JP4161708B2 - Secondary air supply abnormality detection device for internal combustion engine - Google Patents

Secondary air supply abnormality detection device for internal combustion engine Download PDF

Info

Publication number
JP4161708B2
JP4161708B2 JP2002372140A JP2002372140A JP4161708B2 JP 4161708 B2 JP4161708 B2 JP 4161708B2 JP 2002372140 A JP2002372140 A JP 2002372140A JP 2002372140 A JP2002372140 A JP 2002372140A JP 4161708 B2 JP4161708 B2 JP 4161708B2
Authority
JP
Japan
Prior art keywords
secondary air
air
fuel ratio
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002372140A
Other languages
Japanese (ja)
Other versions
JP2004204715A (en
Inventor
森永  修二郎
謙一 佐合
智史 小堂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2002372140A priority Critical patent/JP4161708B2/en
Priority to DE10360481A priority patent/DE10360481A1/en
Priority to US10/744,073 priority patent/US6830043B2/en
Publication of JP2004204715A publication Critical patent/JP2004204715A/en
Application granted granted Critical
Publication of JP4161708B2 publication Critical patent/JP4161708B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の排気通路内の触媒を活性化するために2次空気を供給する際の異常を検出する内燃機関の2次空気供給異常検出装置に関するものである。
【0002】
【従来の技術】
従来、内燃機関の2次空気供給異常検出の際、2次空気流量を圧力センサや流量センサを用いて直接的に検出する方式が考えられるが、新たなセンサ等にかかるコスト上昇が避けられない。
【0003】
これに関連する先行技術文献としては、特開平6−146867号公報にて開示されたものが知られている。このものでは、2次空気供給通路が開口している箇所よりも下流側、即ち、2次空気が供給される2次空気下流に排出ガス中の酸素(O2 )濃度を検出するための酸素センサを設け、この酸素センサ出力が反転したときには、2次空気下流の空燃比(A/F)が理論空燃比になっていると判断できることから、このときの吸入空気量と機関運転状態とに基づき、2次空気供給機構から排気通路へ供給される2次空気流量(2次空気供給量)を求める手法が提案されている。
【特許文献】
特開平6−146867号公報(第2頁〜第3頁)
【0004】
【発明が解決しようとする課題】
ところで、前述のものでは、2次空気下流の空燃比が理論空燃比近傍で制御され酸素センサ出力が急変する状態でないと2次空気流量が求まらないことに加え、1回のタイミングで演算するために演算誤差が大きいという不具合があった。
【0005】
そこで、この発明はかかる不具合を解決するためになされたもので、新たなセンサ類を設置することなく、2次空気下流の空燃比にかかわらず2次空気流量を高精度に算出し、2次空気供給機構を含むシステム異常を精度良く検出可能な内燃機関の2次空気供給異常検出装置の提供を課題としている。
【0006】
【課題を解決するための手段】
請求項1の内燃機関の2次空気供給異常検出装置によれば、空燃比推定手段で推定された内燃機関に供給される空燃比と2次空気供給機構から2次空気が供給されているときに空燃比検出手段で検出される空燃比とに基づき2次空気流量演算手段で算出される2次空気供給機構からの2次空気流量に基づいて、異常判定手段によって2次空気供給機構を含むシステム異常が判定される。このように、2次空気下流の空燃比にかかわらず2次空気流量が高精度に算出されるため、2次空気供給機構を含むシステム異常が精度良く検出される。
また、異常判定手段は、内燃機関に供給される空燃比の算出誤差が、内燃機関に供給される空燃比と2次空気供給機構から2次空気が供給されていないときに空燃比検出手段で検出される空燃比とに基づき算出され、2次空気流量演算手段による2次空気流量が補正されることで、2次空気流量の演算精度が向上され、2次空気供給機構を含むシステム異常の判定精度が向上される。
そして、吸入空気量検出手段で内燃機関の吸気通路内に供給される吸入空気量が検出され、燃料噴射量演算手段で各種運転パラメータに基づき内燃機関に供給される燃料噴射量が算出されることで、新たなセンサ類を設置することなく、既存のシステムによって構築できるためコスト上昇を抑えることができる。
【0007】
請求項2の内燃機関の2次空気供給異常検出装置における異常判定手段では、異常判定に用いる2次空気流量が所定期間の平均値または積算値とされることで、急峻な変化が平滑化され、2次空気流量の演算精度が向上されるため、2次空気供給機構を含むシステム異常が精度良く検出される。
【0009】
請求項3の内燃機関の2次空気供給異常検出装置によれば、異常判定手段によって内燃機関に供給される空燃比と2次空気供給機構から2次空気が供給されているときに空燃比検出手段で検出される空燃比との空燃比偏差量が、予め設定された所定範囲内にないときには、異常判定手段によって2次空気供給機構を含むシステム異常と判定される。このように、2次空気下流の空燃比にかかわらず空燃比偏差量が高精度に算出されるため、2次空気供給機構を含むシステム異常が精度良く検出される。
また、この異常判定手段では、異常判定に用いる空燃比偏差量が所定期間の平均値または積算値とされることで、急峻な変化が平滑化され、空燃比偏差量の演算精度が向上されるため、2次空気供給機構を含むシステム異常が精度良く検出される。
そして、吸入空気量検出手段で内燃機関の吸気通路内に供給される吸入空気量が検出され、燃料噴射量演算手段で各種運転パラメータに基づき内燃機関に供給される燃料噴射量が算出されることで、新たなセンサ類を設置することなく、既存のシステムによって構築できるためコスト上昇を抑えることができる。
【0010】
請求項4の内燃機関の2次空気供給異常検出装置における異常判定手段では、異常判定に用いる空燃比偏差量が所定期間の平均値または積算値とされることで、急峻な変化が平滑化され、空燃比偏差量の演算精度が向上されるため、2次空気供給機構を含むシステム異常が精度良く検出される。
【0013】
請求項の内燃機関の2次空気供給異常検出装置における異常判定手段では、2次空気供給機構を含むシステム異常と判定されたときには、2次空気供給及び空燃比フィードバック制御が停止されることで、空燃比ずれによる空燃比過補正が未然に防止される。
【0014】
請求項の内燃機関の2次空気供給異常検出装置では、内燃機関に供給される空燃比の算出誤差が大きくなる条件、または2次空気流量が安定しない条件、または吸入空気量が多く2次空気流量の比率が小さくなる条件では、ダイアグノーシスが禁止されることで、空燃比ずれによる空燃比過補正が未然に防止される。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態を実施例に基づいて説明する。
【0016】
〈実施例1〉
図1は本発明の実施の形態の第1実施例にかかる内燃機関の2次空気供給異常検出装置が適用された内燃機関及びその周辺機器を示す概略構成図である。
【0017】
図1において、10は内燃機関であり、内燃機関10の吸気通路11の上流側には、図示しないエアクリーナを介して供給される吸入空気量を検出するエアフローメータ12が配設されている。このエアフローメータ12の下流側には内燃機関10への吸入空気量を調整するスロットルバルブ13が配設されている。このスロットルバルブ13にはその開度を検出するスロットル開度センサ14が配設されている。吸気通路11から内燃機関10の各気筒の吸気ポート15近傍には燃料を噴射供給するインジェクタ(燃料噴射弁)16が配設されている。
【0018】
そして、スロットルバルブ13にて設定される吸入空気量とインジェクタ16にて噴射供給される燃料との混合気が、吸気バルブ17が開くことによって内燃機関10の燃焼室18内に導入される。また、内燃機関10のシリンダヘッド側には各気筒毎に点火プラグ19が配設されている。この点火プラグ19の火花放電によって燃焼室18内の混合気が点火される。混合気は、燃焼室18内で燃焼されたのち、排出ガスとして排気バルブ21が開くことによって燃焼室18から排気通路22に排出される。
【0019】
この排気通路22途中には周知の三元触媒23が配設され、その上流側には排出ガスのA/F(空燃比)に応じてリニアな信号を出力するA/Fセンサ24、下流側には排出ガスのA/Fが理論空燃比に対してリッチかリーンかによって出力電圧が反転する酸素センサ25がそれぞれ配設されている。また、内燃機関10のクランクシャフト26には、その回転角であるクランク角〔°CA(Crank Angle)〕を検出するクランク角センサ27が配設されている。機関回転速度NEは所定時間当たりにクランクシャフト26が回転した角度に基づいて算出される。更に、内燃機関10にはその冷却水温を検出する水温センサ28が配設されている。
【0020】
次に、排気通路22内に外気を供給する2次空気供給機構30の構成について説明する。A/Fセンサ24の上流側の排気通路22には、2次空気を供給するための2次空気供給通路31が接続されている。2次空気供給通路31の大気側にはエアフィルタ32が配設され、このエアフィルタ32の下流側には2次空気を圧送するエアポンプ33が配設されている。
【0021】
このエアポンプ33の排気通路22側にはコンビネーションバルブ34が配設されている。このコンビネーションバルブ34は、2次空気供給通路31を開閉する圧力駆動型の開閉弁35及びその下流側の逆止弁36が一体化され構成されている。コンビネーションバルブ34の開閉弁35は、吸気圧導入通路37によって導かれる背圧によって開閉が切替えられる。この吸気圧導入通路37は吸気通路11に接続され、この吸気圧導入通路37の途中に配設された電磁駆動型の切換弁38によって開閉弁35の背圧が大気圧と吸気圧との間で切換えられる。
【0022】
つまり、2次空気を供給する場合には、吸気通路11の吸気圧を導入するために切換弁38を開弁する。そして、開閉弁35に吸気圧を導入することにより開閉弁35が開弁される。これにより、エアポンプ33から吐出された2次空気が開閉弁35を通過して逆止弁36側に流れる。この逆止弁36は、排気通路22からの排出ガスの流込みを規制するものであって、エアポンプ33の2次空気圧力が排出ガス圧力よりも高くなったときには、その圧力によって逆止弁36が開弁され、2次空気が排気通路22内に供給される。
【0023】
一方、2次空気を停止する場合には、エアポンプ33が停止されると共に、切換弁38を大気圧を導入する位置に切換えて開閉弁35に大気圧を導入する。これにより、開閉弁35が閉弁される。すると、排気通路22への2次空気が停止され、逆止弁36に2次空気の圧力が作用しなくなり排気通路22側の圧力が高くなる。このため、逆止弁36が自動的に閉弁され、排気通路22内の排出ガスがエアポンプ33側に逆流することが防止される。
【0024】
40はECU(Electronic Control Unit:電子制御ユニット)であり、ECU40は、周知の各種演算処理を実行する中央処理装置としてのCPU41、制御プログラムや制御マップ等を格納したROM42、各種データ等を格納するRAM43、B/U(バックアップ)RAM44、入出力回路45及びそれらを接続するバスライン46等からなる論理演算回路として構成されている。ECU40には、上述の各種センサ信号が入力され、入力される信号に基づいてECU40からインジェクタ16、点火プラグ19、2次空気供給機構30のエアポンプ33や切換弁38等に制御信号が出力される。
【0025】
次に、本発明の実施の形態の第1実施例にかかる内燃機関の2次空気供給異常検出装置で使用されているECU40内のCPU41における2次空気供給異常検出の処理手順を図2のフローチャートを用いて説明する。また、図3を用いて、その動作について説明する。具体的には、図3には、図2で算出されるパラメータの動作が示されている。このパラメータは、内燃機関10に供給される機関供給空燃比λENG、2次空気供給通路31より下流側で検出される2次空気下流空燃比λAFS、この2つのパラメータに基づき算出される2次空気流量QAI〔g/sec:グラム毎秒〕である。なお、この2次空気供給異常検出ルーチンは所定時間毎にCPU41にて繰返し実行される。
【0026】
図2において、まず、ステップS101で、ダイアグノーシス(以下、単に『ダイアグ』と記す)条件成立しているかが判定される。このダイアグ条件としては、A/Fセンサ24が活性、運転条件が定常(急変なし)、エアポンプ33が「ON」または「OFF」に変化して所定時間継続(図3に示す時刻t0 〜時刻t1 )、吸入空気量QAFMが所定量α未満等が挙げられる。ここで、A/Fセンサ24の活性は、例えば、素子インピーダンスが所定値〔kΩ:キロオーム〕未満となったかによって判定できる。
【0027】
ステップS101の判定条件が成立、即ち、ダイアグ条件が全て成立しているとき(図3に示す時刻t1 以降)にはステップS102に移行し、エアポンプ33が作動中であるかが判定される。ステップS102の判定条件が成立、即ち、エアポンプ33が作動中で2次空気が供給されているときにはステップS103に移行し、2次空気「ON(供給)」を示す継続カウンタCONが「+1」インクリメントされる。次にステップS104に移行して、エアフローメータ12にて検出される吸入空気量QAFMとインジェクタ16より供給される燃料噴射量Fとから次式(1)にて内燃機関10に供給されている機関供給空燃比λENGが算出される(図3参照)。なお、14.5は理論空燃比近傍の値である。
【0028】
【数1】
λENG←QAFM/F/14.5 ・・・(1)
【0029】
次にステップS105に移行して、A/Fセンサ24信号に基づき2次空気供給通路31より下流側の2次空気下流空燃比λAFSが読込まれる。次にステップS106に移行して、エアポンプ33が作動している時の2次空気流量QAIが次式(2)にて算出される(図3参照)。
【0030】
【数2】
QAI←λAFS/λENG*QAFM−QAFM ・・・(2)
【0031】
次にステップS107に移行して、ステップS106で算出されたエアポンプ33が作動時の2次空気流量QAIが積算され2次空気流量積算値QAISUMが算出される。次にステップS108に移行して、ステップS103でインクリメントされた継続カウンタCONが所定値K1 を越えているかが判定される。ステップS108の判定条件が成立、即ち、継続カウンタCONが所定値K1 を越え大きいときにはステップS109に移行し、エアポンプ33が作動時の2次空気流量QAIに対する2次空気流量平均値QAIAVEが次式(3)にて算出される。
【0032】
【数3】
QAIAVE←QAISUM/CON ・・・(3)
【0033】
一方、ステップS102の判定条件が成立せず、即ち、エアポンプ33が停止時で2次空気が供給されていないときにはステップS110に移行し、2次空気「OFF(停止)」を示す継続カウンタCOFFが「+1」インクリメントされる。次にステップS111に移行して、エアフローメータ12にて検出される吸入空気量QAFMとインジェクタ16より供給される燃料噴射量Fとから上式(1)にて内燃機関10に供給されている機関供給空燃比λENGが算出される(図3参照)。次にステップS112に移行して、A/Fセンサ24信号に基づき排気通路22に接続された2次空気供給通路31の2次空気供給孔31aより下流側の2次空気下流空燃比λAFSが読込まれる。次にステップS113に移行して、エアポンプ33が停止時の2次空気流量QERRが次式(4)にて算出される。
【0034】
【数4】
QERR←λAFS/λENG*QAFM−QAFM ・・・(4)
【0035】
次にステップS114に移行して、ステップS113で算出されたエアポンプ33が停止時の2次空気流量QERRが積算され2次空気流量積算値QERRSUMが算出される。次にステップS115に移行して、ステップS110でインクリメントされた継続カウンタCOFFが所定値K2 を越えているかが判定される。ステップS115の判定条件が成立、即ち、継続カウンタCOFFが所定値K2 を越え大きいときにはステップS116に移行し、エアポンプ33が停止時の2次空気流量QERRにおける次空気流量平均値QERRAVEが次式(5)にて算出される。
【0036】
【数5】
QERRAVE←QERRSUM/COFF ・・・(5)
【0037】
ステップS109またはステップS116の処理ののちステップS117に移行し、ステップS109で算出されたエアポンプ33が作動時の2次空気流量平均値QAIAVEからステップS116で算出されたエアポンプ33が停止時の2次空気流量平均値QERRAVEが減算され、真の2次空気流量QAIREALが算出される。次にステップS118に移行して、ステップS117で算出された真の2次空気流量QAIREALが予め設定された上限流量KH1 を越えているかが判定される。ステップS118の判定条件が成立せず、即ち、真の2次空気流量QAIREALが上限流量KH1 以下と少ないときにはステップS119に移行し、真の2次空気流量QAIREALが予め設定された下限流量KL1 未満であるかが判定される。ステップS119の判定条件が成立せず、即ち、真の2次空気流量QAIREALが上限流量KH1 と下限流量KL1 との範囲内にあるときにはステップS120に移行し、2次空気供給システムが正常と判定され(図3参照)、本ルーチンを終了する。
【0038】
一方、ステップS118の判定条件が成立、即ち、真の2次空気流量QAIREALが上限流量KH1 を越え多いときにはステップS121に移行し、2次空気供給システムにおける流量過多異常と判定され(図3参照)、本ルーチンを終了する。一方、ステップS119の判定条件が成立、即ち、真の2次空気流量QAIREALが下限流量KL1 未満と少ないときにはステップS122に移行し、2次空気供給システムにおける流量不足異常と判定され(図3参照)、本ルーチンを終了する。
【0039】
なお、ステップS101の判定条件が成立せず、即ち、ダイアグ条件が1つでも不成立であるとき(図3に示す時刻t1 以前)、またはステップS108の判定条件が成立せず、即ち、継続カウンタCONが所定値K1 以下と小さいとき、またはステップS115の判定条件が成立せず、即ち、継続カウンタCOFFが所定値K2 以下と小さいときには何もすることなく、本ルーチンを終了する。
【0040】
このように、本実施例の内燃機関の2次空気供給異常検出装置は、内燃機関10の排気通路22途中に設置され、排出ガスを浄化する三元触媒23と、三元触媒23の上流側の排気通路22内に2次空気を供給する2次空気供給機構30と、三元触媒23の上流側の排気通路22内で2次空気供給通路31の2次空気供給孔31aより下流側に配設され、排出ガス中のA/F(空燃比)を検出する空燃比検出手段としてのA/Fセンサ24と、内燃機関10に供給される機関供給空燃比λENGを推定するECU40内のCPU41にて達成される空燃比推定手段と、前記空燃比推定手段で推定された内燃機関10に供給される機関供給空燃比λENGと2次空気供給機構30から2次空気が供給されているときにA/Fセンサ24で検出される2次空気下流空燃比λAFSとに基づき2次空気供給機構30からの2次空気流量QAIを算出するECU40内のCPU41にて達成される2次空気流量演算手段と、前記2次空気流量演算手段で算出された2次空気流量QAIに基づいて、2次空気供給機構30を含むシステム異常を判定するECU40内のCPU41にて達成される異常判定手段とを具備するものである。
【0041】
また、本実施例の内燃機関の2次空気供給異常検出装置のECU40内のCPU41にて達成される異常判定手段は、異常判定に用いる2次空気流量QAIを所定期間積算され平均された2次空気流量平均値QAIAVEとするものである。そして、本実施例の内燃機関の2次空気供給異常検出装置のECU40内のCPU41にて達成される異常判定手段は、内燃機関10に供給される機関供給空燃比λENGの算出誤差を、内燃機関10に供給される機関供給空燃比λENGと2次空気供給機構30から2次空気が供給されていないときにA/Fセンサ24で検出される2次空気下流空燃比λAFSとに基づき2次空気流量QERRを算出し、ECU40内のCPU41にて達成される2次空気流量演算手段で算出された2次空気流量QAIを補正するものである。
【0042】
更に、本実施例の内燃機関の2次空気供給異常検出装置は、内燃機関10の吸気通路11内に供給される吸入空気量QAFMを検出する吸入空気量検出手段としてのエアフローメータ12と、内燃機関10に供給する燃料噴射量Fを各種運転パラメータである吸入空気量QAFM及びクランク角センサ27による機関回転速度NEに基づき算出するECU40内のCPU41にて達成される燃料噴射量演算手段とを具備し、内燃機関10に供給される機関供給空燃比λENGは、吸入空気量QAFMと燃料噴射量Fとにより算出するものである。
【0043】
つまり、エアポンプ33作動時における2次空気流量平均値QAIAVEからエアポンプ33停止時における2次空気流量平均値QERRAVEが減算され補正されることで真の2次空気流量QAIREALが算出され、この真の2次空気流量QAIREALが予め設定された所定範囲内としての上限流量KH1 と下限流量KL1 との間にないときには、2次空気供給機構30を含むシステム異常と判定される。このため、新たなセンサ類を設置することなく、既存のシステムによって経時変化や製品公差による2次空気流量ばらつきが好適に補正されることで、コスト上昇を抑えることができる。また、インジェクタ16からの燃料噴射量ばらつき等が好適に補正され真の2次空気流量QAIREALの演算精度が向上されることで、2次空気供給機構30を含むシステム異常の判定精度を向上することができる。
【0044】
更にまた、本実施例の内燃機関の2次空気供給異常検出装置のECU40内のCPU41にて達成される異常判定手段は、2次空気供給機構30を含むシステム異常と判定したときには、2次空気供給及び空燃比フィードバック制御を停止するものである。加えて、本実施例の内燃機関の2次空気供給異常検出装置は、内燃機関10に供給される空燃比の算出誤差が大きくなる条件、または2次空気流量が安定しない条件、または吸入空気量が多く2次空気流量の比率が小さくなる条件では、ダイアグを禁止するものである。これにより、A/Fずれによる空燃比過補正を防止することができる。
【0045】
ところで、上記実施例では、エアポンプ33作動時に算出された2次空気流量が予め設定された所定範囲内にないときにおける2次空気供給機構30を含むシステム異常判定について述べたが、本発明を実施する場合には、これに限定されるものではなく、例えば、エアポンプ33が停止条件であるにもかかわらず、エアポンプ33が作動状態となり、かつ2次空気供給機構30等にも何らかの異常があって2次空気供給通路31の2次空気供給孔31aから2次空気が排気通路22内に供給されているようなシステム異常にも対処することができる。
【0046】
〈実施例2〉
図4は本発明の実施の形態の第2実施例にかかる内燃機関の2次空気供給異常検出装置で使用されているECU40内のCPU41における2次空気供給異常検出の処理手順を示すフローチャートであり、上述の図3のタイムチャートを参照して説明する。なお、この2次空気供給異常検出ルーチンは所定時間毎にCPU41にて繰返し実行される。また、本実施例にかかる内燃機関の2次空気供給異常検出装置の構成は上述の第1実施例における図1の概略図と同一であるためその詳細な説明を省略する。
【0047】
図4において、まず、ステップS201で、上述の実施例と同様、A/Fセンサ24が活性、運転条件が定常(急変なし)、エアポンプ33が「ON」または「OFF」に変化して所定時間継続(図3に示す時刻t0 〜時刻t1 )、吸入空気量QAFMが所定量α未満等のダイアグ条件が成立しているかが判定される。ステップS201の判定条件が成立、即ち、ダイアグ条件が全て成立しているとき(図3に示す時刻t1 以降)にはステップS202に移行し、エアポンプ33が作動中であるかが判定される。ステップS202の判定条件が成立、即ち、エアポンプ33が作動中で2次空気が供給されているときにはステップS203に移行し、エアフローメータ12にて検出される吸入空気量QAFMとインジェクタ16より供給される燃料噴射量Fとから上式(1)にて内燃機関10に供給されている機関供給空燃比λENGが算出される(図3参照)。
【0048】
次にステップS204に移行して、A/Fセンサ24信号に基づき排気通路22に接続された2次空気供給通路31の2次空気供給孔31aより下流側の2次空気下流空燃比λAFSが読込まれる。次にステップS205に移行して、ステップS204で読込まれた2次空気下流空燃比λAFSからステップS203で算出された機関供給空燃比λENGが減算され、エアポンプ33が作動時の空燃比偏差量ΔλONが算出される(図3に示す2次空気下流空燃比λAFSと機関供給空燃比λENGとの空燃比偏差量)。次にステップS206に移行して、ステップS205で算出されたエアポンプ33が作動時の空燃比偏差量ΔλONが積算され空燃比偏差量積算値ΔλONSUMが算出される。
【0049】
一方、ステップS202の判定条件が成立せず、即ち、エアポンプ33が停止時で2次空気が供給されていないときにはステップS207に移行し、エアフローメータ12にて検出される吸入空気量QAFMとインジェクタ16より供給される燃料噴射量Fとから上式(1)にて内燃機関10に供給されている機関供給空燃比λENGが算出される(図3参照)。次にステップS208に移行して、A/Fセンサ24信号に基づき排気通路22に接続された2次空気供給通路31の2次空気供給孔31aより下流側の2次空気下流空燃比λAFSが読込まれる。次にステップS209に移行して、ステップS208で読込まれた2次空気下流空燃比λAFSからステップS207で算出された機関供給空燃比λENGが減算されエアポンプ33が停止時の空燃比偏差量ΔλOFFが算出される。
【0050】
次にステップS210に移行して、ステップS209で算出されたエアポンプ33が停止時の空燃比偏差量ΔλOFFが積算され空燃比偏差量積算値ΔλOFFSUMが算出される。ステップS206またはステップS210の処理ののちステップS211に移行し、所定時間積算されたかが判定される。ステップS211の判定条件が成立、即ち、所定時間積算されたときにはステップS212に移行し、ステップS206で算出された空燃比偏差量積算値ΔONSUMからステップS210で算出された空燃比偏差量積算値ΔOFFSUMが減算され異常判定用空燃比偏差量積算値ΔλREALSUMが算出される。
【0051】
次にステップS213に移行して、ステップS212で算出された異常判定用空燃比偏差量積算値ΔλREALSUMが予め設定された上限値KH2 を越えているかが判定される。ステップS213の判定条件が成立せず、即ち、異常判定用空燃比偏差量積算値ΔλREALSUMが上限値KH2 以下と少ないときにはステップS214に移行し、異常判定用空燃比偏差量積算値ΔλREALSUMが予め設定された下限値KL2 未満であるかが判定される。ステップS214の判定条件が成立せず、即ち、異常判定用空燃比偏差量積算値ΔλREALSUMが上限値KH2 と下限値KL2 との範囲内にあるときにはステップS215に移行し、2次空気供給システムが正常と判定され、本ルーチンを終了する。
【0052】
一方、ステップS213の判定条件が成立、即ち、異常判定用空燃比偏差量積算値ΔλREALSUMが上限値KH2 を越え多いときにはステップS216に移行し、2次空気供給システムにおける流量過多異常と判定され、本ルーチンを終了する。一方、ステップS214の判定条件が成立、即ち、異常判定用空燃比偏差量積算値ΔλREALSUMが下限値KL2 未満と少ないときにはステップS217に移行し、2次空気供給システムにおける流量不足異常と判定され、本ルーチンを終了する。なお、ステップS201の判定条件が成立せず、即ち、ダイアグ条件が1つでも不成立であるとき(図3に示す時刻t1 以前)、またはステップS211の判定条件が成立せず、即ち、所定時間積算されていないときには何もすることなく、本ルーチンを終了する。
【0053】
このように、本実施例の内燃機関の2次空気供給異常検出装置は、内燃機関10の排気通路22途中に設置され、排出ガスを浄化する三元触媒23と、三元触媒23の上流側の排気通路22内に2次空気を供給する2次空気供給機構30と、三元触媒23の上流側の排気通路22内で2次空気供給通路31の2次空気供給孔31aより下流側に配設され、排出ガス中のA/F(空燃比)を検出する空燃比検出手段としてのA/Fセンサ24と、内燃機関10に供給される機関供給空燃比λENGを推定するECU40内のCPU41にて達成される空燃比推定手段と、前記空燃比推定手段で推定された内燃機関10に供給される機関供給空燃比λENGと2次空気供給機構30から2次空気が供給されているときにA/Fセンサ24で検出される2次空気下流空燃比λAFSとの空燃比偏差量ΔλONに基づいて、2次空気供給機構30を含むシステム異常を判定するECU40内のCPU41にて達成される異常判定手段とを具備するものである。
【0054】
また、本実施例の内燃機関の2次空気供給異常検出装置のECU40内のCPU41にて達成される異常判定手段は、異常判定に用いる空燃比偏差量ΔλONを所定期間積算した空燃比偏差量積算値ΔλONSUMとするものである。そして、本実施例の内燃機関の2次空気供給異常検出装置のECU40内のCPU41にて達成される異常判定手段は、空燃比偏差量ΔλONの算出誤差を、内燃機関10に供給される機関供給空燃比λENGと2次空気供給機構30から2次空気が供給されていないときにA/Fセンサ24で検出される2次空気下流空燃比λAFSとの空燃比偏差量ΔλOFFに基づき補正するものである。
【0055】
更に、本実施例の内燃機関の2次空気供給異常検出装置は、内燃機関10の吸気通路11内に供給される吸入空気量QAFMを検出する吸入空気量検出手段としてのエアフローメータ12と、内燃機関10に供給する燃料噴射量Fを各種運転パラメータである吸入空気量QAFM及びクランク角センサ27による機関回転速度NEに基づき算出するECU40内のCPU41にて達成される燃料噴射量演算手段とを具備し、内燃機関10に供給される機関供給空燃比λENGは、吸入空気量QAFMと燃料噴射量Fとにより算出するものである。
【0056】
つまり、エアポンプ33作動時における空燃比偏差量積算値ΔλONSUMからエアポンプ33停止時における空燃比偏差量積算値ΔλOFFSUMが減算され補正されることで異常判定用空燃比偏差量積算値ΔλREALSUMが算出され、この異常判定用空燃比偏差量積算値ΔλREALSUMが予め設定された所定範囲内としての上限値KH2 と下限値KL2 との間にないときには、2次空気供給機構30を含むシステム異常と判定される。このため、新たなセンサ類を設置することなく、既存のシステムによって経時変化や製品公差による2次空気流量ばらつきが好適に補正されることで、コスト上昇を抑えることができる。また、インジェクタ16による燃料噴射量ばらつき等が好適に補正され異常判定用空燃比偏差量積算値ΔλREALSUMの演算精度が向上されることで、2次空気供給機構30を含むシステム異常の判定精度を向上することができる。
【0057】
更にまた、本実施例の内燃機関の2次空気供給異常検出装置のECU40内のCPU41にて達成される異常判定手段は、2次空気供給機構30を含むシステム異常と判定したときには、2次空気供給及び空燃比フィードバック制御を停止するものである。加えて、本実施例の内燃機関の2次空気供給異常検出装置は、内燃機関10に供給される空燃比の算出誤差が大きくなる条件、または2次空気流量が安定しない条件、または吸入空気量が多く2次空気流量の比率が小さくなる条件では、ダイアグを禁止するものである。これにより、A/Fずれによる空燃比過補正を防止することができる。
【図面の簡単な説明】
【図1】 図1は本発明の実施の形態の第1実施例及び第2実施例にかかる内燃機関の2次空気供給異常検出装置が適用された内燃機関及びその周辺機器を示す概略構成図である。
【図2】 図2は本発明の実施の形態の第1実施例にかかる内燃機関の2次空気供給異常検出装置で使用されているECU内のCPUにおける2次空気供給異常検出の処理手順を示すフローチャートである。
【図3】 図3は図2の処理に対応する機関供給空燃比、2次空気下流空燃比、2次空気流量の遷移状態を示すタイムチャートである。
【図4】 図4は本発明の実施の形態の第2実施例にかかる内燃機関の2次空気供給異常検出装置で使用されているECU内のCPUにおける2次空気供給異常検出の処理手順を示すフローチャートである。
【符号の説明】
10 内燃機関
11 吸気通路
12 エアフローメータ
22 排気通路
23 三元触媒
24 A/F(空燃比)センサ
27 クランク角センサ
30 2次空気供給機構
31 2次空気供給通路
31a 2次空気供給孔
40 ECU(電子制御ユニット)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a secondary air supply abnormality detection device for an internal combustion engine that detects an abnormality when supplying secondary air to activate a catalyst in an exhaust passage of the internal combustion engine.
[0002]
[Prior art]
Conventionally, a method of directly detecting the secondary air flow rate using a pressure sensor or a flow rate sensor when detecting an abnormality in the secondary air supply of the internal combustion engine is conceivable. .
[0003]
As related art documents related to this, those disclosed in Japanese Patent Laid-Open No. 6-146867 are known. In this case, oxygen (O) in the exhaust gas is provided downstream of the location where the secondary air supply passage is open, that is, downstream of the secondary air to which secondary air is supplied.2 ) When an oxygen sensor for detecting the concentration is provided and the output of the oxygen sensor is reversed, it can be determined that the air-fuel ratio (A / F) downstream of the secondary air is the stoichiometric air-fuel ratio. There has been proposed a method for obtaining a flow rate of secondary air (secondary air supply amount) supplied from the secondary air supply mechanism to the exhaust passage based on the air amount and the engine operating state.
[Patent Literature]
JP-A-6-146867 (pages 2 to 3)
[0004]
[Problems to be solved by the invention]
By the way, in the above, the secondary air flow rate cannot be obtained unless the air-fuel ratio downstream of the secondary air is controlled in the vicinity of the theoretical air-fuel ratio and the oxygen sensor output changes suddenly. Therefore, there was a problem that the calculation error was large.
[0005]
Therefore, the present invention has been made to solve such a problem. The secondary air flow rate is calculated with high accuracy regardless of the air-fuel ratio downstream of the secondary air without installing new sensors. An object of the present invention is to provide a secondary air supply abnormality detection device for an internal combustion engine capable of accurately detecting a system abnormality including an air supply mechanism.
[0006]
[Means for Solving the Problems]
According to the secondary air supply abnormality detection device for an internal combustion engine of claim 1, when the secondary air is supplied from the air-fuel ratio supplied to the internal combustion engine estimated by the air-fuel ratio estimation means and the secondary air supply mechanism. The secondary air supply mechanism is included by the abnormality determination means based on the secondary air flow rate from the secondary air supply mechanism calculated by the secondary air flow rate calculation means based on the air-fuel ratio detected by the air-fuel ratio detection means. A system error is determined. In this way, since the secondary air flow rate is calculated with high accuracy regardless of the air-fuel ratio downstream of the secondary air, the system abnormality including the secondary air supply mechanism is detected with high accuracy.
Further, the abnormality determination means is an air-fuel ratio detection means when the calculation error of the air-fuel ratio supplied to the internal combustion engine is that the air-fuel ratio supplied to the internal combustion engine and the secondary air are not supplied from the secondary air supply mechanism. Calculation based on the detected air-fuel ratio and correction of the secondary air flow rate by the secondary air flow rate calculation means improve the calculation accuracy of the secondary air flow rate, and improve the system abnormality including the secondary air supply mechanism. The determination accuracy is improved.
The intake air amount detection means detects the intake air amount supplied into the intake passage of the internal combustion engine, and the fuel injection amount calculation means calculates the fuel injection amount supplied to the internal combustion engine based on various operating parameters. Therefore, since it can be constructed by an existing system without installing new sensors, an increase in cost can be suppressed.
[0007]
In the abnormality determination means in the secondary air supply abnormality detection device for an internal combustion engine according to claim 2, the abrupt change is smoothed by making the secondary air flow rate used for abnormality determination an average value or an integrated value for a predetermined period. Since the calculation accuracy of the secondary air flow rate is improved, the system abnormality including the secondary air supply mechanism is detected with high accuracy.
[0009]
According to the secondary air supply abnormality detection device for an internal combustion engine of claim 3,An air-fuel ratio deviation amount between the air-fuel ratio supplied to the internal combustion engine by the abnormality determination means and the air-fuel ratio detected by the air-fuel ratio detection means when the secondary air is supplied from the secondary air supply mechanism is preset. When it is not within the predetermined range, it is determined by the abnormality determining means that there is a system abnormality including the secondary air supply mechanism. In this manner, the air-fuel ratio deviation is calculated with high accuracy regardless of the air-fuel ratio downstream of the secondary air, so that the system abnormality including the secondary air supply mechanism is detected with high accuracy.
Further, in this abnormality determination means, the air-fuel ratio deviation amount used for abnormality determination is set to an average value or integrated value for a predetermined period, so that a steep change is smoothed and the calculation accuracy of the air-fuel ratio deviation amount is improved. Therefore, the system abnormality including the secondary air supply mechanism is detected with high accuracy.
The intake air amount detection means detects the intake air amount supplied into the intake passage of the internal combustion engine, and the fuel injection amount calculation means calculates the fuel injection amount supplied to the internal combustion engine based on various operating parameters. Therefore, since it can be constructed by an existing system without installing new sensors, an increase in cost can be suppressed.
[0010]
In the abnormality determination means in the secondary air supply abnormality detection device for an internal combustion engine according to claim 4,Since the air-fuel ratio deviation amount used for abnormality determination is set to an average value or an integrated value for a predetermined period, a steep change is smoothed and the calculation accuracy of the air-fuel ratio deviation amount is improved. Including system abnormalities are detected with high accuracy.
[0013]
Claim5In the abnormality determination means in the secondary air supply abnormality detection apparatus for an internal combustion engine, when the system abnormality including the secondary air supply mechanism is determined, the secondary air supply and the air-fuel ratio feedback control are stopped, so that the air-fuel ratio Air-fuel ratio overcorrection due to deviation is prevented in advance.
[0014]
Claim6In the secondary air supply abnormality detection device for an internal combustion engine of this type, a condition that the calculation error of the air-fuel ratio supplied to the internal combustion engine becomes large, a condition that the secondary air flow rate is unstable, or a large intake air amount and a secondary air flow rate Under the condition that the ratio is small, the diagnosis is prohibited, so that over-correction of the air-fuel ratio due to the air-fuel ratio deviation is prevented in advance.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described based on examples.
[0016]
<Example 1>
FIG. 1 is a schematic configuration diagram showing an internal combustion engine and its peripheral devices to which a secondary air supply abnormality detection device for an internal combustion engine according to a first example of an embodiment of the present invention is applied.
[0017]
In FIG. 1, reference numeral 10 denotes an internal combustion engine, and an air flow meter 12 for detecting an intake air amount supplied via an air cleaner (not shown) is disposed upstream of an intake passage 11 of the internal combustion engine 10. A throttle valve 13 that adjusts the amount of intake air to the internal combustion engine 10 is disposed downstream of the air flow meter 12. The throttle valve 13 is provided with a throttle opening sensor 14 for detecting the opening. An injector (fuel injection valve) 16 for supplying fuel is disposed near the intake port 15 of each cylinder of the internal combustion engine 10 from the intake passage 11.
[0018]
Then, the air-fuel mixture of the intake air amount set by the throttle valve 13 and the fuel injected and supplied by the injector 16 is introduced into the combustion chamber 18 of the internal combustion engine 10 by opening the intake valve 17. A spark plug 19 is provided for each cylinder on the cylinder head side of the internal combustion engine 10. The air-fuel mixture in the combustion chamber 18 is ignited by the spark discharge of the spark plug 19. The air-fuel mixture is combusted in the combustion chamber 18 and then discharged from the combustion chamber 18 to the exhaust passage 22 by opening the exhaust valve 21 as exhaust gas.
[0019]
A known three-way catalyst 23 is disposed in the middle of the exhaust passage 22, and an A / F sensor 24 that outputs a linear signal according to the A / F (air-fuel ratio) of the exhaust gas is disposed upstream of the upstream side. Are provided with oxygen sensors 25 whose output voltages are inverted depending on whether the exhaust gas A / F is rich or lean with respect to the stoichiometric air-fuel ratio. Further, a crank angle sensor 27 for detecting a crank angle [° CA (Crank Angle)] that is a rotation angle of the crank shaft 26 of the internal combustion engine 10 is disposed. The engine speed NE is calculated based on the angle at which the crankshaft 26 is rotated per predetermined time. Further, the internal combustion engine 10 is provided with a water temperature sensor 28 for detecting the cooling water temperature.
[0020]
Next, the configuration of the secondary air supply mechanism 30 that supplies outside air into the exhaust passage 22 will be described. A secondary air supply passage 31 for supplying secondary air is connected to the exhaust passage 22 upstream of the A / F sensor 24. An air filter 32 is disposed on the atmosphere side of the secondary air supply passage 31, and an air pump 33 that pumps secondary air is disposed on the downstream side of the air filter 32.
[0021]
A combination valve 34 is disposed on the exhaust passage 22 side of the air pump 33. The combination valve 34 is configured by integrating a pressure-driven on-off valve 35 that opens and closes the secondary air supply passage 31 and a check valve 36 on the downstream side thereof. The on-off valve 35 of the combination valve 34 is switched between open and closed by a back pressure guided by the intake pressure introduction passage 37. The intake pressure introduction passage 37 is connected to the intake passage 11, and the back pressure of the on-off valve 35 is changed between the atmospheric pressure and the intake pressure by an electromagnetically driven switching valve 38 disposed in the middle of the intake pressure introduction passage 37. Can be switched with.
[0022]
That is, when supplying secondary air, the switching valve 38 is opened to introduce the intake pressure of the intake passage 11. The on-off valve 35 is opened by introducing the intake pressure to the on-off valve 35. Thereby, the secondary air discharged from the air pump 33 passes through the on-off valve 35 and flows to the check valve 36 side. The check valve 36 regulates the flow of exhaust gas from the exhaust passage 22. When the secondary air pressure of the air pump 33 becomes higher than the exhaust gas pressure, the check valve 36 is controlled by the pressure. Is opened, and secondary air is supplied into the exhaust passage 22.
[0023]
On the other hand, when the secondary air is stopped, the air pump 33 is stopped and the switching valve 38 is switched to a position for introducing the atmospheric pressure to introduce the atmospheric pressure to the on-off valve 35. Thereby, the on-off valve 35 is closed. Then, the secondary air to the exhaust passage 22 is stopped, the pressure of the secondary air does not act on the check valve 36, and the pressure on the exhaust passage 22 side increases. For this reason, the check valve 36 is automatically closed, and the exhaust gas in the exhaust passage 22 is prevented from flowing back to the air pump 33 side.
[0024]
Reference numeral 40 denotes an ECU (Electronic Control Unit). The ECU 40 stores a CPU 41 as a central processing unit that executes various known arithmetic processes, a ROM 42 that stores a control program and a control map, and various data. The logical operation circuit includes a RAM 43, a B / U (backup) RAM 44, an input / output circuit 45, a bus line 46 connecting them, and the like. The above-described various sensor signals are input to the ECU 40, and control signals are output from the ECU 40 to the injector 16, the spark plug 19, the air pump 33 of the secondary air supply mechanism 30, the switching valve 38, and the like based on the input signals. .
[0025]
Next, the processing procedure of the secondary air supply abnormality detection in the CPU 41 in the ECU 40 used in the secondary air supply abnormality detection device for the internal combustion engine according to the first example of the embodiment of the present invention is shown in the flowchart of FIG. Will be described. The operation will be described with reference to FIG. Specifically, FIG. 3 shows the operation of the parameters calculated in FIG. This parameter includes an engine supply air-fuel ratio λENG supplied to the internal combustion engine 10, a secondary air downstream air-fuel ratio λAFS detected downstream of the secondary air supply passage 31, and secondary air calculated based on these two parameters. The flow rate is QAI [g / sec: gram per second]. The secondary air supply abnormality detection routine is repeatedly executed by the CPU 41 at predetermined time intervals.
[0026]
In FIG. 2, first, in step S101, it is determined whether a diagnosis (hereinafter simply referred to as “diag”) condition is satisfied. As the diagnosis conditions, the A / F sensor 24 is active, the operation conditions are steady (no sudden change), the air pump 33 changes to "ON" or "OFF" and continues for a predetermined time (from time t0 to time t1 shown in FIG. 3). And the intake air amount QAFM is less than a predetermined amount α. Here, the activity of the A / F sensor 24 can be determined based on, for example, whether the element impedance is less than a predetermined value [kΩ: kiloohm].
[0027]
When the determination condition of step S101 is satisfied, that is, when all the diagnosis conditions are satisfied (after time t1 shown in FIG. 3), the process proceeds to step S102, and it is determined whether the air pump 33 is in operation. When the determination condition of step S102 is satisfied, that is, when the air pump 33 is operating and the secondary air is supplied, the process proceeds to step S103, and the continuation counter CON indicating the secondary air “ON (supply)” is incremented by “+1”. Is done. Next, the process proceeds to step S104, and the engine supplied to the internal combustion engine 10 by the following equation (1) from the intake air amount QAFM detected by the air flow meter 12 and the fuel injection amount F supplied from the injector 16. A supply air-fuel ratio λENG is calculated (see FIG. 3). Note that 14.5 is a value near the theoretical air-fuel ratio.
[0028]
[Expression 1]
λENG ← QAFM / F / 14.5 (1)
[0029]
Next, the process proceeds to step S105, where the secondary air downstream air-fuel ratio λAFS downstream of the secondary air supply passage 31 is read based on the A / F sensor 24 signal. Next, the process proceeds to step S106, and the secondary air flow rate QAI when the air pump 33 is operating is calculated by the following equation (2) (see FIG. 3).
[0030]
[Expression 2]
QAI ← λAFS / λENG * QAFM−QAFM (2)
[0031]
Next, the process proceeds to step S107, and the secondary air flow rate QAI when the air pump 33 calculated in step S106 is operated is integrated to calculate the secondary air flow rate integrated value QAISUM. Next, the routine proceeds to step S108, where it is determined whether or not the continuation counter CON incremented at step S103 exceeds a predetermined value K1. When the determination condition of step S108 is satisfied, that is, when the continuation counter CON exceeds the predetermined value K1, the process proceeds to step S109, and the secondary air flow rate average value QAIAVE relative to the secondary air flow rate QAI when the air pump 33 is operated is It is calculated in 3).
[0032]
[Equation 3]
QAIAVE ← QAISUM / CON (3)
[0033]
On the other hand, when the determination condition of step S102 is not satisfied, that is, when the air pump 33 is stopped and the secondary air is not supplied, the process proceeds to step S110 and the continuation counter COFF indicating the secondary air “OFF (stop)” is set. It is incremented by “+1”. Next, the process proceeds to step S111, and the engine supplied to the internal combustion engine 10 by the above equation (1) from the intake air amount QAFM detected by the air flow meter 12 and the fuel injection amount F supplied from the injector 16. A supply air-fuel ratio λENG is calculated (see FIG. 3). Next, the process proceeds to step S112, and the secondary air downstream air-fuel ratio λAFS downstream of the secondary air supply hole 31a of the secondary air supply passage 31 connected to the exhaust passage 22 is read based on the A / F sensor 24 signal. Be turned. Next, the process proceeds to step S113, and the secondary air flow rate QERR when the air pump 33 is stopped is calculated by the following equation (4).
[0034]
[Expression 4]
QERR ← λAFS / λENG * QAFM−QAFM (4)
[0035]
Next, the process proceeds to step S114, and the secondary air flow rate QERR when the air pump 33 calculated in step S113 is stopped is integrated to calculate a secondary air flow rate integrated value QERRSUM. Next, the routine proceeds to step S115, where it is determined whether or not the continuation counter COFF incremented at step S110 exceeds a predetermined value K2. When the determination condition in step S115 is satisfied, that is, when the continuation counter COFF exceeds the predetermined value K2, the process proceeds to step S116, and the next air flow average value QERRAVE at the secondary air flow QERR when the air pump 33 is stopped is expressed by the following equation (5). ).
[0036]
[Equation 5]
QERRAVE ← QERRSUM / COFF (5)
[0037]
After the process of step S109 or step S116, the process proceeds to step S117, and the secondary air when the air pump 33 calculated in step S116 is stopped from the secondary air flow rate average value QAIAVE calculated when the air pump 33 is operated in step S109. The average flow rate value QERRAVE is subtracted to calculate the true secondary air flow rate QAIREAL. Next, the process proceeds to step S118, where it is determined whether the true secondary air flow rate QAIREAL calculated in step S117 exceeds a preset upper limit flow rate KH1. If the determination condition in step S118 is not satisfied, that is, if the true secondary air flow rate QAIALAL is less than the upper limit flow rate KH1, the process proceeds to step S119, and the true secondary air flow rate QAIALAL is less than the preset lower limit flow rate KL1. It is determined whether there is any. When the determination condition of step S119 is not satisfied, that is, when the true secondary air flow rate QAIRE is within the range between the upper limit flow rate KH1 and the lower limit flow rate KL1, the process proceeds to step S120, and the secondary air supply system is determined to be normal. (See FIG. 3), this routine is terminated.
[0038]
On the other hand, when the determination condition in step S118 is satisfied, that is, when the true secondary air flow rate QAIRE exceeds the upper limit flow rate KH1, the process proceeds to step S121, and it is determined that the flow rate is excessive in the secondary air supply system (see FIG. 3). This routine is terminated. On the other hand, when the determination condition of step S119 is satisfied, that is, when the true secondary air flow rate QAIREAL is less than the lower limit flow rate KL1, the process proceeds to step S122 and it is determined that the flow rate is insufficient in the secondary air supply system (see FIG. 3). This routine is terminated.
[0039]
It should be noted that when the determination condition of step S101 is not satisfied, that is, when any one of the diagnosis conditions is not satisfied (before time t1 shown in FIG. 3), or the determination condition of step S108 is not satisfied, that is, the continuation counter CON This routine is terminated without doing anything when is less than the predetermined value K1 or when the determination condition of step S115 is not satisfied, that is, when the continuation counter COFF is less than the predetermined value K2.
[0040]
As described above, the secondary air supply abnormality detection device for the internal combustion engine of the present embodiment is installed in the middle of the exhaust passage 22 of the internal combustion engine 10 to purify the exhaust gas, and the upstream side of the three-way catalyst 23. A secondary air supply mechanism 30 for supplying secondary air into the exhaust passage 22 and a downstream side of the secondary air supply hole 31 a of the secondary air supply passage 31 in the exhaust passage 22 upstream of the three-way catalyst 23. An A / F sensor 24 as an air / fuel ratio detecting means that is disposed and detects A / F (air / fuel ratio) in exhaust gas, and a CPU 41 in an ECU 40 that estimates an engine supply air / fuel ratio λENG supplied to the internal combustion engine 10. The air-fuel ratio estimating means achieved in step (i), the engine-supplied air-fuel ratio λENG supplied to the internal combustion engine 10 estimated by the air-fuel ratio estimating means, and the secondary air are supplied from the secondary air supply mechanism 30 Detected by A / F sensor 24 Secondary air flow rate calculation means achieved by the CPU 41 in the ECU 40 for calculating the secondary air flow rate QAI from the secondary air supply mechanism 30 based on the secondary air downstream air-fuel ratio λAFS, and the secondary air flow rate calculation And an abnormality determining means that is achieved by the CPU 41 in the ECU 40 for determining a system abnormality including the secondary air supply mechanism 30 based on the secondary air flow rate QAI calculated by the means.
[0041]
Further, the abnormality determination means achieved by the CPU 41 in the ECU 40 of the secondary air supply abnormality detection device for the internal combustion engine of this embodiment is the secondary air flow rate QAI used for abnormality determination integrated and averaged for a predetermined period. The air flow rate average value QAIAVE is used. Then, the abnormality determination means achieved by the CPU 41 in the ECU 40 of the secondary air supply abnormality detection device for the internal combustion engine of the present embodiment calculates the error in calculating the engine supply air-fuel ratio λENG supplied to the internal combustion engine 10. 10 and the secondary air downstream air-fuel ratio λAFS detected by the A / F sensor 24 when the secondary air is not supplied from the secondary air supply mechanism 30. The flow rate QERR is calculated, and the secondary air flow rate QAI calculated by the secondary air flow rate calculation means achieved by the CPU 41 in the ECU 40 is corrected.
[0042]
Further, the secondary air supply abnormality detection device for the internal combustion engine of this embodiment includes an air flow meter 12 as intake air amount detection means for detecting the intake air amount QAFM supplied into the intake passage 11 of the internal combustion engine 10, and the internal combustion engine. A fuel injection amount calculation means achieved by the CPU 41 in the ECU 40 for calculating the fuel injection amount F to be supplied to the engine 10 based on the intake air amount QAFM as various operation parameters and the engine rotational speed NE by the crank angle sensor 27. The engine supply air-fuel ratio λENG supplied to the internal combustion engine 10 is calculated from the intake air amount QAFM and the fuel injection amount F.
[0043]
That is, the true secondary air flow rate QAIREAL is calculated by subtracting and correcting the secondary air flow rate average value QERRAVE when the air pump 33 is stopped from the secondary air flow rate average value QAIAVE when the air pump 33 is operating, and this true 2 When the secondary air flow rate QAIREAL is not between the upper limit flow rate KH1 and the lower limit flow rate KL1 within a predetermined range set in advance, it is determined that the system including the secondary air supply mechanism 30 is abnormal. For this reason, an increase in cost can be suppressed by suitably correcting the secondary air flow rate variation due to a change with time and product tolerance by an existing system without installing new sensors. Further, the accuracy of determination of system abnormality including the secondary air supply mechanism 30 is improved by suitably correcting the fuel injection amount variation from the injector 16 and improving the accuracy of calculating the true secondary air flow rate QAIREAL. Can do.
[0044]
Furthermore, when the abnormality determination means achieved by the CPU 41 in the ECU 40 of the secondary air supply abnormality detection device for the internal combustion engine of the present embodiment determines that the system including the secondary air supply mechanism 30 is abnormal, the secondary air Supply and air-fuel ratio feedback control are stopped. In addition, the secondary air supply abnormality detection device for the internal combustion engine of the present embodiment has a condition that the calculation error of the air-fuel ratio supplied to the internal combustion engine 10 becomes large, a condition that the secondary air flow rate is not stable, or an intake air amount In a condition where the ratio of the secondary air flow rate is small and the ratio of the secondary air flow rate is small, the diagnosis is prohibited. As a result, air-fuel ratio overcorrection due to A / F deviation can be prevented.
[0045]
By the way, in the above-described embodiment, the system abnormality determination including the secondary air supply mechanism 30 when the secondary air flow rate calculated when the air pump 33 is operated is not within a preset predetermined range has been described. However, the present invention is not limited to this. For example, although the air pump 33 is in a stop condition, the air pump 33 is in an operating state, and the secondary air supply mechanism 30 has some abnormality. It is also possible to cope with a system abnormality in which secondary air is supplied into the exhaust passage 22 from the secondary air supply hole 31a of the secondary air supply passage 31.
[0046]
<Example 2>
FIG. 4 is a flowchart showing a processing procedure of secondary air supply abnormality detection in the CPU 41 in the ECU 40 used in the secondary air supply abnormality detection device for the internal combustion engine according to the second example of the embodiment of the present invention. This will be described with reference to the time chart of FIG. The secondary air supply abnormality detection routine is repeatedly executed by the CPU 41 at predetermined time intervals. Further, since the configuration of the secondary air supply abnormality detection device for the internal combustion engine according to the present embodiment is the same as the schematic diagram of FIG. 1 in the first embodiment, detailed description thereof is omitted.
[0047]
In FIG. 4, first, in step S201, the A / F sensor 24 is activated, the operating condition is steady (no sudden change), and the air pump 33 changes to "ON" or "OFF" for a predetermined time in the same manner as in the above-described embodiment. It is determined whether the diagnosing condition such as the continuation (time t0 to time t1 shown in FIG. 3) and the intake air amount QAFM is less than the predetermined amount α is satisfied. When the determination condition in step S201 is satisfied, that is, when all the diagnosis conditions are satisfied (after time t1 shown in FIG. 3), the process proceeds to step S202, and it is determined whether the air pump 33 is in operation. When the determination condition of step S202 is satisfied, that is, when the air pump 33 is operating and the secondary air is supplied, the process proceeds to step S203, and the intake air amount QAFM detected by the airflow meter 12 and the injector 16 are supplied. The engine supply air-fuel ratio λENG supplied to the internal combustion engine 10 is calculated from the fuel injection amount F by the above equation (1) (see FIG. 3).
[0048]
Next, the process proceeds to step S204, and the secondary air downstream air-fuel ratio λAFS downstream of the secondary air supply hole 31a of the secondary air supply passage 31 connected to the exhaust passage 22 is read based on the A / F sensor 24 signal. Be turned. Next, the process proceeds to step S205 where the engine supply air-fuel ratio λENG calculated in step S203 is subtracted from the secondary air downstream air-fuel ratio λAFS read in step S204, and the air-fuel ratio deviation amount ΔλON when the air pump 33 is operated is reduced. Calculated (the air-fuel ratio deviation between the secondary air downstream air-fuel ratio λAFS and the engine supply air-fuel ratio λENG shown in FIG. 3). Next, the routine proceeds to step S206, where the air-fuel ratio deviation amount ΔλON when the air pump 33 calculated in step S205 is operated is integrated to calculate the air-fuel ratio deviation amount integrated value ΔλONSUM.
[0049]
On the other hand, when the determination condition of step S202 is not satisfied, that is, when the air pump 33 is stopped and the secondary air is not supplied, the process proceeds to step S207 and the intake air amount QAFM detected by the air flow meter 12 and the injector 16 are transferred. The engine supply air-fuel ratio λENG supplied to the internal combustion engine 10 is calculated from the fuel injection amount F supplied by the above equation (1) (see FIG. 3). Next, the process proceeds to step S208, and the secondary air downstream air-fuel ratio λAFS downstream from the secondary air supply hole 31a of the secondary air supply passage 31 connected to the exhaust passage 22 is read based on the A / F sensor 24 signal. Be turned. Next, the process proceeds to step S209, where the engine supply air-fuel ratio λENG calculated in step S207 is subtracted from the secondary air downstream air-fuel ratio λAFS read in step S208, and the air-fuel ratio deviation amount ΔλOFF when the air pump 33 is stopped is calculated. Is done.
[0050]
Next, the routine proceeds to step S210, where the air-fuel ratio deviation amount ΔλOFF when the air pump 33 calculated at step S209 is stopped is integrated to calculate the air-fuel ratio deviation amount integrated value ΔλOFFSUM. After the process of step S206 or step S210, the process proceeds to step S211, and it is determined whether the predetermined time has been accumulated. When the determination condition in step S211 is satisfied, that is, when the predetermined time is integrated, the process proceeds to step S212, and the air-fuel ratio deviation amount integrated value ΔOFFSUM calculated in step S210 is changed from the air-fuel ratio deviation amount integrated value ΔONSUM calculated in step S206. The abnormality determination air-fuel ratio deviation amount integrated value ΔλREALSUM is calculated by subtraction.
[0051]
Next, the process proceeds to step S213, where it is determined whether the abnormality determination air-fuel ratio deviation integrated value ΔλREALSUM calculated in step S212 exceeds a preset upper limit value KH2. If the determination condition in step S213 is not satisfied, that is, if the abnormality determination air-fuel ratio deviation amount integrated value ΔλREALSUM is less than the upper limit value KH2, the process proceeds to step S214, and the abnormality determination air-fuel ratio deviation amount integrated value ΔλREALSUM is preset. It is determined whether it is less than the lower limit value KL2. If the determination condition in step S214 is not satisfied, that is, if the abnormality determination air-fuel ratio deviation amount integrated value ΔλREALSUM is within the range between the upper limit value KH2 and the lower limit value KL2, the process proceeds to step S215, and the secondary air supply system is normal. This routine is terminated.
[0052]
On the other hand, when the determination condition of step S213 is satisfied, that is, when the abnormality determination air-fuel ratio deviation integrated value ΔλREALSUM exceeds the upper limit KH2, the process proceeds to step S216, where it is determined that the flow rate is excessive in the secondary air supply system. End the routine. On the other hand, when the determination condition of step S214 is satisfied, that is, when the abnormality determination air-fuel ratio deviation integrated value ΔλREALSUM is less than the lower limit value KL2, the process proceeds to step S217, and it is determined that the flow rate is insufficient in the secondary air supply system. End the routine. It should be noted that when the determination condition of step S201 is not satisfied, that is, when any one of the diagnosis conditions is not satisfied (before time t1 shown in FIG. 3), or the determination condition of step S211 is not satisfied, that is, integration for a predetermined time. If not, the routine ends without doing anything.
[0053]
As described above, the secondary air supply abnormality detection device for the internal combustion engine of the present embodiment is installed in the middle of the exhaust passage 22 of the internal combustion engine 10 to purify the exhaust gas, and the upstream side of the three-way catalyst 23. A secondary air supply mechanism 30 for supplying secondary air into the exhaust passage 22 and a downstream side of the secondary air supply hole 31 a of the secondary air supply passage 31 in the exhaust passage 22 upstream of the three-way catalyst 23. An A / F sensor 24 as an air / fuel ratio detecting means that is disposed and detects A / F (air / fuel ratio) in exhaust gas, and a CPU 41 in an ECU 40 that estimates an engine supply air / fuel ratio λENG supplied to the internal combustion engine 10. The air-fuel ratio estimating means achieved in step (i), the engine-supplied air-fuel ratio λENG supplied to the internal combustion engine 10 estimated by the air-fuel ratio estimating means, and the secondary air are supplied from the secondary air supply mechanism 30 Detected by A / F sensor 24 And an abnormality determination means that is achieved by the CPU 41 in the ECU 40 that determines a system abnormality including the secondary air supply mechanism 30 based on the air-fuel ratio deviation amount ΔλON with the secondary air downstream air-fuel ratio λAFS. is there.
[0054]
Further, the abnormality determination means achieved by the CPU 41 in the ECU 40 of the secondary air supply abnormality detection apparatus for the internal combustion engine of the present embodiment is the air-fuel ratio deviation amount integration obtained by integrating the air-fuel ratio deviation amount ΔλON used for abnormality determination for a predetermined period. The value is ΔλONSUM. Then, the abnormality determination means achieved by the CPU 41 in the ECU 40 of the secondary air supply abnormality detection device for the internal combustion engine of the present embodiment uses the calculation error of the air-fuel ratio deviation amount ΔλON as the engine supply supplied to the internal combustion engine 10. The correction is based on the air-fuel ratio deviation amount ΔλOFF between the air-fuel ratio λENG and the secondary air downstream air-fuel ratio λAFS detected by the A / F sensor 24 when the secondary air is not supplied from the secondary air supply mechanism 30. is there.
[0055]
Further, the secondary air supply abnormality detection device for the internal combustion engine of this embodiment includes an air flow meter 12 as intake air amount detection means for detecting the intake air amount QAFM supplied into the intake passage 11 of the internal combustion engine 10, and the internal combustion engine. A fuel injection amount calculation means achieved by the CPU 41 in the ECU 40 for calculating the fuel injection amount F to be supplied to the engine 10 based on the intake air amount QAFM as various operation parameters and the engine rotational speed NE by the crank angle sensor 27. The engine supply air-fuel ratio λENG supplied to the internal combustion engine 10 is calculated from the intake air amount QAFM and the fuel injection amount F.
[0056]
That is, the air-fuel ratio deviation amount integrated value ΔλOFFSUM when the air pump 33 is stopped is subtracted from the air-fuel ratio deviation amount integrated value ΔλONSUM when the air pump 33 is operated and corrected, thereby calculating the abnormality determination air-fuel ratio deviation amount integrated value ΔλREALSUM. When the abnormality determination air-fuel ratio deviation integrated value ΔλREALSUM is not between the upper limit value KH2 and the lower limit value KL2 within a predetermined range, it is determined that the system including the secondary air supply mechanism 30 is abnormal. For this reason, an increase in cost can be suppressed by suitably correcting the secondary air flow rate variation due to a change with time and product tolerance by an existing system without installing new sensors. Further, the fuel injection amount variation or the like by the injector 16 is suitably corrected and the calculation accuracy of the abnormality determination air-fuel ratio deviation integrated value ΔλREALSUM is improved, thereby improving the determination accuracy of the system abnormality including the secondary air supply mechanism 30. can do.
[0057]
Furthermore, when the abnormality determination means achieved by the CPU 41 in the ECU 40 of the secondary air supply abnormality detection device for the internal combustion engine of the present embodiment determines that the system including the secondary air supply mechanism 30 is abnormal, the secondary air Supply and air-fuel ratio feedback control are stopped. In addition, the secondary air supply abnormality detection device for the internal combustion engine of the present embodiment has a condition that the calculation error of the air-fuel ratio supplied to the internal combustion engine 10 becomes large, a condition that the secondary air flow rate is not stable, or an intake air amount In a condition where the ratio of the secondary air flow rate is small and the ratio of the secondary air flow rate is small, the diagnosis is prohibited. As a result, air-fuel ratio overcorrection due to A / F deviation can be prevented.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an internal combustion engine to which a secondary air supply abnormality detection device for an internal combustion engine according to a first example and a second example of an embodiment of the invention is applied and its peripheral devices. It is.
FIG. 2 shows a processing procedure for detecting a secondary air supply abnormality in a CPU in an ECU used in a secondary air supply abnormality detection device for an internal combustion engine according to a first example of an embodiment of the present invention; It is a flowchart to show.
FIG. 3 is a time chart showing a transition state of the engine supply air-fuel ratio, the secondary air downstream air-fuel ratio, and the secondary air flow rate corresponding to the processing of FIG. 2;
FIG. 4 shows a processing procedure for detecting a secondary air supply abnormality in a CPU in an ECU used in a secondary air supply abnormality detection device for an internal combustion engine according to a second example of an embodiment of the present invention; It is a flowchart to show.
[Explanation of symbols]
10 Internal combustion engine
11 Intake passage
12 Air flow meter
22 Exhaust passage
23 Three-way catalyst
24 A / F (air-fuel ratio) sensor
27 Crank angle sensor
30 Secondary air supply mechanism
31 Secondary air supply passage
31a Secondary air supply hole
40 ECU (Electronic Control Unit)

Claims (6)

内燃機関の排気通路途中に設置され、排出ガスを浄化する触媒と、
前記触媒の上流側の前記排気通路内に2次空気を供給する2次空気供給機構と、
前記触媒の上流側の前記排気通路内で2次空気の供給孔より下流側に配設され、排出ガス中の空燃比を検出する空燃比検出手段と、
前記内燃機関に供給される空燃比を推定する空燃比推定手段と、
前記空燃比推定手段で推定された前記内燃機関に供給される空燃比と前記2次空気供給機構から2次空気が供給されているときに前記空燃比検出手段で検出される空燃比とに基づき前記2次空気供給機構からの2次空気流量を算出する2次空気流量演算手段と、
前記2次空気流量演算手段で算出された2次空気流量に基づいて、前記2次空気供給機構を含むシステム異常を判定する異常判定手段と
前記内燃機関の吸気通路内に供給される吸入空気量を検出する吸入空気量検出手段と、
前記内燃機関に供給する燃料噴射量を各種運転パラメータに基づき算出する燃料噴射量演算手段とを具備し、
前記異常判定手段は、前記内燃機関に供給される空燃比の算出誤差を、前記内燃機関に供給される空燃比と前記2次空気供給機構から2次空気が供給されていないときに前記空燃比検出手段で検出される空燃比とに基づき算出し、前記2次空気流量演算手段で算出された2次空気流量を補正し、かつ、前記内燃機関に供給される空燃比は、前記吸入空気量と前記燃料噴射量とにより算出することを特徴とする内燃機関の2次空気供給異常検出装置。
A catalyst installed in the exhaust passage of the internal combustion engine for purifying exhaust gas;
A secondary air supply mechanism for supplying secondary air into the exhaust passage on the upstream side of the catalyst;
An air-fuel ratio detecting means disposed downstream of the secondary air supply hole in the exhaust passage upstream of the catalyst and detecting an air-fuel ratio in the exhaust gas;
Air-fuel ratio estimating means for estimating the air-fuel ratio supplied to the internal combustion engine;
Based on the air-fuel ratio supplied to the internal combustion engine estimated by the air-fuel ratio estimation means and the air-fuel ratio detected by the air-fuel ratio detection means when secondary air is supplied from the secondary air supply mechanism. Secondary air flow rate calculating means for calculating a secondary air flow rate from the secondary air supply mechanism;
An abnormality determining means for determining a system abnormality including the secondary air supply mechanism based on the secondary air flow rate calculated by the secondary air flow rate calculating means ;
Intake air amount detection means for detecting the amount of intake air supplied into the intake passage of the internal combustion engine;
Fuel injection amount calculation means for calculating the fuel injection amount to be supplied to the internal combustion engine based on various operating parameters;
The abnormality determination means calculates an error in calculating the air-fuel ratio supplied to the internal combustion engine when the air-fuel ratio supplied to the internal combustion engine and the secondary air from the secondary air supply mechanism are not supplied. The air-fuel ratio calculated by the detecting means and the secondary air flow rate calculated by the secondary air flow rate calculating means is corrected, and the air-fuel ratio supplied to the internal combustion engine is the intake air amount And a secondary air supply abnormality detection device for an internal combustion engine, wherein the abnormality is calculated from the fuel injection amount .
前記異常判定手段は、異常判定に用いる前記2次空気流量を所定期間の平均値または積算値とすることを特徴とする請求項1に記載の内燃機関の2次空気供給異常検出装置。2. The secondary air supply abnormality detection apparatus for an internal combustion engine according to claim 1, wherein the abnormality determination unit uses the secondary air flow rate used for abnormality determination as an average value or an integrated value for a predetermined period. 内燃機関の排気通路途中に設置され、排出ガスを浄化する触媒と、
前記触媒の上流側の前記排気通路内に2次空気を供給する2次空気供給機構と、
前記触媒の上流側の前記排気通路内で2次空気の供給孔より下流側に配設され、排出ガス中の空燃比を検出する空燃比検出手段と、
前記内燃機関に供給される空燃比と前記2次空気供給機構から2次空気が供給されているときに前記空燃比検出手段で検出される空燃比との空燃比偏差量が予め設定された所定範囲内にないときには、前記2次空気供給機構を含むシステム異常と判定する異常判定手段と
前記内燃機関の吸気通路内に供給される吸入空気量を検出する吸入空気量検出手段と、
前記内燃機関に供給する燃料噴射量を各種運転パラメータに基づき算出する燃料噴射量演算手段とを具備し、
前記異常判定手段は、前記空燃比偏差量の算出誤差を、前記内燃機関に供給される空燃比と前記2次空気供給機構から2次空気が供給されていないときに前記空燃比検出手段で検出される空燃比との空燃比偏差量に基づき補正し、かつ、前記内燃機関に供給される空燃比は、前記吸入空気量と前記燃料噴射量とにより算出することを特徴とする内燃機関の2次空気供給異常検出装置。
A catalyst installed in the exhaust passage of the internal combustion engine for purifying exhaust gas;
A secondary air supply mechanism for supplying secondary air into the exhaust passage on the upstream side of the catalyst;
An air-fuel ratio detecting means disposed downstream of the secondary air supply hole in the exhaust passage upstream of the catalyst and detecting an air-fuel ratio in the exhaust gas;
An air-fuel ratio deviation amount between the air-fuel ratio supplied to the internal combustion engine and the air-fuel ratio detected by the air-fuel ratio detection means when the secondary air is supplied from the secondary air supply mechanism is set to a predetermined value. When it is not within the range, an abnormality determining means for determining that the system including the secondary air supply mechanism is abnormal ;
Intake air amount detection means for detecting the amount of intake air supplied into the intake passage of the internal combustion engine;
Fuel injection amount calculation means for calculating the fuel injection amount to be supplied to the internal combustion engine based on various operating parameters;
The abnormality determination means detects the calculation error of the air-fuel ratio deviation amount by the air-fuel ratio detection means when the air-fuel ratio supplied to the internal combustion engine and the secondary air are not supplied from the secondary air supply mechanism The air-fuel ratio is corrected on the basis of the air-fuel ratio deviation amount from the air-fuel ratio, and the air-fuel ratio supplied to the internal combustion engine is calculated from the intake air amount and the fuel injection amount. Secondary air supply abnormality detection device.
前記異常判定手段は、異常判定に用いる前記空燃比偏差量を所定期間の平均値または積算値とすることを特徴とする請求項に記載の内燃機関の2次空気供給異常検出装置。4. The secondary air supply abnormality detection device for an internal combustion engine according to claim 3 , wherein the abnormality determination means uses the air-fuel ratio deviation amount used for abnormality determination as an average value or an integrated value over a predetermined period. 前記異常判定手段は、前記2次空気供給機構を含むシステム異常と判定したときには、2次空気供給及び空燃比フィードバック制御を停止することを特徴とする請求項1または請求項に記載の内燃機関の2次空気供給異常検出装置。The abnormality determining means, when it is determined that system abnormalities including the secondary air supply mechanism, an internal combustion engine according to claim 1 or claim 3, characterized in that to stop the secondary air supply and the air-fuel ratio feedback control Secondary air supply abnormality detection device. 前記内燃機関に供給される空燃比の算出誤差が大きくなる条件、または2次空気流量が安定しない条件、または吸入空気量が多く2次空気流量の比率が小さくなる条件では、ダイアグノーシス(Diagnosis:診断)を禁止することを特徴とする請求項1または請求項に記載の内燃機関の2次空気供給異常検出装置。Under the condition that the calculation error of the air-fuel ratio supplied to the internal combustion engine becomes large, the condition where the secondary air flow rate is unstable, or the condition where the intake air amount is large and the ratio of the secondary air flow rate is small, the diagnosis (Diagnosis: secondary air supply abnormality detecting device for an internal combustion engine according to claim 1 or claim 3, characterized in that prohibiting diagnosis).
JP2002372140A 2002-12-24 2002-12-24 Secondary air supply abnormality detection device for internal combustion engine Expired - Fee Related JP4161708B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002372140A JP4161708B2 (en) 2002-12-24 2002-12-24 Secondary air supply abnormality detection device for internal combustion engine
DE10360481A DE10360481A1 (en) 2002-12-24 2003-12-22 Secondary air supply Anormalitätserfassungssystem
US10/744,073 US6830043B2 (en) 2002-12-24 2003-12-24 Secondary air supply abnormality detection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002372140A JP4161708B2 (en) 2002-12-24 2002-12-24 Secondary air supply abnormality detection device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2004204715A JP2004204715A (en) 2004-07-22
JP4161708B2 true JP4161708B2 (en) 2008-10-08

Family

ID=32810826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002372140A Expired - Fee Related JP4161708B2 (en) 2002-12-24 2002-12-24 Secondary air supply abnormality detection device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4161708B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4581819B2 (en) * 2005-04-28 2010-11-17 株式会社デンソー Diagnostic device for secondary air supply system

Also Published As

Publication number Publication date
JP2004204715A (en) 2004-07-22

Similar Documents

Publication Publication Date Title
US6830043B2 (en) Secondary air supply abnormality detection system
JP2807769B2 (en) Fault diagnosis method for control device of internal combustion engine
US20040173090A1 (en) Engine exhaust gas purification device
US6600998B1 (en) Catalyst deteriorating state detecting apparatus
JP2005307880A (en) Differential pressure sensor abnormality detecting device for exhaust emission control filter
JPH0742595A (en) Abnormality deciding device for internal combustion engine
KR930006053B1 (en) Engine control apparatus
JP3544197B2 (en) Electronic control unit for internal combustion engine
JP4161708B2 (en) Secondary air supply abnormality detection device for internal combustion engine
JPH0323347A (en) Deterioration detecting means for airflow meter
US20050241300A1 (en) Fuel injection control device for internal combustion engine
JPH0921359A (en) Failure diagnostic method of evaporative emission purge system
JPH06346825A (en) Abnormality detection device for assist air control device of internal combustion engine
JPH07310585A (en) Diagnostic device for cylinder internal pressure sensor
JP3221158B2 (en) Air-fuel ratio sensor deterioration determination control device
JP2505530B2 (en) Atmospheric pressure detection device for engine control
JP2884469B2 (en) Air-fuel ratio control device for internal combustion engine
JPH05163992A (en) Fail safe device for mixed fuel supply device
JPH0933478A (en) Apparatus for diagnosing response of oxygen sensor in internal combustion engine
JP3896936B2 (en) Secondary air supply abnormality detection device for internal combustion engine
JPH0316498B2 (en)
JP4277588B2 (en) Air supply device
JPH10175463A (en) Control device of internal combustion engine
JP4305174B2 (en) Exhaust gas purification device for internal combustion engine
KR930006054B1 (en) Engine control apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080714

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees