JP4160976B2 - Method and apparatus for improving residual stress of tubular body - Google Patents
Method and apparatus for improving residual stress of tubular body Download PDFInfo
- Publication number
- JP4160976B2 JP4160976B2 JP2005315663A JP2005315663A JP4160976B2 JP 4160976 B2 JP4160976 B2 JP 4160976B2 JP 2005315663 A JP2005315663 A JP 2005315663A JP 2005315663 A JP2005315663 A JP 2005315663A JP 4160976 B2 JP4160976 B2 JP 4160976B2
- Authority
- JP
- Japan
- Prior art keywords
- tubular body
- circumferential
- residual stress
- stress
- tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/10—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
- C21D8/105—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/03—Observing, e.g. monitoring, the workpiece
- B23K26/0344—Observing the speed of the workpiece
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/20—Bonding
- B23K26/32—Bonding taking account of the properties of the material involved
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/20—Bonding
- B23K26/32—Bonding taking account of the properties of the material involved
- B23K26/323—Bonding taking account of the properties of the material involved involving parts made of dissimilar metallic material
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/26—Methods of annealing
- C21D1/30—Stress-relieving
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/34—Methods of heating
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/08—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/50—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L13/00—Non-disconnectible pipe-joints, e.g. soldered, adhesive or caulked joints
- F16L13/02—Welded joints
- F16L13/04—Welded joints with arrangements for preventing overstressing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/02—Iron or ferrous alloys
- B23K2103/04—Steel or steel alloys
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/02—Iron or ferrous alloys
- B23K2103/04—Steel or steel alloys
- B23K2103/05—Stainless steel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/08—Non-ferrous metals or alloys
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/18—Dissimilar materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/18—Dissimilar materials
- B23K2103/26—Alloys of Nickel and Cobalt and Chromium
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Optics & Photonics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Plasma & Fusion (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Child & Adolescent Psychology (AREA)
- Manufacturing & Machinery (AREA)
- Heat Treatment Of Articles (AREA)
Description
本発明は、配管等の管体の残留応力を改善する管体の残留応力改善方法及び残留応力改善装置に関する。 The present invention relates to a tubular body residual stress improving method and a residual stress improving apparatus for improving a residual stress of a tubular body such as a pipe.
原子力発電所、大型プラント等において、大型の配管等の管体を設置する場合、溶接した際に配管に残留する応力の除去が問題となる。溶接が行われると配管には残留応力が発生し、その残留応力によって配管の寿命が短くなるおそれがあるため、溶接によって発生した残留応力は、除去することが望ましい。 When installing a pipe body such as a large pipe in a nuclear power plant, a large plant, etc., removal of stress remaining in the pipe when welding is a problem. When welding is performed, residual stress is generated in the pipe, and the residual stress may shorten the life of the pipe. Therefore, it is desirable to remove the residual stress generated by welding.
配管に残留する応力の除去方法として、高周波加熱残留応力改善法(Induction Heating Stress Improvement Process;以降、IHSI法と呼ぶ。)が提案されている。このIHSI法は、配管の応力腐食割れ(Stress Corrosion Cracking;以降、SCCと呼ぶ。)条件を満たしている部分近傍の厚み方向に温度勾配ができるように、管内面を流水により強制冷却しながら外面側から高周波誘導加熱コイルを利用して誘導加熱で昇温した後、加熱を停止し、配管の厚み方向が略均一な温度となるまで内面に水を流すことで冷却し続け、結果として、溶接部近傍の引張状態の残留応力を低減又は圧縮状態にするものである(特許文献1〜3)。 As a method for removing stress remaining in the pipe, a high-frequency heating residual stress improvement method (hereinafter referred to as IHSI method) has been proposed. In this IHSI method, the outer surface of the pipe is forcedly cooled with running water so that a temperature gradient is created in the thickness direction near the portion that satisfies the stress corrosion cracking (SCC) conditions of the pipe. After raising the temperature by induction heating using a high frequency induction heating coil from the side, stop heating and continue cooling by flowing water on the inner surface until the thickness direction of the pipe reaches a substantially uniform temperature, resulting in welding The residual stress in the tensile state near the portion is reduced or compressed (Patent Documents 1 to 3).
又、配管に残留する応力の除去方法として、レーザ照射を用いて、ステンレス鋼等の配管の表面を溶体化温度加熱あるいは溶融することにより、裏面の残留応力を低減する方法も提案されている(特許文献4〜6)。
Further, as a method for removing the residual stress in the pipe, a method of reducing the residual stress on the back surface by using laser irradiation to heat or melt the surface of the pipe of stainless steel or the like at a solution temperature is proposed (
IHSI法においては、加熱終了時に管外周面と管内周面との間には一定以上の温度差が必要である。このため、既に据え付けられ、内部を水流による冷却が可能な配管に対しては実施しやすいが、管内部に流水状態を確保できない管体に対しては実施が困難である。又、IHSI法は、管の厚み方向に温度勾配をつけるために高周波誘導加熱を行うものであるが、高周波誘導コイルによる加熱の場合、管体の材質(誘電率)によって、熱が伝わる深さ及び範囲が異なり、その加熱範囲の限定が難しい。又、装置も大掛かりでエネルギー消費量も大きく、更に、異材継手等、誘電率が異なる部材が混じっている場合には、厚み方向に一定の温度勾配をつけるのが難しい。 In the IHSI method, a certain temperature difference is required between the outer peripheral surface of the tube and the inner peripheral surface of the tube at the end of heating. For this reason, it is easy to implement for a pipe that has already been installed and is capable of cooling the inside by a water flow, but is difficult to implement for a pipe body that cannot ensure a flowing water state inside the pipe. The IHSI method performs high-frequency induction heating in order to create a temperature gradient in the thickness direction of the tube. In the case of heating with a high-frequency induction coil, the depth at which heat is transferred depending on the material (dielectric constant) of the tube. And the range is different, and it is difficult to limit the heating range. In addition, the apparatus is large and consumes a large amount of energy. Further, when members with different dielectric constants such as dissimilar joints are mixed, it is difficult to provide a constant temperature gradient in the thickness direction.
又、上述した、レーザ照射を用いて、ステンレス鋼等の配管の表面を溶体化温度加熱あるいは溶融することにより、裏面の残留応力を低減する方法おいては、加熱しすぎたり、加熱が不足したりする可能性がある。加熱しすぎた場合、加熱領域の近傍に鋭敏化温度に晒される領域が発生し、材料自体に悪影響を与え、例えば、加熱面に酸化スケールが形成され、スケールを除去する必要が生じ、原子力発電所内での施工では、被ばくが増加するおそれがある。又、加熱不足の場合には、残留応力を十分改善することができず、SCCを確実に防止できないおそれもある。 In addition, in the above-described method of reducing the residual stress on the back surface by heating or melting the surface of a pipe made of stainless steel or the like using laser irradiation, overheating or heating is insufficient. There is a possibility. If heated too much, an area exposed to the sensitization temperature is generated in the vicinity of the heating area, which adversely affects the material itself.For example, an oxide scale is formed on the heating surface, and the scale needs to be removed. In-house construction may increase exposure. In addition, in the case of insufficient heating, the residual stress cannot be sufficiently improved, and there is a possibility that SCC cannot be reliably prevented.
本発明は上記課題に鑑みなされたもので、管体の設置状態、構成状態に依らず、確実に残留応力を改善できる管体の残留応力改善方法及び残留応力改善装置を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a residual stress improvement method and a residual stress improvement apparatus for a tubular body that can reliably improve the residual stress regardless of the installation state and the configuration state of the tubular body. To do.
上記課題を解決する第1の発明に係る管体の残留応力改善方法は、
円筒状の管体の溶接部分の外周面に、該管体の外周を周回させながらレーザ光を照射する際、
前記レーザ光の照射による周方向加熱幅を、前記管体の外径の0.15倍以上とすると共に、
前記周方向加熱幅をW、前記レーザ光の周方向移動速度をV、前記管体の熱拡散率をa、前記管体の厚さをtとして規定した無次元数F=a×(W/V)/t2 が、0.05≦F≦1.4となるように、前記周方向加熱幅W及び前記周方向移動速度Vを設定して、
前記レーザ光による加熱により発生する前記管体の内面の周方向応力を、少なくとも前記管体を構成する材料の降伏応力より大きくすることを特徴とする。
The method for improving the residual stress of a tubular body according to the first invention for solving the above-mentioned problems is as follows.
When irradiating the outer peripheral surface of the welded portion of the cylindrical tube body with laser light while rotating around the outer periphery of the tube body,
The circumferential heating width by the laser light irradiation is 0.15 times or more the outer diameter of the tubular body,
Dimensionless number F = a × (W / W) in which the circumferential heating width is defined as W, the circumferential movement speed of the laser beam is defined as V, the thermal diffusivity of the tubular body is defined as a, and the thickness of the tubular body is defined as t. V) / t 2 is such that 0.05 ≦ F ≦ 1.4, and set the previous SL circumferential heating width W and the circumferential movement velocity V,
The circumferential stress on the inner surface of the tube generated by heating with the laser light is at least greater than the yield stress of the material constituting the tube .
上記課題を解決する第2の発明に係る管体の残留応力改善方法は、
円筒状の管体の溶接部分の外周面に、該管体の外周を周回させながらレーザ光を照射する際、
前記管体の内周面を強制冷却する場合には、
前記レーザ光の照射による周方向加熱幅を、前記管体の外径の0.15倍以上とすると共に、
前記周方向加熱幅をW、前記レーザ光の周方向移動速度をV、前記管体の熱拡散率をa、前記管体の厚さをtとして規定した無次元数F=a×(W/V)/t2 が、0.05≦Fとなるように、前記周方向加熱幅W及び前記周方向移動速度Vを設定して、
前記レーザ光による加熱により発生する前記管体の内面の周方向応力を、少なくとも前記管体を構成する材料の降伏応力より大きくすることを特徴とする。
The method for improving the residual stress of a tubular body according to the second invention for solving the above-mentioned problem is as follows.
When irradiating the outer peripheral surface of the welded portion of the cylindrical tube body with laser light while rotating around the outer periphery of the tube body,
To force cooling the inner circumferential surface of the pipe body,
The circumferential heating width by the laser light irradiation is 0.15 times or more the outer diameter of the tubular body,
Dimensionless number F = a × (W / W) in which the circumferential heating width is defined as W, the circumferential movement speed of the laser beam is defined as V, the thermal diffusivity of the tubular body is defined as a, and the thickness of the tubular body is defined as t. V) / t 2 is such that 0.05 ≦ F, by setting the pre-Symbol circumferential heating width W and the circumferential movement velocity V,
The circumferential stress on the inner surface of the tube generated by heating with the laser light is at least greater than the yield stress of the material constituting the tube .
上記課題を解決する第3の発明に係る管体の残留応力改善方法は、
上記第2の発明に係る管体の残留応力改善方法において、
前記管体が水平方向に配置されている場合、
前記レーザ光の照射開始位置を、前記管体の最上点から前記レーザ光の進行方向の後方側にずらすと共に、前記管体の内面の鉛直上方側に蒸気が停留する前に前記最上点を通過する位置とすることを特徴とする。
A method for improving the residual stress of a tubular body according to a third invention for solving the above-mentioned problem is as follows.
In the method for improving residual stress of a tubular body according to the second invention,
When the tube is arranged in a horizontal direction,
The irradiation start position of the laser beam is shifted from the uppermost point of the tubular body to the rear side in the traveling direction of the laser light, and the vapor passes through the uppermost point before the vapor stops vertically above the inner surface of the tubular body. It is set as the position to perform.
上記課題を解決する第4の発明に係る管体の残留応力改善方法は、
上記第1〜第3の発明に係る管体の残留応力改善方法において、
レーザ光を複数用いると共に、前記複数のレーザ光の照射による加熱領域を前記管体の軸方向に均一にすることを特徴とする。
A method for improving the residual stress of a tubular body according to a fourth invention for solving the above-described problems is as follows.
In the method for improving residual stress of a tubular body according to the first to third inventions,
A plurality of laser beams are used, and a heating region by irradiation with the plurality of laser beams is made uniform in the axial direction of the tube body.
上記課題を解決する第5の発明に係る管体の残留応力改善方法は、
上記第4の発明に係る管体の残留応力改善方法において、
前記管体の厚さをt、前記管体の半径をrとすると、
前記加熱領域の軸方向長さを、3√(rt)以上とすることを特徴とする。
A method for improving the residual stress of a tubular body according to a fifth aspect of the present invention for solving the above problem is as follows.
In the method for improving residual stress of a tubular body according to the fourth invention,
When the thickness of the tubular body is t and the radius of the tubular body is r,
The axial length of the heating area, characterized by a 3√ (rt) on more than.
上記課題を解決する第6の発明に係る管体の残留応力改善方法は、
上記第1〜第5の発明に係る管体の残留応力改善方法において、
異なる材料のものを溶接して管体が構成され、該管体の溶接部分に前記レーザ光が照射される場合、
前記周方向加熱幅を、前記管体の材料毎に設定することを特徴とする。
A method for improving the residual stress of a tubular body according to a sixth aspect of the present invention for solving the above problem is as follows.
In the method for improving residual stress of a tubular body according to the first to fifth inventions,
When a tube is constructed by welding different materials, and the laser beam is irradiated to the welded portion of the tube,
The circumferential heating width is set for each material of the tubular body.
上記課題を解決する第7の発明に係る管体の残留応力改善方法は、
上記第1〜第6の発明に係る管体の残留応力改善方法において、
異なる厚さのものを溶接して管体が構成され、該管体の溶接部分に前記レーザ光が照射される場合、
前記周方向加熱幅を、前記管体の厚さ毎に設定することを特徴とする。
A method for improving the residual stress of a tubular body according to a seventh invention for solving the above-described problems is as follows.
In the method for improving residual stress of a tubular body according to the first to sixth inventions,
When a tube is constructed by welding different thicknesses, and the laser beam is irradiated to the welded portion of the tube,
The circumferential heating width is set for each thickness of the tubular body.
上記課題を解決する第8の発明に係る管体の残留応力改善装置は、
円筒状の管体の外周を周回移動すると共に周方向移動速度を制御可能な回転駆動手段と、
前記回転駆動手段に保持され、前記管体の溶接部分の外周面にレーザ光を照射すると共に照射領域を調整可能な光学ヘッドとを有する管体の残留応力改善装置において、
前記レーザ光の照射による周方向加熱幅を前記光学ヘッドの調整により前記管体の外径の0.15倍以上とすると共に、
前記周方向加熱幅をW、前記周方向移動速度をV、前記管体の熱拡散率をa、前記管体の厚さをtとして規定した無次元数F=a×(W/V)/t2 が、0.05≦F≦1.4となるように、前記光学ヘッドの調整により前記周方向加熱幅Wを設定し、前記回転駆動手段の制御により前記周方向移動速度Vを設定して、
前記レーザ光による加熱により発生する前記管体の内面の周方向応力を、少なくとも前記管体を構成する材料の降伏応力より大きくしたことを特徴とする。
An apparatus for improving a residual stress of a tubular body according to an eighth invention for solving the above-mentioned problems is as follows.
A rotational driving means capable of revolving around the outer circumference of the cylindrical tube body and controlling the circumferential movement speed;
In a residual stress improving apparatus for a tubular body, which is held by the rotation driving means and has an optical head that irradiates a laser beam to an outer peripheral surface of a welded portion of the tubular body and can adjust an irradiation region .
The circumferential heating width by the laser light irradiation is adjusted to be not less than 0.15 times the outer diameter of the tubular body by adjusting the optical head,
Dimensionless number F = a × (W / V) / where the circumferential heating width is W, the circumferential moving speed is V, the thermal diffusivity of the tube is a, and the thickness of the tube is t. The circumferential heating width W is set by adjusting the optical head so that t 2 is 0.05 ≦ F ≦ 1.4, and the circumferential moving speed V is set by controlling the rotation driving means. And
The circumferential stress on the inner surface of the tubular body generated by heating with the laser light is at least larger than the yield stress of the material constituting the tubular body .
上記課題を解決する第9の発明に係る管体の残留応力改善装置は、
円筒状の管体の外周を周回移動すると共に周方向移動速度を制御可能な回転駆動手段と、
前記回転駆動手段に保持され、前記管体の溶接部分の外周面にレーザ光を照射すると共に照射領域を調整可能な光学ヘッドと、
前記管体の内周面を強制冷却する冷却手段とを有する管体の残留応力改善装置において、
前記レーザ光の照射による周方向加熱幅を前記光学ヘッドの調整により前記管体の外径の0.15倍以上とすると共に、
前記管体の内周面を強制冷却する冷却手段を有し、
前記周方向加熱幅をW、前記周方向移動速度をV、前記管体の熱拡散率をa、前記管体の厚さをtとして規定した無次元数F=a×(W/V)/t2 が、0.05≦Fとなるように、前記光学ヘッドの調整により前記周方向加熱幅Wを設定し、前記回転駆動手段の制御により前記周方向移動速度Vを設定して、
前記レーザ光による加熱により発生する前記管体の内面の周方向応力を、少なくとも前記管体を構成する材料の降伏応力より大きくしたことを特徴とする。
An apparatus for improving a residual stress of a tubular body according to a ninth invention for solving the above-mentioned problems is as follows.
A rotational driving means capable of revolving around the outer circumference of the cylindrical tube body and controlling the circumferential movement speed;
An optical head that is held by the rotation driving means and irradiates the outer peripheral surface of the welded portion of the tube body with laser light and can adjust the irradiation region;
In the residual stress improving apparatus for a tubular body having cooling means for forcibly cooling the inner peripheral surface of the tubular body,
The circumferential heating width by the laser light irradiation is adjusted to be not less than 0.15 times the outer diameter of the tubular body by adjusting the optical head,
A cooling means for forcibly cooling the inner peripheral surface of the tubular body;
Dimensionless number F = a × (W / V) / where the circumferential heating width is W, the circumferential moving speed is V, the thermal diffusivity of the tube is a, and the thickness of the tube is t. The circumferential heating width W is set by adjusting the optical head so that t 2 is 0.05 ≦ F, and the circumferential moving speed V is set by control of the rotation driving means ,
The circumferential stress on the inner surface of the tubular body generated by heating with the laser light is at least larger than the yield stress of the material constituting the tubular body .
上記課題を解決する第10の発明に係る管体の残留応力改善装置は、
上記第9の発明に係る管体の残留応力改善装置において、
前記管体が水平方向に配置されている場合、
前記回転駆動手段が、前記レーザ光の照射開始位置を、前記管体の最上点から前記レーザ光の進行方向の後方側にずらすと共に、前記管体の内面の鉛直上方側に蒸気が停留する前に前記最上点を通過する位置としたことを特徴とする。
A tubular body residual stress improving apparatus according to a tenth invention for solving the above-mentioned problems is
In the tubular body residual stress improving apparatus according to the ninth aspect ,
When the tube is arranged in a horizontal direction,
Before the rotation driving means shifts the irradiation start position of the laser light from the uppermost point of the tubular body to the rear side in the traveling direction of the laser light, and before the steam stops vertically above the inner surface of the tubular body. It is characterized in that the position passes through the uppermost point .
上記課題を解決する第11の発明に係る管体の残留応力改善装置は、
上記第8〜第10の発明に係る管体の残留応力改善装置において、
前記光学ヘッドを前記管体の軸方向に複数配置すると共に、前記複数の光学ヘッドからのレーザ光の照射による加熱領域が前記管体の軸方向に均一になるようにしたことを特徴とする。
An apparatus for improving a residual stress of a tubular body according to an eleventh invention for solving the above-mentioned problems is as follows.
In the tubular body residual stress improving apparatus according to the eighth to tenth aspects of the invention,
A plurality of the optical heads are arranged in the axial direction of the tube body, and a heating region by laser light irradiation from the plurality of optical heads is made uniform in the axial direction of the tube body.
上記課題を解決する第12の発明に係る管体の残留応力改善装置は、
上記第11の発明に係る管体の残留応力改善装置において、
前記管体の厚さをt、前記管体の半径をrとすると、
前記加熱領域の軸方向長さを、3√(rt)以上に設定したことを特徴とする。
A tubular body residual stress improving apparatus according to a twelfth invention for solving the above-mentioned problems is
In the tubular body residual stress improving apparatus according to the eleventh aspect ,
When the thickness of the tubular body is t and the radius of the tubular body is r,
The axial length of the heating region, and wherein the set to 3√ (rt) on more than.
上記課題を解決する第13の発明に係る管体の残留応力改善装置は、
上記第8〜第12の発明に係る管体の残留応力改善装置において、
異なる材料のものを溶接して管体が構成され、該管体の溶接部分に前記レーザ光が照射される場合、
前記周方向加熱幅を、前記光学ヘッドを調整して、前記管体の材料毎に設定したことを特徴とする。
A tubular body residual stress improving apparatus according to a thirteenth aspect of the present invention for solving the above problems is as follows.
In the tubular body residual stress improving apparatus according to the eighth to twelfth inventions,
When a tube is constructed by welding different materials, and the laser beam is irradiated to the welded portion of the tube,
The circumferential heating width is set for each material of the tubular body by adjusting the optical head.
上記課題を解決する第14の発明に係る管体の残留応力改善装置は、
上記第8〜第13の発明に係る管体の残留応力改善装置において、
異なる厚さのものを溶接して管体が構成され、該管体の溶接部分に前記レーザ光が照射される場合、
前記周方向加熱幅を、前記光学ヘッドを調整して、前記管体の厚さ毎に設定したことを特徴とする。
A tubular body residual stress improving apparatus according to a fourteenth aspect of the present invention for solving the above-mentioned problems is
In the tubular body residual stress improving apparatus according to the eighth to thirteenth inventions,
When a tube is constructed by welding different thicknesses, and the laser beam is irradiated to the welded portion of the tube,
The circumferential heating width is set for each thickness of the tubular body by adjusting the optical head.
本発明によれば、レーザ光による加熱により発生する管体の内面の周方向応力が、少なくとも管体を構成する材料の降伏応力より大きくなるように、周方向加熱幅、周方向移動速度を設定したので、管体の設置状態に依ることなく、レーザ加熱により管体内面の溶接残留応力(引張応力)を確実に改善することができる。従って、原子力プラント等に設置された配管で発生するSCCを、確実に防止することができる。 According to the present invention, the circumferential heating width and the circumferential movement speed are set so that the circumferential stress on the inner surface of the tube generated by heating with the laser beam is at least greater than the yield stress of the material constituting the tube. Therefore, the welding residual stress (tensile stress) on the inner surface of the tube can be reliably improved by laser heating without depending on the installation state of the tube. Therefore, SCC generated in piping installed in a nuclear power plant or the like can be reliably prevented.
又、管体内面を強制冷却しながらレーザ加熱を行う場合には、周方向加熱幅、周方向移動速度の設定範囲が広くなり、より確実に残留応力の改善を行うことができる。更に、管体を構成する材料や管体の板厚に応じて、周方向加熱幅を設定するので、管体自体の構成状態に依ることなく、より確実に残留応力の改善を行うことができる。 Further, when laser heating is performed while forcibly cooling the inner surface of the tube body, the setting range of the circumferential heating width and the circumferential moving speed is widened, and the residual stress can be improved more reliably. Furthermore, since the circumferential heating width is set according to the material constituting the tube and the plate thickness of the tube, the residual stress can be improved more reliably without depending on the configuration state of the tube itself. .
なお、本発明は、LSIP法を基本とするものであるので、原理的に、局部加熱の移動熱源により、残留応力の改善を行うことができ、小容量のレーザ発振器を用いて施工可能となる。従って、コンパクトなレーザ発振器の使用により、IHSI法による高周波加熱に比べて、準備作業が容易である。又、表面入熱であるため、薄肉管でも板厚内の温度差を得やすく、又、外面加熱時に発生する内外面温度差を利用するため、内面の強制冷却が不要となり、従来手法であるIHSI法に比べて、適用範囲が広い。 Since the present invention is based on the LSIP method, in principle, the residual stress can be improved by a locally heated moving heat source and can be constructed using a small-capacity laser oscillator. . Therefore, the use of a compact laser oscillator makes preparation work easier than high-frequency heating by the IHSI method. In addition, since it is surface heat input, it is easy to obtain a temperature difference within the plate thickness even with a thin-walled tube, and because the inner and outer surface temperature difference that occurs during heating of the outer surface is used, forced cooling of the inner surface is not required, which is a conventional method. Compared to the IHSI method, the application range is wide.
本発明に係る管体の残留応力改善方法及び残留応力改善装置を、図1〜図13を用いて、詳細に説明する。 The tubular body residual stress improving method and residual stress improving apparatus according to the present invention will be described in detail with reference to FIGS.
図1は、本発明に係る管体の残留応力改善装置を示す模式図である。
図1に示すように、残留応力改善装置1は、円筒状の管体である配管2の外周を周回移動可能に配置され、周方向移動速度を制御可能な回転駆動装置3(回転駆動手段)と、回転駆動装置3に支持されると共に配管2の軸方向に延設され、配管2の周囲を配管2と同軸に周回可能なアーム部4と、アーム部4に保持され、配管2の溶接部Cの外周面の所定領域にレーザ光5aを照射する複数の光学ヘッド5と、複数の光ファイバ6により光学ヘッド5と接続され、光ファイバ6を介してレーザ光を光学ヘッド5に供給するレーザ発振器7と、回転駆動装置3、レーザ発振器7等を制御する制御部8とを有するものである。
FIG. 1 is a schematic diagram showing a tubular body residual stress improving apparatus according to the present invention.
As shown in FIG. 1, the residual stress improving apparatus 1 is arranged so as to be able to move around the outer periphery of a
回転駆動装置3は、配管2の外周に脱着可能なものであり、残留応力を改善したい箇所例えば、溶接部c等の周囲に自由に設置可能である。なお、回転駆動装置3は、その内周側が配管2を保持し、アーム部4を支持する外周側が周回可能であればどのような構成でもよく、例えば、内周側において、配管2を保持する固定側となる固定部と、外周側において、アーム部4を支持すると共に配管2の周囲を配管2と同軸に周回する周回側となる周回部とを有するような構成でもよい。
The
光学ヘッド5、光ファイバ6、レーザ発振器7は、加熱光学系を構成しており、アーム部4に配管2の軸方向に沿って配置された複数の光学ヘッド5により、複数のレーザ光5aを配管2の外周面の所定領域に照射し、所定領域を均一に加熱するようにしている。光学ヘッド5においては、光学ヘッド5自体、若しくは、光学ヘッド5を構成するレンズ、ミラー等を、例えば、それらの位置を変更可能なスライド機構に取り付け、それらの位置変更を行うことで、周方向照射幅、軸方向照射幅を調整して、加熱する領域を調整している。
The
残留応力を改善する際には、本発明に係る残留応力改善装置1において、予め、光学ヘッド5の調整により加熱領域を調整し、制御部8により、レーザ発振器7の出力を制御すると共に回転駆動装置3を所定の移動速度に制御して周回移動させることで、光学ヘッド5から照射されるレーザ光5aが、配管2の外周を周回移動しながら配管2の外周面の所定領域に照射され、配管2の外周面の所定領域が加熱されることになる。このとき、加熱時に発生する配管2の内外面温度差を利用し、内面を引張降伏させることにより、冷却後の内面の残留応力を低減若しくは圧縮応力に改善している。なお、加熱温度としては、固溶化温度未満とすることが好ましい。又、本発明の場合、配管2の内面側を必ずしも強制冷却する必要はない。
When the residual stress is improved, in the residual stress improving apparatus 1 according to the present invention, the heating region is adjusted in advance by adjusting the
上記残留応力改善方法を更に説明すると、残留応力を改善したい管体の所定領域において、その外面と内面との間に所定の温度差が生じるように加熱した場合、外面は圧縮応力状態、内面は引張応力状態、更には、内面は引張降伏状態になる。加熱後、上記所定領域の内面及び外面を冷却すると、外面が引張応力状態になり、内面が圧縮応力状態になり、内面の残留応力を引張応力状態から圧縮応力状態に改善することが可能となる。このようにして、管体内面に生じている残留応力を引張状態から圧縮状態に改善することで、管体内面の応力腐食割れを防ぐことが可能となる。 The residual stress improving method will be further described. When heating is performed so that a predetermined temperature difference is generated between the outer surface and the inner surface in a predetermined region of the tubular body where the residual stress is to be improved, the outer surface is in a compressive stress state, and the inner surface is In the tensile stress state, the inner surface is in a tensile yield state. When the inner surface and the outer surface of the predetermined region are cooled after heating, the outer surface becomes a tensile stress state, the inner surface becomes a compressive stress state, and the residual stress of the inner surface can be improved from the tensile stress state to the compressive stress state. . In this way, it is possible to prevent stress corrosion cracking on the inner surface of the tubular body by improving the residual stress generated on the inner surface of the tubular body from the tensile state to the compressed state.
上記残留応力改善方法においては、加熱時に付与するひずみ量(応力)に応じて、改善可能な応力量を制御することが可能である。これを、図2(a)、(b)に示す応力−ひずみ曲線を用いて説明を行う。 In the residual stress improvement method, the amount of stress that can be improved can be controlled according to the amount of strain (stress) applied during heating. This will be described with reference to stress-strain curves shown in FIGS.
図2(a)は、対象配管を構成する材料の降伏応力(相当するひずみ量=εy)に対して、加熱時に付与するひずみ量をεyとしたとき、つまり、加熱時の発生応力を降伏応力相当としたときの対象配管の応力変化を説明する図である。図2(a)に示すように、加熱時の発生応力を降伏応力相当とすると、加熱時に発生する内面引張応力(ひずみ量)により、加熱後(施工後)、冷却過程を経て、残留応力を初期応力(引張残留応力)から低減することができる。 FIG. 2A shows the yield stress (corresponding strain amount = εy) of the material constituting the target pipe when the strain amount applied during heating is εy, that is, the generated stress during heating is the yield stress. It is a figure explaining the stress change of object piping when it is considered equivalent. As shown in FIG. 2 (a), if the stress generated during heating is equivalent to the yield stress, the internal stress generated during heating (strain) causes the residual stress after heating (after construction) and through the cooling process. The initial stress (tensile residual stress) can be reduced.
又、図2(b)は、降伏応力(ひずみ量=εy)に対して、加熱時に付与するひずみ量を2εyとしたとき、つまり、加熱時の発生応力を降伏応力の2倍としたときの対象配管の応力変化を説明する図である。図2(b)に示すように、加熱時の発生応力を降伏応力の2倍とすると、加熱時に発生する内面引張応力(ひずみ量)により、加熱後(施工後)、冷却過程を経て、残留応力を初期応力(引張残留応力)から圧縮応力に改善することができる。 FIG. 2 (b) shows the case where the strain applied during heating is 2εy with respect to the yield stress (strain = εy), that is, the generated stress during heating is double the yield stress. It is a figure explaining the stress change of object piping. As shown in FIG. 2 (b), assuming that the stress generated during heating is twice the yield stress, the residual stress after heating (after construction) and after cooling due to the internal tensile stress (strain amount) generated during heating The stress can be improved from the initial stress (tensile residual stress) to the compressive stress.
このように、加熱時に発生する応力の大きさ(ひずみ量)により、残留応力を所望の応力に改善することができ、少なくとも降伏応力相当以上のひずみを、望ましくは、降伏応力の2倍以上のひずみを、加熱時に発生させればよいことがわかる。従って、本発明に係る残留応力改善装置1を用いて、配管2の外周面を加熱する場合、加熱時に発生する周方向応力が、少なくとも降伏応力相当以上のひずみ、望ましくは、降伏応力の2倍以上のひずみとなるように、レーザ加熱時の条件を設定すればよい。
Thus, the residual stress can be improved to a desired stress depending on the magnitude (strain amount) of the stress generated during heating, and at least a strain corresponding to the yield stress is desirably at least twice the yield stress. It can be seen that the strain may be generated during heating. Therefore, when the outer peripheral surface of the
ここで、レーザ加熱時の条件を検討してみた。なお、本発明においては、レーザ光のエネルギー密度が1/e2の照射領域を、加熱領域としている。 Here, the conditions at the time of laser heating were examined. In the present invention, the irradiation region where the energy density of the laser beam is 1 / e 2 is used as the heating region.
円筒状の配管2の溶接部分の外周面をレーザ加熱する場合、周方向加熱幅の違いにより、加熱時に発生する応力に違いがあること、つまり、残留応力の低減量が変化することを考慮する必要がある。例えば、周方向加熱幅が狭いと、局部的な曲げの影響で残留応力の改善効果が阻害される。これは、加熱幅が狭い場合、加熱中に局部的な熱膨張で加熱部に曲げが発生して圧縮応力が発生し、冷却後に残留応力が低減しないためである。逆に、加熱幅が広い場合、加熱中に局部的な曲げは発生するが、最高温度領域では影響はなく、内外面温度差から内面に引張応力が発生し、冷却後には残留応力が低減する。
When the outer peripheral surface of the welded portion of the
これを数値解析で検討した結果が図3であり、これは、周方向発生応力と、[周方向加熱幅/外径]との関係を求めたものである。図3に示すように、周方向発生応力は、[周方向加熱幅/外径]と共に単調増加した後、[周方向加熱幅/外径]が略1.0のところで一定となることがわかる。ここで、対象配管の材料がステンレス鋼である場合、レーザ加熱による発生応力を、ステンレス鋼の降伏応力(250MPa)相当以上とすると、適正な[周方向加熱幅/外径]の範囲は0.15以上となる。又、レーザ加熱による発生応力を、ステンレス鋼の降伏応力の2倍(500MPa)以上とすると、適正な[周方向加熱幅/外径]の範囲は0.4以上となる。つまり、数値解析で検討した結果、ステンレス鋼では、周方向加熱幅を外径の0.15倍以上とすることで、所望の残留応力の改善効果が得られることを確認した。 FIG. 3 shows the result of studying this by numerical analysis, which is a relationship between the circumferentially generated stress and [circumferential heating width / outer diameter]. As shown in FIG. 3, it can be seen that the circumferentially generated stress increases monotonously with [circumferential heating width / outer diameter] and then becomes constant when [circumferential heating width / outer diameter] is approximately 1.0. . Here, when the material of the target pipe is stainless steel, an appropriate range of [circumferential heating width / outer diameter] is 0, if the stress generated by laser heating is equal to or higher than the yield stress (250 MPa) of stainless steel. 15 or more. Further, if the stress generated by laser heating is twice or more (500 MPa) of the yield stress of stainless steel, the appropriate range of [circumferential heating width / outer diameter] is 0.4 or more. That is, as a result of investigation by numerical analysis, it was confirmed that the effect of improving the desired residual stress can be obtained by making the circumferential heating width 0.15 times or more of the outer diameter in stainless steel.
又、本発明は、円筒状の配管2の溶接部分の外周面に、配管2の外周を周回させながらレーザ光を照射して、配管の板厚内に温度差を発生させ、その温度差により生じた応力を利用して残留応力を改善する方法であるため、非定常状態での板厚内の温度分布が重要となる。つまり、板厚内の適正な温度分布を得るため(周方向の適切な発生応力を得るため)、加熱時間の観点から、レーザ加熱時の条件を検討する必要がある。そこで、配管の熱拡散率をa(mm2/秒)、配管の板厚をt(mm)、加熱時間をτ(秒)として、温度分布を示す無次元数フーリエ数F(=a×τ/t2)を規定し、フーリエ数Fによる数値解析を用いて、最適なレーザ加熱時の条件を検討してみた。
Further, the present invention irradiates the outer peripheral surface of the welded portion of the
具体的には、図4に示すように、フーリエ数Fと円筒状配管の熱応力の計算値との関係から、最適なレーザ加熱時の条件となるフーリエ数Fを求めている。ここで、加熱時間τは、[周方向加熱幅W/レーザ光の周方向移動速度V]で規定され、従って、フーリエ数Fは、[a×(W/V)/t2]となる。図4からわかるように、板厚に依らず、フーリエ数Fが約0.2のとき、周方向発生応力(配管内面に発生する周方向の応力)は最大となり、フーリエ数Fがそれより大きくなるに従い、徐々に小さくなってくる。ここで、対象配管の材料がステンレス鋼である場合、レーザ加熱による発生応力を、ステンレス鋼の降伏応力(250MPa)相当以上とすると、適正なフーリエ数Fの範囲は0.05〜1.4程度となる。又、レーザ加熱による発生応力を、ステンレス鋼の降伏応力の2倍(500MPa)以上とすると、適正なフーリエ数Fの範囲は0.05〜0.6程度となる。従って、配管の熱拡散率a、配管の板厚をtは一定であるため、周方向加熱幅W、周方向移動速度Vを適切な数値に制御すれば、上記適正なフーリエ数の範囲とすることができる。 Specifically, as shown in FIG. 4, the Fourier number F, which is an optimum condition for laser heating, is obtained from the relationship between the Fourier number F and the calculated value of the thermal stress of the cylindrical pipe. Here, the heating time τ is defined by [circumferential heating width W / laser beam moving speed V], and accordingly, the Fourier number F is [a × (W / V) / t 2 ]. As can be seen from FIG. 4, regardless of the plate thickness, when the Fourier number F is about 0.2, the circumferentially generated stress (stress in the circumferential direction generated on the inner surface of the pipe) becomes the maximum, and the Fourier number F is larger than that. As it becomes, it gets smaller gradually. Here, when the material of the target piping is stainless steel, if the stress generated by laser heating is equal to or higher than the yield stress (250 MPa) of stainless steel, the appropriate range of the Fourier number F is about 0.05 to 1.4. It becomes. Moreover, if the stress generated by laser heating is twice or more (500 MPa) of the yield stress of stainless steel, the appropriate range of the Fourier number F is about 0.05 to 0.6. Accordingly, since the thermal diffusivity a of the pipe and the plate thickness t of the pipe are constant, if the circumferential heating width W and the circumferential moving speed V are controlled to appropriate values, the range of the appropriate Fourier number is obtained. be able to.
以上の知見に基づき、本発明に係る残留応力改善装置1を制御する場合、配管の外周面の所定領域Sにレーザ光を周回移動しながら照射し、所定領域Sを加熱する際、周方向加熱幅Wを、外径Dの0.15倍以上、望ましくは0.4倍以上とすることが必要である。又、周方向加熱幅Wと周方向移動速度Vの間には、[0.05×t2/a<W/V<1.4×t2/a]の関係が、望ましくは、[0.1×t2/a<W/V<0.6×t2/a]の関係が成り立つようにすることが必要である(図5参照)。 Based on the above knowledge, when controlling the residual stress improving apparatus 1 according to the present invention, the predetermined region S on the outer peripheral surface of the pipe is irradiated with laser light while moving around, and when the predetermined region S is heated, circumferential heating is performed. The width W needs to be 0.15 times or more, preferably 0.4 times or more of the outer diameter D. Further, a relationship of [0.05 × t 2 /a<W/V<1.4×t 2 / a] between the circumferential heating width W and the circumferential movement speed V is preferably [0 It is necessary to satisfy the relationship of 1 × t 2 /a<W/V<0.6×t 2 / a] (see FIG. 5).
このように、本発明においては、確実に残留応力を低減する、若しくは、確実に圧縮残留応力に改善するため、周方向加熱幅Wや周方向移動速度Vに制限を設けるようにしている。なお、加熱条件の制限として、周方向加熱幅Wだけでなく、軸方向加熱幅Lも制限をした方が望ましい(図5参照)。 As described above, in the present invention, in order to reliably reduce the residual stress or to reliably improve the compressive residual stress, the circumferential heating width W and the circumferential movement speed V are limited. In addition, as a restriction | limiting of a heating condition, it is desirable to restrict | limit not only the circumferential direction heating width W but the axial direction heating width L (refer FIG. 5).
そこで、周方向加熱幅Wを、上記条件を満たす一定の値に設定し、軸方向加熱幅Lを変化させて、改善される応力を確認してみた。その結果が図6に示すものであり、図6(a)、(b)、(c)は、軸方向応力の変化を、図6(d)、(e)、(f)が周方向応力の変化を示すグラフであり、配管の半径をr(=D/2)としたとき、図6(a)、(d)は、軸方向加熱幅L=5×√(rt)、図6(b)、(e)は、軸方向加熱幅L=4×√(rt)、図6(c)、(f)は、軸方向加熱幅L=3×√(rt)と設定したものである。 Therefore, the circumferential heating width W was set to a constant value satisfying the above conditions, and the axial heating width L was changed to confirm the improved stress. The results are shown in FIG. 6. FIGS. 6 (a), (b), and (c) show changes in axial stress, and FIGS. 6 (d), (e), and (f) show circumferential stress. 6 (a) and 6 (d) show the axial heating width L = 5 × √ (rt) and FIG. 6 (d), where r (= D / 2) is the radius of the pipe. b) and (e) are axial heating widths L = 4 × √ (rt), and FIGS. 6C and 6F are axial heating widths L = 3 × √ (rt). .
図6からわかるように、周方向応力は、軸方向加熱幅Lに依らず、所望応力以上の応力改善ができており、軸方向応力は、軸方向加熱幅Lに依って変化しているが、いずれの場合も残留応力が改善しており、所定領域の軸方向長さとして、3√(rt)以上、望ましくは、4√(rt)以上が均一に加熱されるようにすることが望ましい。そのため、複数の光学ヘッド5は、所望の軸方向加熱幅Lを均一に加熱できるように、配管2の軸方向に沿ってアーム部4に配置してある。
As can be seen from FIG. 6, the circumferential stress does not depend on the axial heating width L, but the stress improvement is greater than the desired stress, and the axial stress changes depending on the axial heating width L. In any case, the residual stress is improved, and the axial length of the predetermined region is preferably 3√ (rt) or more, preferably 4√ (rt) or more. . Therefore, the plurality of
配管等の管体を溶接する場合、必ずしも、同じ材料同士を溶接するとは限らず、異なる材料同士を溶接することもある。このような異材管体に、図1に示す本発明に係る残留応力改善装置1を適用する際には、板厚内に適正な温度差を得るため、材料毎の物性値、例えば、材料毎の熱拡散率を考慮して、材料毎に周方向加熱幅Wを変更することが望ましい。 When welding pipe bodies, such as piping, the same material is not necessarily welded, and different materials may be welded. When applying the residual stress improving apparatus 1 according to the present invention shown in FIG. 1 to such a dissimilar tube, in order to obtain an appropriate temperature difference within the plate thickness, physical property values for each material, for example, for each material In consideration of the thermal diffusivity, it is desirable to change the circumferential heating width W for each material.
例えば、図7に示すように、ステンレス鋼2Aと低合金鋼2BをNi基合金溶接金属2Cで溶接した異材管体に、本発明に係る残留応力改善装置1を用いて、レーザ加熱を行う場合、ステンレス鋼2A、溶接金属2Cは、熱拡散率が小さく、伝熱が遅いため、周方向加熱幅Wを広くすること、つまり、実質的な加熱時間を長くすることが必要である。これに対して、低合金鋼2Bは、熱拡散率が大きく、伝熱が速いため、周方向加熱幅Wを狭くすること、つまり、実質的な加熱時間を短くすることが必要である。
For example, as shown in FIG. 7, when the residual stress improving apparatus 1 according to the present invention is used to perform laser heating on a dissimilar pipe body obtained by welding
ここで、異材管体における加熱時間(施工速度)の影響を検討してみた。
図8(a)は、フーリエ数に対する各材料における周方向発生応力を示すグラフである。図8(a)に示すように、材料が異なる場合でも、フーリエ数で規格化すると、加熱時の発生応力は同じ傾向になることがわかる。前述したように、フーリエ数Fは、[(熱拡散率a)×{(周方向加熱幅W)/(周方向移動速度V)}/(板厚t)2]で表されることから、材料に応じて、周方向加熱幅Wを変えることにより、一定の周方向移動速度V(周速)で、加熱時に各材料において略同じ発生応力を得ることができる。
Here, the influence of the heating time (construction speed) in a dissimilar material pipe was examined.
FIG. 8A is a graph showing the circumferentially generated stress in each material with respect to the Fourier number. As shown in FIG. 8A, it can be seen that even when the materials are different, the stress generated during heating tends to be the same when normalized by the Fourier number. As described above, the Fourier number F is represented by [(thermal diffusivity a) × {(circumferential heating width W) / (circumferential movement speed V)} / (plate thickness t) 2 ]. By changing the circumferential heating width W according to the material, substantially the same generated stress can be obtained in each material at the time of heating at a constant circumferential moving speed V (circumferential speed).
例えば、管体の板厚を約22mm、ステンレス鋼(SUS316)2A及び溶接金属(600合金)2Cの加熱幅W1を120mm、低合金鋼2Bの加熱幅W2を60mmとした場合において、移動速度Vに対する各材料における周方向発生応力を示すと、図8(b)のようなグラフとなり、周方向加熱幅Wを変えることにより、加熱時に各材料において略同じ発生応力を得ることができる。このとき、周方向移動速度を5〜8mm/s程度の速度で施工することにより、残留応力の改善効果(加熱時の発生応力)の変動が少ないことを確認した。
For example, when the tube thickness is about 22 mm, the heating width W1 of stainless steel (SUS316) 2A and weld metal (600 alloy) 2C is 120 mm, and the heating width W2 of
溶接された配管等の管体は、必ずしも、一定の同じ板厚を有するとは限らず、場所により異なる板厚を有する場合もある。このような異なる板厚を有する管体(段付き管体)に、図1に示す本発明に係る残留応力改善装置1を適用する際には、板厚内に適正な温度差を得るため、板厚の大きさに応じて、周方向加熱幅Wを変更することが望ましい。 A pipe body such as a welded pipe does not necessarily have the same plate thickness, and may have a different plate thickness depending on the location. When applying the residual stress improving apparatus 1 according to the present invention shown in FIG. 1 to a pipe body having a different plate thickness (stepped pipe body), in order to obtain an appropriate temperature difference within the plate thickness, It is desirable to change the circumferential heating width W according to the thickness of the plate.
例えば、図9(a)、(b)に示すように、平均板厚t1を有する配管2Dと、平均板厚t2(>t1)を有し、板厚t1から板厚t3まで漸増する配管2Eとを、平均板厚t1を有する溶接金属2Fで溶接した管体に、本発明に係る残留応力改善装置1を用いて、レーザ加熱を行う場合、配管2D、溶接金属2Fは、同じ板厚を有するため、同じ周方向加熱幅W1とし、配管2Eは、配管2D、溶接金属2Fの平均板厚t1より大きい平均板厚t2を有するため、周方向加熱幅W1より広い周方向加熱幅W2として、実質的な加熱時間を長くすること、つまり、各場所の代表板厚に応じて周方向加熱幅を変更することが必要である。これは、管体の板厚が異なる場所に本発明を適用する場合、各場所での板厚内の温度差が異なる可能性があるので、板厚に応じた周方向加熱幅を選定して、温度差を均一に保つためである。
For example, as shown in FIGS. 9A and 9B, a
なお、図9に示す管体は、一例として、PWR(Pressurized Water Reactor;加圧水型原子炉)における加圧器のスプレイ管台を適用対象としたものであり、実際には、配管2Dはステンレス鋼(SUS316)、配管2Eは低合金鋼、溶接金属2FはNi合金溶接金属からなるものであり、場所により、板厚が異なると共に材料も異なるものである。従って、管体の板厚と共に材料の物性(熱拡散率)も考慮して、周方向加熱幅を決定する必要がある。このような管体の場合、W1’=k1×W1、W2’=k2×W2(k1、k2は、熱拡散率を考慮した係数)となり、配管2Eは熱拡散率が大きいため、図9(a)においては、W1’よりW2’が狭くなる。例えば、配管の直径をDとすると、配管2D、溶接金属2Fに対しては、周方向加熱幅を0.8Dとし、配管2Eに対しては、周方向加熱幅0.4Dと設定する。
Note that the pipe body shown in FIG. 9 is an application object of a spray nozzle of a pressurizer in a PWR (Pressurized Water Reactor) as an example. In practice, the
図9に示す管体に対して上記条件のレーザ加熱を行った場合において、3次元移動熱源熱弾塑性モデルの数値解析を用いて、残留応力の改善効果を検討したグラフが図10である。図10から明らかなように、内面の溶接残留応力(引張応力)を模擬した溶接金属2Fの領域を、本発明によるレーザ加熱により圧縮応力に改善できることが確認できた。
When the tube shown in FIG. 9 is subjected to laser heating under the above conditions, FIG. 10 is a graph that examines the effect of improving the residual stress using numerical analysis of a three-dimensional moving heat source thermal elastic-plastic model. As is apparent from FIG. 10, it was confirmed that the region of the
図1に示す本発明に係る残留応力改善装置1を適用する場合、配管の内面を必ずしも強制冷却する必要はないが、流水や溜水等の冷却手段を有し、配管内面の強制冷却を行う場合には、実施例1等と比較して、周方向加熱幅W、周方向速度Vの制限がより広くなり、制御値の自由度が大きくなるという利点がある。 When the residual stress improving apparatus 1 according to the present invention shown in FIG. 1 is applied, it is not always necessary to forcibly cool the inner surface of the pipe. However, the inner surface of the pipe is forcedly cooled by a cooling means such as running water or stored water. In this case, there are advantages that the restrictions on the circumferential heating width W and the circumferential speed V are wider and the degree of freedom of the control value is greater than in the first embodiment.
配管の内面を強制冷却する場合、周方向発生応力とフーリエ数は、図11に示すような関係となり、フーリエ数0.2以上であれば、周方向発生応力が一定の大きさで安定することとなる。従って、配管内面が水冷されている場合、レーザ加熱条件の制限としては、対象配管の材料をステンレス鋼であるとすると、レーザ加熱による発生応力を、ステンレス鋼の降伏応力(250MPa)相当以上とする適正なフーリエ数は0.05以上となり、ステンレス鋼の2倍の降伏応力(500MPa)以上とする適正なフーリエ数は0.1以上となる。つまり、配管の内面を強制冷却して、本発明に係る残留応力改善装置1を制御する場合には、配管の外周面の所定領域にレーザ光を周回移動しながら照射し、所定領域を加熱する際、周方向加熱幅Wと光源の移動速度Vの間には、[0.05×t2/a<W/V]、望ましくは、[0.1×t2/a<W/V]の関係が成り立つようにする。なお、強制冷却を行う冷却水は、流水である必要はなく、溜水でもよい。 When the inner surface of a pipe is forcibly cooled, the circumferentially generated stress and the Fourier number have a relationship as shown in FIG. 11, and if the Fourier number is 0.2 or more, the circumferentially generated stress is stable at a constant magnitude. It becomes. Therefore, when the inner surface of the pipe is water-cooled, the laser heating condition is limited as follows. When the material of the target pipe is stainless steel, the stress generated by laser heating is set to be equal to or higher than the yield stress (250 MPa) of stainless steel. The proper Fourier number is 0.05 or more, and the proper Fourier number for making the yield stress (500 MPa) or more twice that of stainless steel is 0.1 or more. In other words, when the residual stress improving apparatus 1 according to the present invention is controlled by forcibly cooling the inner surface of the pipe, the predetermined area on the outer peripheral surface of the pipe is irradiated while moving around the laser beam to heat the predetermined area. At this time, between the circumferential heating width W and the moving speed V of the light source, [0.05 × t 2 / a <W / V], preferably [0.1 × t 2 / a <W / V]. The relationship is established. In addition, the cooling water which performs forced cooling does not need to be flowing water, and may be stored water.
特に、図12に示すように、配管11と、内部にサーマルスリーブ12を有する二重管13とを溶接部Cにて溶接した管体10において、管体10が鉛直方向に設置されると共にサーマルスリーブ12の開口部12aが上方にある場合に、本実施例は好適に適用可能である。このような管体10の場合、管体10の内面側に冷却水14が存在するので、加熱部分は短時間温度上昇するだけであり、核沸騰を持続することができる。このため、冷却水14は溜水であっても内面水冷の効果を得ることができる。この場合、内面を水冷しているので、周方向移動速度を遅くでき、レーザ出力を低減することが可能となる。又、管体10が鉛直方向に設置されており、サーマルスリーブ12の開口部12aが上方にあるので、加熱により発生した蒸気が、管体10の内面に停留することがないため、水冷効果が阻害されることはない。
In particular, as shown in FIG. 12, in a
内面に溜水があり、水平方向に設置された配管に適用する場合には、上記制御に加えて、加熱の開始位置(レーザ光照射の開始位置)を検討する必要がある。これは、図13に示すように、水平方向に設置された配管21において、配管21の内面に溜水22がある状態で加熱すると、沸騰した蒸気が配管21の内面の鉛直上方側に停留して冷却効率が減少する可能性があるためである。そのため、本実施例においては、鉛直上方側に蒸気が停留する前に確実に加熱を行うため、レーザ光23の開始位置(終了位置)を、鉛直上方側の最上点P2の近傍で、かつ、進行方向の後方側にずれた位置P1とすることで、全周で均一な加熱が可能となるようにしている。進行方向の後方にずれた位置P1としては、レーザ光23が配管21の最上点P2を通過する際、最上点P2が100℃以下であるような位置が望ましい。なお、このような制御は、サーマルスリーブを有する2重管の場合でも同様である。
In the case where the inner surface has accumulated water and is applied to a pipe installed in the horizontal direction, in addition to the above control, it is necessary to consider the heating start position (laser beam irradiation start position). As shown in FIG. 13, when the
本発明においては、実施の一例として、円筒状配管を残留応力改善の対象としているが、円筒状配管に限らず、溶接された湾曲部材であれば、どのようなものでも適用可能である。 In the present invention, as an example of implementation, a cylindrical pipe is an object of residual stress improvement. However, the present invention is not limited to a cylindrical pipe, and any welded curved member is applicable.
1 残留応力改善装置
2 配管
3 回転駆動装置
4 アーム部
5 光学ヘッド
6 光ファイバ
7 レーザ発振器
8 制御部
10 配管
11 配管
12 サーマルスリーブ
13 配管
14 冷却水
21 配管
22 冷却水
23 レーザ光
C 溶接部
D 配管の外径
S 加熱領域
V 周方向移動速度
W 周方向加熱幅
DESCRIPTION OF SYMBOLS 1 Residual
Claims (14)
前記レーザ光の照射による周方向加熱幅を、前記管体の外径の0.15倍以上とすると共に、
前記周方向加熱幅をW、前記レーザ光の周方向移動速度をV、前記管体の熱拡散率をa、前記管体の厚さをtとして規定した無次元数F=a×(W/V)/t2 が、0.05≦F≦1.4となるように、前記周方向加熱幅W及び前記周方向移動速度Vを設定して、
前記レーザ光による加熱により発生する前記管体の内面の周方向応力を、少なくとも前記管体を構成する材料の降伏応力より大きくすることを特徴とする管体の残留応力改善方法。 When irradiating the outer peripheral surface of the welded portion of the cylindrical tube body with laser light while rotating around the outer periphery of the tube body,
The circumferential heating width by the laser light irradiation is 0.15 times or more the outer diameter of the tubular body,
Dimensionless number F = a × (W / W) in which the circumferential heating width is defined as W, the circumferential movement speed of the laser beam is defined as V, the thermal diffusivity of the tubular body is defined as a, and the thickness of the tubular body is defined as t. V) / t 2 is such that 0.05 ≦ F ≦ 1.4, and set the previous SL circumferential heating width W and the circumferential movement velocity V,
A method for improving a residual stress of a tubular body, characterized in that a circumferential stress on the inner surface of the tubular body generated by heating with the laser beam is at least greater than a yield stress of a material constituting the tubular body.
前記管体の内周面を強制冷却する場合には、
前記レーザ光の照射による周方向加熱幅を、前記管体の外径の0.15倍以上とすると共に、
前記周方向加熱幅をW、前記レーザ光の周方向移動速度をV、前記管体の熱拡散率をa、前記管体の厚さをtとして規定した無次元数F=a×(W/V)/t2 が、0.05≦Fとなるように、前記周方向加熱幅W及び前記周方向移動速度Vを設定して、
前記レーザ光による加熱により発生する前記管体の内面の周方向応力を、少なくとも前記管体を構成する材料の降伏応力より大きくすることを特徴とする管体の残留応力改善方法。 When irradiating the outer peripheral surface of the welded portion of the cylindrical tube body with laser light while rotating around the outer periphery of the tube body,
To force cooling the inner circumferential surface of the pipe body,
The circumferential heating width by the laser light irradiation is 0.15 times or more the outer diameter of the tubular body,
Dimensionless number F = a × (W / W) in which the circumferential heating width is defined as W, the circumferential movement speed of the laser beam is defined as V, the thermal diffusivity of the tubular body is defined as a, and the thickness of the tubular body is defined as t. V) / t 2 is such that 0.05 ≦ F, by setting the pre-Symbol circumferential heating width W and the circumferential movement velocity V,
A method for improving a residual stress of a tubular body, characterized in that a circumferential stress on the inner surface of the tubular body generated by heating with the laser beam is at least greater than a yield stress of a material constituting the tubular body.
前記管体が水平方向に配置されている場合、
前記レーザ光の照射開始位置を、前記管体の最上点から前記レーザ光の進行方向の後方側にずらすと共に、前記管体の内面の鉛直上方側に蒸気が停留する前に前記最上点を通過する位置とすることを特徴とする管体の残留応力改善方法。 In the method for improving residual stress of a tubular body according to claim 2 ,
When the tube is arranged in a horizontal direction,
The irradiation start position of the laser beam is shifted from the uppermost point of the tubular body to the rear side in the traveling direction of the laser light, and the vapor passes through the uppermost point before the vapor stops vertically above the inner surface of the tubular body. A method for improving the residual stress of a tubular body, characterized in that the position is set to be a position to perform.
レーザ光を複数用いると共に、前記複数のレーザ光の照射による加熱領域を前記管体の軸方向に均一にすることを特徴とする管体の残留応力改善方法。 In the residual stress improvement method of the tubular body according to any one of claims 1 to 3 ,
A method for improving residual stress of a tubular body, wherein a plurality of laser beams are used, and a heating region by irradiation of the plurality of laser beams is made uniform in an axial direction of the tubular body.
前記管体の厚さをt、前記管体の半径をrとすると、
前記加熱領域の軸方向長さを、3√(rt)以上とすることを特徴とする管体の残留応力改善方法。 In the residual stress improvement method of the tubular body according to claim 4 ,
When the thickness of the tubular body is t and the radius of the tubular body is r,
Wherein the axial length of the heating region, 3√ (rt) residual stress improving method of the tubular body, characterized in that the on or more.
異なる材料のものを溶接して管体が構成され、該管体の溶接部分に前記レーザ光が照射される場合、
前記周方向加熱幅を、前記管体の材料毎に設定することを特徴とする管体の残留応力改善方法。 In the residual stress improvement method of the tubular body according to any one of claims 1 to 5 ,
When a tube is constructed by welding different materials, and the laser beam is irradiated to the welded portion of the tube,
The method for improving residual stress in a tubular body, wherein the circumferential heating width is set for each material of the tubular body.
異なる厚さのものを溶接して管体が構成され、該管体の溶接部分に前記レーザ光が照射される場合、
前記周方向加熱幅を、前記管体の厚さ毎に設定することを特徴とする管体の残留応力改善方法。 The residual stress improvement method for a tubular body according to any one of claims 1 to 6 ,
When a tube is constructed by welding different thicknesses, and the laser beam is irradiated to the welded portion of the tube,
The method for improving the residual stress of a tubular body, wherein the circumferential heating width is set for each thickness of the tubular body.
前記回転駆動手段に保持され、前記管体の溶接部分の外周面にレーザ光を照射すると共に照射領域を調整可能な光学ヘッドとを有する管体の残留応力改善装置において、
前記レーザ光の照射による周方向加熱幅を前記光学ヘッドの調整により前記管体の外径の0.15倍以上とすると共に、
前記周方向加熱幅をW、前記周方向移動速度をV、前記管体の熱拡散率をa、前記管体の厚さをtとして規定した無次元数F=a×(W/V)/t2 が、0.05≦F≦1.4となるように、前記光学ヘッドの調整により前記周方向加熱幅Wを設定し、前記回転駆動手段の制御により前記周方向移動速度Vを設定して、
前記レーザ光による加熱により発生する前記管体の内面の周方向応力を、少なくとも前記管体を構成する材料の降伏応力より大きくしたことを特徴とする管体の残留応力改善装置。 A rotational driving means capable of revolving around the outer circumference of the cylindrical tube body and controlling the circumferential movement speed;
In a residual stress improving apparatus for a tubular body, which is held by the rotation driving means and has an optical head that irradiates a laser beam to an outer peripheral surface of a welded portion of the tubular body and can adjust an irradiation region .
The circumferential heating width by the laser light irradiation is adjusted to be not less than 0.15 times the outer diameter of the tubular body by adjusting the optical head,
Dimensionless number F = a × (W / V) / where the circumferential heating width is W, the circumferential moving speed is V, the thermal diffusivity of the tube is a, and the thickness of the tube is t. The circumferential heating width W is set by adjusting the optical head so that t 2 is 0.05 ≦ F ≦ 1.4, and the circumferential moving speed V is set by controlling the rotation driving means. And
An apparatus for improving a residual stress of a tubular body, wherein a stress in a circumferential direction of an inner surface of the tubular body generated by heating with the laser light is made larger than at least a yield stress of a material constituting the tubular body.
前記回転駆動手段に保持され、前記管体の溶接部分の外周面にレーザ光を照射すると共に照射領域を調整可能な光学ヘッドと、
前記管体の内周面を強制冷却する冷却手段とを有する管体の残留応力改善装置において、
前記レーザ光の照射による周方向加熱幅を前記光学ヘッドの調整により前記管体の外径の0.15倍以上とすると共に、
前記周方向加熱幅をW、前記周方向移動速度をV、前記管体の熱拡散率をa、前記管体の厚さをtとして規定した無次元数F=a×(W/V)/t2 が、0.05≦Fとなるように、前記光学ヘッドの調整により前記周方向加熱幅Wを設定し、前記回転駆動手段の制御により前記周方向移動速度Vを設定して、
前記レーザ光による加熱により発生する前記管体の内面の周方向応力を、少なくとも前記管体を構成する材料の降伏応力より大きくしたことを特徴とする管体の残留応力改善装置。 A rotational driving means capable of revolving around the outer circumference of the cylindrical tube body and controlling the circumferential movement speed;
An optical head that is held by the rotation driving means and irradiates the outer peripheral surface of the welded portion of the tube body with laser light and can adjust the irradiation region;
In the residual stress improving apparatus for a tubular body having cooling means for forcibly cooling the inner peripheral surface of the tubular body,
The circumferential heating width by the laser light irradiation is adjusted to be not less than 0.15 times the outer diameter of the tubular body by adjusting the optical head,
Dimensionless number F = a × (W / V) / where the circumferential heating width is W, the circumferential moving speed is V, the thermal diffusivity of the tube is a, and the thickness of the tube is t. The circumferential heating width W is set by adjusting the optical head so that t 2 is 0.05 ≦ F, and the circumferential moving speed V is set by control of the rotation driving means ,
An apparatus for improving a residual stress of a tubular body, wherein a stress in a circumferential direction of an inner surface of the tubular body generated by heating with the laser light is made larger than at least a yield stress of a material constituting the tubular body.
前記管体が水平方向に配置されている場合、
前記回転駆動手段が、前記レーザ光の照射開始位置を、前記管体の最上点から前記レーザ光の進行方向の後方側にずらすと共に、前記管体の内面の鉛直上方側に蒸気が停留する前に前記最上点を通過する位置としたことを特徴とする管体の残留応力改善装置。 In the residual stress improvement apparatus of the tubular body according to claim 9 ,
When the tube is arranged in a horizontal direction,
Before the rotation driving means shifts the irradiation start position of the laser light from the uppermost point of the tubular body to the rear side in the traveling direction of the laser light, and before the steam stops vertically above the inner surface of the tubular body. A device for improving residual stress in a tubular body, characterized in that the position passes through the uppermost point .
前記光学ヘッドを前記管体の軸方向に複数配置すると共に、前記複数の光学ヘッドからのレーザ光の照射による加熱領域が前記管体の軸方向に均一になるようにしたことを特徴とする残留応力改善装置。 In the residual stress improvement apparatus of the pipe body in any one of Claims 8 thru | or 10 ,
A plurality of the optical heads are arranged in the axial direction of the tubular body, and a heating region by irradiation of laser light from the plurality of optical heads is made uniform in the axial direction of the tubular body. Stress improvement device.
前記管体の厚さをt、前記管体の半径をrとすると、
前記加熱領域の軸方向長さを、3√(rt)以上に設定したことを特徴とする残留応力改善装置。 In the tubular-body residual-stress improving apparatus of Claim 11 ,
When the thickness of the tubular body is t and the radius of the tubular body is r,
Wherein the axial length of the heating region, 3√ (rt) residual stress improving apparatus being characterized in that set on more than.
異なる材料のものを溶接して管体が構成され、該管体の溶接部分に前記レーザ光が照射される場合、
前記周方向加熱幅を、前記管体の材料毎に設定したことを特徴とする管体の残留応力改善装置。 In the residual stress improvement apparatus of the pipe body in any one of Claims 8 thru | or 12 ,
When a tube is constructed by welding different materials, and the laser beam is irradiated to the welded portion of the tube,
The apparatus for improving residual stress in a tubular body, wherein the circumferential heating width is set for each material of the tubular body.
異なる厚さのものを溶接して管体が構成され、該管体の溶接部分に前記レーザ光が照射される場合、
前記周方向加熱幅を、前記管体の厚さ毎に設定したことを特徴とする管体の残留応力改善装置。 In the residual stress improvement apparatus of the tubular body according to any one of claims 8 to 13 ,
When a tube is constructed by welding different thicknesses, and the laser beam is irradiated to the welded portion of the tube,
The apparatus for improving residual stress in a tubular body, wherein the circumferential heating width is set for each thickness of the tubular body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005315663A JP4160976B2 (en) | 2005-10-31 | 2005-10-31 | Method and apparatus for improving residual stress of tubular body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005315663A JP4160976B2 (en) | 2005-10-31 | 2005-10-31 | Method and apparatus for improving residual stress of tubular body |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007118058A JP2007118058A (en) | 2007-05-17 |
JP4160976B2 true JP4160976B2 (en) | 2008-10-08 |
Family
ID=38142458
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005315663A Active JP4160976B2 (en) | 2005-10-31 | 2005-10-31 | Method and apparatus for improving residual stress of tubular body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4160976B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5307988B2 (en) * | 2007-05-30 | 2013-10-02 | 三菱重工業株式会社 | Method for adjusting apparatus for improving residual stress of tubular body |
CN107557541B (en) * | 2017-10-16 | 2023-07-25 | 山东电力建设第一工程公司 | Argon filling heating and heat preserving tool and method for 9% -12% Cr martensitic heat-resistant steel large-diameter thick-wall pipeline |
CN109837382B (en) * | 2019-04-17 | 2021-11-16 | 中国人民解放军空军工程大学 | Laser shock strengthening method for small-hole weld joint part of fan case of aircraft engine |
CN111575474B (en) * | 2020-04-13 | 2021-10-12 | 江苏大学 | Thermal torsional vibration composite aging method and device for escalator driving main shaft |
CN115874120B (en) * | 2022-12-03 | 2023-09-19 | 北京翔博科技股份有限公司 | Thermal vibration composite stress eliminating method, device and equipment based on laser modulation |
-
2005
- 2005-10-31 JP JP2005315663A patent/JP4160976B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2007118058A (en) | 2007-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5199579B2 (en) | Method and apparatus for improving residual stress of tubular body | |
JP4939098B2 (en) | Method and apparatus for improving residual stress of tubular body | |
JP4160976B2 (en) | Method and apparatus for improving residual stress of tubular body | |
JP3112758B2 (en) | Method and apparatus for welding superalloy workpieces | |
KR20010073164A (en) | Laser welding superalloy articles | |
JP2005320626A (en) | Heat treatment method and apparatus therefor | |
WO2006011539A1 (en) | Device for improving residual stress in piping | |
US8362393B2 (en) | Method for improving residual stress in tubular body and apparatus for improving residual stress in tubular body | |
JP2005232586A (en) | Method and apparatus for improving residual stress in tubular body | |
JP6651119B2 (en) | Steam turbine blade manufacturing method | |
JP6050141B2 (en) | Hardfacing welding apparatus and method | |
JP2006015399A (en) | Apparatus for improving residual stress of piping | |
US8362389B2 (en) | Apparatus for improving residual stress in tubular body and adjustment method of the same | |
JP5072490B2 (en) | Laser processing equipment | |
JP6143635B2 (en) | Laser welding method and laser welding apparatus | |
JPH11209825A (en) | Post-welding heat treatment equipment | |
JPS63112089A (en) | Improving method for residual stress of double metal pipe and the like | |
Khandandel et al. | Effect of cooling on bending angle and microstructure in laser tube bending with circumferential scanning | |
JP2011021242A (en) | Method and apparatus for high frequency-induction heating | |
JPH0776718A (en) | Laser beam heat treatment method | |
JP2005111513A (en) | Method for reluxing residual tensile stress, and welding apparatus | |
JPS63227724A (en) | Method for improving residual stress of stainless steel pipe or the like | |
JPH03243723A (en) | Heat treating device for inside surface of pipe | |
JP5527154B2 (en) | Induction hardening equipment for shaft-shaped members | |
JP2003004890A (en) | Preventive maintenance method for reactor internal pump and device for it |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080401 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080602 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080624 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080718 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4160976 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110725 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120725 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130725 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |