstream of the inlet of the radiator in the refrigerant flow path of the radiator, and connecting the low temperature outlet of the vortex tube to the evaporator The second inlet portion is provided in the vicinity of the portion where the temperature difference between the refrigerant in the first refrigerant flow path and the fluid that cools the refrigerant in the radiator is minimized. Therefore, the amount of refrigerant sucked into the compressor is reduced by the amount re-supplied to the condenser, and the input amount of the compressor is reduced. Furthermore, the expansion ability close to the isentropic expansion in the vortex tube increases the evaporation capacity, and the evaporation pressure (that is, the suction pressure of the compressor) increases, so that the input amount of the compressor is reduced. Furthermore, since the high-temperature refrigerant led out from the vortex tube is re-supplied to the intermediate portion of the radiator, the refrigerant temperature in the section where the temperature difference between the refrigerant and the fluid is small can be raised. Therefore, the refrigeration cycle apparatus can be operated efficiently, and further, the apparatus can be downsized.

さらに、本発明によれば、前記ボルテックスチューブをバイパスするバイパス流路と、前記バイパス流路に減圧器を備え、減圧器の開度調整を行うことにより、ボルテックスチューブへ供給される冷媒流量(あるいは、圧縮機に吸入されるの冷媒量)を調整できることとなり、冷媒の圧力調整や能力調整が容易に行える。   Furthermore, according to the present invention, a bypass flow path that bypasses the vortex tube, and a pressure reducer provided in the bypass flow path, the refrigerant flow rate supplied to the vortex tube (or by adjusting the opening of the pressure reducer) (or The amount of refrigerant sucked into the compressor can be adjusted, and the refrigerant pressure and capacity can be easily adjusted.

さらに、本発明によれば、前記ボルテックスチューブの低温出口部を減圧器を介して前記蒸発器の冷媒入口部にそれぞれ接続したことにより、冷媒と流体の温度差が最も小さい区間の冷媒温度を上昇させることができ、冷凍サイクル装置の効率の良い運転が可能となり、さらには、機器の小型化も可能となる。   Furthermore, according to the present invention, the low temperature outlet portion of the vortex tube is connected to the refrigerant inlet portion of the evaporator via a decompressor, thereby increasing the refrigerant temperature in the section where the temperature difference between the refrigerant and the fluid is the smallest. Therefore, efficient operation of the refrigeration cycle apparatus is possible, and further downsizing of the apparatus is possible.

さらに、本発明によれば、前記ボルテックスチューブの低温出口部を減圧器を介して前記蒸発器の冷媒入口部にそれぞれ接続したことにより、蒸発能力の増大量は小さくなるものの、減圧器の開度調整を行うことにより、冷媒の圧力調整や能力調整が容易に行える。   Further, according to the present invention, since the low temperature outlet portion of the vortex tube is connected to the refrigerant inlet portion of the evaporator via the decompressor, the increase in evaporation capacity is reduced, but the opening of the decompressor By performing the adjustment, the refrigerant pressure and capacity can be easily adjusted.

さらに、本発明によれば、少なくとも、圧縮機、放熱器、ボルテックスチューブ、気液分離器、減圧器および蒸発器を接続して冷媒回路を構成するとともに、前記ボルテックスチューブの入口部を前記放熱器の冷媒流路の出口部に接続し、前記ボルテックスチューブの高温出口部を前記放熱器の冷媒流路において入口部より下流側に位置する第二入口部に接続し、前記ボルテックスチューブの低温出口部を前記気液分離器の入口部に接続し、前記気液分離器のガス出口部を前記圧縮機の吸入部あるいは中間圧力部に接続し、前記気液分離器の液出口部を前記減圧器を介して前記蒸発器の冷媒入口部にそれぞれ接続し、前記第一冷媒流路の冷媒と前記放熱器において前記冷媒を冷却する流体との温度差が最も小さくなる箇所の近傍に、前記第二入口部が設けられていることにより、気液分離器で分離されたガス冷媒は蒸発器をバイパスして圧縮機に供給されるために、蒸発器を流れる冷媒量が減少し、蒸発器での圧力損失を低減でき、蒸発圧力(すなわち、圧縮機の吸入圧力)が上昇するため、圧縮機の入力量が低減される。さらに、減圧器の開度調整を行うことにより冷媒の圧力調整や能力調整が容易に行える。 Furthermore, according to the present invention, at least a compressor, a radiator, a vortex tube, a gas-liquid separator, a decompressor and an evaporator are connected to form a refrigerant circuit, and an inlet portion of the vortex tube is connected to the radiator. A high-temperature outlet portion of the vortex tube is connected to a second inlet portion located downstream of the inlet portion in the refrigerant flow passage of the radiator, and the low-temperature outlet portion of the vortex tube Is connected to the inlet portion of the gas-liquid separator, the gas outlet portion of the gas-liquid separator is connected to the suction portion or the intermediate pressure portion of the compressor, and the liquid outlet portion of the gas-liquid separator is connected to the decompressor in the vicinity of the portion where the temperature difference is the smallest of the respective refrigerant inlet portion of the evaporator is connected, the fluid for cooling the coolant in the radiator and the refrigerant of the first refrigerant flow path through the second By the mouth portion is provided, for the gas refrigerant separated by the gas-liquid separator is supplied to the compressor by bypassing the evaporator, the amount of coolant flowing through the evaporator is reduced, the evaporator Since the pressure loss can be reduced and the evaporation pressure (that is, the suction pressure of the compressor) increases, the input amount of the compressor is reduced. Furthermore, the refrigerant pressure and capacity can be easily adjusted by adjusting the opening of the decompressor.

さらに、本発明によれば、前記ボルテックスチューブと前記気液分離器は一体構造となっていることにより、機器の小型化が可能となる。   Furthermore, according to the present invention, the vortex tube and the gas-liquid separator have an integral structure, so that the device can be downsized.

さらに、本発明によれば、少なくとも、圧縮機、放熱器、ボルテックスチューブ、減圧器および蒸発器を環状に接続して冷媒回路を構成するとともに、前記ボルテックスチューブの入口部を前記放熱器の第一冷媒流路の出口部に接続し、前記ボルテックスチューブの高温出口部を前記放熱器の第二冷媒流路の入口部に接続し、前記第二冷媒流路の出口部を前記減圧器を介して前記蒸発器の冷媒入口部に接続し、前記ボルテックスチューブの低温出口部を前記蒸発器の冷媒入口部にそれぞれ接続し、前記第一冷媒流路の冷媒と前記放熱器において前記冷媒を冷却する流体との温度差が最も小さくなる箇所の近傍に、前記第二入口部が設けられていることにより、ボルテックスチューブから導出される高温冷媒が、放熱器の中間部に再供給されるため、冷媒と流体の温度差が小さい区間の冷媒温度を上昇させることができる。さらに、減圧器の開度調整を行うことにより、冷媒の圧力調整や能力調整が容易に行える。 Furthermore, according to the present invention, at least a compressor, a radiator, a vortex tube, a decompressor, and an evaporator are connected in a ring to form a refrigerant circuit, and an inlet portion of the vortex tube is connected to the first of the radiator. Connect to the outlet of the refrigerant flow path, connect the high temperature outlet of the vortex tube to the inlet of the second refrigerant flow path of the radiator, and connect the outlet of the second refrigerant flow path through the pressure reducer A fluid that is connected to a refrigerant inlet of the evaporator, connects a low temperature outlet of the vortex tube to a refrigerant inlet of the evaporator, and cools the refrigerant in the refrigerant in the first refrigerant channel and the radiator in the vicinity of the portion where the temperature difference is the smallest and, by the second inlet portion is provided, the high-temperature refrigerant derived from the vortex tube is re-supplied to the middle portion of the radiator Because, it is possible to increase the refrigerant temperature interval the temperature difference between the refrigerant and the fluid is small. Further, by adjusting the opening of the decompressor, the refrigerant pressure and capacity can be easily adjusted .

さらに、本発明によれば、前記冷媒回路の高圧側の圧力は冷媒の臨界圧力以上で運転することにより、超臨界以下の圧力で運転される場合に比較して、放熱器において潜熱変化を行わないため、放熱器における冷媒の温度変化が緩やかになるので、ボルテックスチューブから導出される高温冷媒を、冷媒と流体の温度差が最も小さい区間の近傍の冷媒と熱交換するように供給するのが、放熱器を効率よく利用する上で望ましく、冷凍サイクル装置のさらに効率の良い運転や機器の小型化が可能となる。 Further , according to the present invention, by operating the pressure on the high pressure side of the refrigerant circuit above the critical pressure of the refrigerant, a change in latent heat is performed in the radiator as compared with the case of operating at a pressure below the supercritical. Therefore, since the temperature change of the refrigerant in the radiator becomes gentle, it is necessary to supply the high-temperature refrigerant derived from the vortex tube so as to exchange heat with the refrigerant in the vicinity of the section where the temperature difference between the refrigerant and the fluid is the smallest. It is desirable to use the radiator efficiently, and it is possible to operate the refrigeration cycle apparatus more efficiently and downsize the equipment.

さらに、本発明によれば、前記冷媒回路に封入される冷媒は二酸化炭素であるために、ボルテックスチューブから導出される高温冷媒より吐出温度が高くなる可能性が高いために、ボルテックスチューブから導出される高温冷媒を、冷媒と流体の温度差が最も小さい区間の近傍の冷媒と熱交換するように供給することによる効果が大きく、冷凍サイクル装置のさらに効率の良い運転や機器の小型化が可能となる。   Further, according to the present invention, since the refrigerant sealed in the refrigerant circuit is carbon dioxide, the discharge temperature is likely to be higher than the high-temperature refrigerant derived from the vortex tube, and therefore, the refrigerant circuit is derived from the vortex tube. The effect of supplying high-temperature refrigerant to heat exchange with refrigerant in the vicinity of the section where the temperature difference between the refrigerant and the fluid is the smallest is significant, enabling more efficient operation of the refrigeration cycle apparatus and miniaturization of equipment. Become.

さらに、本発明によれば、前記放熱器で流体を約60℃以上の高温に加熱することにより、ボルテックスチューブから導出される高温冷媒より吐出温度が高くなる可能性が高いために、ボルテックスチューブから導出される高温冷媒を、冷媒と流体の温度差が最も小
さい区間の近傍の冷媒と熱交換するように供給するのが望ましく、冷凍サイクル装置のさらに効率の良い運転や機器の小型化が可能となる。
Further, according to the present invention, since the fluid is heated to a high temperature of about 60 ° C. or higher by the radiator, the discharge temperature is likely to be higher than the high-temperature refrigerant derived from the vortex tube. It is desirable to supply the derived high-temperature refrigerant so as to exchange heat with the refrigerant in the vicinity of the section where the temperature difference between the refrigerant and the fluid is the smallest, which enables more efficient operation of the refrigeration cycle apparatus and miniaturization of equipment. Become.

本発明による第1の実施の形態は、少なくとも、圧縮機、放熱器、ボルテックスチューブおよび蒸発器を環状に接続して冷媒回路を構成するとともに、前記ボルテックスチューブの入口部を前記放熱器の冷媒流路の出口部に接続し、前記ボルテックスチューブの高温出口部を前記放熱器の冷媒流路において前記放熱器の入口部より下流側に位置する第二入口部に接続し、前記ボルテックスチューブの低温出口部を前記蒸発器の冷媒入口部にそれぞれ接続し、前記冷媒流路の冷媒と前記放熱器において冷媒を冷却する流体との温度差が最も小さくなる箇所の近傍に、前記第二入口部が設けられているものである。本実施の形態によれば、圧縮機へ吸入される冷媒量は凝縮器へ再供給された分だけ減少することとなり、圧縮機の入力量が低減される。さらに、ボルテックスチューブでの等エントロピ膨張に近い膨張により、蒸発能力が増大することとなり、蒸発圧力(すなわち、圧縮機の吸入圧力)が上昇するため、圧縮機の入力量が低減される。さらに、ボルテックスチューブから導出される高温冷媒が、放熱器の中間部に再供給されるため、冷媒と流体の温度差が小さい区間の冷媒温度を上昇させることができる。したがって、冷凍サイクル装置の効率の良い運転が可能となり、さらには、機器の小型化も可能となる。 In the first embodiment of the present invention, at least a compressor, a radiator, a vortex tube and an evaporator are annularly connected to form a refrigerant circuit, and an inlet portion of the vortex tube is connected to a refrigerant flow of the radiator. A high temperature outlet portion of the vortex tube is connected to a second inlet portion located downstream of the inlet portion of the radiator in the refrigerant flow path of the radiator, and the low temperature outlet of the vortex tube Are connected to the refrigerant inlet portion of the evaporator, and the second inlet portion is provided in the vicinity of the point where the temperature difference between the refrigerant in the refrigerant flow path and the fluid that cools the refrigerant in the radiator is minimized. It is what has been . According to the present embodiment, the amount of refrigerant sucked into the compressor is reduced by the amount re-supplied to the condenser, and the input amount of the compressor is reduced. Furthermore, the expansion ability close to the isentropic expansion in the vortex tube increases the evaporation capacity, and the evaporation pressure (that is, the suction pressure of the compressor) increases, so that the input amount of the compressor is reduced. Furthermore, since the high-temperature refrigerant led out from the vortex tube is re-supplied to the intermediate portion of the radiator, the refrigerant temperature in the section where the temperature difference between the refrigerant and the fluid is small can be raised. Therefore, the refrigeration cycle apparatus can be operated efficiently, and further, the apparatus can be downsized.

本発明による第2の実施の形態は、さらに前記ボルテックスチューブをバイパスするバイパス流路と、前記バイパス流路に減圧器を備えたものである。本実施の形態によれば、さらに、減圧器の開度調整を行うことにより、ボルテックスチューブへ供給される冷媒流量(あるいは、圧縮機に吸入されるの冷媒量)を調整できることとなり、冷媒の圧力調整や能力調整が容易に行える。   The second embodiment according to the present invention further includes a bypass channel that bypasses the vortex tube, and a decompressor in the bypass channel. According to the present embodiment, the flow rate of the refrigerant supplied to the vortex tube (or the amount of refrigerant sucked into the compressor) can be adjusted by adjusting the opening of the decompressor, and the pressure of the refrigerant Adjustment and capacity adjustment can be performed easily.

本発明による第3の実施の形態は、さらに前記ボルテックスチューブの低温出口部を減圧器を介して前記蒸発器の冷媒入口部に接続したものである。本実施の形態によれば、さらに、蒸発能力の増大量は小さくなるものの、減圧器の開度調整を行うことにより、冷媒の圧力調整や能力調整が容易に行える。   In the third embodiment according to the present invention, the low-temperature outlet of the vortex tube is further connected to the refrigerant inlet of the evaporator via a decompressor. According to the present embodiment, although the increase amount of the evaporation capacity is further reduced, the refrigerant pressure and capacity can be easily adjusted by adjusting the opening of the decompressor.

本発明による第4の実施の形態は、少なくとも、圧縮機、放熱器、ボルテックスチューブ、気液分離器、減圧器および蒸発器を環状に接続して冷媒回路を構成するとともに、前記ボルテックスチューブの入口部を前記放熱器の冷媒流路の出口部に接続し、前記ボルテックスチューブの高温出口部を前記放熱器の冷媒流路において入口部より下流側に位置する第二入口部に接続し、前記ボルテックスチューブの低温出口部を前記気液分離器の入口部に接続し、前記気液分離器のガス出口部を前記圧縮機の吸入部あるいは中間圧力部に接続し、前記気液分離器の液出口部を前記減圧器を介して前記蒸発器の冷媒入口部にそれぞれ接続し、前記冷媒流路の冷媒と前記放熱器において冷媒を冷却する流体との温度差が最も小さくなる箇所の近傍に、前記第二入口部が設けられているものである。本実施の形態によれば、さらに、気液分離器で分離されたガス冷媒は蒸発器をバイパスして圧縮機に供給されるために、蒸発器を流れる冷媒量が減少し、蒸発器での圧力損失を低減でき、蒸発圧力(すなわち、圧縮機の吸入圧力)が上昇するため、圧縮機の入力量が低減される。さらに、減圧器の開度調整を行うことにより冷媒の圧力調整や能力調整が容易に行える。 According to a fourth embodiment of the present invention, at least a compressor, a radiator, a vortex tube, a gas-liquid separator, a decompressor, and an evaporator are annularly connected to constitute a refrigerant circuit, and an inlet of the vortex tube The vortex tube is connected to an outlet of the refrigerant flow path of the radiator, and the high temperature outlet of the vortex tube is connected to a second inlet located downstream of the inlet in the refrigerant flow path of the radiator. A low-temperature outlet of the tube is connected to an inlet of the gas-liquid separator, a gas outlet of the gas-liquid separator is connected to a suction part or an intermediate pressure part of the compressor, and a liquid outlet of the gas-liquid separator the section through the pressure reducer is connected to the refrigerant inlet portion of the evaporator, in the vicinity of the portion where the temperature difference is the smallest of the fluid for cooling the refrigerant in the radiator and the refrigerant of the refrigerant flow path, before In which the second inlet portion is provided. According to the present embodiment, since the gas refrigerant separated by the gas-liquid separator bypasses the evaporator and is supplied to the compressor, the amount of refrigerant flowing through the evaporator decreases, Since the pressure loss can be reduced and the evaporation pressure (that is, the suction pressure of the compressor) increases, the input amount of the compressor is reduced. Furthermore, the refrigerant pressure and capacity can be easily adjusted by adjusting the opening of the decompressor.

本発明による第5の実施の形態は、前記ボルテックスチューブと前記気液分離器は一体構造となっているものである。本実施の形態によれば、さらに、機器の小型化が可能となる。   In the fifth embodiment according to the present invention, the vortex tube and the gas-liquid separator have an integral structure. According to the present embodiment, the device can be further downsized.

本発明による第6の実施の形態は、少なくとも、圧縮機、放熱器、ボルテックスチューブ、減圧器および蒸発器を環状に接続して冷媒回路を構成するとともに、前記ボルテック
スチューブの入口部を前記放熱器の第一冷媒流路の出口部に接続し、前記ボルテックスチューブの高温出口部を前記放熱器の第二冷媒流路の入口部に接続し、前記第二冷媒流路の出口部を前記減圧器を介して前記蒸発器の冷媒入口部に接続し、前記ボルテックスチューブの低温出口部を前記蒸発器の冷媒入口部にそれぞれ接続し、前記第一冷媒流路の冷媒と前記放熱器において前記冷媒を冷却する流体との温度差が最も小さくなる箇所の近傍に、前記第二流体流路の入口部が設けられているものである。本実施の形態によれば、ボルテックスチューブから導出される高温冷媒が、放熱器の中間部に再供給されるため、冷媒と流体の温度差が小さい区間の流体温度を上昇させることができる。さらに、減圧器の開度調整を行うことにより、冷媒の圧力調整や能力調整が容易に行える。したがって、冷凍サイクル装置の効率の良い運転が可能となり、さらには、機器の小型化も可能となる。
In the sixth embodiment of the present invention, at least a compressor, a radiator, a vortex tube, a decompressor and an evaporator are annularly connected to form a refrigerant circuit, and an inlet portion of the vortex tube is connected to the radiator. Connected to an outlet portion of the first refrigerant flow path, a high temperature outlet portion of the vortex tube is connected to an inlet portion of a second refrigerant flow path of the radiator, and an outlet portion of the second refrigerant flow path is connected to the decompressor. To the refrigerant inlet portion of the evaporator, the low temperature outlet portion of the vortex tube is connected to the refrigerant inlet portion of the evaporator, and the refrigerant in the refrigerant and the radiator in the first refrigerant flow path. in the vicinity of the portion where the temperature difference between the fluid to be cooled is minimum, in which the inlet portion of the second fluid flow path is provided. According to the present embodiment, since the high-temperature refrigerant derived from the vortex tube is re-supplied to the intermediate part of the radiator, the fluid temperature in the section where the temperature difference between the refrigerant and the fluid is small can be raised. Further, by adjusting the opening of the decompressor, the refrigerant pressure and capacity can be easily adjusted. Therefore, the refrigeration cycle apparatus can be operated efficiently, and further, the apparatus can be downsized.

まず、本発明の冷凍サイクル装置について説明する。   First, the refrigeration cycle apparatus of the present invention will be described.

図1は、本発明の冷凍サイクル装置の一実施例である給湯装置を示す概略構成図である。   FIG. 1 is a schematic configuration diagram showing a hot water supply apparatus which is an embodiment of the refrigeration cycle apparatus of the present invention.

図1に示すように、本実施例による冷凍サイクル装置は、圧縮機1、給湯用熱交換器としての放熱器2の第一冷媒流路2A、ボルテックスチューブ3、および外気を熱源とする蒸発器4などからなる冷媒回路Aと、給水ポンプ6、放熱器2の流体流路2B、および給湯タンク7などからなる流体回路Bとから構成されている。第一冷媒流路2Aにおいて、ボルテックスチューブ3の入口部3aは放熱器2の第一冷媒流路2Aの出口部2bに接続されており、ボルテックスチューブ3の高温出口部3bは放熱器2の第一冷媒流路2Aの入口部2aより下流側に位置する第二入口部2cに接続されており、ボルテックスチューブ3の低温出口部3cは蒸発器4の冷媒入口部にそれぞれ接続されている。また、ボルテックスチューブ3の高温出口部3bと第一冷媒流路2Aの第二入口部2cとを接続する配管には逆止弁5が設けられている。   As shown in FIG. 1, the refrigeration cycle apparatus according to the present embodiment includes a compressor 1, a first refrigerant flow path 2A of a radiator 2 as a heat exchanger for hot water supply, a vortex tube 3, and an evaporator using outside air as a heat source. 4 and the like, and a fluid circuit B including a water supply pump 6, a fluid flow path 2B of the radiator 2, a hot water supply tank 7, and the like. In the first refrigerant channel 2A, the inlet 3a of the vortex tube 3 is connected to the outlet 2b of the first refrigerant channel 2A of the radiator 2, and the high temperature outlet 3b of the vortex tube 3 is the second of the radiator 2. It is connected to a second inlet 2c located downstream from the inlet 2a of one refrigerant flow path 2A, and the low temperature outlet 3c of the vortex tube 3 is connected to the refrigerant inlet of the evaporator 4, respectively. Further, a check valve 5 is provided in a pipe connecting the high temperature outlet 3b of the vortex tube 3 and the second inlet 2c of the first refrigerant flow path 2A.

なお、ボルテックスチューブ3は、低温出口部3cから導出される低温冷媒量が高温出口部3bから導出される高温冷媒より相当多くなるように設計されている。   The vortex tube 3 is designed so that the amount of the low-temperature refrigerant derived from the low-temperature outlet portion 3c is considerably larger than that of the high-temperature refrigerant derived from the high-temperature outlet portion 3b.

次に、上述のように構成された冷凍サイクル装置の動作について説明する。冷媒回路Aでは、冷媒である二酸化炭素を、圧縮機1で臨界圧力を越える圧力まで圧縮する。その圧縮された冷媒は、高温高圧状態となり、放熱器2の第一冷媒流路2Aの入口部2aから出口部2bへと流れる際に、流体流路2Bを流れる流体(例えば、水)に放熱し冷却される。その後、冷媒はボルテックスチューブ3の入口部3aに供給される。ボルテックスチューブ3に供給された高圧冷媒は、ボルテックスチューブ3内においてエネルギー分離により高温冷媒と低温冷媒とに分離される。その高温冷媒はボルテックスチューブ3の高温出口部3bより放熱器2の第一冷媒流路2Aの第二入口部2cに再供給される。一方、低温低圧の気液二相状態の低温冷媒は低温出口部3cから蒸発器4に供給される。つまり、ボルテックスチューブ3が減圧器としての作用も行う。蒸発器4では、冷媒は空気などによって加熱され、気液二相またはガス状態となり、再び圧縮機1に吸入される。   Next, the operation of the refrigeration cycle apparatus configured as described above will be described. In the refrigerant circuit A, carbon dioxide, which is a refrigerant, is compressed by the compressor 1 to a pressure exceeding the critical pressure. The compressed refrigerant becomes a high-temperature and high-pressure state, and dissipates heat to the fluid (for example, water) flowing through the fluid passage 2B when flowing from the inlet portion 2a of the first refrigerant passage 2A of the radiator 2 to the outlet portion 2b. Then cooled. Thereafter, the refrigerant is supplied to the inlet 3 a of the vortex tube 3. The high-pressure refrigerant supplied to the vortex tube 3 is separated into a high-temperature refrigerant and a low-temperature refrigerant by energy separation in the vortex tube 3. The high-temperature refrigerant is re-supplied from the high-temperature outlet 3 b of the vortex tube 3 to the second inlet 2 c of the first refrigerant flow path 2 A of the radiator 2. On the other hand, the low-temperature and low-pressure gas-liquid two-phase low-temperature refrigerant is supplied to the evaporator 4 from the low-temperature outlet 3c. That is, the vortex tube 3 also functions as a decompressor. In the evaporator 4, the refrigerant is heated by air or the like, becomes a gas-liquid two-phase or gas state, and is sucked into the compressor 1 again.

流体回路Bでは、給湯タンク7の底部から給水ポンプ6により放熱器2の流体流路2Bへ送り込まれた流体(例えば、水)は、第一冷媒流路2Aを流れる冷媒により加熱され、高温の流体(例えば、お湯)となり、その高温流体を給湯タンク36の頂部から貯める。このようなサイクルを繰り返すことにより、本実施例の冷凍サイクル装置は、給湯器として利用できる。   In the fluid circuit B, the fluid (for example, water) sent from the bottom of the hot water supply tank 7 to the fluid flow path 2B of the radiator 2 by the water supply pump 6 is heated by the refrigerant flowing through the first refrigerant flow path 2A, It becomes a fluid (for example, hot water), and the high temperature fluid is stored from the top of the hot water supply tank 36. By repeating such a cycle, the refrigeration cycle apparatus of the present embodiment can be used as a water heater.

上記のように構成された冷凍サイクル装置においては、次のような効果が得られる。ま
ず、圧縮機1へ吸入される冷媒量は凝縮器2へ再供給された分だけ減少することとなり、圧縮機1の入力量が低減される。次に、ボルテックスチューブ3においては等エントロピ膨張に近い膨張が得られる。すなわち、図2に示すように、従来の減圧器を用いた冷凍サイクル装置においては、破線で示されるa→b→c→d→aで示すサイクルとなり、c→dにおいては等エンタルピ膨張となるのに対し、ボルテックスチューブ3を用いた本実施例においては、実線で示されるa→b→c→e→aで示すサイクルとなり、c→eにおいては略等エントロピ膨張が得られる。従って、蒸発器4において、e−d間の分のエンタルピが増加するため、蒸発能力が増大することとなり、蒸発圧力(すなわち、圧縮機1の吸入圧力)が上昇するため、圧縮機1の入力量が低減される。さらに、ボルテックスチューブ3から導出される高温冷媒は放熱器2の冷媒流路2Aの中間部である第二入口部2cに再供給されるため、放熱器2における放熱量が増大できる。すなわち、図3に示すように、放熱器2における冷媒と流体の温度変化は、従来の冷凍サイクル装置においては、破線で示されるような温度変化となるのに対し、冷媒流路2Aの中間部に高温冷媒が再供給される本実施例においては、実線で示されるような温度変化となる。つまり、従来、冷媒と流体の温度差が最も小さい図3中の区間X近傍に、高温冷媒を再供給するため、この区間での冷媒温度を上昇させることができる。したがって、従来と同じ冷媒と流体の温度差であっても、より高い温度の流体を取り出すことが可能となる。これらの効果により、本実施例においては冷凍サイクル装置の効率の良い運転が可能となり、さらには、機器の小型化も可能となる。
In the refrigeration cycle apparatus configured as described above, the following effects can be obtained. First, the amount of refrigerant sucked into the compressor 1 is reduced by the amount re-supplied to the condenser 2, and the input amount of the compressor 1 is reduced. Next, in the vortex tube 3, expansion close to isentropic expansion is obtained. That is, as shown in FIG. 2, in a refrigeration cycle apparatus using a conventional pressure reducer, a cycle indicated by a broken line a → b → c → d → a is obtained, and an isoenthalpy expansion is obtained in c → d. On the other hand, in the present embodiment using the vortex tube 3, a cycle indicated by a → b → c → e → a indicated by a solid line is obtained, and substantially isentropic expansion is obtained in c → e. Accordingly, in the evaporator 4, the enthalpy between ed increases, so that the evaporation capacity increases, and the evaporation pressure (that is, the suction pressure of the compressor 1) rises. The amount is reduced. Furthermore, since the high-temperature refrigerant led out from the vortex tube 3 is re-supplied to the second inlet 2c, which is an intermediate part of the refrigerant flow path 2A of the radiator 2, the amount of heat released from the radiator 2 can be increased. That is, as shown in FIG. 3, in the conventional refrigeration cycle apparatus, the temperature change of the refrigerant and the fluid in the radiator 2 becomes a temperature change as indicated by a broken line, whereas the intermediate portion of the refrigerant flow path 2A. In the present embodiment in which the high-temperature refrigerant is re-supplied, the temperature changes as shown by the solid line. That is, conventionally, since the high-temperature refrigerant is supplied again in the vicinity of the section X in FIG. 3 where the temperature difference between the refrigerant and the fluid is the smallest, the refrigerant temperature in this section can be raised. Therefore, even when the temperature difference between the refrigerant and the fluid is the same as that of the conventional one, it is possible to take out a fluid having a higher temperature. Due to these effects, efficient operation of the refrigeration cycle apparatus can be achieved in this embodiment, and further, the apparatus can be downsized.

次に、別の実施例による冷凍サイクル装置について、図4を用いて説明する。図4は、本発明の冷凍サイクル装置の冷媒回路を示す概略構成図である。図4において、図1と同様の構成要素は図1と同じ番号を与え、説明を省略する。   Next, a refrigeration cycle apparatus according to another embodiment will be described with reference to FIG. FIG. 4 is a schematic configuration diagram showing a refrigerant circuit of the refrigeration cycle apparatus of the present invention. 4, the same components as those in FIG. 1 are given the same reference numerals as those in FIG.

図4の冷凍サイクル装置では、放熱器2の出口部2bとボルテックスチューブ3の入口部3aとの間と、ボルテックスチューブ3の低温出口部3cと蒸発器4の冷媒入口部との間を配管11で接続(すなわち、ボルテックスチューブ3をバイパスする流路を形成)し、減圧器12が設けられている。   In the refrigeration cycle apparatus of FIG. 4, piping 11 is provided between the outlet 2 b of the radiator 2 and the inlet 3 a of the vortex tube 3, and between the low temperature outlet 3 c of the vortex tube 3 and the refrigerant inlet of the evaporator 4. (That is, a flow path that bypasses the vortex tube 3 is formed), and a decompressor 12 is provided.

上記のように構成された冷凍サイクル装置においては、先の実施例の効果に加えて、次のような効果が得られる。減圧器12の開度調整を行うことにより、ボルテックスチューブ3へ供給される冷媒流量(あるいは、圧縮機1に吸入されるの冷媒量)を調整できることとなり、冷媒の圧力調整や能力調整が容易に行える。   In the refrigeration cycle apparatus configured as described above, the following effects can be obtained in addition to the effects of the previous embodiment. By adjusting the opening of the decompressor 12, the flow rate of refrigerant supplied to the vortex tube 3 (or the amount of refrigerant sucked into the compressor 1) can be adjusted, and refrigerant pressure adjustment and capacity adjustment are easy. Yes.

したがって、本実施例においては冷凍サイクル装置のさらに効率の良い運転や機器の小型化が可能となる。   Therefore, in the present embodiment, more efficient operation of the refrigeration cycle apparatus and downsizing of the device are possible.

さらに、別の実施例による冷凍サイクル装置について、図5を用いて説明する。図5は、本発明の冷凍サイクル装置の冷媒回路を示す概略構成図である。図5において、図1と同様の構成要素は図1と同じ番号を与え、説明を省略する。   Furthermore, a refrigeration cycle apparatus according to another embodiment will be described with reference to FIG. FIG. 5 is a schematic configuration diagram showing a refrigerant circuit of the refrigeration cycle apparatus of the present invention. In FIG. 5, the same components as those in FIG. 1 are given the same reference numerals as those in FIG.

図5の冷凍サイクル装置では、ボルテックスチューブ3の低温出口部3cと蒸発器4の冷媒入口部との間に、減圧器21が設置されている。   In the refrigeration cycle apparatus of FIG. 5, a decompressor 21 is installed between the low temperature outlet 3 c of the vortex tube 3 and the refrigerant inlet of the evaporator 4.

上記のように構成された冷凍サイクル装置においては、先の実施例の効果に加えて、次のような効果が得られる。図6に示すように、ボルテックスチューブ3での等エントロピ膨張に近い膨張は、c→f間のみとなり、f→g間は減圧器21での等エンタルピ膨張となるため、蒸発器4においては、g−d間の分のエンタルピしか増加せず、蒸発能力の増大量は小さくなるものの、減圧器21の開度調整を行うことにより、冷媒の圧力調整や能力調整が容易に行える。   In the refrigeration cycle apparatus configured as described above, the following effects can be obtained in addition to the effects of the previous embodiment. As shown in FIG. 6, the expansion close to the isentropic expansion in the vortex tube 3 is only between c → f, and between f → g is the isoenthalpy expansion in the decompressor 21, so in the evaporator 4, Although only the enthalpy between g and d is increased and the increase in the evaporation capacity is reduced, the pressure adjustment and capacity adjustment of the refrigerant can be easily performed by adjusting the opening of the decompressor 21.

したがって、本実施例においては冷凍サイクル装置のさらに効率の良い運転や機器の小型化が可能となる。   Therefore, in the present embodiment, more efficient operation of the refrigeration cycle apparatus and downsizing of the device are possible.

さらに、別の実施例による冷凍サイクル装置について、図7を用いて説明する。図7は、本発明の冷凍サイクル装置の冷媒回路を示す概略構成図である。図7において、図1と同様の構成要素は図1と同じ番号を与え、説明を省略する。   Furthermore, a refrigeration cycle apparatus according to another embodiment will be described with reference to FIG. FIG. 7 is a schematic configuration diagram showing a refrigerant circuit of the refrigeration cycle apparatus of the present invention. In FIG. 7, the same components as those in FIG. 1 are given the same numbers as in FIG.

図7の冷凍サイクル装置では、ボルテックスチューブ3の低温出口部3cは気液分離器31の入口部31aに接続されており、気液分離器31のガス出口部31bは配管32によって圧縮機1の吸入部に接続されており、気液分離器31の液出口部31cは減圧器33を介して蒸発器4の冷媒入口部にそれぞれ接続されている。   In the refrigeration cycle apparatus of FIG. 7, the low-temperature outlet 3 c of the vortex tube 3 is connected to the inlet 31 a of the gas-liquid separator 31, and the gas outlet 31 b of the gas-liquid separator 31 is connected to the compressor 1 by a pipe 32. The liquid outlet 31 c of the gas-liquid separator 31 is connected to the refrigerant inlet of the evaporator 4 via the decompressor 33.

次に、上述のように構成された冷凍サイクル装置の動作について説明する。ボルテックスチューブ3により分離された高温冷媒は、ボルテックスチューブ3の高温出口部3bより放熱器2の第一冷媒流路2Aの第二入口部2cに再供給される。一方、ボルテックスチューブ3により分離された気液二相状態の低温冷媒は、中間圧力まで減圧され、低温出口部3cから気液分離器31の入口部31aに供給される。気液分離器31では、冷媒の液とガスの密度差を利用して、液冷媒とガス冷媒に分離される。ガス冷媒はガス出口部31bより配管32を通じて蒸発器4をバイパスし、圧縮機1の吸入部に供給される。一方、液冷媒は液出口31cから減圧器33に供給され、減圧器33でさらに減圧されたのち、蒸発器4に供給される。蒸発器4では、冷媒は空気などによって加熱され、気液二相またはガス状態となり、再び圧縮機1に吸入される。   Next, the operation of the refrigeration cycle apparatus configured as described above will be described. The high-temperature refrigerant separated by the vortex tube 3 is re-supplied from the high-temperature outlet portion 3b of the vortex tube 3 to the second inlet portion 2c of the first refrigerant channel 2A of the radiator 2. On the other hand, the low-temperature refrigerant in the gas-liquid two-phase state separated by the vortex tube 3 is depressurized to an intermediate pressure and is supplied from the low-temperature outlet part 3 c to the inlet part 31 a of the gas-liquid separator 31. In the gas-liquid separator 31, the liquid refrigerant and the gas refrigerant are separated using the difference in density between the refrigerant liquid and the gas. The gas refrigerant bypasses the evaporator 4 through the pipe 32 from the gas outlet portion 31 b and is supplied to the suction portion of the compressor 1. On the other hand, the liquid refrigerant is supplied from the liquid outlet 31 c to the decompressor 33, further decompressed by the decompressor 33, and then supplied to the evaporator 4. In the evaporator 4, the refrigerant is heated by air or the like, becomes a gas-liquid two-phase or gas state, and is sucked into the compressor 1 again.

上記のように構成された冷凍サイクル装置においては、先の実施例の効果に加えて、次のような効果が得られる。まず、図8に示すように、ボルテックスチューブ3での等エントロピ膨張に近い膨張は、c→f間のみとなる。しかし、気液分離器31で分離した液冷媒を減圧器33に供給するために、減圧器33に供給される冷媒はh点の状態となり、減圧器33ではh→i間で示される等エンタルピ膨張となるため、蒸発器4においては、従来の減圧器を用いた冷凍サイクル装置に対してi→d間のエンタルピが増加するため、蒸発能力が増大することとなり、蒸発圧力(すなわち、圧縮機1の吸入圧力)が上昇するため、圧縮機1の入力量が低減される。つぎに、気液分離器31で分離されたガス冷媒は蒸発器4をバイパスして圧縮機1に供給されるために、蒸発器4を流れる冷媒量が減少し、蒸発器4での圧力損失を低減でき、蒸発圧力(すなわち、圧縮機1の吸入圧力)が上昇するため、圧縮機1の入力量が低減される。さらに、減圧器33の開度調整を行うことにより冷媒の圧力調整や能力調整が容易に行える。   In the refrigeration cycle apparatus configured as described above, the following effects can be obtained in addition to the effects of the previous embodiment. First, as shown in FIG. 8, the expansion close to the isentropic expansion in the vortex tube 3 is only between c → f. However, in order to supply the liquid refrigerant separated by the gas-liquid separator 31 to the decompressor 33, the refrigerant supplied to the decompressor 33 is in the state of the h point, and the decompressor 33 has an equal enthalpy indicated by h → i. In the evaporator 4, since the enthalpy between i → d is increased in the evaporator 4 with respect to the refrigeration cycle apparatus using the conventional decompressor, the evaporation capacity is increased, and the evaporation pressure (that is, the compressor) 1), the input amount of the compressor 1 is reduced. Next, since the gas refrigerant separated by the gas-liquid separator 31 bypasses the evaporator 4 and is supplied to the compressor 1, the amount of refrigerant flowing through the evaporator 4 is reduced, and the pressure loss in the evaporator 4 is reduced. Since the evaporation pressure (that is, the suction pressure of the compressor 1) increases, the input amount of the compressor 1 is reduced. Furthermore, by adjusting the opening degree of the decompressor 33, the refrigerant pressure and capacity can be easily adjusted.

したがって、本実施例においては冷凍サイクル装置のさらに効率の良い運転や機器の小型化が可能となる。   Therefore, in the present embodiment, more efficient operation of the refrigeration cycle apparatus and downsizing of the device are possible.

なお、本実施例においては、気液分離器31のガス側出口31bを圧縮機1の吸入側に接続するものとして説明したが、圧縮機1の中間圧力部に接続してもよく、この場合にはさらに圧縮機1での入力量を低減でき、冷凍サイクル装置の効率の良い運転が可能となる。   In the present embodiment, the gas-side outlet 31b of the gas-liquid separator 31 has been described as being connected to the suction side of the compressor 1, but may be connected to the intermediate pressure portion of the compressor 1, in this case Further, the amount of input in the compressor 1 can be reduced, and the refrigeration cycle apparatus can be operated efficiently.

さらに、別の実施例による冷凍サイクル装置について説明する。本実施例は図7の実施例においてボルテックスチューブ3と気液分離器31を一体に構成したものである。図9は、ボルテックスチューブと気液分離器とを一体構成した断面構成図である。図9において、41は銅、アルミ、真鍮などで形成された円筒状の外殻であり、外殻41内部には、しきり板41a、バルブ41bが備えられている。ここで、しきり板41aより上部がボ
ルテックスチューブとして作用する。しきり板41aより若干、上方の部分に設けられた入口部3aから高圧の冷媒を外殻41の円筒状の接線方向に供給すると、冷媒は渦流をなして外殻41内部の周壁を旋回しつつ、バルブ41bへと向かう流れを形成し、高温冷媒と低温冷媒の分離が行われる。すなわち、高温冷媒はバルブ背後に設けられた高温出口部3bから排出され、低温冷媒は外殻41内部の周壁を旋回する流れの中央部分を逆方向に流れ、しきり板41aの方向に戻ってくる。
Furthermore, a refrigeration cycle apparatus according to another embodiment will be described. In this embodiment, the vortex tube 3 and the gas-liquid separator 31 are integrally formed in the embodiment of FIG. FIG. 9 is a cross-sectional configuration diagram in which a vortex tube and a gas-liquid separator are integrally configured. In FIG. 9, reference numeral 41 denotes a cylindrical outer shell made of copper, aluminum, brass, or the like. Inside the outer shell 41, a threshold plate 41 a and a valve 41 b are provided. Here, the upper part of the threshold plate 41a acts as a vortex tube. When a high-pressure refrigerant is supplied in the cylindrical tangential direction of the outer shell 41 from an inlet portion 3a provided at a portion slightly above the threshold plate 41a, the refrigerant swirls around the inner wall of the outer shell 41 while forming a vortex. The flow toward the valve 41b is formed, and the high temperature refrigerant and the low temperature refrigerant are separated. That is, the high-temperature refrigerant is discharged from the high-temperature outlet portion 3b provided behind the valve, and the low-temperature refrigerant flows in the reverse direction through the central portion of the flow swirling around the peripheral wall inside the outer shell 41 and returns in the direction of the threshold plate 41a. .

しきり板41aにはボルテックスチューブの低温出口部3cであり、かつ、気液分離器の入口部31aでもある冷媒通路が設けられており、しきり板41aより下部が気液分離器として作用する。すなわち、ボルテックスチューブで分離された低温冷媒は、入口部31a(かつ、低温出口部3c)から供給され、冷媒の液とガスの密度差の違いから、液冷媒は外殻41の底部に溜まるので、外殻41の底部に設けられた液出口部31cからは液冷媒を排出させ、しきり板41aより若干、下方の部分に設けられたガス出口部3bからガス冷媒を排出することにより、液冷媒とガス冷媒に分離できる。   The threshold plate 41a is provided with a refrigerant passage which is a low temperature outlet portion 3c of the vortex tube and is also an inlet portion 31a of the gas-liquid separator, and the lower portion of the threshold plate 41a functions as a gas-liquid separator. That is, the low-temperature refrigerant separated by the vortex tube is supplied from the inlet 31a (and the low-temperature outlet 3c), and the liquid refrigerant accumulates at the bottom of the outer shell 41 due to the difference in density between the refrigerant liquid and the gas. The liquid refrigerant is discharged from the liquid outlet portion 31c provided at the bottom of the outer shell 41, and the liquid refrigerant is discharged from the gas outlet portion 3b provided slightly below the threshold plate 41a. And gas refrigerant.

冷凍サイクルの動作としては先の実施例と同様であるので説明を省略するが、 上記のように構成された冷凍サイクル装置においては、先の実施例の効果に加えて、ボルテックスチューブと気液分離器を一体構成したため、さらに機器の小型化が可能となる。   Since the operation of the refrigeration cycle is the same as in the previous embodiment, the description thereof will be omitted. In the refrigeration cycle apparatus configured as described above, in addition to the effects of the previous embodiment, the vortex tube and gas-liquid separation are performed. Since the device is integrated, the size of the device can be further reduced.

さらに、別の実施例による冷凍サイクル装置について、図10を用いて説明する。図10は、本発明の冷凍サイクル装置の冷媒回路を示す概略構成図である。図10において、図1と同様の構成要素は図1と同じ番号を与え、説明を省略する。   Furthermore, a refrigeration cycle apparatus according to another embodiment will be described with reference to FIG. FIG. 10 is a schematic configuration diagram showing a refrigerant circuit of the refrigeration cycle apparatus of the present invention. In FIG. 10, the same components as those in FIG. 1 are given the same numbers as in FIG.

図10の冷凍サイクル装置では、放熱器2において、流体(例えば、水)が流れる流体流路2Bと熱交換する第一冷媒流路2Aとは別に、流体流路2Bと熱交換する第二冷媒流路2Cを備えている。ボルテックスチューブ3の高温出口部3bは第二冷媒流路2Cの入口部2dに接続されており、第二冷媒流路2Cの出口部2eは減圧器33を介して蒸発器4の冷媒入口部にそれぞれ接続されている。   In the refrigeration cycle apparatus of FIG. 10, in the radiator 2, the second refrigerant that exchanges heat with the fluid passage 2 </ b> B, separately from the first refrigerant passage 2 </ b> A that exchanges heat with the fluid passage 2 </ b> B through which a fluid (for example, water) flows. A flow path 2C is provided. The high temperature outlet 3b of the vortex tube 3 is connected to the inlet 2d of the second refrigerant channel 2C, and the outlet 2e of the second refrigerant channel 2C is connected to the refrigerant inlet of the evaporator 4 via the decompressor 33. Each is connected.

なお、第二冷媒流路2Cの入口部2dから出口部2eは、第一冷媒流路2Aの冷媒と流体流路2Bを流れる流体との温度差が最も小さくなる区間の流体流路2Bと熱交換するように設けられている。   The inlet 2d to the outlet 2e of the second refrigerant channel 2C are connected to the fluid channel 2B and the heat in the section where the temperature difference between the refrigerant in the first refrigerant channel 2A and the fluid flowing through the fluid channel 2B is the smallest. It is provided to replace.

次に、上述のように構成された冷凍サイクル装置の動作について説明する。ボルテックスチューブ3により分離された高温冷媒は、ボルテックスチューブ3の高温出口部3bより放熱器2の第二冷媒流路2Cの入口部2dに供給され、放熱器2の第一冷媒流路2Aの冷媒と流体流路2Bを流れる流体との温度差が最も小さい区間で、流体流路2Bを流れる流体と熱交換した後、第二冷媒流路2Cの出口部2eから流出した後、減圧器51で減圧され、低温低圧の気液二相状態の冷媒となり、蒸発器4に供給される。一方、ボルテックスチューブ3の低温出口部3cから流出した低温低圧の気液二相状態の低温冷媒も、蒸発器4に供給される。蒸発器4では、冷媒は空気などによって加熱され、気液二相またはガス状態となり、再び圧縮機1に吸入される。   Next, the operation of the refrigeration cycle apparatus configured as described above will be described. The high-temperature refrigerant separated by the vortex tube 3 is supplied from the high-temperature outlet 3b of the vortex tube 3 to the inlet 2d of the second refrigerant channel 2C of the radiator 2, and the refrigerant in the first refrigerant channel 2A of the radiator 2 is supplied. After the heat exchange with the fluid flowing through the fluid flow path 2B in the section where the temperature difference between the fluid flowing through the fluid flow path 2B is the smallest, after flowing out from the outlet 2e of the second refrigerant flow path 2C, the decompressor 51 The refrigerant is decompressed, becomes a low-temperature and low-pressure gas-liquid two-phase refrigerant, and is supplied to the evaporator 4. On the other hand, a low-temperature low-pressure gas-liquid two-phase low-temperature refrigerant flowing out from the low-temperature outlet 3 c of the vortex tube 3 is also supplied to the evaporator 4. In the evaporator 4, the refrigerant is heated by air or the like, becomes a gas-liquid two-phase or gas state, and is sucked into the compressor 1 again.

上記のように構成された冷凍サイクル装置においては、次のような効果が得られる。ボルテックスチューブ3から導出される高温冷媒は放熱器2の第一冷媒流路2Aの冷媒と流体との温度差が最も小さい区間の近傍に設けられた第二冷媒流路2Cに供給し、この区間の流体に第二冷媒流路2Cから放熱することにより、放熱量を増加させることができる。したがって、従来と同じ冷媒と流体の温度差であっても、より高い温度の流体を取り出すことが可能とる。さらに、減圧器51の開度調整を行うことにより、ボルテックスチューブ3へ供給される冷媒流量を調整できることとなり、冷媒の圧力調整や能力調整が容易に
行える。
In the refrigeration cycle apparatus configured as described above, the following effects can be obtained. The high-temperature refrigerant derived from the vortex tube 3 is supplied to the second refrigerant flow path 2C provided in the vicinity of the section where the temperature difference between the refrigerant and the fluid in the first refrigerant flow path 2A of the radiator 2 is the smallest, and this section The amount of heat released can be increased by dissipating heat to the fluid from the second refrigerant flow path 2C. Therefore, even with the same temperature difference between the refrigerant and the fluid as in the prior art, a fluid having a higher temperature can be taken out. Further, by adjusting the opening of the decompressor 51, the flow rate of the refrigerant supplied to the vortex tube 3 can be adjusted, and the pressure adjustment and capacity adjustment of the refrigerant can be easily performed.

したがって、本実施例においては冷凍サイクル装置のさらに効率の良い運転や機器の小型化が可能となる。   Therefore, in the present embodiment, more efficient operation of the refrigeration cycle apparatus and downsizing of the device are possible.

なお、本実施例において、先の実施例のように、ボルテックスチューブ3の低温出口部3cの下流側に別の減圧器を設けたり、ボルテックスチューブ3をバイパスする流路を設け、そのバイパス流路にさらに別の減圧器を設けたりして、減圧器の開度調整を行うことにより、ボルテックスチューブ3へ供給される冷媒流量を調整したりしてもよい。   In this embodiment, as in the previous embodiment, another decompressor is provided on the downstream side of the low temperature outlet portion 3c of the vortex tube 3, or a flow path for bypassing the vortex tube 3 is provided. In addition, a flow rate of the refrigerant supplied to the vortex tube 3 may be adjusted by providing another pressure reducer and adjusting the opening of the pressure reducer.

以上の実施例において、ボルテックスチューブ3から導出される高温冷媒は放熱器2の第一冷媒流路2Aにおいて、冷媒と流体の温度差が最も小さい区間の近傍の冷媒と熱交換するように供給するのが、放熱器2を効率よく利用する上で、最も望ましく、冷凍サイクル装置のさらに効率の良い運転や機器の小型化が可能となる。さらに、冷凍回路の高圧側の圧力は超臨界以上の圧力で運転される場合には、超臨界以下の圧力で運転される場合に比較して、放熱器2において潜熱変化を行わないため、放熱器2における冷媒の温度変化が緩やかになるので、ボルテックスチューブ3から導出される高温冷媒を、冷媒と流体の温度差が最も小さい区間の近傍の冷媒と熱交換するように供給することによる効果が大きく、冷凍サイクル装置のさらに効率の良い運転や機器の小型化が可能となる。さらに、冷媒は二酸化炭素である場合には、ボルテックスチューブ3から導出される高温冷媒より吐出温度が高くなる可能性が高いために、ボルテックスチューブ3から導出される高温冷媒を、冷媒と流体の温度差が最も小さい区間の近傍の冷媒と熱交換するように供給するのが望ましく、冷凍サイクル装置のさらに効率の良い運転や機器の小型化が可能となる。さらに、放熱器2で流体を約60℃以上の高温に加熱する場合には、ボルテックスチューブ3から導出される高温冷媒より吐出温度が高くなる可能性が高いために、ボルテックスチューブ3から導出される高温冷媒を、冷媒と流体の温度差が最も小さい区間の近傍の冷媒と熱交換するように供給するのが望ましく、冷凍サイクル装置のさらに効率の良い運転や機器の小型化が可能となる。   In the above embodiment, the high-temperature refrigerant derived from the vortex tube 3 is supplied in the first refrigerant flow path 2A of the radiator 2 so as to exchange heat with the refrigerant in the vicinity of the section where the temperature difference between the refrigerant and the fluid is the smallest. This is most desirable in efficiently using the radiator 2, and enables more efficient operation of the refrigeration cycle apparatus and downsizing of the equipment. Further, when the pressure on the high-pressure side of the refrigeration circuit is operated at a pressure higher than the supercritical pressure, since the latent heat is not changed in the radiator 2 as compared with the case of operating at a pressure lower than the supercritical temperature, Since the temperature change of the refrigerant in the vessel 2 becomes gentle, there is an effect by supplying the high-temperature refrigerant derived from the vortex tube 3 so as to exchange heat with the refrigerant in the vicinity of the section where the temperature difference between the refrigerant and the fluid is the smallest. Larger, more efficient operation of the refrigeration cycle apparatus and downsizing of the equipment are possible. Further, when the refrigerant is carbon dioxide, the discharge temperature is likely to be higher than that of the high-temperature refrigerant derived from the vortex tube 3, so the high-temperature refrigerant derived from the vortex tube 3 is used as the temperature of the refrigerant and the fluid. It is desirable to supply the refrigerant so that it exchanges heat with the refrigerant in the vicinity of the section where the difference is the smallest, so that the refrigeration cycle apparatus can be operated more efficiently and the equipment can be downsized. Further, when the fluid is heated to a high temperature of about 60 ° C. or more by the radiator 2, the discharge temperature is likely to be higher than the high-temperature refrigerant derived from the vortex tube 3, and thus the fluid is derived from the vortex tube 3. It is desirable to supply the high-temperature refrigerant so as to exchange heat with the refrigerant in the vicinity of the section where the temperature difference between the refrigerant and the fluid is the smallest, which enables more efficient operation of the refrigeration cycle apparatus and miniaturization of the equipment.

本発明の一実施例による冷凍サイクル装置を示す構成図The block diagram which shows the refrigerating-cycle apparatus by one Example of this invention. 同実施例による冷凍サイクル装置の動作点を示す圧力・エンタルピ線図Pressure and enthalpy diagram showing the operating point of the refrigeration cycle apparatus according to the same embodiment 同実施例による放熱器での冷媒・水の温度変化図Temperature change diagram of refrigerant and water in the radiator according to the same example 他の実施例による冷凍サイクル装置を示す構成図The block diagram which shows the refrigerating-cycle apparatus by another Example. 他の実施例による冷凍サイクル装置を示す構成図The block diagram which shows the refrigerating-cycle apparatus by another Example. 同実施例による冷凍サイクル装置の動作点を示す圧力・エンタルピ線図Pressure and enthalpy diagram showing the operating point of the refrigeration cycle apparatus according to the same embodiment 他の実施例による冷凍サイクル装置を示す構成図The block diagram which shows the refrigerating-cycle apparatus by another Example. 同実施例による冷凍サイクル装置の動作点を示す圧力・エンタルピ線図Pressure and enthalpy diagram showing the operating point of the refrigeration cycle apparatus according to the same embodiment 他の実施例によるボルテックスチューブ・気液分離器の断面図Cross-sectional view of vortex tube / gas-liquid separator according to another embodiment 他の実施例による冷凍サイクル装置を示す構成図The block diagram which shows the refrigerating-cycle apparatus by another Example.

符号の説明Explanation of symbols

1 圧縮機
2 放熱器
3 ボルテックスチューブ
4 蒸発器
5 逆止弁
6 給水ポンプ
7 給湯タンク
11、32 バイパス流路
12、21、33、51 減圧器
31 気液分離器
41 外殻
DESCRIPTION OF SYMBOLS 1 Compressor 2 Radiator 3 Vortex tube 4 Evaporator 5 Check valve 6 Water supply pump 7 Hot water supply tank 11, 32 Bypass flow path 12, 21, 33, 51 Pressure reducer 31 Gas-liquid separator 41 Outer shell

Claims (9)

少なくとも、圧縮機、放熱器、ボルテックスチューブおよび蒸発器を環状に接続して冷媒回路を構成するとともに、前記ボルテックスチューブの入口部を前記放熱器の冷媒流路の出口部に接続し、前記ボルテックスチューブの高温出口部を前記放熱器の冷媒流路において前記放熱器の入口部より下流側に位置する第二入口部に接続し、前記ボルテックスチューブの低温出口部を前記蒸発器の冷媒入口部にそれぞれ接続し、前記冷媒流路の冷媒と前記放熱器において冷媒を冷却する流体との温度差が最も小さくなる箇所の近傍に、前記第二入口部が設けられていることを特徴とする冷凍サイクル装置。 At least a compressor, a radiator, a vortex tube and an evaporator are connected in an annular shape to form a refrigerant circuit, and an inlet portion of the vortex tube is connected to an outlet portion of a refrigerant flow path of the radiator, and the vortex tube Are connected to a second inlet located downstream from the inlet of the radiator in the refrigerant flow path of the radiator, and the cold outlet of the vortex tube is connected to the refrigerant inlet of the evaporator, respectively. The refrigeration cycle apparatus is characterized in that the second inlet portion is provided in the vicinity of a portion where the temperature difference between the refrigerant in the refrigerant flow path and the fluid that cools the refrigerant in the radiator is minimized. . 前記ボルテックスチューブをバイパスするバイパス流路と、前記バイパス流路に減圧器を備えたことを特徴とする請求項1に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 1, further comprising: a bypass passage that bypasses the vortex tube; and a decompressor in the bypass passage. 前記ボルテックスチューブの低温出口部を減圧器を介して前記蒸発器の冷媒入口部に接続したことを特徴とする請求項1に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 1, wherein a low temperature outlet portion of the vortex tube is connected to a refrigerant inlet portion of the evaporator via a decompressor. 少なくとも、圧縮機、放熱器、ボルテックスチューブ、気液分離器、減圧器および蒸発器を環状に接続して冷媒回路を構成するとともに、前記ボルテックスチューブの入口部を前記放熱器の冷媒流路の出口部に接続し、前記ボルテックスチューブの高温出口部を前記放熱器の冷媒流路において入口部より下流側に位置する第二入口部に接続し、前記ボルテックスチューブの低温出口部を前記気液分離器の入口部に接続し、前記気液分離器のガス出口部を前記圧縮機の吸入部あるいは中間圧力部に接続し、前記気液分離器の液出口部を前記減圧器を介して前記蒸発器の冷媒入口部にそれぞれ接続し、前記冷媒流路の冷媒と前記放熱器において冷媒を冷却する流体との温度差が最も小さくなる箇所の近傍に、前記第二入口部が設けられていることを特徴とする冷凍サイクル装置。 At least a compressor, a radiator, a vortex tube, a gas-liquid separator, a decompressor, and an evaporator are connected in a ring to form a refrigerant circuit, and the inlet of the vortex tube is connected to the outlet of the refrigerant flow path of the radiator A high temperature outlet portion of the vortex tube is connected to a second inlet portion located downstream of the inlet portion in the refrigerant flow path of the radiator, and the low temperature outlet portion of the vortex tube is connected to the gas-liquid separator. The gas outlet portion of the gas-liquid separator is connected to the suction portion or the intermediate pressure portion of the compressor, and the liquid outlet portion of the gas-liquid separator is connected to the evaporator via the decompressor. respectively to the refrigerant inlet portion of the connection, in the vicinity of the portion where the temperature difference is the smallest of the fluid for cooling the refrigerant in the radiator and the refrigerant of the refrigerant passage, said second inlet is provided Refrigeration cycle apparatus according to claim. 前記ボルテックスチューブと前記気液分離器は一体構造となっていることを特徴とする請求項4に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 4, wherein the vortex tube and the gas-liquid separator have an integral structure. 少なくとも、圧縮機、放熱器、ボルテックスチューブ、減圧器および蒸発器を接続して冷媒回路を構成するとともに、前記ボルテックスチューブの入口部を前記放熱器の第一冷媒
流路の出口部に接続し、前記ボルテックスチューブの高温出口部を前記放熱器の第二冷媒流路の入口部に接続し、前記第二冷媒流路の出口部を前記減圧器を介して前記蒸発器の冷媒入口部に接続し、前記ボルテックスチューブの低温出口部を前記蒸発器の冷媒入口部にそれぞれ接続し、前記第一冷媒流路の冷媒と前記放熱器において前記冷媒を冷却する流体との温度差が最も小さくなる箇所の近傍に、前記第二流体流路の入口部が設けられていることを特徴とする冷凍サイクル装置。
At least a compressor, a radiator, a vortex tube, a decompressor and an evaporator are connected to form a refrigerant circuit, and an inlet portion of the vortex tube is connected to an outlet portion of the first refrigerant channel of the radiator, The high temperature outlet of the vortex tube is connected to the inlet of the second refrigerant channel of the radiator, and the outlet of the second refrigerant channel is connected to the refrigerant inlet of the evaporator via the decompressor. The low temperature outlet of the vortex tube is connected to the refrigerant inlet of the evaporator, and the temperature difference between the refrigerant in the first refrigerant channel and the fluid that cools the refrigerant in the radiator is minimized. A refrigerating cycle apparatus , wherein an inlet portion of the second fluid flow path is provided in the vicinity .
前記冷媒回路の高圧側の圧力は冷媒の臨界圧力以上で運転されることを特徴とする請求項1からのいずれか1項に記載の冷凍サイクル装置。 Refrigeration cycle apparatus according to any one of claims 1 to 6 the pressure of the high pressure side, characterized in that it is operated at or above the critical pressure of the refrigerant of the refrigerant circuit. 前記冷媒回路に封入される冷媒は二酸化炭素であることを特徴とする請求項1からのいずれか1項に記載の冷凍サイクル装置。 Refrigeration cycle apparatus according to any one of claims 1 to 7, characterized in that the refrigerant sealed in the refrigerant circuit is carbon dioxide. 前記放熱器で流体を約60℃以上の高温に加熱することを特徴とする請求項1からのいずれか1項に記載の冷凍サイクル装置。 Refrigeration cycle apparatus according to any one of claims 1 to 8, characterized in that to heat the fluid to a temperature above about 60 ° C. at the radiator.
JP2003364267A 2003-10-24 2003-10-24 Refrigeration cycle equipment Expired - Fee Related JP4161871B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003364267A JP4161871B2 (en) 2003-10-24 2003-10-24 Refrigeration cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003364267A JP4161871B2 (en) 2003-10-24 2003-10-24 Refrigeration cycle equipment

Publications (2)

Publication Number Publication Date
JP2005127624A JP2005127624A (en) 2005-05-19
JP4161871B2 true JP4161871B2 (en) 2008-10-08

Family

ID=34643295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003364267A Expired - Fee Related JP4161871B2 (en) 2003-10-24 2003-10-24 Refrigeration cycle equipment

Country Status (1)

Country Link
JP (1) JP4161871B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4665856B2 (en) * 2006-07-13 2011-04-06 株式会社富士通ゼネラル Vortex tube and refrigerant circuit using the same
FR2911915B1 (en) 2007-01-30 2011-06-17 Hispano Suiza Sa DEVICE FOR COOLING AN ELECTRICAL EQUIPMENT IN A TURBOMACHINE.
US8716981B2 (en) * 2011-11-11 2014-05-06 Lg Chem, Ltd. System and method for cooling and cycling a battery pack
CN111174268B (en) * 2020-01-15 2021-03-23 西安交通大学 Air source trans-critical carbon dioxide heat pump heating system and control method

Also Published As

Publication number Publication date
JP2005127624A (en) 2005-05-19

Similar Documents

Publication Publication Date Title
US6658888B2 (en) Method for increasing efficiency of a vapor compression system by compressor cooling
JP4897298B2 (en) Gas-liquid separator module
JP5197820B2 (en) Refrigeration cycle equipment
JP4776438B2 (en) Refrigeration cycle
JP2006343017A (en) Freezer
JP5681549B2 (en) Refrigeration cycle method
JP2001255023A (en) Effective increasing method for vapor compression freezing cycle and high efficiency freezing system
JP2007162988A (en) Vapor compression refrigerating cycle
JP4832563B2 (en) Refrigeration system
JP2007155229A (en) Vapor compression type refrigerating cycle
JP2008224206A (en) Dual refrigerating cycle device
JP2008008523A (en) Refrigerating cycle and water heater
JP2007178072A (en) Air conditioner for vehicle
JP2006292229A (en) Co2 refrigeration cycle device and supercritical refrigeration operation method therefor
JP4442237B2 (en) Air conditioner
JP2008249209A (en) Refrigerating device
JPH1019421A (en) Refrigerating cycle and accumulator used for the cycle
EP2787314B1 (en) Double-pipe heat exchanger and air conditioner using same
JP2009300021A (en) Refrigerating cycle device
JP2018028395A (en) Heat pump device
JP2007263390A (en) Refrigerating cycle device
JP4161871B2 (en) Refrigeration cycle equipment
JP2007303709A (en) Refrigerating cycle
JP2004308972A (en) Co2 refrigerating machine
JP2010101621A (en) Refrigerating cycle device and method of controlling the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060620

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080714

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees