JP2005232586A - Method and apparatus for improving residual stress in tubular body - Google Patents

Method and apparatus for improving residual stress in tubular body Download PDF

Info

Publication number
JP2005232586A
JP2005232586A JP2004222224A JP2004222224A JP2005232586A JP 2005232586 A JP2005232586 A JP 2005232586A JP 2004222224 A JP2004222224 A JP 2004222224A JP 2004222224 A JP2004222224 A JP 2004222224A JP 2005232586 A JP2005232586 A JP 2005232586A
Authority
JP
Japan
Prior art keywords
tubular body
residual stress
laser beam
improving
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004222224A
Other languages
Japanese (ja)
Other versions
JP4317799B2 (en
Inventor
Takahiro Ota
高裕 太田
Risuke Nayama
理介 名山
Takashi Ishide
孝 石出
Yasuyuki Fujitani
泰之 藤谷
Shuho Tsubota
秀峰 坪田
Takeshi Yamamoto
剛 山本
Masaru Taniguchi
優 谷口
Takashi Akaha
崇 赤羽
Yoshiyuki Kondo
善之 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2004222224A priority Critical patent/JP4317799B2/en
Publication of JP2005232586A publication Critical patent/JP2005232586A/en
Application granted granted Critical
Publication of JP4317799B2 publication Critical patent/JP4317799B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

<P>PROBLEM TO BE SOLVED: To provide a residual stress improvement method capable of simply, quickly and surely improving a residual stress in a tubular body by reducing the residual stress in a tensile state by heating the tubular body or making the body to a compressing state. <P>SOLUTION: This method comprises: an irradiating process with laser beam Lz to a stress improving range Sr desirable to improve the residual stress in the tubular body Pi; a temperature measuring process for measuring the temperature in the stress improving range Sr; a cooling process for stopping the irradiation with the laser beam and cooling after becoming a prescribed temperature difference to the inner and the outer surfaces of the stress improving region Sr; and a moving process for moving the laser beam Lz in the stress improving region Sr to the non-irradiation portion in a laser beam irradiation part 1 after completing the cooling process. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、管体の残留応力を改善する方法及び残留応力を改善する改善装置に関する。   The present invention relates to a method for improving the residual stress of a tubular body and an improvement apparatus for improving the residual stress.

一般に腐食しにくい鉄鋼材料、例えばステンレス鋼などは表面に極めて薄い腐食膜が予め形成されており、該腐食膜が新たな腐食の進行を防いでいる。このような材料は、材料の性質、引張応力及び腐食環境のすべてが一定の条件を満たしたときに材料にき裂が発生し、そのき裂が時間と共に進展する応力腐食割れ(Stress Corrosion Cracking:SCC)という現象が発生することが知られている。   In general, an extremely thin corrosion film is formed in advance on a surface of a steel material that is not easily corroded, such as stainless steel, and the corrosion film prevents the progress of new corrosion. In such a material, when the material properties, tensile stress, and corrosion environment all satisfy certain conditions, the material cracks, and the crack propagates with time (Stress Corrosion Cracking: SCC) is known to occur.

工場や発電所等のプラントの配管には腐食に強いオーステナイト系ステンレス鋼がよく使われている。オーステナイト系ステンレス鋼は表面が薄い酸化皮膜で覆われていて、この皮膜が保護しているため全面腐食の進行が非常に遅い。オーステナイト系ステンレス鋼で最も一般的でしかも耐食性の優れた材料として、JISの材料記号でSUS316と称する材料が挙げられる。SUS316は鉄に約18%のクロムと約12%のニッケルと約2.5%のモリブデンを混ぜた合金である。SUS316は合金成分が一様に混ざり合った安定な材料であるが、600℃程度に加熱すると材料中のクロムと鉄に含まれている炭素が結合してクロム炭化物(クロムカーバイド)として析出する鋭敏化という現象を起こす。さらにそこに大きな引張応力が作用することでSCCが発生することは早くから知られていた。   Austenitic stainless steel, which is resistant to corrosion, is often used for piping in plants such as factories and power plants. Austenitic stainless steel is covered with a thin oxide film, and this film protects it, so the progress of the overall corrosion is very slow. As a material most commonly used in austenitic stainless steel and excellent in corrosion resistance, there is a material called SUS316 with a material symbol of JIS. SUS316 is an alloy of iron mixed with about 18% chromium, about 12% nickel, and about 2.5% molybdenum. SUS316 is a stable material in which alloy components are uniformly mixed, but when heated to about 600 ° C., the chromium contained in the material and the carbon contained in the iron combine to precipitate as chromium carbide (chromium carbide). Causes the phenomenon. Furthermore, it has been known from early on that SCC is generated by the action of a large tensile stress.

特にステンレス製の配管を溶接し継手を形成する場合、該ステンレス製の配管の溶接部近傍が溶接熱にて加熱されステンレス中の炭素がクロムと結合し、結晶粒界に沿ってクロムカーバイトとして析出する。すると前記結晶粒界近傍に沿ってステンレス中にクロム欠乏域ができ、耐食性が低下する。クロム欠乏域が発達した組織では、大きな引張応力が加わっていると、酸素濃度が高い場合、高温純水中(腐食性物質が含まれていない)であっても、結晶粒界に沿って局部的な腐食が発生し、それがSCCにまで発展していく。   In particular, when a stainless steel pipe is welded to form a joint, the vicinity of the welded portion of the stainless steel pipe is heated by welding heat, and the carbon in the stainless steel is combined with chromium, and as a chromium carbide along the grain boundary. Precipitate. Then, a chromium-deficient region is formed in the stainless steel along the vicinity of the crystal grain boundary, and the corrosion resistance is lowered. In a structure with developed chromium-deficient regions, if a large tensile stress is applied, even if the oxygen concentration is high, even in high-temperature pure water (which does not contain corrosive substances), local along the grain boundaries Corrosion occurs and it develops into SCC.

前記SCCの原因である引張応力として、配管に直接付与される引張応力以外にも、溶接近傍部における溶接熱による加熱及びその後、急冷することで蓄積される引張状態の残留応力も含まれることが明らかになっている。また、引張状態の残留応力は溶接だけでなく、材料の冷間加工、機械切削等でも蓄積する。   In addition to the tensile stress directly applied to the pipe, the tensile stress that causes the SCC may include the residual stress in the tensile state accumulated by heating with welding heat in the vicinity of the weld and then rapidly cooling. It has become clear. Further, the residual stress in the tensile state is accumulated not only by welding but also by cold working or mechanical cutting of the material.

以上の説明にも示したとおり、SCCの発生原因が材料(クロムカーバイドの析出による耐食性の低下)、環境(腐食性の環境)、応力(降伏点以上の引張応力)の全てが一定の条件を満たすことであるということは広く知られている。つまり、これら材料、環境、応力のSCC発生条件のうち少なくとも一つの条件を満たさないようにすればSCCの発生を防ぐことができるということである。   As shown in the above description, the cause of SCC is that the material (decrease in corrosion resistance due to chromium carbide precipitation), environment (corrosive environment), and stress (tensile stress above the yield point) are all constant. It is well known that it is to satisfy. In other words, it is possible to prevent the occurrence of SCC by not satisfying at least one of the SCC generation conditions of these materials, environment, and stress.

まず、材料を改善するものとしてステンレス中に含まれる炭素の含有量を減らすものが検討されている。前記ステンレス中の炭素含有量を減らすとクロムカーバイドの発生を抑えることができ、結果として鋭敏化することを抑えることが可能である。 First, as a material for improving the material, a method for reducing the content of carbon contained in stainless steel has been studied. When the carbon content in the stainless steel is reduced, generation of chromium carbide can be suppressed, and as a result, it is possible to suppress sensitization.

また、管のSCCの条件を満たしている部分の残留応力を低減する又は残留応力を引張状態から圧縮状態にすることでもSCCを防ぐことが可能である。この引張状態の残留応力を低減又は圧縮状態にする方法の一つとして、高周波加熱残留応力改善法(Induction Heating Stress Improvement process、以下IHSI法という)が提案されている。このIHSI法は前記管のSCC条件を満たしている部分近傍の厚み方向に温度勾配ができるように、管内面を流水により冷却しながら外面側から高周波誘導加熱コイルを利用して誘導加熱で昇温した後、加熱を停止し、配管の厚み方向が略均一な温度となるまで内面に水を流すことで冷却し続け、結果として溶接部近傍の引張状態の残留応力を低減又は圧縮状態にするものである。このとき、加熱終了時に管外周面と管内周面との間には一定以上の温度差が必要である。   It is also possible to prevent SCC by reducing the residual stress in a portion that satisfies the SCC condition of the tube or changing the residual stress from a tensile state to a compressed state. As one of methods for reducing or compressing the residual stress in the tensile state, a high-frequency heating residual stress improvement method (hereinafter referred to as IHSI method) has been proposed. This IHSI method uses a high-frequency induction heating coil from the outer surface side while cooling the inner surface of the tube with flowing water so that a temperature gradient in the thickness direction near the portion satisfying the SCC condition of the tube can be raised by induction heating. After that, the heating is stopped and cooling is continued by flowing water on the inner surface until the thickness direction of the pipe reaches a substantially uniform temperature. As a result, the residual stress in the tensile state near the weld is reduced or compressed. It is. At this time, a certain temperature difference or more is required between the outer peripheral surface of the tube and the inner peripheral surface of the tube at the end of heating.

レーザ加熱を利用したSCC対策後方としては、表面を溶融・凝固あるいは固溶化処理温度以上に加熱し、粒界に析出した炭化物を固溶させる手法が提案されている。また、固溶体化処理(脱鋭敏化処理)を行うと同時に、残留応力を低減する面とは反対の面を溶融・凝固させる方法や固溶体化温度以上に加熱する方法も提案されている。   As a countermeasure against SCC using laser heating, a method has been proposed in which the surface is heated to a temperature equal to or higher than the melting / solidifying or solution treatment temperature to solidify the carbide precipitated at the grain boundaries. In addition, a method for melting and solidifying a surface opposite to a surface for reducing residual stress and a method for heating to a temperature equal to or higher than the solid solution temperature have been proposed while performing a solid solution treatment (desensitization treatment).

また、残留応力の改善方法としては無数の金属の球を高速度で残留応力を改善したい場所に衝突させることで、該残留応力を改善するショットピーニング法等も提案されている。   Further, as a method for improving the residual stress, a shot peening method for improving the residual stress by colliding an infinite number of metal balls with a place where the residual stress is desired to be improved at a high speed has been proposed.

また、環境の条件を改善する方法として管内に流れる流体中に含まれる腐食性物質を取り除いたり、酸化の原因である酸素の含有量を減少させたりする方法も提案されている。
特開昭57-70095号公報 特開2001-150178号公報 特開平10-272586号公報 特開2000−254776号公報 特開2001−337190号公報
In addition, as a method for improving environmental conditions, a method of removing a corrosive substance contained in a fluid flowing in a pipe or reducing the content of oxygen that causes oxidation is also proposed.
JP-A-57-70095 JP 2001-150178 A Japanese Patent Laid-Open No. 10-272586 Japanese Patent Laid-Open No. 2000-254776 JP 2001-337190 A

上述のステンレス製配管中の炭素含有量を減らし、クロムカーバイドの析出を抑えることで、クロム欠乏域の発生を抑えることができる。しかしながら、ステンレス鋼材中の炭素含有量が減少するとステンレス鋼材の強度が低下する。強度が低下したステンレス鋼材は部材によっては用いることが可能であるが、大きな応力がかかる部分に採用することはできない。また、既に使用されている間に適用する場合は、旧配管を撤去して新しい低炭素量の材質の配管を敷設する必要がある。そのため、多大な費用を伴う。   Generation | occurrence | production of a chromium deficiency area | region can be suppressed by reducing the carbon content in the above-mentioned stainless steel piping, and suppressing precipitation of chromium carbide. However, when the carbon content in the stainless steel material decreases, the strength of the stainless steel material decreases. A stainless steel material having a reduced strength can be used depending on the member, but cannot be used in a portion where a large stress is applied. In addition, when it is applied while it is already in use, it is necessary to remove the old pipe and install a new low carbon material pipe. Therefore, it involves a great deal of cost.

また、前記IHSI法を用いて前記ステンレス製配管の残留応力状態を低減するか又は引張状態から圧縮状態へかえる場合、前記ステンレス製配管の残留応力を改善する部分の外部に高周波誘導コイルを配し、該コイルに電流を流して該ステンレス製配管を外部より加熱すると共に、配管内部に絶えず水を流して、所定の温度に冷却するものである。このため既に据え付けられ、内部を水流による冷却が可能な配管に対しては実施しやすいが、管内部に流水状態を確保できない管体に対しては実施が困難である。   Further, when reducing the residual stress state of the stainless steel pipe using the IHSI method or changing from the tensile state to the compressed state, a high frequency induction coil is disposed outside the portion of the stainless steel pipe that improves the residual stress. The stainless steel pipe is heated from the outside by supplying an electric current to the coil, and water is continuously supplied into the pipe to cool to a predetermined temperature. For this reason, it is easy to implement for a pipe that has already been installed and can be cooled by a water flow, but it is difficult to implement for a pipe body that cannot secure a flowing water state inside the pipe.

また、前記IHSI法は管の厚み方向に温度勾配をつけるために高周波誘導加熱を行うものであるが、前記高周波誘導コイルによる加熱の場合、前記管体の材質(誘電率)によって、熱が伝わる深さ及び範囲が異なり高周波誘導コイルによる加熱は加熱範囲の限定が難しい。また、装置も大掛かりでエネルギ消費量も大きい。さらに、異材継手等の誘電率が異なる部材が混じっている場合、厚み方向に一定の温度勾配をつけるのが難しい。   The IHSI method performs high-frequency induction heating in order to create a temperature gradient in the thickness direction of the tube. In the case of heating by the high-frequency induction coil, heat is transmitted depending on the material (dielectric constant) of the tube. The depth and range are different, and it is difficult to limit the heating range when heating with a high frequency induction coil. In addition, the apparatus is large and energy consumption is large. Furthermore, when members having different dielectric constants such as dissimilar material joints are mixed, it is difficult to provide a constant temperature gradient in the thickness direction.

溶融・凝固や固溶化処理温度に加熱した場合、溶融部近傍に新たに鋭敏化領域を形成する恐れや、温度が高く、熱収縮による変形が発生し、配管としての機能を満たすことができない可能性があり、温度管理を厳密に行う必要が生じる。また,低合金鋼を含む異材継ぎ手部に対しては、低合金鋼の応力除去焼鈍以上に加熱できないため、適用が困難となる。例えば、低合金鋼を750℃以上加熱すると、焼入れが起こるため、もう一度応力除去焼鈍が必要となる。このため、通常は600℃以上の加熱はできない。   When heated to the melting / solidification or solution treatment temperature, a new sensitization region may be formed near the melted part, or the temperature may be high and deformation due to thermal shrinkage may occur, preventing the piping function from being satisfied. It is necessary to strictly control the temperature. Moreover, since it cannot heat more than the stress relief annealing of low alloy steel with respect to the dissimilar material joint part containing low alloy steel, application becomes difficult. For example, when a low alloy steel is heated at 750 ° C. or higher, quenching occurs, so that stress relief annealing is required once more. For this reason, heating at 600 ° C. or higher is usually not possible.

固溶化熱処理に伴う残留応力低減では、鋭敏化領域を対象としており、溶接部近傍の狭い範囲のみを加熱するため、軸方向に局部的な曲げ変形が生じ、安定して残留応力低減効果を得ることが難しい。   Residual stress reduction associated with solution heat treatment targets the sensitized region and heats only a narrow area in the vicinity of the weld. Therefore, local bending deformation occurs in the axial direction, and a stable residual stress reduction effect is obtained. It is difficult.

ショットピーニングにて残留応力を改善する方法についても既に据え付けられている配管又は配管を接合した継手内面に対して実施するのは非常に困難である。   The method for improving the residual stress by shot peening is also very difficult to carry out on the pipes already installed or on the joint inner surface where the pipes are joined.

流体中の腐食性物質を取り除く方法に関しては、配管内を流れる流体の使用目的によっては取り除くことができないものもある。また、一度運転を開始しているプラント等の場合、新たに腐食性物質を取り除く装置等を取り付けるのは非常に大掛かりな作業が必要となると共に、新たに定期点検をする部材が増え、管理コストが今まで以上にかかる。   Regarding the method for removing the corrosive substance in the fluid, there are some methods that cannot be removed depending on the purpose of use of the fluid flowing in the pipe. In addition, in the case of a plant that has already started operation, it is necessary to install a new device that removes corrosive substances. Takes more than ever.

このような問題を鑑みて、本発明は管体を加熱して引張状態の残留応力を低減する又は圧縮状態にする方法であり、該管体の残留応力を簡単、迅速且つ確実に改善することができる残留応力の改善方法を提供することを目的とする。   In view of such a problem, the present invention is a method for heating a tubular body to reduce the residual stress in the tensile state or to make it compressed, and to improve the residual stress of the tubular body simply, quickly and reliably. It is an object of the present invention to provide a method for improving residual stress that can be improved.

また本発明は管体を加熱して引張状態の残留応力を低減する又は圧縮状態にする方法であり、大掛かりな装置及び大きなエネルギ源を用意することなく、該管体の残留応力を簡単、迅速且つ確実に改善することができる残留応力の改善方法を提供することを目的とする。   In addition, the present invention is a method for heating a tubular body to reduce the residual stress in the tensile state or compressing the tubular body, so that the residual stress of the tubular body can be easily and quickly reduced without preparing a large-scale device and a large energy source. Another object of the present invention is to provide a method for improving residual stress that can be reliably improved.

上記目的を達成するために本発明は、管体内面の残留応力を改善する残留応力の改善方法であって、前記管体の残留応力を改善したい応力改善領域に、管体の外部に配置されたレーザ光照射部から該管体の外面にレーザ光を照射することを特徴とする管体の残留応力改善方法を提供する。   In order to achieve the above object, the present invention is a residual stress improving method for improving the residual stress on the inner surface of a tubular body, and is disposed outside the tubular body in a stress improving region where the residual stress of the tubular body is desired to be improved. The present invention provides a method for improving residual stress in a tubular body, which comprises irradiating the outer surface of the tubular body with laser light from a laser light irradiating section.

この構成によると、管体の外面にレーザ光を照射することでレーザ光が照射された部分の残留応力を改善するものであり、レーザ光はエネルギ密度が高く管体の表面を急速に加熱することができる。このことにより、前記管体の内部を冷却することなく該管体の内面側と外面側に所定の温度差を有する状態にすることができ、それだけ、簡単に残留応力の改善処理を行うことができる。   According to this configuration, the residual stress of the portion irradiated with the laser beam is improved by irradiating the outer surface of the tube with the laser beam. The laser beam has high energy density and rapidly heats the surface of the tube. be able to. As a result, the inside of the tube body can be brought into a state having a predetermined temperature difference between the inner surface side and the outer surface side of the tube body, and the residual stress can be easily improved accordingly. it can.

また、前記レーザ光による加熱は、該レーザ光が照射された部分の近傍を加熱することができるので、必要以上の部分に熱が逃げることなくそれだけ、均一に且つ熱効率よく残留応力を改善することが可能である。   In addition, the heating with the laser beam can heat the vicinity of the portion irradiated with the laser beam, so that the residual stress can be improved uniformly and efficiently without the heat escaping to an unnecessary portion. Is possible.

上記構成において、レーザ光照射は管体の材質に合わせて照射するレーザ光の出力を調整することができるものであってもよい。   In the above configuration, the laser beam irradiation may be capable of adjusting the output of the laser beam to be irradiated according to the material of the tube.

この構成によると、レーザ光の出力を管体の材質に合わせて適切に設定することで、管体の厚み方向に熱が浸透する前に表面を加熱することができるので、換言すると、厚み方向に熱が伝播する前に内面側と外面側との温度差を形成することができるので、管体の厚さ、材質によらず残留応力の改善処理を施すことが可能である。   According to this configuration, by appropriately setting the output of the laser light according to the material of the tube body, the surface can be heated before heat penetrates in the thickness direction of the tube body. Since the temperature difference between the inner surface side and the outer surface side can be formed before heat propagates to the tube, the residual stress can be improved regardless of the thickness and material of the tube.

上記構成において、前記レーザ光照射部を前記応力改善領域のレーザ光が未照射の部分に連続的にあるいは断続的に移動し、前記管体の応力改善領域の残留応力を改善してもよい。   In the above-described configuration, the residual stress in the stress improvement region of the tubular body may be improved by moving the laser light irradiation unit continuously or intermittently to a portion where the laser beam in the stress improvement region is not irradiated.

レーザ光が照射された部分の近傍を加熱することができるので、加熱されている部分と加熱されていない部分を容易に判断することができる。このことより、残留応力を改善したい領域全体を一度に加熱する必要はなく、部分ごとに複数回に分けて残留応力の改善処理を施すことが可能であり、それだけ、管体の大きさ、形状、材質によらず残留応力の改善処理をすることが可能である。   Since the vicinity of the portion irradiated with the laser light can be heated, the heated portion and the unheated portion can be easily determined. From this, it is not necessary to heat the entire area where residual stress is to be improved at once, and it is possible to apply the residual stress improvement process in multiple times for each part. It is possible to improve the residual stress regardless of the material.

上記構成においてレーザ光照射は、前記管体の応力改善領域の軸方向に所定の幅を有し、周方向に略一様に且つ同時にレーザ光を照射するものであり、前記移動は前記レーザ光照射部を前記管体の軸方向に移動させるものであってもよい。   In the above configuration, the laser beam irradiation has a predetermined width in the axial direction of the stress improvement region of the tubular body, and the laser beam is irradiated substantially uniformly and simultaneously in the circumferential direction. The irradiation unit may be moved in the axial direction of the tubular body.

この構成によると管体の外面の全周方向に均一に同時に加熱することができ、移動では軸方向の移動のみなので、管体の長さにかかわらず残留応力の改善処理を行うことが可能であり、短時間で広い範囲に管体の残留応力の改善処理を施すことが可能である。   According to this configuration, it is possible to heat the outer surface of the tube uniformly and simultaneously in the entire circumference, and since the movement is only in the axial direction, the residual stress can be improved regardless of the length of the tube. It is possible to improve the residual stress of the tubular body over a wide range in a short time.

上記構成においてレーザ光照射は前記管体の応力改善領域の軸方向長さと同じ又は略同じ長さを有すると共に周方向に所定の幅を有する矩形状のレーザ光を照射するものであり、前記移動は前記レーザ光照射部を前記管体の周方向に前記応力改善領域に沿って移動させるものであってもよい。   In the above-described configuration, the laser beam irradiation irradiates a rectangular laser beam having a length equal to or substantially the same as the axial length of the stress improvement region of the tubular body and having a predetermined width in the circumferential direction. May move the laser beam irradiation section along the stress improvement region in the circumferential direction of the tubular body.

この構成によると、前記応力改善領域の軸方向の幅長さに同時に加熱することができ、移動では周方向のみなので、管体の直径にかかわらず残留応力の改善処理を行うことが可能である。   According to this configuration, the stress improvement region can be simultaneously heated to the axial width length, and since the movement is only in the circumferential direction, the residual stress can be improved regardless of the diameter of the tube. .

またこのとき、複数のレーザ光照射部を着脱可能であってもよく、複数のレーザ光照射部のうち前記応力改善領域にあった個数だけ駆動できるものであってもよい。   Further, at this time, a plurality of laser beam irradiation units may be detachable, or a number of laser beam irradiation units that can be driven by the number corresponding to the stress improvement region may be used.

上記構成においてレーザ光照射は前記管体の応力改善領域に矩形状のレーザ光を照射するものであり、前記移動は前記レーザ光照射部を前記管体の周方向に移動するとともに、該レーザ光照射部を軸方向に移動させるものであってもよい。   In the above-described configuration, the laser beam irradiation is to irradiate the stress improvement region of the tube with a rectangular laser beam, and the movement moves the laser beam irradiation unit in the circumferential direction of the tube, and the laser beam The irradiation unit may be moved in the axial direction.

この構成よると、前記移動は周方向、軸方向に移動するのでレーザ光照射部の大きさを小さくすることができるとともに、管体の周方向大きさ及び軸方向長さにかかわらず、残留応力の改善処理を簡単に行うことができる。   According to this configuration, since the movement moves in the circumferential direction and the axial direction, the size of the laser beam irradiation portion can be reduced, and the residual stress can be obtained regardless of the circumferential size and the axial length of the tubular body. The improvement process can be easily performed.

また上記目的を達成するために本発明は、管体内面の残留応力を改善する残留応力の改善方法であって、前記管体の残留応力を改善したい応力改善領域全体に、該管体内部に配置されたレーザ光照射部から該管体の内面にレーザ光を照射するレーザ光照射工程と、レーザ光照射を停止し前記管体内部に挿入された冷却水噴出部より応力改善領域に冷却水を噴出して急速冷却を行う冷却工程とを有していることを特徴とする管体の残留応力改善方法を提供する。   In order to achieve the above object, the present invention provides a residual stress improving method for improving the residual stress on the inner surface of a tubular body, wherein the entire stress improving region in which the residual stress of the tubular body is desired to be improved is placed inside the tubular body. A laser light irradiation step of irradiating the inner surface of the tube with laser light from the arranged laser light irradiation portion, and cooling water in the stress-improving region from the cooling water jetting portion that has stopped laser light irradiation and is inserted inside the tube. A method for improving the residual stress of a tubular body, comprising: a cooling step of performing rapid cooling by ejecting water.

この構成によると前記内面にレーザ光照射部を挿入して管体の内面にレーザ光を照射し、その後急速冷却を行うので、管体の外面側及び内面側の温度差を強制的に作り出すことができ、残留応力の改善処理を行うことができる。   According to this configuration, the laser beam irradiation part is inserted into the inner surface, the laser beam is irradiated onto the inner surface of the tube body, and then rapid cooling is performed, so that a temperature difference between the outer surface side and the inner surface side of the tube body is forcibly created. The residual stress can be improved.

また、管体の内部にレーザ光照射部を挿入して内部より加熱するので、外部から加熱するものに比べて管体の直径方向の大きさが変わっても残留応力の改善処理を行うことができる。   Moreover, since the laser beam irradiation part is inserted into the tube body and heated from the inside, the residual stress can be improved even if the size in the diameter direction of the tube changes compared to the one heated from the outside. it can.

さらに上記目的を達成するために本発明は、管体内面の残留応力を改善する残留応力の改善方法であって、前記管体の残留応力を改善したい応力改善領域と隣り合う第1の領域及び第2の領域のうち少なくとも一方に、該管体の外部に設けられたレーザ光照射部より、レーザ光を照射するレーザ光照射工程と、前記応力改善領域と前記レーザ光照射工程でレーザ光を照射している領域の温度を測定する温度測定工程と、前記応力改善領域と前記レーザ光を照射している領域が所定の温度差になった後、レーザ光照射を停止し冷却する冷却工程とを有していることを特徴とする管体の残留応力改善方法を提供する。   Furthermore, in order to achieve the above object, the present invention provides a residual stress improving method for improving a residual stress on an inner surface of a tubular body, the first region adjacent to a stress improving region where the residual stress of the tubular body is desired to be improved, and At least one of the second regions is irradiated with a laser beam from a laser beam irradiation unit provided outside the tube, and the laser beam is irradiated in the stress improvement region and the laser beam irradiation step. A temperature measuring step for measuring the temperature of the irradiated region, and a cooling step for stopping and cooling the laser beam irradiation after the stress improving region and the laser beam irradiation region have reached a predetermined temperature difference; There is provided a method for improving a residual stress of a tubular body characterized by comprising:

この構成によると、前記管体の軸方向の温度差を利用して残留応力を改善するものであるので、管体の厚さ方向の温度差を利用して残留応力を改善する方法に比べて、温度差の測定がやりやすくそれだけ、確実に残留応力を改善することが可能である。   According to this configuration, since the residual stress is improved by utilizing the temperature difference in the axial direction of the tubular body, compared to the method of improving the residual stress by utilizing the temperature difference in the thickness direction of the tubular body. It is easy to measure the temperature difference, and it is possible to improve the residual stress reliably.

また、管体の軸方向の温度差を利用するので、管体の厚さ、大きさにかかわらず残留応力の改善処理を行うことが可能である。   Further, since the temperature difference in the axial direction of the tubular body is utilized, it is possible to perform a residual stress improvement process regardless of the thickness and size of the tubular body.

上記構成において、前記レーザ光照射、前記温度測定工程及び前記冷却工程を前記第1の領域及び前記第2の領域に対して同時に施工するようにしてもよい。   In the above configuration, the laser beam irradiation, the temperature measuring step, and the cooling step may be performed simultaneously on the first region and the second region.

この構成によると、残留応力の改善処理を軸方向の温度差を利用するとともに、同時に加熱するので、レーザ光を照射する部分の大きさ小さくすることができるとともに、短時間で処理を終了することができる。   According to this configuration, since the residual stress improvement process uses the temperature difference in the axial direction and is heated at the same time, the size of the portion irradiated with the laser beam can be reduced and the process can be completed in a short time. Can do.

上記構成において、管体の残留応力改善方法は前記レーザ光照射部を前記第1の領域と前記第2の領域の間を移動させる移動工程を有しており、前記第1の領域に対して前記レーザ光照射工程、前記温度測定工程及び前記冷却工程を施工した後に、前記移動工程にてレーザ照射部を移動させ、前記第2の領域に対して前記レーザ光照射工程、前記温度測定工程及び前記冷却工程を施工してもよい。   In the above configuration, the method for improving residual stress of a tubular body includes a moving step of moving the laser beam irradiation unit between the first region and the second region, After performing the laser beam irradiation step, the temperature measurement step, and the cooling step, the laser irradiation unit is moved in the moving step, and the laser beam irradiation step, the temperature measurement step, and the second region are moved. The cooling process may be performed.

この構成によると、レーザ光照射部1個で前記第1の領域と前記第2の領域に対して、前記レーザ光照射工程、前記温度測定工程及び前記冷却工程を施工することができる。   According to this configuration, the laser light irradiation step, the temperature measurement step, and the cooling step can be performed on the first region and the second region with one laser light irradiation unit.

応力改善領域は異なる材質の管体を繋ぎ合わせて溶接した異材継手の近傍であってもよい。   The stress improvement region may be in the vicinity of a dissimilar material joint in which pipes of different materials are joined and welded.

レーザ光の出力を変えることができるので、異材の管体を繋ぎ合わせた異材継手の残留応力の改善を行うことが可能である。   Since the output of the laser beam can be changed, it is possible to improve the residual stress of the dissimilar material joint obtained by joining the dissimilar material pipes.

さらに上記目的を達成するために本発明は管体内面の残留応力を改善するための残留応力の改善装置であって、前記管体の外面にレーザ光を照射し、残留応力改善領域をほぼ均熱に加熱する1又は複数のレーザ光照射部を有するレーザ光照射手段と、前記レーザ光照射手段の動作を制御するための制御手段とを有していることを特徴とする管体の残留応力改善装置を提供する。   Furthermore, in order to achieve the above object, the present invention is an apparatus for improving residual stress for improving the residual stress on the inner surface of a tubular body, and irradiates the outer surface of the tubular body with laser light so that the residual stress improving region is substantially uniform. Residual stress of a tubular body, characterized by comprising laser light irradiation means having one or a plurality of laser light irradiation portions heated to heat, and control means for controlling the operation of the laser light irradiation means Provide an improvement device.

この構成によると、レーザ光を照射することで加熱するので、無駄な領域を加熱しなくても済み、それだけ、エネルギの消費量を低減することが可能である。   According to this configuration, since heating is performed by irradiating laser light, it is not necessary to heat a useless area, and energy consumption can be reduced accordingly.

上記構成においてレーザ光照射手段は前記管体の材質に合わせて照射するレーザ光の出力を調整できるものであってもよい。   In the above configuration, the laser beam irradiation means may be capable of adjusting the output of the laser beam to be irradiated according to the material of the tube.

上記構成において、前記レーザ光照射手段を前記応力改善領域に沿って移動させる移動手段を有していてもよい。   The said structure WHEREIN: You may have a moving means to move the said laser beam irradiation means along the said stress improvement area | region.

この構成によるとレーザ光照射手段が移動することで広い範囲を加熱するので、同時にレーザ光を照射する領域は小さくてよく、レーザ光の出力を小さい領域の加熱できるだけでよく、装置自体をコンパクトに安価に構成することが可能である。   According to this configuration, since the laser light irradiation means moves to heat a wide range, the area to be irradiated with the laser light at the same time may be small, the laser light output only needs to be heated in a small area, and the apparatus itself is compact. It can be configured at low cost.

上記構成において、レーザ光照射手段は前記レーザ光照射部を前記管体の外部に等中心角度間隔に配置しており、該管体の外面に所定の軸方向幅で全周にわたって均一且つ同時にレーザ光を照射するものであり、前記移動手段は前記レーザ光照射手段を前記管体にそって軸方向に移動させるものであってもよい。   In the above-described configuration, the laser beam irradiation means has the laser beam irradiation portions arranged at equal central angular intervals outside the tube, and the laser beam is uniformly and simultaneously spread over the entire circumference with a predetermined axial width on the outer surface of the tube. The moving means may irradiate light, and the moving means may move the laser light irradiating means in the axial direction along the tubular body.

この構成によると、管体の外面の周方向に均一に加熱することができるので、残留応力を均一に改善することが可能である。また、軸方向にのみ移動するので構造が簡単であり、それだけ低コストで製作することができる。   According to this structure, since it can heat uniformly in the circumferential direction of the outer surface of a tubular body, it is possible to improve a residual stress uniformly. In addition, since it moves only in the axial direction, the structure is simple, and it can be manufactured at a lower cost.

上記構成においてレーザ光照射手段は前記レーザ光照射部をレーザ光照射領域が前記管体の外面に周方向に所定の長さを有すると共に軸方向に前記応力改善領域の軸方向長さと同一又は略同一になるように配置しており、前記移動手段は前記レーザ光照射手段を前記管体の周方向に回動させてもよい。   In the above-described configuration, the laser light irradiation means has the laser light irradiation portion in which the laser light irradiation region has a predetermined length in the circumferential direction on the outer surface of the tubular body and is the same as or substantially the axial length of the stress improvement region in the axial direction. The moving means may rotate the laser light irradiation means in the circumferential direction of the tube body.

この構成によると、管体の外面の軸方向に均一に加熱することができるので、残留応力を均一に改善することが可能である。また、周方向にのみ移動するので構造が簡単であり、それだけ低コストで製作することができる。   According to this structure, since it can heat uniformly in the axial direction of the outer surface of a tubular body, it is possible to improve a residual stress uniformly. Moreover, since it moves only in the circumferential direction, the structure is simple, and it can be manufactured at a low cost.

この構成によると、前記応力改善領域の軸方向の幅長さに同時に加熱することができ、移動手段は周方向のみ移動するので、管体の直径にかかわらず残留応力の改善処理を行うことが可能である。   According to this configuration, the stress improvement region can be simultaneously heated to the axial length of the stress improvement region, and the moving means moves only in the circumferential direction. Therefore, the residual stress can be improved regardless of the diameter of the tube. Is possible.

またこのとき、複数のレーザ光照射部を着脱可能であってもよく、複数のレーザ光照射部のうち前記応力改善領域にあった個数だけ駆動できるものであってもよい。   Further, at this time, a plurality of laser beam irradiation units may be detachable, or a number of laser beam irradiation units that can be driven by the number corresponding to the stress improvement region may be used.

上記構成においてレーザ光照射手段は前記レーザ光照射部をレーザ光照射領域が前記管体の外面に軸方向及び周方向に所定の長さを有するように配置しており、前記移動手段は前記レーザ光照射手段を前記管体の周方向に回動させ、該管体周りを一周するごとに軸方向に移動するものであってもよい。   In the above-described configuration, the laser light irradiation means is arranged such that the laser light irradiation part has a predetermined length in the axial direction and the circumferential direction on the outer surface of the tubular body, and the moving means is the laser beam. The light irradiating means may be rotated in the circumferential direction of the tubular body and moved in the axial direction every time it makes a round around the tubular body.

この構成よると、前記移動手段は前記レーザ光照射手段を周方向、軸方向に移動するのでレーザ光照射部の大きさを小さくすることができるとともに、管体の周方向大きさ及び軸方向長さにかかわらず、適用することが可能である。   According to this configuration, since the moving means moves the laser light irradiation means in the circumferential direction and the axial direction, the size of the laser light irradiation portion can be reduced, and the circumferential size and the axial length of the tube body can be reduced. Regardless, it is possible to apply.

さらに上記目的を達成するために本発明は管体内面の残留応力を改善するための残留応力の改善装置であって、前記管体の内面にレーザ光を照射する1又は複数のレーザ光照射部を有するレーザ光照射手段と、前記レーザ光が照射される前記管体の温度を測定する温度測定手段と、前記レーザ光が照射された内面に冷却水を噴射する冷却水噴射手段と、前記レーザ光照射手段、前記温度測定手段及び前記冷却水噴射手段の動作を制御するための制御手段を有しており、前記レーザ光照射手段は前記管体の材質に合わせて照射するレーザ光の出力を調整できることを特徴とする管体の残留応力改善装置を提供する。   Furthermore, in order to achieve the above object, the present invention is an apparatus for improving residual stress for improving the residual stress on the inner surface of a tubular body, wherein one or a plurality of laser light irradiation sections for irradiating the inner surface of the tubular body with laser light Laser beam irradiation means, temperature measurement means for measuring the temperature of the tubular body irradiated with the laser light, cooling water injection means for jetting cooling water onto the inner surface irradiated with the laser light, and the laser A control unit for controlling operations of the light irradiation unit, the temperature measurement unit, and the cooling water injection unit, and the laser beam irradiation unit outputs an output of the laser beam to be irradiated according to the material of the tube body. A device for improving residual stress of a tubular body characterized by being adjustable.

この構成によると前記内面にレーザ光照射部を挿入して管体の内面にレーザ光を照射し、その後急速冷却を行うので、管体の外面側及び内面側の温度差を強制的に作り出すことができる。   According to this configuration, the laser beam irradiation part is inserted into the inner surface, the laser beam is irradiated onto the inner surface of the tube body, and then rapid cooling is performed, so that a temperature difference between the outer surface side and the inner surface side of the tube body is forcibly created. Can do.

また、管体の内部にレーザ光照射部を挿入して内部より加熱するので、外部から加熱するものに比べて管体の直径方向の大きさが変わっても適用することができる。   Further, since the laser beam irradiation unit is inserted into the tube body and heated from the inside, the present invention can be applied even if the size in the diameter direction of the tube body is changed as compared with that heated from the outside.

前記レーザ光照射手段はレーザ光源を備えており、前記レーザ光源としてレーザダイオード又はファイバーレーザが採用されているものを採用することができる。   The laser light irradiation means includes a laser light source, and a laser diode or a fiber laser may be employed as the laser light source.

この構成によると他のレーザ光源を用いる場合に比べて、レーザ光照射手段を簡単に形成することができるとともに、パワープラントを小さくすることができ、それだけ、動作効率が高く、製作及び動作コストの安い管体の残留応力改善装置を提供することが可能である。   According to this configuration, the laser beam irradiation means can be easily formed and the power plant can be made smaller as compared with the case where other laser light sources are used, so that the operation efficiency is high and the manufacturing and operation costs are reduced. It is possible to provide a cheap residual stress improving device for a tubular body.

また、上記管体の残留応力改善方法において、前記レーザ光は、光ファイバで伝送されることが好ましい。この構成によれば、装置の自由度が増して、作業性を向上させることができる。また、残留応力改善部位が遠隔部であったり、周辺空間が狭い部位である場合であっても、レーザを伝送することができる。   In the method for improving the residual stress of the tubular body, it is preferable that the laser light is transmitted through an optical fiber. According to this structure, the freedom degree of an apparatus increases and workability | operativity can be improved. Further, even when the residual stress improving part is a remote part or the peripheral space is a narrow part, the laser can be transmitted.

また、上記管体の残留応力改善方法において、前記レーザ光の光源は、レーザダイオード又はファイバーレーザであることが好ましい。この構成によれば、光源を小型化することができるため狭隘部においても設置することができ、残留応力改善部位に近接して設置することができる。   In the method for improving the residual stress of the tubular body, the laser light source is preferably a laser diode or a fiber laser. According to this configuration, since the light source can be reduced in size, it can be installed even in a narrow portion, and can be installed in the vicinity of the residual stress improving portion.

また、上記管体の残留応力改善方法において、前記レーザ光照射は、レーザ光の照射位置、又はレーザ照射角度,照射距離などで規定されるレーザ光の照射位置のエネルギー密度に応じてレーザ光の出力を調整できることが好ましい。この構成によれば、残留応力改善部位が、複雑形状であり、照射角度や照射面積が変化し、入熱エネルギー密度が変化する場合や、異材部位で伝熱特性の異なる場合でも、適切な温度分布の加熱を行うことができる。   In the method for improving residual stress of a tubular body, the laser beam irradiation may be performed according to an energy density of a laser beam irradiation position or a laser beam irradiation position defined by a laser irradiation angle, an irradiation distance, or the like. It is preferable that the output can be adjusted. According to this configuration, even when the residual stress improvement site has a complex shape, the irradiation angle or the irradiation area changes, the heat input energy density changes, or even when the heat transfer characteristics differ between different materials, Distribution heating can be performed.

また、上記管体の残留応力改善方法において、前記レーザ光が照射される管体の表面には、吸収剤が塗布されていることが好ましい。この構成によれば、レーザ光の吸収率を向上させることができるとともに、表面状態による吸収率の変化を抑制することができ、安定した残留応力の改善が可能となる。   In the method for improving residual stress of a tubular body, an absorbent is preferably applied to the surface of the tubular body irradiated with the laser light. According to this configuration, it is possible to improve the absorptance of the laser beam and to suppress a change in the absorptance due to the surface state, and it is possible to stably improve the residual stress.

また、前記吸収剤は、炭素を含有していることが好ましい。この構成によれば、高温で安定、かつレーザ光を吸収しやすい吸収剤とすることができる。   Moreover, it is preferable that the said absorber contains carbon. According to this configuration, an absorbent that is stable at high temperatures and easily absorbs laser light can be obtained.

また、前記吸収剤は、雲母を含有していることが好ましい。この構成によれば、吸収剤に高温での安定性を付与することができる。   The absorbent preferably contains mica. According to this structure, stability at high temperature can be imparted to the absorbent.

また、前記吸収剤は、ハロゲン元素を含有しない方が好ましい。この構成によれば、吸収剤の残留を原因とする、SCCの発生を抑制、又はなくすことができ(ハロゲン元素はSCC発生の原因となるおそれがある。)、プラントの健全性が向上する。   Further, it is preferable that the absorbent does not contain a halogen element. According to this structure, generation | occurrence | production of SCC resulting from the residue of an absorber can be suppressed or eliminated (halogen element may cause SCC generation | occurrence | production), and the soundness of a plant improves.

また、上記管体の残留応力改善方法において、前記レーザ光照射は、前記管体の内面を水冷又は空冷しながら行うことが好ましい。この構成によれば、管体肉厚方向の温度分布について、内面から外面に亘ってほぼ均一な温度傾斜を有する温度分布にすることができる。   In the method for improving residual stress of a tubular body, the laser light irradiation is preferably performed while the inner surface of the tubular body is cooled with water or air. According to this configuration, the temperature distribution in the tube thickness direction can be a temperature distribution having a substantially uniform temperature gradient from the inner surface to the outer surface.

また、上記管体の残留応力改善方法において、前記レーザ光照射は、前記管体の外面における、前記レーザ光照射部の移動方向の前方向又は後方向を、水冷又は空冷しながら行うことが好ましい。この構成によれば、管体肉厚方向の温度分布を改善することができると共に、管体表面における必要以上の温度上昇を抑制することができる。   In the method for improving the residual stress of the tubular body, the laser light irradiation is preferably performed on the outer surface of the tubular body while water-cooling or air-cooling the forward direction or the backward direction of the moving direction of the laser light irradiation unit. . According to this configuration, it is possible to improve the temperature distribution in the tube thickness direction, and to suppress an unnecessarily high temperature rise on the tube surface.

また、上記管体の残留応力改善方法において、前記レーザ光照射は、前記レーザ光を間欠的に照射することが好ましい。この構成によれば、管体肉厚方向の温度分布を改善することができると共に、管体表面における必要以上の温度上昇を抑制することができる。   In the method for improving residual stress of a tubular body, it is preferable that the laser beam irradiation is performed intermittently with the laser beam irradiation. According to this configuration, it is possible to improve the temperature distribution in the tube thickness direction, and to suppress an unnecessarily high temperature rise on the tube surface.

また、上記管体の残留応力改善方法において、前記移動は、前記レーザ光照射部を前記管体の周方向に前記応力改善領域に沿って、移動初期と終期が重なるように一周以上移動させ、前記レーザ光照射は、前記移動初期及び移動終期においてレーザ出力を抑制することが好ましい。この構成によれば、移動初期と終期において発生しやすい管体温度の不均一性を抑制することができ、管体肉厚方向の温度分布を、管体全周に亘って均一にすることができる。   Further, in the method for improving residual stress of a tubular body, the movement is performed by moving the laser light irradiation unit one or more times along the circumferential direction of the tubular body so that the initial stage and the final stage of movement overlap each other. The laser light irradiation preferably suppresses laser output at the initial stage of movement and at the end of movement. According to this configuration, it is possible to suppress the non-uniformity of the tube temperature that is likely to occur at the beginning and end of movement, and to make the temperature distribution in the tube thickness direction uniform over the entire circumference of the tube. it can.

また、上記管体の残留応力改善方法において、前記移動は、前記レーザ光照射部を前記管体の周方向に前記応力改善領域に沿ってほぼ半周させた後に元の位置に戻して、更に前記移動方向と逆方向にほぼ半周させた後に元の位置に戻すことが好ましい。この構成によれば、管体の全周に亘る残留応力の改善効果を維持しつつ、ケーブル等の施工装置が管体に絡まること等をなくして、ハンドリングを簡易とすることができる。   Further, in the method for improving residual stress of a tubular body, the movement may be performed by causing the laser beam irradiation unit to return to the original position after making the circumferential direction of the tubular body substantially half a circumference along the stress improving region, and It is preferable to return to the original position after approximately half the circumference in the direction opposite to the moving direction. According to this configuration, it is possible to simplify the handling while maintaining the effect of improving the residual stress over the entire circumference of the tubular body, while preventing the construction device such as the cable from being entangled with the tubular body.

また、上記管体の残留応力改善方法において、前記管体は、原子炉プラントのステンレス鋼配管であってもよい。原子力プラントのステンレス鋼管ではSCCの発生が懸念されている。既に使用されている鋼管に適用する場合は、旧配管を撤去して新しい低炭素量の材質の配管を敷設する必要がある。そのため、多大な費用を伴うだけでなく、新たに放射性廃棄物を増加させることになり、廃棄物の保管など新たな費用が発生する。また、定検期間の延長にもつながり、経済性の面で不利である。そこで,原子力プラントのステンレス鋼配管に適用する場合、取り替え工事が不要となり、プラントの経済性、信頼性が向上する。   In the method for improving residual stress of a tubular body, the tubular body may be a stainless steel pipe of a nuclear reactor plant. There is concern about the occurrence of SCC in stainless steel pipes in nuclear power plants. When applied to steel pipes that have already been used, it is necessary to remove the old piping and install new low-carbon material piping. For this reason, not only is there a great cost, but the amount of radioactive waste is newly increased, and new costs such as storage of waste are generated. It also leads to an extension of the regular inspection period, which is disadvantageous in terms of economy. Therefore, when applied to stainless steel piping in a nuclear power plant, replacement work is not necessary, and the economics and reliability of the plant are improved.

また、上記管体の残留応力改善方法において、前記管体は、BWR(沸騰水型原子力発電)の再循環配管であってもよい。   In the method for improving residual stress of a tubular body, the tubular body may be a recirculation pipe of BWR (boiling water nuclear power generation).

また、上記管体の残留応力改善方法において、前記管体は、SCCの発生が懸念されている原子力プラントの原子炉容器、加圧器、蒸気発生器のいずれかに接続される低合金鋼とオーステナイト系ステンレス鋼の異材継ぎ手部、例えばセーフエンド溶接部であってもよい。   Further, in the method for improving residual stress of a tubular body, the tubular body includes a low alloy steel and austenite connected to any one of a nuclear reactor reactor, a pressurizer, and a steam generator in which generation of SCC is concerned. It may be a dissimilar joint of stainless steel, for example, a safe end weld.

また、上記管体の残留応力改善方法において、前記レーザ光照射工程は、前記管体の外面における、前記レーザ光照射部の移動方向に沿って、前記レーザ光照射前、照射中、照射後の温度変化をモニタリングしながら行うことが好ましい。この構成によれば、管体肉厚方向の温度分布を適切に制御・管理することができる。   Moreover, in the residual stress improvement method for a tubular body, the laser light irradiation step is performed before, during, and after the irradiation of the laser light along the moving direction of the laser light irradiation portion on the outer surface of the tubular body. It is preferable to perform this while monitoring the temperature change. According to this configuration, the temperature distribution in the tube thickness direction can be appropriately controlled and managed.

また、上記管体の残留応力改善方法において、前記温度変化は、放射温度計または、前記管体のレーザ光照射部分に設置した熱電対、温度チョーク又は接触温度計により測定してもよい。   In the method for improving the residual stress of the tubular body, the temperature change may be measured by a radiation thermometer, a thermocouple, a temperature choke, or a contact thermometer installed in a laser light irradiation portion of the tubular body.

また、上記管体の残留応力改善方法において、予め、前記管体と同材料の平板、または同材料、同形状の疑似モデルに対して、最適な残留応力改善方法をシミュレーションした後、該結果に基づいて、前記管体の残留応力を改善することが好ましい。この構成によれば、実際の残留応力改善対象である管体を改善処理する際に、予め得られた結果を利用して、管体肉厚方向の温度分布を適切に制御・管理しながら改善処理することができる。特に、管体内面や、狭隘部における管体については、温度管理が困難であるため有用な手段である。   Further, in the residual stress improvement method for a tubular body, after simulating an optimal residual stress improvement method for a flat model of the same material as the tubular body or a pseudo model of the same material and the same shape, Based on this, it is preferable to improve the residual stress of the tubular body. According to this configuration, when improving the pipe that is the actual residual stress improvement target, using the results obtained in advance, the temperature distribution in the pipe thickness direction is improved and controlled appropriately. Can be processed. Particularly, the inner surface of the tube body and the tube body in the narrow portion are useful means because temperature management is difficult.

また、上記管体の残留応力改善装置において、前記レーザ光は、光ファイバで伝送されることが好ましい。   Further, in the tubular body residual stress improving apparatus, the laser light is preferably transmitted by an optical fiber.

また、上記管体の残留応力改善装置において、前記レーザ光の光源は、ファイバーレーザ又はレーザーダイオードであることが好ましい。   In the residual stress improving apparatus for a tubular body, the laser light source is preferably a fiber laser or a laser diode.

また、上記管体の残留応力改善装置において、前記レーザ光照射手段は、レーザ光の照射位置によりレーザ光の出力を調整できることが好ましい。   Moreover, in the residual stress improving apparatus for a tubular body, it is preferable that the laser beam irradiation unit can adjust the output of the laser beam according to the irradiation position of the laser beam.

また、上記管体の残留応力改善装置において、前記レーザ光を照射する際に前記管体の内面を水冷又は空冷する冷却手段を有することが好ましい。   Moreover, it is preferable that the apparatus for improving residual stress of a tubular body includes a cooling unit that cools or air-cools the inner surface of the tubular body when the laser beam is irradiated.

また、上記管体の残留応力改善装置において、前記レーザ光を照射する際に、前記管体の外面における、前記レーザ光照射手段の移動方向の前方向又は後方向を、水冷又は空冷する冷却手段を有することが好ましい。   Further, in the apparatus for improving residual stress of a tubular body, when irradiating the laser beam, a cooling unit that cools or air-cools the front direction or the rear direction of the moving direction of the laser beam irradiating unit on the outer surface of the tubular body. It is preferable to have.

また、上記管体の残留応力改善装置において、前記レーザ光照射手段は、前記レーザ光を間欠的に照射可能なことが好ましい。   Moreover, in the said residual stress improvement apparatus of a tubular body, it is preferable that the said laser beam irradiation means can irradiate the said laser beam intermittently.

また、上記管体の残留応力改善装置において、前記移動手段は、前記レーザ光照射手段を前記管体の周方向に前記応力改善領域に沿って、移動初期と終期が重なるように一周以上移動させる機能を有し、前記レーザ光照射手段は、前記移動初期及び移動終期においてレーザ出力を抑制することが好ましい。   In the tubular body residual stress improving apparatus, the moving means moves the laser light irradiation means one or more times along the stress improving region in the circumferential direction of the tubular body so that the initial stage and the final stage of movement overlap each other. It is preferable that the laser beam irradiation unit suppresses laser output at the initial stage of movement and at the end of movement.

また、上記管体の残留応力改善装置において、前記移動手段は、前記レーザ光照射手段を前記管体の周方向に前記応力改善領域に沿ってほぼ半周させた後に元の位置に戻して、更に前記移動方向と逆方向にほぼ半周させた後に元の位置に戻す機能を有することが好ましい。   Further, in the tubular body residual stress improving apparatus, the moving unit may return the laser beam irradiating unit to the original position after making the laser beam irradiating unit substantially circulate along the stress improving region in the circumferential direction of the tube. It is preferable to have a function of returning to the original position after substantially making a half turn in the direction opposite to the moving direction.

また、上記管体の残留応力改善方法において、前記レーザ光を照射し加熱する温度が、固溶化温度以下であることが好ましい。固溶化温度以下で加熱することによって、被対象物の変形が小さくなり、更に鋭敏化の恐れが無くなる。また、低合金鋼など異材継ぎ手に対しても適用可能となる。   Moreover, in the said residual stress improvement method of a tubular body, it is preferable that the temperature which irradiates and heats the said laser beam is below the solution temperature. By heating below the solid solution temperature, the deformation of the object is reduced and the risk of sensitization is eliminated. Further, it can be applied to a dissimilar material joint such as a low alloy steel.

また、上記管体の残留応力改善方法において、前記レーザ光を照射し加熱する領域が2.5√rt以上であることが好ましい。溶接部を中心として2.5√rt(r:管の平均半径、t:管の板厚)以上を均一に加熱することによって、その部分の残留応力を低減することができる。   In the method for improving the residual stress of the tubular body, it is preferable that a region irradiated with the laser beam and heated is 2.5√rt or more. By uniformly heating the welded portion at 2.5√rt (r: the average radius of the tube, t: the plate thickness of the tube) or more, the residual stress at that portion can be reduced.

さらに上記目的を達成するために本発明は、管体内面の残留応力を改善する残留応力の改善方法であって、
前記管体の残留応力を改善したい応力改善領域に、管体の外部に配置されたレーザ光照射部から該管体の外面にレーザ光を照射するレーザ光照射工程と、
前記管体の応力改善領域の温度を測定する温度測定工程と、
前記応力改善領域の外面側と内面側が所定の温度差になった後レーザ光照射を停止し冷却する冷却工程とを有することを特徴とする。
Furthermore, in order to achieve the above object, the present invention provides a residual stress improving method for improving the residual stress on the inner surface of a tubular body,
A laser beam irradiation step of irradiating the outer surface of the tube body with a laser beam from a laser beam irradiation section disposed outside the tube body in a stress improvement region where the residual stress of the tube body is desired to be improved;
A temperature measuring step for measuring the temperature of the stress improvement region of the tubular body;
And a cooling step of stopping and cooling the laser beam irradiation after the outer surface side and the inner surface side of the stress improvement region reach a predetermined temperature difference.

さらに上記目的を達成するために本発明は、管体内面の残留応力を改善する残留応力の改善方法であって、
前記管体の残留応力を改善したい応力改善領域全体に、該管体内部に配置されたレーザ光照射部から該管体の内面にレーザ光を照射するレーザ光照射工程と、
前記管体の応力改善領域の温度を測定する温度測定工程と、
前記応力改善領域の外面側と内面側が所定の温度差になった後レーザ光照射を停止し前記管体内部に挿入された冷却水噴出部より応力改善領域に冷却水を噴出して急速冷却を行う冷却工程とを有していることを特徴とする。
Furthermore, in order to achieve the above object, the present invention provides a residual stress improving method for improving the residual stress on the inner surface of a tubular body,
A laser beam irradiation step of irradiating the entire inner surface of the tube body with laser light from a laser beam irradiation portion disposed inside the tube body over the entire stress improvement region where the residual stress of the tube body is desired to be improved;
A temperature measuring step for measuring the temperature of the stress improvement region of the tubular body;
After a predetermined temperature difference between the outer surface side and the inner surface side of the stress improvement region, laser light irradiation is stopped, and cooling water is jetted from the cooling water jetting portion inserted into the tube body to the stress improvement region to perform rapid cooling. And a cooling step to be performed.

本発明によると、管体を加熱して引張状態の残留応力を低減する又は圧縮状態にする方法及び装置であり、該管体の残留応力を簡単、迅速且つ確実に改善することができる残留応力の改善方法及び装置を提供することができる。   According to the present invention, there is provided a method and apparatus for heating a tubular body to reduce or compress the residual stress in a tensile state, and the residual stress of the tubular body can be improved easily, quickly and reliably. It is possible to provide an improved method and apparatus.

また本発明によると、管体を加熱して引張状態の残留応力を低減する又は圧縮状態にする方法及び装置であり、大掛かりな装置及び大きなエネルギ源を用意することなく、該管体の残留応力を簡単、迅速且つ確実に改善することができる残留応力の改善方法及び装置を提供することができる。   Also, according to the present invention, there is a method and apparatus for heating a tubular body to reduce the residual stress in a tensile state or bringing it into a compressed state, and without preparing a large-scale apparatus and a large energy source, the residual stress of the tubular body is prepared. It is possible to provide a method and an apparatus for improving a residual stress that can be improved easily, quickly and reliably.

本発明を実施するための最良の形態について図面を参照しながら説明する。図1に残留応力改善方法の概略説明図を示す。   The best mode for carrying out the present invention will be described with reference to the drawings. FIG. 1 is a schematic explanatory diagram of the residual stress improvement method.

管体Pi内面に生じている残留応力を引張状態から圧縮状態に改善することで管体内面の応力腐食割れを防ぐことができることはよく知られている。管体の残留応力改善領域Srの外面S2と内面S1との間に所定の温度差が生じるように加熱する(図1(A)参照)。このとき、外面S2は圧縮応力状態で、内面S1は引張応力状態、さらには、内面S1は引張降伏状態になっている(図1(B)参照)。そして、応力改善領域Srの内面S1及び外面S2を冷却する。冷却すること(図1(C)参照)で、外面S2が引張応力状態になり、内面S1が圧縮応力状態になり、内面S1の残留応力を引張応力状態から圧縮応力状態に改善することが可能である(図1(D)参照)。   It is well known that stress corrosion cracking on the inner surface of the tubular body can be prevented by improving the residual stress generated on the inner surface of the tubular body Pi from a tensile state to a compressed state. Heating is performed so that a predetermined temperature difference is generated between the outer surface S2 and the inner surface S1 of the residual stress improvement region Sr of the tubular body (see FIG. 1A). At this time, the outer surface S2 is in a compressive stress state, the inner surface S1 is in a tensile stress state, and further, the inner surface S1 is in a tensile yield state (see FIG. 1B). Then, the inner surface S1 and the outer surface S2 of the stress improvement region Sr are cooled. By cooling (see FIG. 1C), the outer surface S2 becomes a tensile stress state, the inner surface S1 becomes a compressive stress state, and the residual stress of the inner surface S1 can be improved from the tensile stress state to the compressive stress state. (See FIG. 1D).

図2に本発明にかかる管体の残留応力低減装置の概略配置図を示す。図2に示す管体の残留応力改善装置Aは、管体Piの残留応力を改善するべき応力改善領域Srにレーザ光Lzを照射するレーザ光照射手段1と、レーザ光照射手段1を応力改善領域Srの中で移動させる移動手段2と、応力改善領域Srのレーザ光Lzが照射される部分の温度を測定する温度測定手段3と、残留応力改善装置Aを制御するための制御手段Contとを備えている。   FIG. 2 shows a schematic layout of the tubular residual stress reducing apparatus according to the present invention. A tubular body residual stress improving apparatus A shown in FIG. 2 is a laser beam irradiating unit 1 that irradiates a laser beam Lz to a stress improving region Sr that should improve the residual stress of the tube Pi, and the laser beam irradiating unit 1 is stress improved. A moving means 2 for moving in the region Sr, a temperature measuring means 3 for measuring the temperature of the portion irradiated with the laser light Lz in the stress improving region Sr, and a control means Cont for controlling the residual stress improving apparatus A; It has.

レーザ光照射手段1はレーザ光を出力するレーザ光源11と、レーザ光源11より出力されたレーザ光Lzを応力改善領域Srに照射するレーザ光照射部12とを有している。レーザ光源11から出力されたレーザ光Lzは光ファイバケーブル13を介してレーザ光照射部12に送られる。レーザ光源11はここでは、レーザダイオードが用いられている。また、レーザ光源11としては、レーザダイオードに限定されるものではなく、管体Piを加熱することができるレーザ光を出力できるものを広く採用することができる。   The laser light irradiation means 1 includes a laser light source 11 that outputs laser light, and a laser light irradiation unit 12 that irradiates the stress improvement region Sr with the laser light Lz output from the laser light source 11. The laser light Lz output from the laser light source 11 is sent to the laser light irradiation unit 12 via the optical fiber cable 13. Here, a laser diode is used as the laser light source 11. Further, the laser light source 11 is not limited to a laser diode, and a laser light source that can output laser light that can heat the pipe Pi can be widely used.

(第1の実施形態)
図3(A)、(B)に管体に本発明にかかる管体の残留応力改善方法の一例による残留応力改善を表す正面図及び側面図を示す。図3(C)〜図3(E)に本発明にかかる管体の残留応力改善方法の一例の手順を示す。また、図4に本発明にかかる管体の残留応力改善方法を用いた残留応力改善工程のフロー図を示す。また、残留応力改善装置A1はレーザ光照射手段以外の部分は図2に示す残留応力改善装置Aと実質上同じ構成であり、実質上同じ部分には同じ符号を付してある。
(First embodiment)
3A and 3B are a front view and a side view showing a residual stress improvement by an example of the method for improving a residual stress of a tubular body according to the present invention. FIG. 3C to FIG. 3E show a procedure of an example of a method for improving the residual stress of a tubular body according to the present invention. FIG. 4 shows a flowchart of a residual stress improving process using the tubular residual stress improving method according to the present invention. Further, the residual stress improving apparatus A1 has substantially the same configuration as that of the residual stress improving apparatus A shown in FIG.

図3(A)、(B)に示す残留応力改善方法に用いられている残留応力改善装置A1は、管体Piの外部に設けられているレーザ光照射手段1aにはレーザ光照射部12aが等中心角度間隔(それには限定されないが、ここでは45°)で8個有している。   In the residual stress improving apparatus A1 used in the residual stress improving method shown in FIGS. 3A and 3B, a laser light irradiation unit 12a is provided in the laser light irradiation means 1a provided outside the pipe Pi. Eight are provided at equal central angular intervals (but not limited to 45 ° here).

レーザ光照射部12aは軸方向に照射幅tで照射するものであり、8個同時にレーザ光を照射することで、管体Piの応力改善領域Srに周方向に全周にわたって一様に照射することができる(図3(B)参照)。このとき、レーザ光照射部12aによるレーザ光照射領域は軸方向幅tのリング状Rである。   The laser beam irradiation unit 12a irradiates with an irradiation width t in the axial direction. By simultaneously irradiating eight laser beams, the stress improvement region Sr of the tubular body Pi is uniformly irradiated over the entire circumference in the circumferential direction. (See FIG. 3B). At this time, the laser beam irradiation region by the laser beam irradiation unit 12a is a ring-shaped R having an axial width t.

残留応力改善方法は以下の手順で行われる。まず、管体Piの応力改善領域Srの端部に幅tのリング状にレーザ光Lzが照射できるようレーザ光照射手段1aを配置する(ステップSt1)。そして、レーザ光照射手段1aに備えられている8個のレーザ光照射部12aよりレーザ光Lzを同時に照射する(ステップSt2)。そして、管体Piの外部に配置された温度測定手段3にて温度を測定する(ステップSt3)。測定した温度が所定の温度かどうか判別する(ステップSt4)。所定温度でない場合(ステップSt4でNOの場合)ステップSt3にもどって温度測定を繰り返す。所定温度になった場合(ステップSt4でYESの場合)レーザ光源11の出力と加熱時間、及び、管体外面の温度を測定し、管体の熱伝導率を考慮することで、管体の応力改善領域Srの内面と外面の温度差を所定の温度にすることができる。   The residual stress improvement method is performed by the following procedure. First, the laser beam irradiation means 1a is arranged at the end of the stress improvement region Sr of the tubular body Pi so that the laser beam Lz can be irradiated in a ring shape having a width t (step St1). Then, the laser beam Lz is simultaneously irradiated from the eight laser beam irradiation units 12a provided in the laser beam irradiation unit 1a (step St2). And temperature is measured by the temperature measurement means 3 arrange | positioned outside the pipe Pi (step St3). It is determined whether or not the measured temperature is a predetermined temperature (step St4). When the temperature is not the predetermined temperature (NO in step St4), the temperature measurement is repeated by returning to step St3. When the temperature reaches a predetermined temperature (YES in step St4), the output of the laser light source 11, the heating time, and the temperature of the outer surface of the tube are measured, and the thermal conductivity of the tube is taken into account, thereby stress of the tube The temperature difference between the inner surface and the outer surface of the improvement region Sr can be set to a predetermined temperature.

応力改善領域Srの内外面の温度差が所定の温度になった状態(ステップSt4でYES)でレーザ光照射手段1aよりのレーザ光照射を停止する(ステップSt5)。このとき、応力改善領域Srの加熱された部分の応力状態は上述のとおり外面S2は圧縮状態、内面S1は引張状態(引張降伏状態)である。この後冷却し(ステップSt6)、内外面の温度差がなくなった状態では、内面S1が圧縮応力状態になり内面S1の残留応力を改善される。その後、移動手段2を作動させレーザ光照射手段1aを軸方向に移動させる(ステップSt7)(図2参照)。移動した部分が応力改善領域Srかどうか判断する(ステップSt8)。   When the temperature difference between the inner and outer surfaces of the stress improvement region Sr reaches a predetermined temperature (YES in step St4), the laser beam irradiation from the laser beam irradiation means 1a is stopped (step St5). At this time, the stress state of the heated portion of the stress improvement region Sr is the outer surface S2 in the compressed state and the inner surface S1 in the tensile state (tensile yield state) as described above. After cooling (step St6), when the temperature difference between the inner and outer surfaces disappears, the inner surface S1 becomes a compressive stress state, and the residual stress of the inner surface S1 is improved. Thereafter, the moving means 2 is operated to move the laser light irradiation means 1a in the axial direction (step St7) (see FIG. 2). It is determined whether the moved portion is the stress improvement region Sr (step St8).

レーザ光照射手段1aの移動先が応力改善領域の場合(ステップSt8でYESの場合)ステップSt2に戻り、残留応力の改善をおこなう。レーザ光照射手段1aの移動先が応力改善領域Srでない場合(ステップSt8でNOの場合)、残留応力の改善を終了する。   When the movement destination of the laser beam irradiation means 1a is the stress improvement region (YES in Step St8), the process returns to Step St2 to improve the residual stress. When the movement destination of the laser beam irradiation means 1a is not the stress improvement region Sr (NO in step St8), the improvement of the residual stress is finished.

上述の実施例においてはレーザ光照射手段1aに8個のレーザ光照射部12aを取り付けたものを示しているが、それに限定されるものではなく、管体の全周にわたって同時に且つ一様にレーザ光を照射することができる個数を採用することができる。また、軸方向に複数列に取り付けることで、軸方向にも同時に広くレーザ光を照射することが可能である。また、レーザ光を連続的に軸方向に移動することも可能である。   In the above-described embodiment, the laser beam irradiation means 1a is provided with eight laser beam irradiation sections 12a. However, the present invention is not limited to this, and the laser is simultaneously and uniformly distributed over the entire circumference of the tube body. The number that can be irradiated with light can be employed. In addition, by attaching to a plurality of rows in the axial direction, it is possible to irradiate the laser beam widely in the axial direction simultaneously. It is also possible to continuously move the laser beam in the axial direction.

(第2の実施形態)
図5(A)、(B)管体に本発明にかかる管体の残留応力改善方法の一例による残留応力改善を表す正面図及び側面図を示す。図5(C)〜図5(E)に本発明にかかる管体の残留応力改善方法の一例の手順を示す。また、図5に示す残留応力改善装置はレーザ光照射手段以外の部分は図2に示す残留応力改善装置Aと実質上同じ構成であり、実質上同じ部分には同じ符号を付してある。
(Second Embodiment)
5A and 5B are a front view and a side view showing residual stress improvement by an example of the method for improving residual stress of a tubular body according to the present invention. 5 (C) to 5 (E) show a procedure of an example of a method for improving the residual stress of a tubular body according to the present invention. Further, the residual stress improving apparatus shown in FIG. 5 has substantially the same configuration as the residual stress improving apparatus A shown in FIG. 2 except for the laser beam irradiation means, and the same reference numerals are given to substantially the same parts.

図5(A)、(B)に示す残留応力の改善装置A2では応力改善領域Srの軸方向長さを有する矩形に配置された(本実施例では6個)レーザ光照射部12bより同時に且つ一様に応力改善領域Srにレーザ光Lzを照射する。応力改善領域Srのレーザ光Lzが照射された部分で、温度測定手段にて温度を測定し、所定の温度になった(応力改善領域の内外面の温度差が所定の温度になった)後に冷却することで管体内面の残留応力を引張応力状態から圧縮応力状態に改善することができるものである。残留応力が引張応力状態から圧縮応力状態に改善されるメカニズムは図1に示すものと同一である。   In the residual stress improving apparatus A2 shown in FIGS. 5 (A) and 5 (B), it is arranged simultaneously with the laser beam irradiation unit 12b arranged in a rectangle having the axial length of the stress improving region Sr (six in this embodiment). The laser beam Lz is irradiated uniformly on the stress improvement region Sr. After the temperature is measured by the temperature measuring means at the portion of the stress improvement region Sr irradiated with the laser beam Lz, the temperature reaches a predetermined temperature (the temperature difference between the inner and outer surfaces of the stress improvement region reaches the predetermined temperature). By cooling, the residual stress on the inner surface of the tubular body can be improved from the tensile stress state to the compressive stress state. The mechanism by which the residual stress is improved from the tensile stress state to the compressive stress state is the same as that shown in FIG.

その後、移動手段にてレーザ光照射手段1bを管体Piの円周方向に移動し、応力改善領域Srの残留応力の改善処理を行っていない部分にレーザ光Lzを照射できる位置で停止し、残留応力改善処理を行う(図5(C)参照)。以上の操作をレーザ光照射手段1bが円周方向に一周するように行う(図5(D)参照)ことで応力改善領域Srの内面の残留応力を引張状態から圧縮状態に改善することができる(図5(E)参照)。本工程においてレーザ光は連続的に移動することも可能である。   Thereafter, the laser beam irradiation unit 1b is moved in the circumferential direction of the pipe Pi by the moving unit, and is stopped at a position where the portion of the stress improvement region Sr where the residual stress improvement process is not performed can be irradiated with the laser beam Lz. Residual stress improvement processing is performed (see FIG. 5C). By performing the above operation so that the laser beam irradiation means 1b makes one round in the circumferential direction (see FIG. 5D), the residual stress on the inner surface of the stress improvement region Sr can be improved from the tensile state to the compressed state. (See FIG. 5E). In this step, the laser beam can also move continuously.

本実施例に示す管体の残留応力を改善装置A2のレーザ光照射手段1bはレーザ光照射部12bを軸方向に6個並べたものを例示しているが、それに限定されるものではなく、応力改善領域Srにあわせた個数を採用することができる。また、任意にレーザ光照射部12bの個数を変えることができるものや、複数備えられているレーザ光照射部12bのうち、任意のレーザ光照射部12bからのみレーザ光Lzを照射するものであってもよい。   The laser beam irradiation means 1b of the apparatus A2 for improving the residual stress of the tubular body shown in the present embodiment is an example in which six laser beam irradiation sections 12b are arranged in the axial direction, but is not limited thereto. The number according to the stress improvement area | region Sr is employable. Further, the number of the laser beam irradiation units 12b can be arbitrarily changed, or the laser beam Lz is irradiated only from the arbitrary laser beam irradiation unit 12b among the plural laser beam irradiation units 12b. May be.

この方法を用いることで、図3に示す残留応力の改善方法に比べて管体の径による制限が少なくなり、より多くの管体に対して本発明にかかる残留応力の改善方法を適用することができる。   By using this method, there is less restriction due to the diameter of the tube compared to the method for improving residual stress shown in FIG. 3, and the method for improving residual stress according to the present invention is applied to more tubes. Can do.

(第3の実施形態)
図6(A)、(B)管体に本発明にかかる管体の残留応力改善方法の一例による残留応力改善を表す正面図及び側面図を示す。図6(C)〜図6(F)に本発明にかかる管体の残留応力改善方法の他の例の手順を示す。また、図6に示す残留応力改善装置はレーザ光照射手段以外の部分は図2に示す残留応力改善装置Aと実質上同じ構成であり、実質上同じ部分には同じ符号を付してある。
(Third embodiment)
FIGS. 6A and 6B are a front view and a side view showing residual stress improvement by an example of a method for improving residual stress of a tubular body according to the present invention. FIG. 6C to FIG. 6F show the procedure of another example of the method for improving the residual stress of a tubular body according to the present invention. Further, the remaining stress improving apparatus shown in FIG. 6 has substantially the same configuration as the residual stress improving apparatus A shown in FIG. 2 except for the laser beam irradiation means, and the same reference numerals are given to the substantially same parts.

図6(A)、(B)に示す残留応力の改善装置A3ではレーザ光照射手段1cに1個のレーザ光照射部12cを有している。応力改善領域Srの端部の任意の場所(図6(C)中P1部)にレーザ光を照射する。応力改善領域Srのレーザ光が照射された部分で、温度測定手段にて温度を測定し、所定の温度になった(応力改善領域の内外面の温度差が所定の温度になった)後に冷却することで管体内面の残留応力を引張応力状態から圧縮応力状態に改善することができるものである。残留応力が引張応力状態から圧縮応力状態に改善されるメカニズムは図1に示すものと同一である。   In the residual stress improving apparatus A3 shown in FIGS. 6A and 6B, the laser light irradiation means 1c has one laser light irradiation section 12c. Laser light is irradiated to an arbitrary place (P1 portion in FIG. 6C) at the end of the stress improvement region Sr. The temperature is measured by the temperature measuring means at the portion of the stress improvement region Sr irradiated with the laser beam, and cooled after the temperature reaches a predetermined temperature (the temperature difference between the inner and outer surfaces of the stress improvement region reaches the predetermined temperature). By doing so, the residual stress on the inner surface of the tubular body can be improved from the tensile stress state to the compressive stress state. The mechanism by which the residual stress is improved from the tensile stress state to the compressive stress state is the same as that shown in FIG.

その後、移動手段2にてレーザ光照射手段1cを管体Piの円周方向に移動し、応力改善領域Srの残留応力の改善処理を行っていない部分にレーザ光を照射できる位置で停止し、残留応力改善処理を行う(図6(D)参照)。以上の操作をレーザ光照射手段1cが円周方向に一周するように行う(図6(E)参照)。   Thereafter, the moving means 2 moves the laser light irradiation means 1c in the circumferential direction of the pipe Pi, and stops at a position where the portion of the stress improvement region Sr where the residual stress improvement processing is not performed can be irradiated with the laser light, Residual stress improvement processing is performed (see FIG. 6D). The above operation is performed so that the laser beam irradiation means 1c makes one round in the circumferential direction (see FIG. 6E).

レーザ光照射手段1cが管体の周りを一周した後、移動手段はレーザ光照射手段1cを軸方向に移動し応力改善領域Srの残留応力の改善処理を行っていない部分にレーザ光を照射できる位置で停止し上述の応力改善処理を行う(図6(F)参照)。レーザ光照射手段1cが管体の周りを1周ごとに軸方向に移動して応力の改善処理を行うことで応力改善領域Sr全体の残留応力を改善することができる。   After the laser light irradiation means 1c makes a round around the tube, the moving means can move the laser light irradiation means 1c in the axial direction and irradiate the portion of the stress improvement region Sr where the residual stress improvement processing is not performed. Stop at the position and perform the above-described stress improvement processing (see FIG. 6F). The laser light irradiation means 1c moves in the axial direction around the tube in the axial direction to perform stress improvement processing, whereby the residual stress in the entire stress improvement region Sr can be improved.

(第4の実施形態)
図7(A)〜(F)に本発明にかかる管体の残留応力の改善方法の概略図を示す。図7各図に示す応力改善方法を実施するための応力改善装置A4は、管体Pi内面に挿入され、管体Piの内面の周方向を所定の軸方向幅で同時に加熱するレーザ光照射手段1dと、レーザ光照射手段1dによってレーザ光Lzが照射され、加熱された部分に冷却水を噴射して冷却する冷却水噴射手段4とを有している。
(Fourth embodiment)
7A to 7F are schematic views of a method for improving the residual stress of a tubular body according to the present invention. 7 is a laser beam irradiation means which is inserted into the inner surface of the pipe Pi and simultaneously heats the circumferential direction of the inner surface of the pipe Pi with a predetermined axial width. 1d and the cooling water injection means 4 which cools by injecting cooling water to the heated part irradiated with the laser beam Lz by the laser light irradiation means 1d.

レーザ光照射手段1dは光ファイバケーブル13dにてレーザ光を伝達していき、光ファイバケーブル13dの先端に備えられたレーザ光照射部12dより管体内部にリング状にレーザ光を照射する。   The laser beam irradiating means 1d transmits the laser beam through the optical fiber cable 13d, and irradiates the laser beam in a ring shape from the laser beam irradiation unit 12d provided at the tip of the optical fiber cable 13d.

図7(A)に示すようにまず、管体Pi内部にレーザ光照射手段1dを挿入し、残留応力を改善する応力改善領域Srにレーザ光Lzを照射する。レーザ光Lzを照射することで管体を常温RTより所定温度ΔT1昇温させる。このときの管体Piの厚みと温度の関係及び応力の関係を図7(D)に示す。図7(D)に示すように温度は管体内面が外面に比べて高温になっている。また、管体Piを加熱することで発生する熱膨張による応力は内面側で小さな圧縮応力、外面側で小さな引張応力が発生している。   As shown in FIG. 7A, first, the laser beam irradiation means 1d is inserted into the pipe body Pi, and the laser beam Lz is irradiated to the stress improvement region Sr for improving the residual stress. By irradiating the laser beam Lz, the tube body is heated from the room temperature RT by a predetermined temperature ΔT1. FIG. 7D shows the relationship between the thickness of the pipe Pi at this time, the temperature, and the stress. As shown in FIG. 7D, the temperature of the inner surface of the tubular body is higher than that of the outer surface. Moreover, the stress by the thermal expansion which generate | occur | produces by heating the tubular body Pi has produced | generated the small compressive stress on the inner surface side, and the small tensile stress on the outer surface side.

その後、管体の内面がそれには限定されないがここでは約500℃に昇温するまでレーザ光照射手段1dよりレーザ光を照射して、レーザ光の照射を終了する。その後、図7(B)に示すように冷却水噴射手段4を管体Piの内部に挿入し、管体内部に冷却水Wrを噴射して管体内面を急速冷却する。このときの温度及び応力の状態を図7(E)に示す。図7(E)の示すように、外面の温度が下がらないように且つ内面の温度がΔT2下がるまで急速冷却する。   Thereafter, the inner surface of the tube is not limited to this, but here, the laser beam is irradiated from the laser beam irradiation means 1d until the temperature is raised to about 500 ° C., and the laser beam irradiation is terminated. Thereafter, as shown in FIG. 7B, the cooling water injection means 4 is inserted into the pipe Pi, and the cooling water Wr is injected into the pipe to rapidly cool the inner surface of the pipe. The state of temperature and stress at this time is shown in FIG. As shown in FIG. 7E, rapid cooling is performed until the temperature of the outer surface does not decrease and the temperature of the inner surface decreases by ΔT2.

このとき内面は急激に冷却されるので応力状態は大きな引張応力が発生し、引張降伏状態になっている。また、外面は内面に大きな引張応力が発生したことで相反的に圧縮応力が発生している状態になっている。   At this time, since the inner surface is rapidly cooled, a large tensile stress is generated in the stress state, and a tensile yield state is obtained. Further, the outer surface is in a state where compressive stress is generated reciprocally due to a large tensile stress generated on the inner surface.

その後、図7(C)に示すように管体Piより冷却水噴射手段4を取り出して、管体Pi全体を冷却する。またこのときの温度及び応力の状態を図7(F)に示す。内面のみ急速冷却して内面の応力状態を引張状態、外面の応力状態を圧縮状態にした状態で、管体全体を常温RTになるまで冷却することで、管体Piの内面を圧縮状態の残留応力を形成することができる。   Thereafter, as shown in FIG. 7C, the coolant injection means 4 is taken out from the pipe Pi to cool the whole pipe Pi. In addition, FIG. 7F shows the state of temperature and stress at this time. The inner surface of the pipe Pi remains in a compressed state by rapidly cooling only the inner surface and cooling the entire tube until it reaches room temperature RT with the stress state of the inner surface in a tensile state and the stress state of the outer surface in a compressed state. Stress can be formed.

レーザ光照射手段1dは光ファイバケーブル13dの先端にレーザ光照射部12dが設けられているので、この方法で、管体Piの応力改善領域の残留応力を改善する場合、内径の小さな管体にも適用することが可能である。   Since the laser beam irradiation means 1d is provided with the laser beam irradiation part 12d at the tip of the optical fiber cable 13d, when the residual stress in the stress improvement region of the tube Pi is improved by this method, the tube with a small inner diameter is used. Can also be applied.

(第5の実施形態)
図8に本発明にかかる管体の残留応力の改善方法の概略図を示す。図8(A)は本発明にかかる管体の残留応力改善前の応力状態を示す図であり、図8(B)は応力改善領域の一方に隣り合う領域を加熱したときの応力分布であり、図8(C)は冷却後の応力分布であり、図8(D)は応力改善領域の他方に隣り合う領域を加熱したときの応力分布であり、図8(E)は冷却後の応力分布である。
(Fifth embodiment)
FIG. 8 shows a schematic diagram of a method for improving the residual stress of a tubular body according to the present invention. FIG. 8A is a diagram showing a stress state before the residual stress improvement of the tubular body according to the present invention, and FIG. 8B is a stress distribution when a region adjacent to one of the stress improvement regions is heated. 8C shows the stress distribution after cooling, FIG. 8D shows the stress distribution when a region adjacent to the other of the stress improvement regions is heated, and FIG. 8E shows the stress distribution after cooling. Distribution.

第1の実施形態から第4の実施形態に示している管体の残留応力の改善方法は、管体Piの厚み方向の温度差によって、内面の残留応力を引張状態から圧縮状態に改善するものであったが、図8に示す管体の残留応力の改善方法は、軸方向の温度差によって残留応力を改善したい領域(応力改善領域Sr)の残留応力を改善するものである。   The method for improving the residual stress of the tubular body shown in the first to fourth embodiments is to improve the residual stress on the inner surface from a tensile state to a compressed state by a temperature difference in the thickness direction of the tubular body Pi. However, the method for improving the residual stress of the tubular body shown in FIG. 8 is to improve the residual stress in the region where the residual stress is desired to be improved (stress improving region Sr) due to the temperature difference in the axial direction.

図8(A)に示すように管体の残留応力は応力改善領域Srでは残留応力は引張状態であり、その両側に隣り合う部分N1、N2では圧縮状態である。まず、レーザ光照射手段1eを一方の応力改善領域Srと隣り合う部分N1(以下、第1の領域N1という)に配置し、レーザ光Lzを照射する。温度測定手段にて測定している第1の領域N1の温度が所定の温度になるまでレーザ光Lzを照射した後、レーザ光照射を終了する。このとき第1の領域N1と応力改善領域Srとの間に所定の温度差が生じている。この状態において管体の応力分布は図8(B)の実線で示すとおりになる。すなわち、加熱部(ここでは、第1の領域N1)に引張応力が発生し、隣の応力改善領域Srでは圧縮応力が発生する。   As shown in FIG. 8A, the residual stress of the tubular body is in the tensile state in the stress improvement region Sr, and the portions N1 and N2 adjacent to both sides thereof are in the compressed state. First, the laser beam irradiation means 1e is arranged in a portion N1 adjacent to one stress improvement region Sr (hereinafter referred to as the first region N1), and the laser beam Lz is irradiated. After the laser beam Lz is irradiated until the temperature of the first region N1 measured by the temperature measuring means reaches a predetermined temperature, the laser beam irradiation is terminated. At this time, a predetermined temperature difference is generated between the first region N1 and the stress improvement region Sr. In this state, the stress distribution of the tubular body is as shown by the solid line in FIG. That is, a tensile stress is generated in the heating portion (here, the first region N1), and a compressive stress is generated in the adjacent stress improvement region Sr.

そして、冷却することで加熱によって膨張していた部分が収縮し残留応力の分布は図8(C)の実線に示すとおり、第1の領域N1、応力改善領域Srは引張状態の残留応力が生じ、第2の領域N2では圧縮状態の残留応力が生じている。   Then, the portion that has been expanded by heating is contracted by cooling, and the residual stress distribution is generated in the first region N1 and the stress improvement region Sr as shown by the solid line in FIG. 8C. In the second region N2, residual stress in a compressed state is generated.

その後、レーザ光照射手段1eを第2の領域N2に移動させ、レーザ光Lzの照射を行う。第2の領域N2の温度が所定の温度に達するまで、換言すれば、第2の領域N2と応力改善領域Srとの間に所定の温度差が発生するまでレーザ光Lzを照射しレーザ光照射を終了する。   Thereafter, the laser beam irradiation means 1e is moved to the second region N2, and the laser beam Lz is irradiated. Until the temperature of the second region N2 reaches a predetermined temperature, in other words, until the predetermined temperature difference is generated between the second region N2 and the stress improvement region Sr, the laser light irradiation is performed. Exit.

このとき、管体Piの応力分布は図8(D)の実線で示すとおりになる。すなわち、加熱部(ここでは第2の領域N2)に引張応力が発生し、隣の応力改善領域Srには圧縮応力が発生する。   At this time, the stress distribution of the pipe Pi is as shown by the solid line in FIG. That is, a tensile stress is generated in the heating part (here, the second region N2), and a compressive stress is generated in the adjacent stress improvement region Sr.

その後冷却することで加熱によって膨張していた部分が収縮し、残留応力の分布は図8(E)の実線に示すとおりであり、第1の領域N1、第2の領域N2には引張状態の残留応力が発生しており、応力改善領域Srには圧縮状態の残留応力が発生している。   After cooling, the portion that was expanded by heating contracts, and the distribution of residual stress is as shown by the solid line in FIG. 8E. The first region N1 and the second region N2 are in a tensile state. Residual stress is generated, and compressive residual stress is generated in the stress improvement region Sr.

応力改善領域Srの残留応力は圧縮状態に改善されるとともに、第1の領域N1及び第2の領域N2の残留応力は引張状態であるが小さな応力に抑えられる。また、残留応力改善の目的である応力腐食割れは、材料、応力、環境の条件を満たしたときに発生するが、第1の領域N1及び第2の領域N2では材料の条件を満たしていないので、多少大きな引張状態の残留応力が発生しても、応力腐食割れの原因にならない。   The residual stress in the stress improvement region Sr is improved to a compressed state, and the residual stress in the first region N1 and the second region N2 is in a tensile state but is suppressed to a small stress. In addition, stress corrosion cracking, which is the purpose of improving residual stress, occurs when the conditions of the material, stress, and environment are satisfied, but the material conditions are not satisfied in the first region N1 and the second region N2. Even if a slightly large residual stress is generated, it does not cause stress corrosion cracking.

本実施例において、残留応力の改善装置は上述の第1〜第3の実施形態に示す応力改善装置いずれを用いても残留応力の改善を図ることができる。また、温度差を管体の厚み方向でなく軸方向に取るものであるため、厚みの薄い管体に対しても残留応力の改善方法を用いて、残留応力改善処理を行うことが可能である。   In this embodiment, the residual stress can be improved by using any of the stress improving apparatuses shown in the first to third embodiments. Further, since the temperature difference is taken in the axial direction instead of the thickness direction of the tubular body, it is possible to perform the residual stress improving process on the thin tubular body using the residual stress improving method. .

以上の各実施形態に示した管体の残留応力の改善領域はそれに限定されるものではないが、配管溶接継手を例示することができる。また、圧延部、切削部等の管体の残留応力を改善する領域を広く採用することができる。   Although the improvement area | region of the residual stress of the pipe body shown to the above each embodiment is not limited to it, a pipe welded joint can be illustrated. Moreover, the area | region which improves the residual stress of tubular bodies, such as a rolling part and a cutting part, can be employ | adopted widely.

<他の実施形態>
本実施形態は、パイプの軸方向に長い加熱幅をもたせて、円周方向に連続して回転させた場合である。加熱する装置構成は図9に示すとおりである。以下、加熱手順について説明する。
<Other embodiments>
In the present embodiment, a long heating width is provided in the axial direction of the pipe, and the pipe is continuously rotated in the circumferential direction. The apparatus configuration for heating is as shown in FIG. Hereinafter, the heating procedure will be described.

(1)予め、同等のパイプ形状の供試体において外面及び内面の温度を計測しながら、加熱試験を行った。加熱は図9に示すように、ロボットアームにレーザ光学系50を搭載し、約500mm/s(30m/min)のスキャン速度で軸方向に往復運動させ、軸方向における約80mm(スキャン距離)を加熱した。往復運動の折り返し地点では速度が0となり、入熱が大きくなるため、水冷銅板のシャッター51を設置して、等速度の領域(シャッター距離)のみを利用して加熱試験を実施した。   (1) A heating test was performed in advance while measuring the temperature of the outer surface and the inner surface of a specimen having an equivalent pipe shape. As shown in FIG. 9, the laser optical system 50 is mounted on the robot arm as shown in FIG. 9, and is reciprocated in the axial direction at a scanning speed of about 500 mm / s (30 m / min) to obtain about 80 mm (scanning distance) in the axial direction. Heated. Since the speed becomes 0 and the heat input becomes large at the turn-back point of the reciprocating motion, a water-cooled copper plate shutter 51 was installed, and a heating test was performed using only a constant speed region (shutter distance).

レーザ発振器としては、4kWYAGレーザを使用し、発振器から光学系50までは光ファイバーでレーザ光を伝送した。パイプ52は回転ポジショナに搭載し、等速度で回転させた。加熱時にはパイプ52の外面に黒鉛を主成分とする吸収剤を塗布した。内外面の温度が所定の温度となる下記加熱条件(レーザ出力とパイプ52の回転速度)を決定した。   As the laser oscillator, a 4 kWYAG laser was used, and laser light was transmitted from the oscillator to the optical system 50 through an optical fiber. The pipe 52 was mounted on a rotary positioner and rotated at a constant speed. During heating, an absorbent containing graphite as a main component was applied to the outer surface of the pipe 52. The following heating conditions (laser output and rotational speed of the pipe 52) were determined so that the inner and outer surfaces had a predetermined temperature.

パイプ形状:直径φ114.3mm,厚さt13.5mm
パイプ材質:SUS304(固溶化温度は1050℃)
レーザ出力:4kW(YAGレーザ)
回転速度:1.4mm/sec(周速)
内外面の温度差:約400℃
外面加熱温度:約450℃
加熱領域:軸方向に約80mm(3√rt:r=57.15mm,t=13.5mm)
円周方向に約15mm(円周方向のスキャンがないときの加熱幅)
Pipe shape: Diameter φ114.3mm, thickness t13.5mm
Pipe material: SUS304 (Solution temperature is 1050 ° C)
Laser output: 4kW (YAG laser)
Rotation speed: 1.4mm / sec (peripheral speed)
Temperature difference between inside and outside: about 400 ° C
External heating temperature: about 450 ° C
Heating area: about 80 mm in the axial direction (3√rt: r = 57.15 mm, t = 13.5 mm)
Approximately 15mm in the circumferential direction (heating width when there is no circumferential scan)

図10は、軸方向の温度分布図である。同図に示すように、軸方向における約80mmをほぼ均熱に約450℃に加熱することができた。   FIG. 10 is a temperature distribution diagram in the axial direction. As shown in the figure, about 80 mm in the axial direction could be heated to about 450 ° C. in a substantially uniform manner.

(2)パイプ52の表面の2ヶ所に温度計測用に熱電対を設置した。2ヶ所に設置した熱電対は、パイプ52の表面において対角となる位置(0°と180°の位置)に設置した。   (2) Thermocouples were installed at two locations on the surface of the pipe 52 for temperature measurement. The thermocouples installed at two places were installed at diagonal positions (positions of 0 ° and 180 °) on the surface of the pipe 52.

(3)決定した上記加熱条件でレーザ光を照射してパイプ52の周囲1周を加熱した。レーザ光により加熱する箇所以外の内面及び外面は放冷状態とした。また、加熱時の温度履歴を確認するため、前記熱電対から得られた温度履歴を記録計に記録した。   (3) The circumference of the pipe 52 was heated by irradiating laser light under the determined heating conditions. The inner and outer surfaces other than the portion heated by the laser beam were allowed to cool. Moreover, in order to confirm the temperature history at the time of heating, the temperature history obtained from the said thermocouple was recorded on the recorder.

(4)パイプの円周方向の加熱は、円周方向一周に亘って行った。加熱後、パイプ52は放冷により、室温まで冷却した。図11は、冷却後のパイプ内面の軸方向の残留応力分布を示す図である。同図には、溶接したまま(加熱施工前)の残留応力分布も併せて図示してある。同図から、レーザ加熱によりパイプの内面の残留応力が低減していることがわかる。   (4) The pipe was heated in the circumferential direction over the entire circumference. After heating, the pipe 52 was cooled to room temperature by cooling. FIG. 11 is a diagram showing the residual stress distribution in the axial direction of the pipe inner surface after cooling. The figure also shows the residual stress distribution as welded (before heating). From the figure, it can be seen that the residual stress on the inner surface of the pipe is reduced by laser heating.

なお、加熱領域は、溶接部を中心として2.5√(rt)(r:管の平均半径、t:管の板厚)以上、好ましくは3√(rt)以上が均一に加熱されるようにすればよい。また、このときの加熱温度は固溶化温度未満とすることが好ましい。   Note that the heating region is uniformly heated by 2.5√ (rt) (r: average radius of the tube, t: thickness of the tube) or more, preferably 3√ (rt) or more, centering on the welded portion. You can do it. Further, the heating temperature at this time is preferably less than the solution temperature.

なお、上記実施形態において、レーザ光源11としては、レーザダイオードやファイバーレーザであることが好ましい。また、レーザ光照射部12,12a,12b,12cからのレーザ光Lzの強度が、照射位置により調整可能であることが好ましく、これにより、残留応力改善部位が複雑形状であったり、異材部位であったりしても、適切に対応することができる。また、残留応力改善対象の管体Piとしては、原子炉プラントのステンレス鋼配管、BWR(沸騰水型原子力発電)の再循環配管、原子力プラントの原子炉容器、加圧器、蒸気発生器のいずれかに接続される低合金鋼とオーステナイト系ステンレス鋼の異材継ぎ手部、例えばセーフエンド溶接部(特にニッケル基合金部)等が挙げられる。   In the above embodiment, the laser light source 11 is preferably a laser diode or a fiber laser. In addition, it is preferable that the intensity of the laser beam Lz from the laser beam irradiation units 12, 12a, 12b, and 12c can be adjusted depending on the irradiation position, so that the residual stress improvement site has a complicated shape or a different material site. Even if there is, it can respond appropriately. Further, the pipe Pi for which the residual stress is to be improved is any one of a stainless steel pipe of a nuclear reactor plant, a recirculation pipe of a BWR (boiling water nuclear power generation), a nuclear reactor reactor vessel, a pressurizer, and a steam generator. And a dissimilar joint between low alloy steel and austenitic stainless steel, such as a safe-end weld (particularly nickel-base alloy).

また、レーザ光Lzが照射される管体Piの表面には、吸収剤を、特に炭素や雲母が含有されている吸収剤を塗布することが好ましい。また、吸収剤の塗布厚については、厚すぎると管体の温度上昇が妨げられる恐れがあるため、適当な厚さに管理することが好ましい。なお、SCCの発生を抑制するためには、吸収剤にはハロゲン元素を含有しない方が好ましい。   Moreover, it is preferable to apply an absorbent, particularly an absorbent containing carbon or mica, to the surface of the tubular body Pi irradiated with the laser light Lz. Moreover, about the application | coating thickness of an absorber, since there exists a possibility that the temperature rise of a pipe body may be prevented when it is too thick, it is preferable to manage to appropriate thickness. In order to suppress the occurrence of SCC, it is preferable that the absorbent does not contain a halogen element.

また、図4に示すように、レーザ光照射を停止(ステップst5)した後に冷却(ステップst6)する例を説明したが、管体Piの内面を水冷又は空冷しながらレーザ光照射工程を行ったり、管体Piの外面における、レーザ光照射部12,12a,12b,12cの移動方向の前方向又は後方向を水冷又は空冷しながらレーザ光照射工程を行ったりすることが好ましい。また、管体Piの外面又は内面にレーザ光照射する際には、レーザ光Lzを間欠的に照射してもよい。   Further, as shown in FIG. 4, the example in which the laser beam irradiation is stopped (step st5) and then cooled (step st6) has been described, but the laser beam irradiation process may be performed while the inner surface of the pipe Pi is cooled with water or air. In addition, it is preferable to perform the laser light irradiation step while water-cooling or air-cooling the forward direction or the backward direction of the moving direction of the laser light irradiation units 12, 12a, 12b, 12c on the outer surface of the pipe Pi. Further, when irradiating the outer surface or the inner surface of the pipe Pi with the laser beam, the laser beam Lz may be irradiated intermittently.

また、図5,6に示すように、レーザ光照射手段1b,1cの駆動態様として、管体Piの円周方向に一周する例を示したが、レーザ光照射手段1b,1cを移動初期と移動終期が重なるように一周以上移動させると共に、移動初期及び移動終期においてレーザ出力を抑制するようにすることが好ましい。また、レーザ光照射手段1b,1cを管体Piの円周方向に応力改善領域に沿ってほぼ半周させた後に元の位置に戻して、更にこの半周させた移動方向と逆方向にほぼ半周させた後に元の位置に戻すようにしてもよい。なお、移動は、ほぼ半周、に限られず、管体Piの円周方向を複数に分割して移動させればよい。   Moreover, as shown in FIGS. 5 and 6, as an example of the driving mode of the laser light irradiation means 1 b and 1 c, an example of making a round in the circumferential direction of the pipe Pi has been shown. It is preferable to move one or more rounds so that the end of movement overlaps, and to suppress the laser output at the beginning and end of movement. Further, the laser beam irradiation means 1b, 1c are made to make a half turn in the circumferential direction of the pipe Pi along the stress improvement region, and then returned to the original position, and further made a half turn in the direction opposite to the half-turned movement direction. After that, it may be returned to the original position. Note that the movement is not limited to substantially a half circumference, and the circumferential direction of the pipe Pi may be divided into a plurality of pieces and moved.

また、レーザ光照射工程を、管体Piの外面における、レーザ光照射手段1,1a〜1eの移動方向に沿って、レーザ光照射前、照射中、照射後の温度変化をモニタリングしながら行うことが好ましい。このように、残留応力を適切に改善するためには、管体Piの肉厚方向の温度分布を適切に制御・管理することが好ましい。温度の測定には、放射温度計または、管体のレーザ光照射部分に設置した熱電対、温度チョーク又は接触温度計により測定することができる。   Further, the laser light irradiation process is performed while monitoring the temperature change before, during and after the laser light irradiation along the moving direction of the laser light irradiation means 1, 1a to 1e on the outer surface of the pipe Pi. Is preferred. Thus, in order to appropriately improve the residual stress, it is preferable to appropriately control and manage the temperature distribution in the thickness direction of the pipe Pi. The temperature can be measured with a radiation thermometer, a thermocouple, a temperature choke, or a contact thermometer installed in the laser beam irradiation portion of the tube.

また、予め、残留応力を改善する管体Piと同材料の平板、または同材料、同形状の疑似モデルを用意して、該モデルに対して最適な残留応力改善方法をシミュレーションした後、該結果に基づいて、実際の管体Piの残留応力を改善することが好ましい。   In addition, a flat plate of the same material as the pipe Pi for improving the residual stress, or a pseudo model of the same material and the same shape is prepared in advance, and an optimal residual stress improving method is simulated for the model, and then the result is obtained. Based on the above, it is preferable to improve the residual stress of the actual pipe Pi.

図(A)〜(D)は管体の残留応力改善のメカニズムの概略図である。Figures (A) to (D) are schematic views of the mechanism for improving the residual stress of the tubular body. 本発明にかかる管体の残留応力改善装置の概略配置図である。1 is a schematic layout diagram of a tubular body residual stress improving apparatus according to the present invention. 図(A)、(B)は本発明にかかる管体の残留応力改善装置の一例の正面図及び側面図であり、図(C)〜図(E)は本発明にかかる管体の残留応力改善方法を示す概略斜視図である。FIGS. 2A and 2B are a front view and a side view of an example of a tubular body residual stress improving apparatus according to the present invention, and FIGS. 3C to 1E are residual stresses of the tubular body according to the present invention. It is a schematic perspective view which shows the improvement method. 図3に示す管体の残留応力改善方法による残留応力改善手順を示すフローチャートである。It is a flowchart which shows the residual stress improvement procedure by the residual stress improvement method of the tubular body shown in FIG. 図(A)、(B)は本発明にかかる管体の残留応力改善装置の他の例の正面図及び側面図であり、図(C)〜図(E)は本発明にかかる管体の残留応力改善方法を示す概略斜視図である。Drawing (A) and (B) are the front views and side views of other examples of the residual stress improvement device of the tubular body concerning the present invention, and Drawing (C)-Drawing (E) are the tubular bodies concerning the present invention. It is a schematic perspective view which shows the residual stress improvement method. 図(A)、(B)は本発明にかかる管体の残留応力改善装置のさらに他の例の正面図及び側面図であり、図(C)〜図(E)は本発明にかかる管体の残留応力改善方法を示す概略斜視図である。FIGS. (A) and (B) are a front view and a side view of still another example of a tubular body residual stress improving apparatus according to the present invention, and FIGS. (C) to (E) are tubular bodies according to the present invention. It is a schematic perspective view which shows the residual stress improvement method. 図(A)〜(C)は本発明にかかる管体の残留応力改善装置及びそれを用いた残留応力改善方法を示す概略斜視図であり、図(D)〜(F)はそのときの内外面の温度差及び応力を示す図である。FIGS. 1A to 1C are schematic perspective views showing a residual stress improving apparatus for a tubular body and a residual stress improving method using the same according to the present invention, and FIGS. It is a figure which shows the temperature difference and stress of an outer surface. 図(A)は本発明にかかる管体の残留応力改善前の応力状態を示す図であり、図(B)は応力改善領域の一方に隣り合う領域を加熱したときの応力分布であり、図(C)は冷却後の応力分布であり、図(D)は応力改善領域の他方に隣り合う領域を加熱したときの応力分布であり、図(E)は冷却後の応力分布である。FIG. (A) is a diagram showing a stress state before the residual stress improvement of the tubular body according to the present invention, and FIG. (B) is a stress distribution when a region adjacent to one of the stress improvement regions is heated. (C) is a stress distribution after cooling, FIG. (D) is a stress distribution when a region adjacent to the other of the stress improvement regions is heated, and FIG. (E) is a stress distribution after cooling. 他の実施形態に係る加熱する装置構成を示す図である。It is a figure which shows the apparatus structure which heats which concerns on other embodiment. 軸方向の温度分布図を示す図である。It is a figure which shows the temperature distribution figure of an axial direction. 冷却後のパイプ内面の軸方向の残留応力分布を示す図である。It is a figure which shows the residual stress distribution of the axial direction of the pipe inner surface after cooling.

符号の説明Explanation of symbols

A、A1、A2、A3、A4 管体の残留応力改善装置
1、1a、1b、1c、1d、1e レーザ光照射手段
11 レーザ光源
12、12a、12b、12c レーザ光照射部
13、13d 光ファイバケーブル
2 移動手段
3 温度測定手段
4 冷却水噴射手段
Pi 管体
Sr 応力改善領域
50:レーザ光学系
51:シャッター
52:パイプ
A, A1, A2, A3, A4 Tubular residual stress improvement device 1, 1a, 1b, 1c, 1d, 1e Laser light irradiation means 11 Laser light source 12, 12a, 12b, 12c Laser light irradiation unit 13, 13d Optical fiber Cable 2 Moving means 3 Temperature measuring means 4 Cooling water injection means Pi tube Sr Stress improvement region 50: Laser optical system 51: Shutter 52: Pipe

Claims (49)

管体内面の残留応力を改善する残留応力の改善方法であって、
前記管体の残留応力を改善したい応力改善領域に、管体の外部に配置されたレーザ光照射部から該管体の外面にレーザ光を照射することを特徴とする管体の残留応力改善方法。
A method for improving residual stress that improves residual stress on the inner surface of a tubular body,
A method for improving residual stress of a tubular body, comprising: irradiating a laser beam to an outer surface of the tubular body from a laser light radiating portion disposed outside the tubular body in a stress improvement region where the residual stress of the tubular body is desired to be improved .
前記レーザ光照射は管体の材質に合わせて照射するレーザ光の出力を調整できることを特徴とする請求項1に記載の管体の残留応力改善方法。   The method for improving residual stress of a tubular body according to claim 1, wherein the laser light irradiation can adjust the output of the laser light to be irradiated according to the material of the tubular body. 前記レーザ光照射部を前記応力改善領域のレーザ光が未照射の部分に連続的にあるいは断続的に移動し、
前記管体の応力改善領域の残留応力を改善することを特徴とする請求項1又は請求項2に記載の管体の残留応力改善方法。
The laser beam irradiation part continuously or intermittently moves to the part where the laser beam of the stress improvement region is not irradiated,
The residual stress improvement method for a tubular body according to claim 1 or 2, wherein the residual stress in the stress improvement region of the tubular body is improved.
前記レーザ光照射は、前記管体の応力改善領域の軸方向に所定の幅を有し、周方向に略一様に且つ同時にレーザ光を照射するものであり、
前記移動は前記レーザ光照射部を前記管体の軸方向に移動させることを特徴とする請求項3に記載の管体の残留応力改善方法。
The laser beam irradiation has a predetermined width in the axial direction of the stress improvement region of the tubular body, and is irradiated with the laser beam substantially uniformly and simultaneously in the circumferential direction,
4. The method for improving residual stress of a tubular body according to claim 3, wherein the movement is performed by moving the laser beam irradiation section in an axial direction of the tubular body.
前記レーザ光照射は前記管体の応力改善領域の軸方向長さと同じ又は略同じ長さを有すると共に周方向に所定の幅を有する矩形状のレーザ光を照射するものであり、
前記移動は前記レーザ光照射部を前記管体の周方向に前記応力改善領域に沿って移動させることを特徴とする請求項3に記載の管体の残留応力改善方法。
The laser beam irradiation is to irradiate a rectangular laser beam having a length equal to or substantially the same as the axial length of the stress improvement region of the tubular body and having a predetermined width in the circumferential direction,
4. The method for improving residual stress in a tubular body according to claim 3, wherein the movement is performed by moving the laser beam irradiation section in the circumferential direction of the tubular body along the stress improving region.
前記レーザ光照射は前記管体の応力改善領域に矩形状のレーザ光を照射するものであり、
前記移動は前記レーザ光照射部を前記管体の周方向に移動するとともに、該レーザ光照射部を軸方向に移動させることを特徴とする請求項3に記載の管体の残留応力改善方法。
The laser beam irradiation is to irradiate a rectangular laser beam to the stress improvement region of the tubular body,
4. The method for improving residual stress of a tubular body according to claim 3, wherein the movement is performed by moving the laser light irradiation section in the circumferential direction of the tubular body and moving the laser light irradiation section in the axial direction.
管体内面の残留応力を改善する残留応力の改善方法であって、
前記管体の残留応力を改善したい応力改善領域全体に、該管体内部に配置されたレーザ光照射部から該管体の内面にレーザ光を照射するレーザ光照射工程と、
レーザ光照射を停止し前記管体内部に挿入された冷却水噴出部より応力改善領域に冷却水を噴出して急速冷却を行う冷却工程とを有していることを特徴とする管体の残留応力改善方法。
A method for improving residual stress that improves residual stress on the inner surface of a tubular body,
A laser beam irradiation step of irradiating the entire inner surface of the tube body with laser light from a laser beam irradiation portion disposed inside the tube body over the entire stress improvement region where the residual stress of the tube body is desired to be improved;
And a cooling step for rapidly cooling by stopping cooling with laser light and jetting cooling water from the cooling water jetting portion inserted into the pipe into the stress-improving region. Stress improvement method.
管体内面の残留応力を改善する残留応力の改善方法であって、
前記管体の残留応力を改善したい応力改善領域と隣り合う第1の領域及び第2の領域のうち少なくとも一方に、該管体の外部に設けられたレーザ光照射部より、レーザ光を照射するレーザ光照射工程と、
前記応力改善領域と前記レーザ光照射工程でレーザ光を照射している領域の温度を測定する温度測定工程と、
前記応力改善領域と前記レーザ光を照射している領域が所定の温度差になった後、レーザ光照射を停止し冷却する冷却工程とを有していることを特徴とする管体の残留応力改善方法。
A method for improving residual stress that improves residual stress on the inner surface of a tubular body,
At least one of the first region and the second region adjacent to the stress improvement region in which the residual stress of the tubular body is to be improved is irradiated with a laser beam from a laser light irradiation unit provided outside the tubular body. A laser beam irradiation process;
A temperature measuring step of measuring a temperature of the stress improving region and a region irradiated with laser light in the laser light irradiation step;
A residual stress of the tubular body, comprising: a cooling step of stopping and cooling the laser beam irradiation after the stress improvement region and the laser beam irradiation region have reached a predetermined temperature difference How to improve.
前記レーザ光照射工程、前記温度測定工程及び前記冷却工程を前記第1の領域及び前記第2の領域に対して同時に施工することを特徴とする請求項8に記載の管体の残留応力改善方法。   9. The method for improving residual stress of a tubular body according to claim 8, wherein the laser beam irradiation step, the temperature measurement step, and the cooling step are simultaneously applied to the first region and the second region. . 前記管体の残留応力改善方法は前記レーザ光照射部を前記第1の領域と前記第2の領域の間を移動させる移動工程を有しており、
前記第1の領域に対して前記レーザ光照射工程、前記温度測定工程及び前記冷却工程を施工した後に、前記移動工程にてレーザ照射部を移動させ、前記第2の領域に対して前記レーザ光照射工程、前記温度測定工程及び前記冷却工程を施工することを特徴とする請求項8に記載の管体の残留応力改善方法。
The method for improving residual stress of the tubular body includes a moving step of moving the laser beam irradiation unit between the first region and the second region,
After performing the laser beam irradiation step, the temperature measurement step, and the cooling step on the first region, the laser irradiation unit is moved in the moving step, and the laser beam is moved on the second region. The method for improving residual stress of a tubular body according to claim 8, wherein an irradiation step, the temperature measurement step, and the cooling step are performed.
前記応力改善領域は異なる材質の管体を繋ぎ合わせて溶接した異材継手の近傍であることを特徴とする請求項1から請求項9のいずれかに記載の管体の残留応力改善方法。   The method for improving residual stress of a tubular body according to any one of claims 1 to 9, wherein the stress improving region is in the vicinity of a dissimilar joint obtained by joining and welding tubular bodies of different materials. 管体内面の残留応力を改善するための残留応力の改善装置であって、
前記管体の外面にレーザ光を照射し、残留応力改善領域をほぼ均熱に加熱する1又は複数のレーザ光照射部を有するレーザ光照射手段と、
前記レーザ光照射手段の動作を制御するための制御手段とを有していることを特徴とする管体の残留応力改善装置。
An apparatus for improving residual stress for improving residual stress on the inner surface of a tubular body,
A laser beam irradiation means having one or a plurality of laser beam irradiation sections for irradiating the outer surface of the tubular body with a laser beam and heating the residual stress improvement region to a substantially uniform temperature;
And a control means for controlling the operation of the laser beam irradiation means.
前記レーザ光照射手段は前記管体の材質に合わせて照射するレーザ光の出力を調整できることを特徴とする請求項12に記載の管体の残留応力改善装置。   13. The tubular body residual stress improving apparatus according to claim 12, wherein the laser beam irradiation means can adjust the output of the laser beam to be irradiated in accordance with the material of the tube body. 前記レーザ光照射手段を前記応力改善領域にそって移動させる移動手段を持つことを特徴とする請求項12又は請求項13に記載の管体の残留応力改善装置。 14. The tubular body residual stress improvement apparatus according to claim 12 or 13, further comprising a moving means for moving the laser beam irradiation means along the stress improvement region. 前記レーザ光照射手段は前記レーザ光照射部を前記管体の外部に等中心角度間隔に配置しており、該管体の外面に所定の軸方向幅で全周にわたって均一且つ同時にレーザ光を照射するものであり、
前記移動手段は前記レーザ光照射手段を前記管体にそって軸方向に移動させることを特徴とする請求項14に記載の管体の残留応力改善装置。
The laser light irradiating means has the laser light irradiating portions arranged at equal central angular intervals outside the tubular body, and uniformly and simultaneously irradiates the outer surface of the tubular body over the entire circumference with a predetermined axial width. Is what
15. The apparatus for improving residual stress in a tubular body according to claim 14, wherein the moving means moves the laser light irradiating means in the axial direction along the tubular body.
前記レーザ光照射手段は前記レーザ光照射部をレーザ光照射領域が前記管体の外面に周方向に所定の長さを有すると共に軸方向に前記応力改善領域の軸方向長さと同一又は略同一になるように配置しており、
前記移動手段は前記レーザ光照射手段を前記管体の周方向に回動させることを特徴とする請求項14に記載の管体の残留応力改善装置。
The laser light irradiation means includes a laser light irradiation unit having a laser light irradiation region having a predetermined length in the circumferential direction on the outer surface of the tubular body and the axial direction of the stress improvement region being the same as or substantially the same as the axial length. Arranged so that
15. The apparatus for improving residual stress in a tubular body according to claim 14, wherein the moving means rotates the laser beam irradiating means in a circumferential direction of the tubular body.
前記レーザ光照射手段は前記レーザ光照射部をレーザ光照射領域が前記管体の外面に軸方向及び周方向に所定の長さを有するように配置しており、
前記移動手段は前記レーザ光照射手段を前記管体の周方向に回動させ、該管体周りを一周するごとに軸方向に移動することを特徴とする請求項14に記載の管体の残留応力改善装置。
The laser light irradiation means arranges the laser light irradiation part so that a laser light irradiation region has a predetermined length in the axial direction and the circumferential direction on the outer surface of the tubular body,
15. The residual pipe body according to claim 14, wherein the moving means rotates the laser light irradiation means in a circumferential direction of the tubular body and moves in the axial direction every time the circumference of the tubular body is made. Stress improvement device.
管体内面の残留応力を改善するための残留応力の改善装置であって、
前記管体の内面にレーザ光を照射する1又は複数のレーザ光照射部を有するレーザ光照射手段と、
前記レーザ光が照射される前記管体の温度を測定する温度測定手段と、
前記レーザ光が照射された内面に冷却水を噴射する冷却水噴射手段と、
前記レーザ光照射手段、前記温度測定手段及び前記冷却水噴射手段の動作を制御するための制御手段を有しており、
前記レーザ光照射手段は前記管体の材質に合わせて照射するレーザ光の出力を調整できることを特徴とする管体の残留応力改善装置。
An apparatus for improving residual stress for improving residual stress on the inner surface of a tubular body,
A laser light irradiation means having one or a plurality of laser light irradiation parts for irradiating the inner surface of the tube with laser light;
Temperature measuring means for measuring the temperature of the tubular body irradiated with the laser beam;
Cooling water jetting means for jetting cooling water on the inner surface irradiated with the laser beam;
A control unit for controlling operations of the laser beam irradiation unit, the temperature measurement unit, and the cooling water injection unit;
The apparatus for improving residual stress of a tubular body, wherein the laser light irradiating means can adjust the output of the laser light to be irradiated according to the material of the tubular body.
前記レーザ光照射手段はレーザ光源を備えており、
前記レーザ光源としてレーザダイオード又はファイバーレーザーが採用されていることを特徴とする請求項12から請求項18のいずれかに記載の管体の残留応力改善装置。
The laser light irradiation means includes a laser light source,
19. The tubular body residual stress improving apparatus according to claim 12, wherein a laser diode or a fiber laser is employed as the laser light source.
請求項1ないし11のいずれかに記載する管体の残留応力改善方法において、
前記レーザ光は、光ファイバで伝送されることを特徴とする管体の残留応力改善方法。
In the residual stress improvement method of the tubular body according to any one of claims 1 to 11,
The method for improving residual stress of a tubular body, wherein the laser light is transmitted through an optical fiber.
請求項1ないし11のいずれかに記載する管体の残留応力改善方法において、
前記レーザ光の光源は、レーザダイオード又はファイバーレーザであることを特徴とする管体の残留応力改善方法。
In the residual stress improvement method of the tubular body according to any one of claims 1 to 11,
The method for improving residual stress of a tubular body, wherein a light source of the laser light is a laser diode or a fiber laser.
請求項1ないし11のいずれかに記載する管体の残留応力改善方法において、
前記レーザ光照射は、レーザ光の照射位置によりレーザ光の出力を調整できることを特徴とする管体の残留応力改善方法。
In the residual stress improvement method of the tubular body according to any one of claims 1 to 11,
The method of improving residual stress of a tubular body, wherein the laser beam irradiation can adjust the output of the laser beam depending on the irradiation position of the laser beam.
請求項1ないし11のいずれかに記載する管体の残留応力改善方法において、
前記レーザ光が照射される管体の表面には、吸収剤が塗布されていることを特徴とする管体の残留応力改善方法。
In the residual stress improvement method of the tubular body according to any one of claims 1 to 11,
A method for improving residual stress of a tubular body, wherein an absorbent is applied to a surface of the tubular body irradiated with the laser light.
請求項23に記載する管体の残留応力改善方法において、
前記吸収剤は、炭素を含有することを特徴とする管体の残留応力改善方法。
In the method for improving residual stress of a tubular body according to claim 23,
The said absorbent contains carbon, The residual-stress improvement method of the tubular body characterized by the above-mentioned.
請求項23に記載する管体の残留応力改善方法において、
前記吸収剤は、雲母を含有することを特徴とする管体の残留応力改善方法。
In the method for improving residual stress of a tubular body according to claim 23,
The method of improving residual stress of a tubular body, wherein the absorbent contains mica.
請求項23に記載する管体の残留応力改善方法において、
前記吸収剤は、ハロゲン元素を含有しないことを特徴とする管体の残留応力改善方法。
In the method for improving residual stress of a tubular body according to claim 23,
The method for improving residual stress of a tubular body, wherein the absorbent does not contain a halogen element.
請求項1又は8に記載する管体の残留応力改善方法において、
前記レーザ光照射は、前記管体の内面を水冷又は空冷しながら行うことを特徴とする管体の残留応力改善方法。
In the method for improving residual stress of a tubular body according to claim 1 or 8,
The method for improving residual stress of a tubular body, wherein the laser light irradiation is performed while water-cooling or air-cooling the inner surface of the tubular body.
請求項3に記載する管体の残留応力改善方法において、
前記レーザ光照射は、前記管体の外面における、前記レーザ光照射部の移動方向の前方向又は後方向を、水冷又は空冷しながら行うことを特徴とする管体の残留応力改善方法。
In the method for improving residual stress of a tubular body according to claim 3,
The method of improving a residual stress of a tubular body, wherein the laser light irradiation is performed on the outer surface of the tubular body while water-cooling or air-cooling a forward direction or a backward direction of a moving direction of the laser light irradiation unit.
請求項1、7又は8のいずれかに記載する管体の残留応力改善方法において、
前記レーザ光照射は、前記レーザ光を間欠的に照射することを特徴とする管体の残留応力改善方法。
In the method for improving residual stress of a tubular body according to any one of claims 1, 7 and 8,
The said laser beam irradiation irradiates the said laser beam intermittently, The residual stress improvement method of the tubular body characterized by the above-mentioned.
請求項3に記載する管体の残留応力改善方法において、
前記移動は、前記レーザ光照射部を前記管体の周方向に前記応力改善領域に沿って、移動初期と終期が重なるように一周以上移動させ、
前記レーザ光照射は、前記移動初期及び移動終期においてレーザ出力を抑制することを特徴とする管体の残留応力改善方法。
In the method for improving residual stress of a tubular body according to claim 3,
The movement is performed by moving the laser beam irradiation unit one or more times in the circumferential direction of the tubular body along the stress improvement region so that the movement initial stage and the final stage overlap.
The method of improving residual stress of a tubular body, wherein the laser light irradiation suppresses laser output at the initial stage of movement and at the end of movement.
請求項3に記載する管体の残留応力改善方法において、
前記移動は、前記レーザ光照射部を前記管体の周方向に前記応力改善領域に沿ってほぼ半周させた後に元の位置に戻して、更に前記移動方向と逆方向にほぼ半周させた後に元の位置に戻すことを特徴とする管体の残留応力改善方法。
In the method for improving residual stress of a tubular body according to claim 3,
The movement is performed by making the laser beam irradiation part substantially half a circumference along the stress improvement region in the circumferential direction of the tubular body and then returning to the original position, and further making a half circumference in the direction opposite to the movement direction. A method for improving the residual stress of a tubular body characterized by returning to the position of the tube.
請求項1ないし11のいずれかに記載する管体の残留応力改善方法において、
前記管体は、原子炉プラントのステンレス鋼配管であることを特徴とする管体の残留応力改善方法。
In the residual stress improvement method of the tubular body according to any one of claims 1 to 11,
The method for improving residual stress of a tubular body, wherein the tubular body is a stainless steel pipe of a nuclear reactor plant.
請求項1ないし11のいずれかに記載する管体の残留応力改善方法において、
前記管体は、BWR(沸騰水型原子力発電)の再循環配管であることを特徴とする管体の残留応力改善方法。
In the residual stress improvement method of the tubular body according to any one of claims 1 to 11,
The method of improving residual stress of a tubular body, wherein the tubular body is a recirculation piping of BWR (boiling water nuclear power generation).
請求項1ないし11のいずれかに記載する管体の残留応力改善方法において、
前記管体は、原子力プラントの原子炉容器、加圧器、蒸気発生器のいずれかに接続される低合金鋼とオーステナイト系ステンレス鋼の異材継ぎ手部であることを特徴とする管体の残留応力改善方法。
In the residual stress improvement method of the tubular body according to any one of claims 1 to 11,
The tubular body is a dissimilar material joint of low alloy steel and austenitic stainless steel connected to any one of a nuclear reactor reactor vessel, a pressurizer, and a steam generator. Method.
請求項3に記載する管体の残留応力改善方法において、
前記レーザ光照射は、前記管体の外面における、前記レーザ光照射部の移動方向に沿って、前記レーザ光照射前、照射中、照射後の温度変化をモニタリングしながら行うことを特徴とする管体の残留応力改善方法。
In the method for improving residual stress of a tubular body according to claim 3,
The laser beam irradiation is performed while monitoring temperature changes before, during and after the laser beam irradiation along the moving direction of the laser beam irradiation unit on the outer surface of the tube body. Body residual stress improvement method.
請求項35に記載する管体の残留応力改善方法において、
前記温度変化は、放射温度計または、前記管体のレーザ光照射部分に設置した熱電対、温度チョーク又は接触温度計により測定することを特徴とする管体の残留応力改善方法。
The method for improving residual stress in a tubular body according to claim 35,
The temperature change is measured by a radiation thermometer, a thermocouple, a temperature choke, or a contact thermometer installed in a laser beam irradiation portion of the tube body.
請求項1、7又は8のいずれかに記載する管体の残留応力改善方法において、
予め、前記管体と同材料の平板、または同材料、同形状の疑似モデルに対して、最適な残留応力改善方法をシミュレーションした後、
該結果に基づいて、前記管体の残留応力を改善することを特徴とする管体の残留応力改善方法。
In the method for improving residual stress of a tubular body according to any one of claims 1, 7 and 8,
After simulating the optimal residual stress improvement method in advance for a flat plate of the same material as the tube, or a pseudo model of the same material, the same shape,
A method for improving the residual stress of a tubular body, wherein the residual stress of the tubular body is improved based on the result.
請求項12ないし18のいずれかに記載する管体の残留応力改善装置において、
前記レーザ光は、光ファイバで伝送されることを特徴とする管体の残留応力改善装置。
In the residual stress improvement apparatus of the tubular body according to any one of claims 12 to 18,
The apparatus for improving residual stress of a tubular body, wherein the laser beam is transmitted through an optical fiber.
請求項12ないし18のいずれかに記載する管体の残留応力改善装置において、
前記レーザ光の光源は、ファイバーレーザ・レーザダイオードであることを特徴とする管体の残留応力改善装置。
In the residual stress improvement apparatus of the tubular body according to any one of claims 12 to 18,
An apparatus for improving residual stress in a tubular body, wherein the laser light source is a fiber laser or a laser diode.
請求項12ないし18のいずれかに記載する管体の残留応力改善装置において、
前記レーザ光照射手段は、レーザ光の照射位置によりレーザ光の出力を調整できることを特徴とする管体の残留応力改善装置。
In the residual stress improvement apparatus of the tubular body according to any one of claims 12 to 18,
The apparatus for improving residual stress of a tubular body, wherein the laser beam irradiation means can adjust the output of the laser beam according to the irradiation position of the laser beam.
請求項12に記載する管体の残留応力改善装置において、
前記レーザ光を照射する際に前記管体の内面を水冷又は空冷する冷却手段を有することを特徴とする管体の残留応力改善装置。
In the apparatus for improving residual stress of a tubular body according to claim 12,
An apparatus for improving a residual stress of a tubular body, comprising: cooling means for cooling the inner surface of the tubular body with water or air when irradiating the laser beam.
請求項14に記載する管体の残留応力改善装置において、
前記レーザ光を照射する際に、前記管体の外面における、前記レーザ光照射手段の移動方向の前方向又は後方向を、水冷又は空冷する冷却手段を有することを特徴とする管体の残留応力改善装置。
In the residual stress improvement apparatus of the tubular body according to claim 14,
Residual stress of a tubular body characterized by having a cooling means for water cooling or air cooling the front direction or the backward direction of the moving direction of the laser light irradiation means on the outer surface of the tubular body when irradiating the laser light Improvement device.
請求項12又は18に記載する管体の残留応力改善装置において、
前記レーザ光照射手段は、前記レーザ光を間欠的に照射可能なことを特徴とする管体の残留応力改善装置。
In the residual stress improvement apparatus of the tubular body according to claim 12 or 18,
The apparatus for improving residual stress of a tubular body, wherein the laser beam irradiation means can intermittently irradiate the laser beam.
請求項14に記載する管体の残留応力改善装置において、
前記移動手段は、前記レーザ光照射手段を前記管体の周方向に前記応力改善領域に沿って、移動初期と終期が重なるように一周以上移動させる機能を有し、
前記レーザ光照射手段は、前記移動初期及び移動終期においてレーザ出力を抑制することを特徴とする管体の残留応力改善装置。
In the residual stress improvement apparatus of the tubular body according to claim 14,
The moving means has a function of moving the laser light irradiating means one or more times in the circumferential direction of the tubular body along the stress improvement region so that the initial stage and the final stage of movement overlap.
The apparatus for improving residual stress in a tubular body, wherein the laser light irradiation means suppresses laser output at the initial stage of movement and at the end of movement.
請求項14に記載する管体の残留応力改善装置において、
前記移動手段は、前記レーザ光照射手段を前記管体の周方向に前記応力改善領域に沿ってほぼ半周させた後に元の位置に戻して、更に前記移動方向と逆方向にほぼ半周させた後に元の位置に戻す機能を有することを特徴とする管体の残留応力改善装置。
In the residual stress improvement apparatus of the tubular body according to claim 14,
The moving means returns the original laser beam irradiation means to the original position after making the laser beam irradiation means in the circumferential direction of the tubular body along the stress improvement region, and then making the laser beam irradiation means substantially half-turn in the direction opposite to the moving direction. A device for improving residual stress of a tubular body, which has a function of returning to an original position.
請求項1ないし11、20ないし37のいずれかに記載する管体の残留応力改善方法において、
前記レーザ光を照射し加熱する温度が、固溶化温度以下であることを特徴とする管体の残留応力改善方法。
In the method for improving residual stress of a tubular body according to any one of claims 1 to 11, 20 to 37,
The method for improving the residual stress of a tubular body, wherein a temperature at which the laser beam is irradiated and heated is equal to or lower than a solution temperature.
請求項1ないし11、20ないし37、46のいずれかに記載する管体の残留応力改善方法において、
前記レーザ光を照射し加熱する領域が2.5√rt以上であることを特徴とする管体の残留応力改善方法。
The method for improving residual stress of a tubular body according to any one of claims 1 to 11, 20 to 37, 46,
The method for improving the residual stress of a tubular body, wherein a region to be irradiated with the laser beam and heated is 2.5√rt or more.
管体内面の残留応力を改善する残留応力の改善方法であって、
前記管体の残留応力を改善したい応力改善領域に、管体の外部に配置されたレーザ光照射部から該管体の外面にレーザ光を照射するレーザ光照射工程と、
前記管体の応力改善領域の温度を測定する温度測定工程と、
前記応力改善領域の外面側と内面側が所定の温度差になった後レーザ光照射を停止し冷却する冷却工程とを有することを特徴とする管体の残留応力改善方法。
A method for improving residual stress that improves residual stress on the inner surface of a tubular body,
A laser beam irradiation step of irradiating the outer surface of the tube body with a laser beam from a laser beam irradiation section disposed outside the tube body in a stress improvement region where the residual stress of the tube body is desired to be improved;
A temperature measuring step for measuring the temperature of the stress improvement region of the tubular body;
A method for improving the residual stress of a tubular body, comprising: a cooling step in which laser light irradiation is stopped and cooled after an outer surface side and an inner surface side of the stress improvement region reach a predetermined temperature difference.
管体内面の残留応力を改善する残留応力の改善方法であって、
前記管体の残留応力を改善したい応力改善領域全体に、該管体内部に配置されたレーザ光照射部から該管体の内面にレーザ光を照射するレーザ光照射工程と、
前記管体の応力改善領域の温度を測定する温度測定工程と、
前記応力改善領域の外面側と内面側が所定の温度差になった後レーザ光照射を停止し前記管体内部に挿入された冷却水噴出部より応力改善領域に冷却水を噴出して急速冷却を行う冷却工程とを有していることを特徴とする管体の残留応力改善方法。
A method for improving residual stress that improves residual stress on the inner surface of a tubular body,
A laser beam irradiation step of irradiating the entire inner surface of the tube body with laser light from a laser beam irradiation portion disposed inside the tube body over the entire stress improvement region where the residual stress of the tube body is desired to be improved;
A temperature measuring step for measuring the temperature of the stress improvement region of the tubular body;
After a predetermined temperature difference between the outer surface side and the inner surface side of the stress improvement region, laser light irradiation is stopped, and cooling water is jetted from the cooling water jetting portion inserted into the tube body to the stress improvement region to perform rapid cooling. And a cooling step for performing a residual stress improvement method for a tubular body.
JP2004222224A 2004-01-22 2004-07-29 Method for improving residual stress in pipes Active JP4317799B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004222224A JP4317799B2 (en) 2004-01-22 2004-07-29 Method for improving residual stress in pipes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004014383 2004-01-22
JP2004222224A JP4317799B2 (en) 2004-01-22 2004-07-29 Method for improving residual stress in pipes

Publications (2)

Publication Number Publication Date
JP2005232586A true JP2005232586A (en) 2005-09-02
JP4317799B2 JP4317799B2 (en) 2009-08-19

Family

ID=35015837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004222224A Active JP4317799B2 (en) 2004-01-22 2004-07-29 Method for improving residual stress in pipes

Country Status (1)

Country Link
JP (1) JP4317799B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006011540A1 (en) * 2004-07-29 2006-02-02 Mitsubishi Heavy Industries, Ltd. Device for improving residual stress of piping
WO2006011539A1 (en) * 2004-07-29 2006-02-02 Mitsubishi Heavy Industries, Ltd. Device for improving residual stress in piping
KR100707961B1 (en) * 2006-07-12 2007-04-16 주식회사 쿠키혼 Method and apparatus for laser manufacturing
WO2007116805A1 (en) * 2006-04-05 2007-10-18 Mitsubishi Heavy Industries, Ltd. Method of improving residual stress in tube body and device for improving residual stress
WO2008084855A1 (en) 2007-01-12 2008-07-17 Mitsubishi Heavy Industries, Ltd. Residual stress improving method of pipeline
WO2008120622A1 (en) 2007-03-30 2008-10-09 Mitsubishi Heavy Industries, Ltd. Residual stress improving device of tubular body
WO2008136068A1 (en) * 2007-04-20 2008-11-13 Mitsubishi Heavy Industries, Ltd. Method and device for improving residual stress in pipe body
JP2008284588A (en) * 2007-05-17 2008-11-27 Hitachi-Ge Nuclear Energy Ltd Equipment and method for combined welding of laser and arc
WO2008146904A1 (en) 2007-05-30 2008-12-04 Mitsubishi Heavy Industries, Ltd. Remaining stress improving apparatus for tube and method for adjusting the remaining stress improving apparatus
EP2444194A1 (en) * 2010-10-23 2012-04-25 Rolls-Royce plc Method for beam welding on components
KR20130044167A (en) * 2011-10-21 2013-05-02 히타치 파워 유럽 게엠바하 Method for generating a stress reduction in erected tube walls of a steam generator
CN103648807A (en) * 2011-09-14 2014-03-19 株式会社威泰克 Hollow member and method for manufacturing hollow member
CN109570796A (en) * 2018-12-27 2019-04-05 哈电集团(秦皇岛)重型装备有限公司 A kind of thick-walled pipe and thin-wall stainless steel pressure vessel welding deformation controlling method
CN113400028A (en) * 2021-07-07 2021-09-17 江西剑安消防科技有限责任公司 Header pipe cutting and welding integrated device

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006011540A1 (en) * 2004-07-29 2006-02-02 Mitsubishi Heavy Industries, Ltd. Device for improving residual stress of piping
WO2006011539A1 (en) * 2004-07-29 2006-02-02 Mitsubishi Heavy Industries, Ltd. Device for improving residual stress in piping
US7485828B2 (en) 2004-07-29 2009-02-03 Mitsubishi Heavy Industries, Ltd. Residual stress improving apparatus for piping technical field
US8044323B2 (en) 2004-07-29 2011-10-25 Mitsubishi Heavy Industries, Ltd. Apparatus for improving residual stress of piping technical field
WO2007116805A1 (en) * 2006-04-05 2007-10-18 Mitsubishi Heavy Industries, Ltd. Method of improving residual stress in tube body and device for improving residual stress
JP2007275916A (en) * 2006-04-05 2007-10-25 Mitsubishi Heavy Ind Ltd Method and apparatus for improving residual stress in pipe body
EP2022598A1 (en) * 2006-04-05 2009-02-11 Mitsubishi Heavy Industries, Ltd. Method of improving residual stress in tube body and device for improving residual stress
EP2022598A4 (en) * 2006-04-05 2009-11-04 Mitsubishi Heavy Ind Ltd Method of improving residual stress in tube body and device for improving residual stress
KR100707961B1 (en) * 2006-07-12 2007-04-16 주식회사 쿠키혼 Method and apparatus for laser manufacturing
WO2008084855A1 (en) 2007-01-12 2008-07-17 Mitsubishi Heavy Industries, Ltd. Residual stress improving method of pipeline
JP2008169444A (en) * 2007-01-12 2008-07-24 Mitsubishi Heavy Ind Ltd Method for improving residual stress in tubular body
US8637784B2 (en) 2007-01-12 2014-01-28 Mitsubishi Heavy Industries, Ltd. Method for improving residual stress in tubular body
US20100326974A1 (en) * 2007-01-12 2010-12-30 Mitsubishi Heavy Industries, Ltd. Method for improving residual stress in tubular body
JP2008248310A (en) * 2007-03-30 2008-10-16 Mitsubishi Heavy Ind Ltd Apparatus for improving residual stress in tubular body
WO2008120622A1 (en) 2007-03-30 2008-10-09 Mitsubishi Heavy Industries, Ltd. Residual stress improving device of tubular body
US20100108653A1 (en) * 2007-04-20 2010-05-06 Mitsubishi Heavy Industries, Ltd. Method for improving residual stress in tubular body and apparatus for improving residual stress in tubular body
WO2008136068A1 (en) * 2007-04-20 2008-11-13 Mitsubishi Heavy Industries, Ltd. Method and device for improving residual stress in pipe body
US8362393B2 (en) 2007-04-20 2013-01-29 Mitsubishi Heavy Industries, Ltd. Method for improving residual stress in tubular body and apparatus for improving residual stress in tubular body
JP2008284588A (en) * 2007-05-17 2008-11-27 Hitachi-Ge Nuclear Energy Ltd Equipment and method for combined welding of laser and arc
WO2008146904A1 (en) 2007-05-30 2008-12-04 Mitsubishi Heavy Industries, Ltd. Remaining stress improving apparatus for tube and method for adjusting the remaining stress improving apparatus
US8362389B2 (en) 2007-05-30 2013-01-29 Mitsubishi Heavy Industries, Ltd. Apparatus for improving residual stress in tubular body and adjustment method of the same
EP2444194A1 (en) * 2010-10-23 2012-04-25 Rolls-Royce plc Method for beam welding on components
US8813360B2 (en) 2010-10-23 2014-08-26 Rolls-Royce Plc Method for beam welding on components
CN103648807A (en) * 2011-09-14 2014-03-19 株式会社威泰克 Hollow member and method for manufacturing hollow member
EP2756971A4 (en) * 2011-09-14 2015-05-27 Y Tec Corp Hollow member and method for manufacturing hollow member
KR20130044167A (en) * 2011-10-21 2013-05-02 히타치 파워 유럽 게엠바하 Method for generating a stress reduction in erected tube walls of a steam generator
US10273551B2 (en) 2011-10-21 2019-04-30 Mitsubishi Hitachi Power Systems Europe Gmbh Method for generating a stress reduction in erected tube walls of a steam generator
KR102038152B1 (en) * 2011-10-21 2019-10-30 제네럴 일렉트릭 테크놀러지 게엠베하 Method for generating a stress reduction in erected tube walls of a steam generator
CN109570796A (en) * 2018-12-27 2019-04-05 哈电集团(秦皇岛)重型装备有限公司 A kind of thick-walled pipe and thin-wall stainless steel pressure vessel welding deformation controlling method
CN109570796B (en) * 2018-12-27 2023-12-26 哈电集团(秦皇岛)重型装备有限公司 Welding deformation control method for thick-wall pipe and thin-wall stainless steel pressure vessel
CN113400028A (en) * 2021-07-07 2021-09-17 江西剑安消防科技有限责任公司 Header pipe cutting and welding integrated device
CN113400028B (en) * 2021-07-07 2023-04-07 江西剑安消防科技有限责任公司 Header pipe cutting and welding integrated device

Also Published As

Publication number Publication date
JP4317799B2 (en) 2009-08-19

Similar Documents

Publication Publication Date Title
JP4317799B2 (en) Method for improving residual stress in pipes
US5359172A (en) Direct tube repair by laser welding
JP3112758B2 (en) Method and apparatus for welding superalloy workpieces
EP2119799B1 (en) Residual stress improving method of pipeline
JP4939098B2 (en) Method and apparatus for improving residual stress of tubular body
US7091447B2 (en) Local heatsink welding device and welding method thereof
Yamada et al. In-situ X-ray Observation of Molten Pool Depth during Laser Micro Welding.
JP4160976B2 (en) Method and apparatus for improving residual stress of tubular body
JP6050141B2 (en) Hardfacing welding apparatus and method
US8362393B2 (en) Method for improving residual stress in tubular body and apparatus for improving residual stress in tubular body
JPH08104949A (en) Formation of structure having surface treated layer and surface treated layer
CN111962065A (en) Manufacturing method of stainless steel tube fin for nuclear power high-temperature heat dissipation
JPH11209825A (en) Post-welding heat treatment equipment
Yoo Recent study of materials and welding methods for nuclear power plant
Kung et al. Tempering Effects of Multitrack Laser Surface Heat Treatment of AISI 1045 Steel.
JP2014079800A (en) Repair method for clad material
Lavakumar et al. Experimental study on influence of shielding gas pressure on the quality of pulsed laser welding of thin walled T91 steel clad tube with end plug
Fujimagari et al. Laser cladding technology to small diameter pipes
JP4391992B2 (en) Reactor structure and manufacturing method and repair method thereof
Yoda et al. Fiber-delivered Laser Peening System To Improve Mechanical Properties Of Metal Surface.
CN106984878A (en) A kind of aircraft engine oil pipe pipeline silver brazing method
JP2000153382A (en) Laser beam machine
KARAAĞAÇ et al. THE REVIEW OF LASER CLADDING METHOD AND PARAMETERS
Yin et al. Laser fusion welding of alumina ceramics based on simultaneous preheating
Sugimoto et al. Development of outer surface irradiated laser stress improvement Process (L-SIP)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090525

R151 Written notification of patent or utility model registration

Ref document number: 4317799

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140529

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250