JP4160403B2 - Use of fluorinated ketones as wet cleaners for gas phase reactors. - Google Patents

Use of fluorinated ketones as wet cleaners for gas phase reactors. Download PDF

Info

Publication number
JP4160403B2
JP4160403B2 JP2002583701A JP2002583701A JP4160403B2 JP 4160403 B2 JP4160403 B2 JP 4160403B2 JP 2002583701 A JP2002583701 A JP 2002583701A JP 2002583701 A JP2002583701 A JP 2002583701A JP 4160403 B2 JP4160403 B2 JP 4160403B2
Authority
JP
Japan
Prior art keywords
reactor
fluorinated
cleaning agent
hexafluoropropylene
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002583701A
Other languages
Japanese (ja)
Other versions
JP2005507954A (en
JP2005507954A5 (en
Inventor
ケサリ,サスルト
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Innovative Properties Co
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Co filed Critical 3M Innovative Properties Co
Publication of JP2005507954A publication Critical patent/JP2005507954A/en
Publication of JP2005507954A5 publication Critical patent/JP2005507954A5/ja
Application granted granted Critical
Publication of JP4160403B2 publication Critical patent/JP4160403B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D11/00Special methods for preparing compositions containing mixtures of detergents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/04Saturated compounds containing keto groups bound to acyclic carbon atoms
    • C07C49/175Saturated compounds containing keto groups bound to acyclic carbon atoms containing ether groups, groups, groups, or groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/78Separation; Purification; Stabilisation; Use of additives
    • C07C45/85Separation; Purification; Stabilisation; Use of additives by treatment giving rise to a chemical modification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/04Saturated compounds containing keto groups bound to acyclic carbon atoms
    • C07C49/16Saturated compounds containing keto groups bound to acyclic carbon atoms containing halogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/04Saturated compounds containing keto groups bound to acyclic carbon atoms
    • C07C49/16Saturated compounds containing keto groups bound to acyclic carbon atoms containing halogen
    • C07C49/167Saturated compounds containing keto groups bound to acyclic carbon atoms containing halogen containing only fluorine as halogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Detergent Compositions (AREA)
  • Chemical Vapour Deposition (AREA)

Description

本発明はフッ素化ケトンを気相反応器及び気相反応器部品用の湿式洗浄剤として使用する方法に関する。   The present invention relates to a method of using a fluorinated ketone as a wet detergent for a gas phase reactor and gas phase reactor components.

地球温暖化ガスの放出は世界的な注目を浴びている。国連地球温暖化会議において制定された京都議定書の目標は二酸化炭素、メタン、窒素酸化物、ペルフルオロカーボン(PFC)、ヒドロフルオロカーボン、(HFC)及びSF6の排出基準を1990年以前の水準に引き下げることであった。更に、米国の半導体製造業者の大部分は、PFC排出削減に関する選択肢を評価することを誓約する環境保護局との覚書に署名している。 The release of global warming gas has received worldwide attention. The goal of the Kyoto Protocol established at the United Nations Global Warming Conference is to reduce emissions standards for carbon dioxide, methane, nitrogen oxides, perfluorocarbons (PFC), hydrofluorocarbons, (HFC) and SF 6 to pre-1990 levels. Met. In addition, the majority of US semiconductor manufacturers have signed a memorandum of understanding with the Environmental Protection Agency that pledges to evaluate options for reducing PFC emissions.

化学気相成長チャンバー、物理気相成長チャンバー及びエッチングチャンバーは種々の電子デバイスや部品の製造に関連して半導体業界で広く使用されている。これらの装置では反応性ガスや蒸気が種々の誘電材料及び金属材料の堆積、パターン形成または除去の目的で使用されるが、時間の経過とともに、望ましくない堆積物、典型的には炭素、フッ素、水素及び酸素を含有するフルオロポリマー、が装置の壁や部品上に蓄積することが避けられない。これらの堆積物は装置内で製造される製品の潜在的汚染の原因となりうるので定期的に除去しなくてはならない。C26及びC38などのペルフルオロカーボンガスやNF3のようなフッ素化窒素化合物が当該装置のその場プラズマ洗浄にこれまで使用されてきた。しかしながら、これらのガス状物質は極度に安定で地球温暖化の原因となり、ガススクラバーでトラップまたは処理することが難しい。 Chemical vapor deposition chambers, physical vapor deposition chambers and etching chambers are widely used in the semiconductor industry in connection with the manufacture of various electronic devices and components. In these devices, reactive gases and vapors are used for the purpose of deposition, patterning or removal of various dielectric and metallic materials, but over time, undesirable deposits, typically carbon, fluorine, It is inevitable that fluoropolymers containing hydrogen and oxygen accumulate on the walls and parts of the device. These deposits must be removed periodically as they can cause potential contamination of the products produced in the equipment. Perfluorinated nitrogen compounds such as C 2 F 6 and C 3 F 8 perfluorocarbon gas and NF 3, such have been used heretofore in situ plasma cleaning of the device. However, these gaseous substances are extremely stable and cause global warming and are difficult to trap or treat with a gas scrubber.

装置壁及び部品はいろいろな液体薬品により洗浄できる。現在使用されている 液体洗浄剤には、水、アセトンやイソプロパノールのような各種炭化水素、並びにペルフルオロカーボン、ヒドロフルオロカーボン及びヒドロフルオロエーテルなどの各種フッ素化合物、が含まれる。水や炭化水素は前記フルオロポリマー残渣を容易には溶解しない。加えて、水は乾燥に長時間を要し、炭化水素は可燃性であり、どちらも洗浄剤の特性として好ましくない。ある種のフッ素系薬品は地球温暖化の原因となる可能性を有するという、洗浄剤として好ましくない別の特性を有する。   Equipment walls and parts can be cleaned with a variety of liquid chemicals. Currently used liquid detergents include water, various hydrocarbons such as acetone and isopropanol, and various fluorine compounds such as perfluorocarbons, hydrofluorocarbons and hydrofluoroethers. Water and hydrocarbons do not dissolve the fluoropolymer residue easily. In addition, water takes a long time to dry and hydrocarbons are flammable, both of which are undesirable as cleaning agent properties. Certain fluorinated chemicals have another property that is undesirable as a cleaning agent, which may cause global warming.

本発明は化学気相成長チャンバー、物理気相成長チャンバー及びエッチングチャンバーの壁や部品上に蓄積した堆積物をフッ素化ケトン含有の液体洗浄剤で除去する方法を提供するものである。本発明のフッ素化ケトンは半導体業界で従来使用されてきた液体ペルフルオロ薬品と同等の性能を有するが、低い地球温暖化係数を有する。   The present invention provides a method of removing deposits accumulated on the walls and parts of a chemical vapor deposition chamber, a physical vapor deposition chamber and an etching chamber with a liquid cleaning agent containing a fluorinated ketone. The fluorinated ketones of the present invention have performance equivalent to liquid perfluorochemicals conventionally used in the semiconductor industry, but have a low global warming potential.

本発明は化学気相成長チャンバー、物理気相成長チャンバー及びエッチングチャンバーの壁や部品上に蓄積した堆積物を5〜10個の炭素原子を有するフッ素化ケトン化合物を含有する液体洗浄剤で除去する方法を提供するものである。本洗浄剤はペルフルオロケトン、すなわち炭素骨格上のすべての水素原子をフッ素で置換した化合物であってもよい。あるいは、フッ素化ケトン洗浄剤は、2個以下の水素原子と、臭素、塩素及びヨウ素を含む2個以下のハロゲン原子とが前記炭素骨格に結合していてもよい。1つ以上のヘテロ原子が当該分子の炭素骨格に割り込んでもよい。本洗浄剤はフッ素化ケトンと相溶性のある補助のハロゲン化化合物を含有してもよく、好適な、補助洗浄剤はヒドロフルオロエーテルである。本洗浄剤はふき取り、噴霧、浸漬などの洗浄方法に適用できる。   The present invention removes deposits accumulated on the walls and parts of chemical vapor deposition chamber, physical vapor deposition chamber and etching chamber with a liquid detergent containing a fluorinated ketone compound having 5 to 10 carbon atoms. A method is provided. The cleaning agent may be a perfluoroketone, that is, a compound in which all hydrogen atoms on the carbon skeleton are substituted with fluorine. Alternatively, in the fluorinated ketone detergent, 2 or less hydrogen atoms and 2 or less halogen atoms including bromine, chlorine and iodine may be bonded to the carbon skeleton. One or more heteroatoms may interrupt the carbon skeleton of the molecule. The detergent may contain an auxiliary halogenated compound that is compatible with the fluorinated ketone, and a preferred auxiliary detergent is a hydrofluoroether. This cleaning agent can be applied to cleaning methods such as wiping, spraying and dipping.

本発明は、炭素原子5〜10個、好ましくは6〜8個を有するフッ素化ケトン化合物を含む液体洗浄剤を使用した化学気相成長チャンバー、物理気相成長チャンバー及びエッチングチャンバーの洗浄法を提供するものである。典型的なフッ素化ケトンは、沸点が150℃以下であって、室温で液体である。フッ素化ケトンはペルフルオロケトンであることが好ましい。   The present invention provides a cleaning method for a chemical vapor deposition chamber, a physical vapor deposition chamber and an etching chamber using a liquid cleaning agent containing a fluorinated ketone compound having 5 to 10 carbon atoms, preferably 6 to 8 carbon atoms. To do. Typical fluorinated ketones have a boiling point of 150 ° C. or lower and are liquid at room temperature. The fluorinated ketone is preferably a perfluoroketone.

本明細書で使用する際、「気相反応器」という語句は化学気相成長チャンバー、物理気相成長チャンバー及びエッチングチャンバーを含むものとする。これらの装置は反応性ガスまたは蒸気により各種の誘電材料、金属材料を堆積、パターン化または除去するのに使用される。気相反応器は半導体業界で各種電子デバイス及び部品の製造に広く用いられている。典型的な例として、CF4、C26及びC38のようなガス状ペルフルオロカーボンが各種の誘電及び金属材料のエッチングに使用される。このペルフルオロカーボンは一般的に酸素と混合され、ラジオ周波数のプラズマにより、フッ素、二フッ化炭素、三フッ化炭素などの種々のラジカルを生成する。これらのラジカルは更に反応を経て種々のフルオロポリマーを生成する。このフルオロポリマーは反応器壁及び部品上に他の種々の副生物と共に堆積する。これらの副生物には、例えば、シリコン由来の残渣、タングステン、アルミニウムなどの金属残渣が含まれる。定期的に、製造中の製品の汚染を避けるために気相反応器を洗浄しこれらのフルオロポリマーとその他の残渣を除去する必要がある。 As used herein, the phrase “vapor phase reactor” is intended to include chemical vapor deposition chambers, physical vapor deposition chambers, and etching chambers. These devices are used to deposit, pattern or remove various dielectric and metallic materials with reactive gases or vapors. Gas phase reactors are widely used in the semiconductor industry for the manufacture of various electronic devices and components. As a typical example, gaseous perfluorocarbons such as CF 4 , C 2 F 6 and C 3 F 8 are used for etching various dielectric and metallic materials. This perfluorocarbon is generally mixed with oxygen, and various radicals such as fluorine, carbon difluoride, and carbon trifluoride are generated by radio frequency plasma. These radicals undergo further reactions to produce various fluoropolymers. The fluoropolymer is deposited with various other by-products on the reactor walls and parts. These by-products include, for example, silicon-derived residues and metal residues such as tungsten and aluminum. Periodically, it is necessary to clean the gas phase reactor to remove these fluoropolymers and other residues to avoid contamination of the product being manufactured.

この堆積物を除去する従来の手法においては、種々の液体洗浄剤の使用が可能であった。現在使用されている液体洗浄剤には、水、アセトンやイソプロパノールのような各種炭化水素、並びにペルフルオロカーボン、ヒドロフルオロカーボン及びヒドロフルオロエーテルのような各種フッ素化合物が含まれる。水や炭化水素は前記フルオロポリマーを容易には溶解しない。加えて、水は乾燥に長時間を要し、炭化水素は可燃性であり、どちらも洗浄剤の特性として好ましくない。本発明は、これらの好ましくない特質を避け、少なくとも先行技術に比べより環境にやさしい代替法を提供する。反応器の壁や部品上に堆積したフルオロポリマー及びその他の残渣は5〜10個の炭素原子を有する液体フッ素化洗浄剤を使用することにより溶解することができる。本気相反応器洗浄方法はガス状ペルフルオロカーボンを使用する従来の方法を部分的または完全に置き換え使用することができる。以後、「洗浄」という語句は気相反応器の壁及び部品上に時間を経て蓄積した好ましくない堆積物を除去することを言う。   In the conventional method for removing the deposit, various liquid cleaning agents can be used. Currently used liquid detergents include water, various hydrocarbons such as acetone and isopropanol, and various fluorine compounds such as perfluorocarbons, hydrofluorocarbons and hydrofluoroethers. Water and hydrocarbons do not dissolve the fluoropolymer easily. In addition, water takes a long time to dry and hydrocarbons are flammable, both of which are undesirable as cleaning agent properties. The present invention avoids these undesirable attributes and provides an alternative that is at least more environmentally friendly than the prior art. Fluoropolymer and other residues deposited on reactor walls and parts can be dissolved by using a liquid fluorinated detergent having 5 to 10 carbon atoms. The gas phase reactor cleaning method can be used partially or completely replacing conventional methods using gaseous perfluorocarbons. Hereinafter, the phrase “cleaning” refers to removing unwanted deposits that have accumulated over time on the walls and components of the gas phase reactor.

本発明のフッ素化ケトンは、典型的には、5〜10個の炭素原子、好ましくは6〜8個の炭素原子を有する。洗浄剤としてはペルフルオロケトン、すなわち炭素骨格上のすべての水素原子がフッ素に置換されていてもよい。あるいは、このフッ素化ケトン洗浄剤は2個以下の水素原子と、炭素骨格に結合している臭素、塩素及びヨウ素を含むフッ素以外の2個以下のハロゲン原子とを有してもよい。   The fluorinated ketones of the present invention typically have 5 to 10 carbon atoms, preferably 6 to 8 carbon atoms. As the cleaning agent, perfluoroketone, that is, all hydrogen atoms on the carbon skeleton may be substituted with fluorine. Alternatively, the fluorinated ketone detergent may have 2 or less hydrogen atoms and 2 or less halogen atoms other than fluorine containing bromine, chlorine and iodine bonded to the carbon skeleton.

洗浄剤に好適なペルフルオロケトン化合物の代表例にはCF3(CF25C(O)CF3、CF3C(O)CF(CF32、CF3CF2CF2C(O)CF2CF2CF3、CF3CF2C(O)CF(CF32、(CF32CFC(O)CF(CF32、(CF32CFCF2C(O)CF(CF32、(CF32CF(CF22C(O)CF(CF32、(CF32CF(CF23C(O)CF(CF32、CF3(CF22C(O)CF(CF32、CF3(CF23C(O)CF(CF32、CF3(CF24C(O)CF(CF32、CF3(CF25C(O)CF(CF32、CF3CF2C(O)CF2CF2CF3、ペルフルオロシクロペンタノン及びペルフルオロシクロヘキサノンが含まれる。 Representative examples of perfluoroketone compounds suitable for cleaning agents include CF 3 (CF 2 ) 5 C (O) CF 3 , CF 3 C (O) CF (CF 3 ) 2 , and CF 3 CF 2 CF 2 C (O). CF 2 CF 2 CF 3 , CF 3 CF 2 C (O) CF (CF 3 ) 2 , (CF 3 ) 2 CFC (O) CF (CF 3 ) 2 , (CF 3 ) 2 CFCF 2 C (O) CF (CF 3 ) 2 , (CF 3 ) 2 CF (CF 2 ) 2 C (O) CF (CF 3 ) 2 , (CF 3 ) 2 CF (CF 2 ) 3 C (O) CF (CF 3 ) 2 , CF 3 (CF 2 ) 2 C (O) CF (CF 3 ) 2 , CF 3 (CF 2 ) 3 C (O) CF (CF 3 ) 2 , CF 3 (CF 2 ) 4 C (O) CF (CF 3) 2, CF 3 (CF 2) 5 C (O) CF (CF 3) 2, CF 3 CF 2 C (O) CF 2 CF 2 CF 3, perfluoro cyclopentanone and perfluorocyclobutane f Sanon is included.

1個または2個のフッ素以外の原子が炭素骨格に結合しているフッ素化ケトンの代表例にはCHF2CF2C(O)CF(CF32、CF3C(O)CH2C(O)CF3、(CF32CFC(O)CF2Cl、CF2ClCF2C(O)CF(CF32、CF2Cl(CF22C(O)CF(CF32、CF2Cl(CF23C(O)CF(CF32、CF2Cl(CF24C(O)CF(CF32、CF2Cl(CF25C(O)CF(CF32、及びCF2ClCF2C(O)CF2CF2CF3が含まれる。 Representative examples of fluorinated ketones in which one or two atoms other than fluorine are bonded to the carbon skeleton include CHF 2 CF 2 C (O) CF (CF 3 ) 2 , CF 3 C (O) CH 2 C (O) CF 3 , (CF 3 ) 2 CFC (O) CF 2 Cl, CF 2 ClCF 2 C (O) CF (CF 3 ) 2 , CF 2 Cl (CF 2 ) 2 C (O) CF (CF 3 ) 2 , CF 2 Cl (CF 2 ) 3 C (O) CF (CF 3 ) 2 , CF 2 Cl (CF 2 ) 4 C (O) CF (CF 3 ) 2 , CF 2 Cl (CF 2 ) 5 C (O) CF (CF 3 ) 2 and CF 2 ClCF 2 C (O) CF 2 CF 2 CF 3 are included.

フッ素化ケトンとして一個以上のヘテロ原子が炭素骨格に割り込んでいるものも含まれる。好適なヘテロ原子には、例えば、窒素、酸素及び硫黄原子が含まれ、代表的な化合物としてはCF3OCF2CF2C(O)CF(CF32及びCF3OCF2C(O)CF(CF32が含まれる。 Also included are fluorinated ketones in which one or more heteroatoms interrupt the carbon skeleton. Suitable heteroatoms include, for example, nitrogen, oxygen and sulfur atoms, and representative compounds include CF 3 OCF 2 CF 2 C (O) CF (CF 3 ) 2 and CF 3 OCF 2 C (O). CF (CF 3 ) 2 is included.

フッ素化ケトンは公知の方法で製造される。一つの方法は米国特許第5,466,877号(ムーア(Moore))に記載の通り式RfCO2CF(Rf’2フッ素化カルボン酸エステルを求核性開始剤の共存下に解離する方法である。ここでRfとRf’はフッ素またはペルフルオロアルキル基である。フッ素化カルボン酸エステルの前駆体は米国特許第5,399,718号(コステロら(Costello et al))に記載の通り、フッ素に置換されていない対応する炭化水素または一部フッ素化した炭化水素のフッ素ガスによる直接フッ素化により得られる。 The fluorinated ketone is produced by a known method. One method is the coexistence of a fully fluorinated carboxylic acid ester of the formula R f CO 2 CF (R f ′ ) 2 with a nucleophilic initiator as described in US Pat. No. 5,466,877 (Moore). It is a method of dissociating downward. Here, R f and R f ′ are fluorine or a perfluoroalkyl group. Precursors of fluorinated carboxylic acid esters are described in US Pat. No. 5,399,718 (Costello et al), corresponding hydrocarbons that are not substituted with fluorine or partially fluorinated hydrocarbons. Obtained by direct fluorination with fluorine gas.

カルボニル基に対してアルファ位に分岐のある過フッ素化ケトンは、米国特許第3,185,734号(ファウセットら(Fawcett et al))の記載により合成できる。フッ化物イオンの存在下、無水の環境下でアシルハライドにヘキサフルオロプロピレンを加えて合成される。少量のヘキサフルオロプロピレン2量体及び/または3量体不純物はペルフルオロケトンの蒸留により除去することができる。もし、沸点が近すぎ、分別蒸留ができない場合は、適当な溶媒、例えばアセトン、酢酸またはそれらの混合物などの有機溶媒中で過マンガン酸のアルカリ金属塩で酸化することにより2量体及び/または3量体不純物を除去できる。この酸化反応は通常密封した反応器中で室温または昇温した状態で行われる。   Perfluorinated ketones that are branched alpha to the carbonyl group can be synthesized as described in US Pat. No. 3,185,734 (Fawcett et al). It is synthesized by adding hexafluoropropylene to acyl halide in an anhydrous environment in the presence of fluoride ions. Small amounts of hexafluoropropylene dimer and / or trimer impurities can be removed by distillation of perfluoroketone. If the boiling point is too close to allow fractional distillation, dimer and / or by oxidation with an alkali metal salt of permanganic acid in an appropriate solvent, for example an organic solvent such as acetone, acetic acid or mixtures thereof. Trimer impurities can be removed. This oxidation reaction is usually carried out in a sealed reactor at room temperature or at an elevated temperature.

直鎖の過フッ素化ケトンはペルフルオロカルボン酸のアルカリ金属塩とペルフルオロカルボニルの酸性フッ化物を米国特許第4,136,121号(マーティニら(Martini et al))に記載の通り反応させることにより得られる。この種のケトンはまた米国特許第5,998,671号(バンデルプイ(Van Der Puy))に記載の通り、ペルフルオロカルボン酸塩と過フッ素化酸無水物を非プロトン性溶媒中、昇温状態で反応させることによっても得ることができる。   Linear perfluorinated ketones can be obtained by reacting alkali metal salts of perfluorocarboxylic acids with acidic fluorides of perfluorocarbonyl as described in US Pat. No. 4,136,121 (Martini et al). It is done. This type of ketone can also be obtained as described in US Pat. No. 5,998,671 (Van Der Puy) in which a perfluorocarboxylate and a perfluorinated acid anhydride are heated in an aprotic solvent at elevated temperature. It can also be obtained by reacting.

フッ素化ケトン洗浄剤は単独でも使用でき、他のフッ素化ケトンとの組み合わせまたはフッ素化ケトンと相溶性のある1つ以上の補助の洗浄剤と組合せて使用することができる。補助洗浄剤の典型的な例としてはハロゲン化化合物であり、例えば、ヒドロフルオロカーボン、ヒドロクロロフルオロカーボン、パーフルオロカーボン、パーフルオロポリエーテル、ヒドロフルオロエーテル、ヒドロフルオロポリエーテル、ヒドロクロロフルオロエーテル、フッ素化芳香族化合物、クロロフルオロカーボン、ブロモフルオロカーボン、ブロモクロロフルオロカーボン、ヒドロブロモカーボン、ヨードフルオロカーボン及びヒドロブロモフルオロカーボンが含まれる。代表的な補助洗浄剤は、C511H、C613H、C49OCH3、C49OC25、C37CF(OC25)CF(CF32、CF3CH2CF2CH3、CF3CFHCFHCF2CF3、C614、C716、C818、(C493N、ペルフルオロ−2−ブチルテトラヒドロフラン、ペルフルオロ−N−メチルモルホリン、HCF2O(CF2O)n(CF2CF2O)mCF2H(ここで、nは0〜2であり、mは0〜5であり、nとmの和は少なくとも1である。)、C37I、ベンゾトリフルオリド、トランス−1,2−ジジクロロエチレンなどが含まれる。好ましい補助洗浄剤はC49OCH3、C49OC25、C37CF(OC25)CF(CF32などのヒドロフルオロエーテルである。 The fluorinated ketone detergent can be used alone or in combination with other fluorinated ketones or with one or more auxiliary detergents that are compatible with the fluorinated ketone. Typical examples of auxiliary cleaning agents are halogenated compounds, such as hydrofluorocarbons, hydrochlorofluorocarbons, perfluorocarbons, perfluoropolyethers, hydrofluoroethers, hydrofluoropolyethers, hydrochlorofluoroethers, fluorinated aromatics. Group compounds, chlorofluorocarbons, bromofluorocarbons, bromochlorofluorocarbons, hydrobromocarbons, iodofluorocarbons and hydrobromofluorocarbons. Typical auxiliary cleaners are C 5 F 11 H, C 6 F 13 H, C 4 F 9 OCH 3 , C 4 F 9 OC 2 H 5 , C 3 F 7 CF (OC 2 H 5 ) CF (CF 3 ) 2 , CF 3 CH 2 CF 2 CH 3 , CF 3 CFHCCFHCF 2 CF 3 , C 6 F 14 , C 7 F 16 , C 8 F 18 , (C 4 F 9 ) 3 N, perfluoro-2-butyltetrahydrofuran perfluoro -N- methylmorpholine, HCF 2 O (CF 2 O ) n (CF 2 CF 2 O) m CF 2 H ( wherein, n is 0 to 2, m is 0-5, and n The sum of m is at least 1.), C 3 F 7 I, benzotrifluoride, trans-1,2-dichloroethylene and the like. Preferred auxiliary cleaning agents are hydrofluoroether such as C 4 F 9 OCH 3, C 4 F 9 OC 2 H 5, C 3 F 7 CF (OC 2 H 5) CF (CF 3) 2.

フッ素化ケトン洗浄剤は、例えば、ふき取り、噴霧及び浸漬または沈濡により部品を沈潜すなどの使用法が適用できる。この洗浄剤は、窒素、アルゴンまたは二酸化炭素などの不活性推進ガスと組み合わせ、洗浄が必要な表面に洗浄剤を吹き付けることもできる。この洗浄剤は、室温または、例えば150℃までの昇温状態で使用できる。   The fluorinated ketone cleaning agent can be used in such a manner that, for example, the parts are submerged by wiping, spraying and dipping or soaking. This cleaning agent can be combined with an inert propellant gas such as nitrogen, argon or carbon dioxide and sprayed onto the surface requiring cleaning. This cleaning agent can be used at room temperature or at elevated temperature up to 150 ° C., for example.

本発明のペルフルオロケトンは半導体業界で使用されている従来のペルフルオロカーボンよりはるかに低い地球温暖化係数(GWP)を有する。本明細書で使用する際、「GWP」は一つの化合物自身の構造に由来する相対的な温暖化係数とする。一つの化合物のGWPは、1990年に気候変動に関する政府間パネル(IPCC)によって定義され、1998年に改訂(世界気象機関、オゾン層破壊の科学的評価(Scientific Assesment of Ozone Depletion):1998、地球オゾン層研究と監視計画(Global Ozone Research and Monitoring Project)−報告No.44、ジュネーブ、1999)されたが、特定の積算時間(ITH)にわたる一つのガス1キログラム当たりの放出による温暖化度合いとCO21キログラム当たりの放出による温暖化度合いとの比較として計算される。

Figure 0004160403
ここでFはある化合物の単位質量当たりの放射力(当該化合物の赤外線吸収による大気を通しての放出フラックスの変化)、Cは化合物の大気中濃度、τは化合物の大気中での寿命、tは時間、xは目的の化合物(すなわち、C0xは化合物xの時間0における濃度または初期濃度)である。 The perfluoroketone of the present invention has a much lower global warming potential (GWP) than conventional perfluorocarbons used in the semiconductor industry. As used herein, “GWP” is a relative warming potential derived from the structure of one compound itself. The GWP of one compound was defined by the Intergovernmental Panel on Climate Change (IPCC) in 1990 and revised in 1998 (World Meteorological Organization, Scientific Assessment of Ozone Depletion: 1998, Earth Global Ozone Research and Monitoring Project-Report No. 44, Geneva, 1999), but the degree of warming and CO by emissions per kilogram of gas over a specific integration time (ITH) 2 Calculated as a comparison with the degree of warming due to emissions per kilogram.
Figure 0004160403
Where F is the radiant power per unit mass of a compound (change in emission flux through the atmosphere due to infrared absorption of the compound), C is the concentration of the compound in the atmosphere, τ is the lifetime of the compound in the atmosphere, and t is the time , X is the compound of interest (ie, C 0x is the concentration or initial concentration of compound x at time 0).

短期効果(20年)と長期効果(500年またはそれ以上)の間の妥協案として、通常、採用されているIHTは100年である。有機化合物の大気中での濃度は擬似一次の速度式(すなわち、対数的減少)に従うと仮定する。同一時間間隔にわたるCO2濃度は大気中からのCO2の交換及び除去に関するより複雑なモデルが組み込まれている(ベルン(Bern)の炭素循環モデル)。 As a compromise between the short-term effect (20 years) and the long-term effect (500 years or more), the IHT typically adopted is 100 years. It is assumed that the concentration of organic compounds in the air follows a pseudo first order rate equation (ie, logarithmic reduction). CO 2 concentrations over the same time interval incorporate a more complex model for the exchange and removal of CO 2 from the atmosphere (Bern's carbon cycle model).

CF3CF2C(O)CF(CF32の大気中での寿命は、300ナノメーターの紫外線による光分解の研究から約5日とされている。他のペルフルオロケトンも同様の吸収を示すことから同様の大気中での寿命が想定される。測定された赤外線衝突断面積はピノックら(Pinnock et al)(J.Geophys.Res.,100,23227,1995)の方法を用いて放射力値の算定に使用された。この放射力値と5日の大気中寿命を用いて計算すると、6個の炭素原子を有するペルフルオロケトンのGWP(ITHを100年として)は1であるのに対しC26のそれは11,400となる。本発明のペルフルオロケトン類は概ねGWPの値として10以下をとる。大気下層での急速な劣化の事実から、フッ素化ケトンの寿命は短く、地球温暖化への寄与は十分少ないことが期待される。 The lifetime of CF 3 CF 2 C (O) CF (CF 3 ) 2 in the atmosphere is about 5 days from the study of photodecomposition by 300 nanometer ultraviolet rays. Since other perfluoroketones exhibit similar absorption, the same lifetime in the atmosphere is assumed. The measured infrared impact cross section was used to calculate the radiation force value using the method of Pinnock et al (J. Geophys. Res., 100, 23227, 1995). Calculated using this radiation force value and the atmospheric lifetime of 5 days, the perfluoroketone having 6 carbon atoms has a GWP of 1 (ITH as 100 years), whereas that of C 2 F 6 is 11. 400. The perfluoroketones of the present invention generally have a GWP value of 10 or less. The fact of rapid degradation in the lower atmosphere, the lifetime of the perfluorinated ketone is short, the contribution to global warming is expected to be sufficiently small.

更に、フッ素化ケトン類は毒性が低い。例えば、ペルフルオロケトンCF3CF2C(O)CF(CF32はラットの短期吸入試験よる急性毒性が低い。4時間の暴露期間によるLC50濃度は空気中でペルフルオロケトン100,000−ppmである。この毒性は半導体業界で洗浄剤として現在使用されているペルフルオロカーボンのそれと同程度である。 Furthermore, fluorinated ketones have low toxicity. For example, perfluoroketone CF 3 CF 2 C (O) CF (CF 3 ) 2 has a low acute toxicity according to a short-term inhalation test in rats. LC 50 concentration by exposure period of 4 hours is perfluoroketone 100,000-ppm in air. This toxicity is comparable to that of perfluorocarbons currently used as cleaning agents in the semiconductor industry.

以下の実施例によりフッ素化ケトンを洗浄剤として使用する方法について更に記載する。本実施例は本発明の理解を容易にするためのものであり、本発明に制限を設けるものではない。特に断らない限り、すべての百分率及び比率は重量基準である。   The following examples further describe methods for using fluorinated ketones as detergents. This example is for facilitating understanding of the present invention, and does not limit the present invention. Unless otherwise indicated, all percentages and ratios are by weight.

評価対象有機フッ素化合物の製造と原料
CF3CF2C(O)CF(CF32
1,1,1,2,4,4,5,5,5−ノナフルオロ−2−トリフルオロメチル−ブタン−3−オン
撹拌機、ヒーター及び熱電対を装着した清潔な乾燥した600ミリリットルパー反応器内に5.6g(0.10モル)の無水フッ化カリウム(ウィスコンシン州ミルウォーキーのシグマ アルドリッチ ケミカル カンパニー(Sigma Aldrich Chemical Co.,Milwaukee,WI)より入手可)と250gの無水ジグリム(無水ジエチレングリコールジメチルエーテル、ウィスコンシン州ミルウォーキーのシグマ アルドリッチ ケミカル カンパニー(Sigma Aldrich Chemical Co.,Milwaukee,WI)より入手可)を添加した。この合成及び引き続くすべての合成で使用する無水フッ化カリウムは、噴霧乾燥して125℃で保管し、使用直前に粉砕した。21.0g(0.13モル)のC25COF(純度約95.0%、ミネソタ州セントポールの3M カンパニー(3M Company,St.Paul,MN)より入手可)を密封した反応器に添加しながら、反応器の内容物を撹拌した。次に反応器およびその内容物を加熱して温度が70℃に達したら、147.3g(0.98モル)のCF2=CFCF3(ヘキサフルオロプロピレン、シグマ アルドリッチ ケミカル カンパニー(Sigma Aldrich Chemical Co.)より入手可)と163.3g(0.98モル)のC25COFとの混合物を3.0時間かけて添加した。ヘキサフルオロプロピレンとC25COFとの混合物の添加中は、圧力を95psig(7500トール)未満に維持した。ヘキサフルオロプロピレン添加終了時の圧力は30psig(2300トール)であり、45分の保持時間を通じて変わらなかった。反応器の内容物を冷却して1段プレート蒸留し、ガスクロマトグラフィーによる測定から90.6%の1,1,1,2,4,4,5,5,5−ノナフルオロ−2−トリフルオロメチル−ブタン−3−オンおよび0.37%のC612(ヘキサフルオロプロピレン二量体)を含有する粗フッ素化ケトン307.1gを得た。これを水洗、蒸留し、シリカゲルと接触させた後、乾燥し、0.4%のヘキサフルオロプロピレン二量体を含有する純度99%の分別されたフッ素化ケトンを得た。
Manufacture and raw materials of the target organic fluorine compounds CF 3 CF 2 C (O) CF (CF 3 ) 2
1,1,1,2,4,4,5,5,5-nonafluoro-2-trifluoromethyl-butane-3-one A clean, dry 600 ml Parr reactor equipped with stirrer, heater and thermocouple 5.6 g (0.10 mol) of anhydrous potassium fluoride (available from Sigma Aldrich Chemical Co., Milwaukee, Wis.) And 250 g of anhydrous diglyme (anhydrous diethylene glycol dimethyl ether, Sigma Aldrich Chemical Company, Milwaukee, Wisconsin (available from Sigma Aldrich Chemical Co., Milwaukee, Wis.) Was added. The anhydrous potassium fluoride used in this synthesis and all subsequent syntheses was spray dried and stored at 125 ° C. and ground immediately before use. 21.0 g (0.13 mol) of C 2 F 5 COF (purity about 95.0%, available from 3M Company, St. Paul, Minn. (3M Company, St. Paul, MN)) in a sealed reactor While adding, the contents of the reactor were stirred. The reactor and its contents were then heated and when the temperature reached 70 ° C., 147.3 g (0.98 mol) of CF 2 ═CFCF 3 (hexafluoropropylene, Sigma Aldrich Chemical Co., Ltd.). ) And 163.3 g (0.98 mol) of C 2 F 5 COF was added over 3.0 hours. During the addition of the mixture of hexafluoropropylene and C 2 F 5 COF, the pressure was maintained below 95 psig (7500 Torr). The pressure at the end of the hexafluoropropylene addition was 30 psig (2300 Torr) and remained unchanged throughout the 45 minute hold time. The reactor contents were cooled, single plate distilled, and 90.6% 1,1,1,2,4,4,5,5,5-nonafluoro-2-trifluoro as determined by gas chromatography 307.1 g of crude fluorinated ketone containing methyl-butan-3-one and 0.37% C 6 F 12 (hexafluoropropylene dimer) was obtained. This was washed with water, distilled, contacted with silica gel, and then dried to obtain a fractionated fluorinated ketone having a purity of 99% containing 0.4% hexafluoropropylene dimer.

上記によって作成された分別されたフッ素化ケトンから次の方法でヘキサフルオロプロピレン二量体を取り除いた。すやわち、撹拌機、ヒーターおよび熱電対を装着した清潔な乾燥した600ミリリットルパー反応器内に、61gの酢酸、1.7gの過マンガン酸カリウム、および301gの上述の分別された1,1,1,2,4,4,5,5,5−ノナフルオロ−2−トリフルオロメチル−ブタン−3−オンを入れた。反応器を密封して撹拌しながら60℃に加熱し、圧力を12psig(1400トール)にした。60℃で75分間の撹拌した後、ディップチューブを使用して液体サンプルを採取し、サンプルを相分離させて下相を水で洗浄した。気液分配クロマトグラフィーを使用してサンプルの分析を行ったところ、ヘキサフルオロプロピレン二量体は検出不能であり、ヘキサフルオロプロピレン三量体は少量検出された。60分後に第2回目のサンプルを採取して同様に処理した。第2回目のサンプルの気液分配クロマトグラフィー分析の結果、二量体、三量体いずれも検出不能であった。反応を3.5時間後に停止して精製したケトンを酢酸から相分離させ、下相を水で2回洗浄した。気液分配クロマトグラフィーによって99.6%を越える純度を有し、検出可能量のヘキサフルオロプロピレン二量体または三量体を含有しないケトン261gを手取った。   The hexafluoropropylene dimer was removed from the fractionated fluorinated ketone prepared as described above by the following method. That is, 61 g acetic acid, 1.7 g potassium permanganate, and 301 g of the above fractionated 1,1 in a clean, dry 600 ml Parr reactor equipped with stirrer, heater and thermocouple. 1,2,4,4,5,5,5-nonafluoro-2-trifluoromethyl-butan-3-one. The reactor was sealed and heated to 60 ° C. with stirring to a pressure of 12 psig (1400 Torr). After stirring at 60 ° C. for 75 minutes, a liquid sample was taken using a dip tube, the sample was phase separated and the lower phase was washed with water. When the sample was analyzed using gas-liquid distribution chromatography, hexafluoropropylene dimer was not detectable, and a small amount of hexafluoropropylene trimer was detected. After 60 minutes, a second sample was collected and processed in the same manner. As a result of the gas-liquid partition chromatography analysis of the second sample, neither dimer nor trimer was detectable. The reaction was stopped after 3.5 hours and the purified ketone was phase separated from acetic acid and the lower phase was washed twice with water. 261 g of ketone having a purity of more than 99.6% by gas-liquid partition chromatography and no detectable amount of hexafluoropropylene dimer or trimer was picked.

n−C37C(O)CF(CF32
1,1,1,2,4,4,5,5,6,6,6−ウンデカフルオロ−2−トリフルオロメチルヘキサン−3−オン
撹拌機、ヒーター、および熱電対を装着した清潔な乾燥した600ミリリットルパー反応器内に、5.8g(0.10モル)の無水フッ化カリウム及び108gの無水ジグリムを添加した。232.5g(1.02モル)のn−C37COF(3M カンパニー(3M Company)より入手可、約95.0%純度)を密閉した反応器に添加する間、反応器の内容物を撹拌しながら、ドライアイスで冷却した。次に反応器とその内容物を加熱し、温度が72℃に達した後、141g(0.94モル)のCF2=CFCF3(ヘキサフルオロプロピレン)を85psig(5150トール)の圧力で3.25時間かけて添加した。ヘキサフルオロプロピレンを添加する間、反応器の温度を85℃までゆっくりと昇温して、圧力は90psig(5400トール)未満に保った。ヘキサフルオロプロピレン添加終了時の圧力は40psig(2800トール)で、続く4時間の保持時間の間に変化はなかった。下相を分別蒸留して、72.5℃の沸点を有し、ガスクロマトグラフィーによる測定から純度99.9%を有する1,1,1,2,4,4,5,5,6,6,6−ウンデカフルオロ−2−トリフルオロメチルヘキサン−3−オンを243.5g得た。構造をガスクロマトグラフィー質量分析計(GCMS)によって確認した。
n-C 3 F 7 C ( O) CF (CF 3) 2
1,1,1,2,4,4,5,5,6,6,6-undecafluoro-2-trifluoromethylhexane-3-one Clean dry equipped with stirrer, heater, and thermocouple 5.8 g (0.10 mole) of anhydrous potassium fluoride and 108 g of anhydrous diglyme were added into the 600 milliliter Par reactor. N-C 3 F 7 COF of 232.5g (1.02 mol) (3M Company (3M Company) from Availability In, about 95.0% purity) during the addition the reactor was sealed, the contents of the reactor The mixture was cooled with dry ice while stirring. The reactor and its contents are then heated and after the temperature reaches 72 ° C., 141 g (0.94 mol) of CF 2 ═CFCF 3 (hexafluoropropylene) is added at a pressure of 85 psig (5150 torr). Added over 25 hours. During the addition of hexafluoropropylene, the reactor temperature was slowly raised to 85 ° C. and the pressure was kept below 90 psig (5400 Torr). The pressure at the end of the hexafluoropropylene addition was 40 psig (2800 torr) and remained unchanged during the subsequent 4 hour hold time. 1,1,1,2,4,4,5,5,6,6 having a boiling point of 72.5 ° C. and a purity of 99.9% as determined by gas chromatography , 6-Undecafluoro-2-trifluoromethylhexane-3-one was obtained in an amount of 243.5 g. The structure was confirmed by gas chromatography mass spectrometer (GCMS).

CF3(CF25C(O)CF3
1,1,1,3,3,4,4,5,5,6,6,7,7,8,8,8−ヘキサデカフルオロオクタン−2−オン
米国特許第5,488,142号(フォールら(Fall et al))に記載の通り、直接フッ素化により1052ミリリットルの酢酸2−オクチルをフッ素化エステルに変換した。得られたフッ素化エステルをメタノールで処理し、ヘミケタールに変換し、反応溶媒の蒸留を行った。得られたヘミケタール1272gを徐々に1200ミリリットルの濃硫酸に添加し、得られた反応混合物を再蒸留し、沸点97℃、核磁気共鳴法により純度98.4%の1,1,1,3,3,4,4,5,5,6,6,7,7,8,8,8−ヘキサデカフルオロオクタン−2−オン1554.3gを得た。
CF 3 (CF 2 ) 5 C (O) CF 3
1,1,1,3,3,4,4,5,5,6,6,7,7,8,8,8-hexadecafluorooctane-2-one US Pat. No. 5,488,142 ( As described in Fall et al), 1052 milliliters of 2-octyl acetate was converted to a fully fluorinated ester by direct fluorination. The resulting fully fluorinated ester was treated with methanol, converted to hemiketal, and the reaction solvent was distilled. 1272 g of the obtained hemiketal was gradually added to 1200 ml of concentrated sulfuric acid, the resulting reaction mixture was redistilled, and 1,1,1,3, having a boiling point of 97 ° C. and a purity of 98.4% by nuclear magnetic resonance. 1554.3 g of 3,4,4,5,5,6,6,7,7,8,8,8-hexadecafluorooctane-2-one was obtained.

CF3OCF2CF2C(O)CF(CF32
1,1,2,2,4,5,5,5−オクタフルオロ−1−トリフルオロメトキシ−4−トリフルオロメチルペンタン−3−オン
清潔な乾燥した600ミリリットルパー反応器内に、11.6g(0.20モル)の無水フッ化カリウムおよび113.5gの無水ジグリムを入れた。反応器の内容物を撹拌しながら、ドライアイスで冷却し、次に独立の真空系を用いて、230g(0.96モル)のCF3OCF2CF2COF(3M Co.より入手可、純度約97%)を密封反応器に添加した。反応器を80℃および圧力80psig(4900トール)にして、154g(1.03モル)のヘキサフルオロプロピレンを3.5時間かけて徐々に添加した。1時間の反応保持時間に続いて、蒸留および分別前の相分離によって生成物を反応混合物から回収し、77℃の沸点を有し、ガスクロマトグラフィーによる測定で純度99.8%を有する1,1,2,2,4,5,5,5−オクタフルオロ−1−トリフルオロメトキシ−4−トリフルオロメチルペンタン−3−オン100gを得た。ガスクロマトグラフィーおよび質量分析によって構造を確認した。
CF 3 OCF 2 CF 2 C (O) CF (CF 3 ) 2
1,1,2,2,4,5,5,5-octafluoro-1-trifluoromethoxy-4-trifluoromethylpentan-3-one 11.6 g in a clean, dry 600 ml Parr reactor (0.20 mol) of anhydrous potassium fluoride and 113.5 g of anhydrous diglyme were added. The reactor contents are cooled with dry ice while stirring and then using an independent vacuum system, 230 g (0.96 mol) of CF 3 OCF 2 CF 2 COF (available from 3M Co., purity About 97%) was added to the sealed reactor. The reactor was brought to 80 ° C. and a pressure of 80 psig (4900 torr) and 154 g (1.03 mol) of hexafluoropropylene was added slowly over 3.5 hours. Following a reaction holding time of 1 hour, the product is recovered from the reaction mixture by phase separation before distillation and fractionation, has a boiling point of 77 ° C. and has a purity of 99.8% as determined by gas chromatography. 100 g of 1,2,2,4,5,5,5-octafluoro-1-trifluoromethoxy-4-trifluoromethylpentan-3-one was obtained. The structure was confirmed by gas chromatography and mass spectrometry.

ClCF2C(O)CF(CF32
1−クロロ−1,1,3,4,4,4−ヘキサフルオロ−3−トリフルオロメチル−ブタン−2−オン
清潔な乾燥した600ミリリットルパー圧力反応器内に、53.5g(0.92モル)の無水フッ化カリウム、150gの無水ジグリム、及び150gのクロロジフルオロ酢酸無水物を装填した。反応器を80℃および92psig(5500トール)に設定し、123g(0.820モル)のヘキサフルオロプロピレンを3時間かけて、120psig(7000トール)を越えないタンク圧力で装填した。80℃での0.5時間の反応に続き、反応器の内容物を冷却させて蒸留し、180.6gの粗試料を得た。粗試料の分別蒸留、酢酸/KMnO4処理、および再分別後に、ガスクロマトグラフィーによる測定で純度98.8%を有する無色透明液体(CF32CFC(O)CF2Clを46.1g(理論収量の26%)得た。
ClCF 2 C (O) CF (CF 3 ) 2
1-Chloro-1,1,3,4,4,4-hexafluoro-3-trifluoromethyl-butan-2-one In a clean, dry 600 ml per pressure reactor, 53.5 g (0.92 Mol) of anhydrous potassium fluoride, 150 g of anhydrous diglyme, and 150 g of chlorodifluoroacetic anhydride. The reactor was set at 80 ° C. and 92 psig (5500 torr) and 123 g (0.820 mol) of hexafluoropropylene was charged over 3 hours at a tank pressure not exceeding 120 psig (7000 torr). Following a 0.5 hour reaction at 80 ° C., the reactor contents were cooled and distilled to yield 180.6 g of a crude sample. After fractional distillation of the crude sample, acetic acid / KMnO4 treatment and re-fractionation, 46.1 g (theoretical) of a colorless transparent liquid (CF 3 ) 2 CFC (O) CF 2 Cl having a purity of 98.8% as determined by gas chromatography 26% of the yield).

(CF32CFC(O)CF(CF32
1,1,1,2,4,5,5,5,6,6,6−オクタフルオロ−2,4−ビス(トリフルオロメチル)ペンタン−3−オン
8.1g(0.14モル)の無水フッ化カリウム、216g(0.50モル)のペルフルオロ(イソ酪酸イソブチル)(米国特許第5,399,718号(コステロら(Costell et al)に記載の通り、イソ酪酸イソブチルとフッ素ガスを反応させ作成)及び200gの無水ジグリムを清潔な乾燥した600ミリリットルパー圧力反応器に装填した。反応器を0℃未満に冷却した後、得られた混合物に165g(1.10モル)のヘキサフルオロプロピレンを添加した。反応器の内容物を撹拌しながら70℃で一晩反応させ、次に反応器を冷却して反応器内の過剰な圧力を大気中に放出した。次に反応器の内容物を相分離させて362.5gの下相を得た。得られた下相を以前の類似反応から保存してあった下相と混合した。22%のフッ化ペルフルオロイソブチリルを含有する集めた下相604g及びヘキサフルオロプロピレン197g(1.31モル)に無水フッ化カリウム8g(0.1モル)及び無水ジグリム50gを添加して、得られる混合物をパー反応器内で前回と同様に反応させた。今回は、54.4%の所望物質と、わずかに5.7%のフッ化ペルフルオロイソブチリルを含有する下相847gを得た。次に得られた下相を水洗して無水硫酸マグネシウムで乾燥後、分別蒸留した。ガスクロマトグラフィー質量分析計(「gcms」)による測定で純度95.2%を有し(47%理論収量)、73℃の沸点を有する1,1,1,2,4,5,5,5,6,6,6−オクタフルオロ−2,4−ビス(トリフルオロメチル)ペンタン−3−オン359gを得た。
(CF 3 ) 2 CFC (O) CF (CF 3 ) 2
1,1,1,2,4,5,5,5,6,6,6-octafluoro-2,4-bis (trifluoromethyl) pentan-3-one 8.1 g (0.14 mol) Anhydrous potassium fluoride, 216 g (0.50 mol) perfluoro (isobutyl isobutyrate) (US Pat. No. 5,399,718 (reacting isobutyl isobutyrate with fluorine gas as described in Costell et al.) And 200 g of anhydrous diglyme were charged into a clean, dry 600 ml per pressure reactor, and after cooling the reactor to below 0 ° C., the resulting mixture was charged with 165 g (1.10 mol) of hexafluoropropylene. The reactor contents were allowed to react overnight at 70 ° C. with stirring, then the reactor was cooled to release excess pressure in the reactor to the atmosphere. The contents were phase separated to give 362.5 g of the lower phase, which was mixed with the lower phase that had been stored from the previous similar reaction, containing 22% perfluoroisobutyryl fluoride. To 604 g of the collected lower phase and 197 g (1.31 mol) of hexafluoropropylene, 8 g (0.1 mol) of anhydrous potassium fluoride and 50 g of anhydrous diglyme are added, and the resulting mixture is kept in the Parr reactor as before. This time, 847 g of a lower phase containing 54.4% of the desired material and only 5.7% perfluoroisobutyryl fluoride was obtained. The extract was dried over anhydrous magnesium sulfate and fractionally distilled, having a purity of 95.2% (47% theoretical yield) and a boiling point of 73 ° C. as measured by gas chromatography mass spectrometer (“gcms”) 1,1 , 1,2 4,5,5,5,6,6,6- octafluoro-2,4-bis (trifluoromethyl) pentanoic 3-one 359 g.

CF3(CF25C(O)CF(CF32
1,1,1,2,4,4,5,5,6,6,7,7,8,8,9,9,9−ヘプタデカフルオロ−2−トリフルオロメチル−ノナン−3−オン
2027gのトリフルオロ酢酸ペンタデカフルオロヘプチルエステル(米国特許第5,399,718号(コステロら(Costello et al)))に記載の通り、酢酸ヘプチルとフッ素ガスを反応させ、作成)、777gの3M(商標)PF−5052パフォーマンスリキッド(フッ素化溶媒の混合物、3M カンパニー(3M Company)より入手可)、3171gの無水ジグリム及び79gの無水フッ化カリウムからなる混合物を2ガロン(7.6リットル)の撹拌機付きステンレススチール製圧力容器に投入した。この容器を加熱し、1816gのヘキサフルオロプロピレンを2時間にわたり、この間反応温度を約50℃に維持しながら、添加した。ヘキサフルオロプロピレンの添加終了後、さらに1.5時間、50℃に保持した。次いで、反応器を冷却し内容物を抜き取った。得られた液体を相分離し、下相を分別蒸留し、ガスクロマトグラフィーと質量分析から沸点25℃、純度95%の1,1,1,2,4,4,4−ヘプタフルオロ−3−トリフルオロメチル−ブタン−2−オン565gと沸点134℃、純度98.5%の1,1,1,2,4,4,5,5,6,6,7,7,8,8,9,9,9−ヘプタデカフルオロ−2−トリフルオロメチル−ノナン−3−オン1427gを得た。
CF 3 (CF 2 ) 5 C (O) CF (CF 3 ) 2
1,1,1,2,4,4,5,5,6,6,7,7,8,8,9,9,9-heptadecafluoro-2-trifluoromethyl-nonan-3-one 2027 g Of trifluoroacetic acid pentadecafluoroheptyl ester (made by reacting heptyl acetate with fluorine gas as described in US Pat. No. 5,399,718 (Costello et al)), 777 g of 3M ( TM) PF-5052 performance Liquid (a mixture of perfluorinated solvents, 3M Company (3M Company) available from), the mixture of two gallons consisting of anhydrous potassium fluoride in anhydrous diglyme and 79g of 3171g of (7.6 liters) It was put into a stainless steel pressure vessel with a stirrer. The vessel was heated and 1816 g of hexafluoropropylene was added over 2 hours while maintaining the reaction temperature at about 50 ° C. After completion of the addition of hexafluoropropylene, the temperature was further maintained at 50 ° C. for 1.5 hours. The reactor was then cooled and the contents removed. The obtained liquid was phase-separated, the lower phase was fractionally distilled, and 1,1,1,2,4,4-heptafluoro-3- having a boiling point of 25 ° C. and a purity of 95% from gas chromatography and mass spectrometry. 1,1,1,2,4,4,5,5,6,6,7,7,8,8,9 with 565 g of trifluoromethyl-butan-2-one and a boiling point of 134 ° C. and a purity of 98.5% , 9,9-heptadecafluoro-2-trifluoromethyl-nonan-3-one 1427 g were obtained.

49OCH3
ペルフルオロブチルメチルエーテル
3M(商標)ノベック(NOVEC)(商標)HFE−7100スペシャルティリキッド(specialty liquid)(ミネソタ州セントポールの3M カンパニー(St.Paul,MN)より入手可)
C 4 F 9 OCH 3
Perfluorobutyl methyl ether 3M (TM) Novec (TM) HFE-7100 special liquid (available from 3M Company, St. Paul, Minn.)

49OC25
ペルフルオロブチルエチルエーテル
3M(商標)ノベック(NOVEC)(商標)HFE−7200スペシャルティリキッド(specialty liquid)(ミネソタ州セントポールの3M カンパニー(St.Paul,MN)より入手可)
C 4 F 9 OC 2 H 5
Perfluorobutyl ethyl ether 3M (TM) Novec (TM) HFE-7200 special liquid (available from 3M Company, St. Paul, Minn.)

37CF(OC25)CF(CF3)2
3−エトキシーペルフルオロ(2−メチルヘキサン)
3M(商標)ノベック(NOVEC)(商標)HFE−7500スペシャルティリキッド(specialty liquid)(ミネソタ州セントポールの3M カンパニー(St.Paul,MN)より入手可)
C 3 F 7 CF (OC 2 H 5) CF (CF3) 2
3-Ethoxy-perfluoro (2-methylhexane)
3M (TM) Novec (TM) HFE-7500 specialty liquid (available from 3M Company, St. Paul, MN, St. Paul, Minn.)

実施例1及び比較例C1〜C3
実施例1において、ペルフルオロケトンの1種であるCF3CF2C(O)CF(CF32を湿式洗浄剤として評価した。すなわち、8インチ(20cm)ウエーハ(カリフォルニア州サンタクララのアプライドマテリアル(Applied Materials,Santa Clara,CA)から入手)の処理に商業的に使用されたモデルP−5000エッチングチャンバーから取り外したシリカガス分配用板状器具上に蓄積したフルオロポリマーを除去することにより湿式洗浄剤として評価した。
Example 1 and Comparative Examples C1-C3
In Example 1, CF 3 CF 2 C (O) CF (CF 3 ) 2 , which is a kind of perfluoroketone, was evaluated as a wet cleaning agent. That is, a silica gas distribution plate removed from a model P-5000 etching chamber used commercially to process 8 inch (20 cm) wafers (obtained from Applied Materials, Santa Clara, Calif.). The wet polymer was evaluated by removing the fluoropolymer that had accumulated on the tool.

各評価においては、約500ミリリットルの湿式洗浄剤をポリマーが蓄積した前記器具に使用し、室温にて前記器具を浸漬した。30分浸漬の後、厚さ8分の1インチ(0.3cm)のポリテトラフルオロエチレン厚板に巻かれたクリーンルーム用拭き取り紙(ニュージャージー州サドルリバーのテックスワイプ(Texwipe,Saddle River,NJ)より入手可)を用い、手で静かに擦る方法(すなわち、前記器具に非常にわずかな力を垂直方向に5分間掛ける)で前記ポリマーを除去する操作を行った。30分の浸漬後、約半分の堆積ポリマーが除去できた。さらに、30分の浸漬後(合計60分)、ほとんどすべてのポリマー堆積物を擦り取ることができた。   In each evaluation, about 500 milliliters of wet cleaning agent was used for the instrument with accumulated polymer and the instrument was immersed at room temperature. Cleanroom wipes (Texwipe, Saddle River, NJ) wrapped in 1/8 inch (0.3 cm) thick polytetrafluoroethylene slab after 30 minutes immersion The polymer was removed by a method of gently rubbing by hand (that is, applying a very slight force to the device in the vertical direction for 5 minutes). About half of the deposited polymer could be removed after 30 minutes of immersion. Furthermore, after 30 minutes immersion (60 minutes total), almost all polymer deposits could be scraped off.

比較例C1〜C3においては、CF3CF2C(O)CF(CF32に置き換えて、C49OCH3、C49OC25及びC37CF(OC25)CF(CF32をそれぞれ使用する以外は実施例1に記載の評価方法によった。C49OCH3、C49OC25及びC37CF(OC25)CF(CF32溶剤を使用することにより、60分の浸漬後、ほとんどすべての前記ポリマー堆積物が除去できた(今回は30分浸漬後の擦り操作はなし)。 In Comparative Examples C1 to C3, replaced with CF 3 CF 2 C (O) CF (CF 3) 2, C 4 F 9 OCH 3, C 4 F 9 OC 2 H 5 and C 3 F 7 CF (OC 2 The evaluation method described in Example 1 was used except that H 5 ) CF (CF 3 ) 2 was used. By using C 4 F 9 OCH 3 , C 4 F 9 OC 2 H 5 and C 3 F 7 CF (OC 2 H 5 ) CF (CF 3 ) 2 solvent, almost all of the above after immersion for 60 minutes The polymer deposit could be removed (this time there was no rubbing operation after immersion for 30 minutes).

実施例2〜8
実施例2〜8においては、湿式洗浄剤として、次にあげるフッ素化ケトン:n−C37C(O)CF(CF32(実施例2)、CF3(CF25C(O)CF3(実施例3)、CF3OCF2CF2C(O)CF(CF32(実施例4)、ClCF2C(O)CF(CF32(実施例5)、(CF32CFC(O)CF(CF3)2(実施例6)、CF3(CF25C(O)CF(CF3)2(実施例7)及びCF3CF2C(O)CF(CF32(実施例8−実施例1で使用したと同じケトン)を室温で評価した。各ケトンについては、商業運転によりフルオロポリマーで汚染されたチャンバーガスのシャワーヘッド(汚染されたヘッドは東京エレクトロン社(東京、日本)から入手)を洗浄する能力を評価した。各洗浄試験においては、各溶媒約20ミリリットルを洗浄に使用したが、ClCF2C(O)CF(CF32においては揮発性が高いので40ミリリットルを使用した。各汚染したシャワーヘッドを部分的に供試フッ素化ケトン溶媒に5分間浸漬し、実施例1に記載の厚さ8分の1インチ(0.3cm)のポリテトラフルオロエチレン厚板に巻かれたクリーンルーム用拭き取り紙を用い、手で静かに擦った。各事例ともポリマーの除去が若干困難であったので、汚染した各シャワーヘッドを供試フッ素化ケトンにさらに5分間(合計10分間)浸漬した。今回は、すべての供試フッ素化ケトンについて、前記フルオロポリマーを汚染したヘッドから容易に除去することができた。
Examples 2-8
In Examples 2-8, as a wet cleaning agent, then raising the fluorinated ketone: n-C 3 F 7 C (O) CF (CF 3) 2 ( Example 2), CF 3 (CF 2 ) 5 C (O) CF 3 (Example 3), CF 3 OCF 2 CF 2 C (O) CF (CF 3 ) 2 (Example 4), ClCF 2 C (O) CF (CF 3 ) 2 (Example 5) (CF 3 ) 2 CFC (O) CF (CF 3) 2 (Example 6), CF 3 (CF 2 ) 5 C (O) CF (CF 3) 2 (Example 7) and CF 3 CF 2 C (O ) CF (CF 3 ) 2 (Example 8-Same ketone as used in Example 1) was evaluated at room temperature. Each ketone was evaluated for its ability to clean a chamber gas showerhead contaminated with fluoropolymer by commercial operation (contaminated head obtained from Tokyo Electron Limited, Tokyo, Japan). In each washing test, about 20 ml of each solvent was used for washing, but 40 ml was used because ClCF 2 C (O) CF (CF 3 ) 2 is highly volatile. Each contaminated showerhead was partially immersed in the test fluorinated ketone solvent for 5 minutes and wound on a 1/8 inch (0.3 cm) thick polytetrafluoroethylene slab as described in Example 1. A clean room wipe was used and gently rubbed by hand. In each case, removal of the polymer was somewhat difficult, so each contaminated showerhead was immersed in the test fluorinated ketone for an additional 5 minutes (10 minutes total). This time, all of the test fluorinated ketones could be easily removed from the contaminated head.

実施例9〜10
CF3CF2C(O)CF(CF32については、洗浄溶媒として40℃(実施例9)と自身の沸点より数度低い(実施例10)温度でさらに評価した。溶媒温度の上昇につれポリマーの除去速度が増加した。
Examples 9-10
CF 3 CF 2 C (O) CF (CF 3 ) 2 was further evaluated as a cleaning solvent at 40 ° C. (Example 9) and a temperature several degrees lower than its boiling point (Example 10). As the solvent temperature increased, the polymer removal rate increased.

前述の詳細な説明から、この発明の範囲と精神を逸脱することなく、この発明に様々な変更ができることは明らかである。それゆえ、本発明の精神から逸脱しないすべての変更及び変形は特許請求の範囲及びその等価物に包含されることを意図している。   It will be apparent from the foregoing detailed description that various modifications can be made to the present invention without departing from the scope and spirit of the invention. Therefore, all modifications and variations that do not depart from the spirit of the present invention are intended to be embraced in the claims and their equivalents.

Claims (2)

洗浄剤を適用することを含む、気相反応器の洗浄方法であって、前記洗浄剤が5〜10個の炭素原子を有し、2個以下の水素原子を有するか又は水素原子を有しない液体フッ素化ケトンを含む方法。A method for cleaning a gas phase reactor comprising applying a cleaning agent, wherein the cleaning agent has 5 to 10 carbon atoms and has 2 or less hydrogen atoms or no hydrogen atoms. A method comprising a liquid fluorinated ketone. 前記洗浄剤がヒドロフルオロカーボン、ヒドロクロロフルオロカーボン、ペルフルオロカーボン、ペルフルオロポリエーテル、ヒドロフルオロエーテル、ヒドロフルオロポリエーテル、ヒドロクロロフルオロエーテル、フッ素化芳香族化合物、クロロフルオロカーボン、ブロモフルオロカーボン、ブロモクロロフルオロカーボン、ヒドロブロモカーボン、ヨードフルオロカーボン及びヒドロブロモフルオロカーボン及びそれらの混合物からなる群より選択される補助洗浄剤をさらに含む、請求項1に記載の方法。  The cleaning agent is hydrofluorocarbon, hydrochlorofluorocarbon, perfluorocarbon, perfluoropolyether, hydrofluoroether, hydrofluoropolyether, hydrochlorofluoroether, fluorinated aromatic compound, chlorofluorocarbon, bromofluorocarbon, bromochlorofluorocarbon, hydrobromo The method of claim 1, further comprising an auxiliary cleaning agent selected from the group consisting of carbon, iodofluorocarbons and hydrobromofluorocarbons and mixtures thereof.
JP2002583701A 2001-04-24 2002-02-12 Use of fluorinated ketones as wet cleaners for gas phase reactors. Expired - Fee Related JP4160403B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/841,340 US6394107B1 (en) 2001-04-24 2001-04-24 Use of fluorinated ketones as wet cleaning agents for vapor reactors and vapor reactor components
PCT/US2002/004087 WO2002086191A1 (en) 2001-04-24 2002-02-12 Use of fluorinated ketones as wet cleaning agents for vapor reactors

Publications (3)

Publication Number Publication Date
JP2005507954A JP2005507954A (en) 2005-03-24
JP2005507954A5 JP2005507954A5 (en) 2005-12-22
JP4160403B2 true JP4160403B2 (en) 2008-10-01

Family

ID=25284615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002583701A Expired - Fee Related JP4160403B2 (en) 2001-04-24 2002-02-12 Use of fluorinated ketones as wet cleaners for gas phase reactors.

Country Status (6)

Country Link
US (1) US6394107B1 (en)
EP (1) EP1381709A1 (en)
JP (1) JP4160403B2 (en)
KR (1) KR20030090784A (en)
CN (1) CN1505693A (en)
WO (1) WO2002086191A1 (en)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6540930B2 (en) * 2001-04-24 2003-04-01 3M Innovative Properties Company Use of perfluoroketones as vapor reactor cleaning, etching, and doping gases
US6423673B1 (en) * 2001-09-07 2002-07-23 3M Innovation Properties Company Azeotrope-like compositions and their use
JP3958080B2 (en) * 2002-03-18 2007-08-15 東京エレクトロン株式会社 Method for cleaning member to be cleaned in plasma processing apparatus
US6923278B2 (en) * 2002-05-06 2005-08-02 Pride Mobility Products Corporation Adjustable anti-tip wheels for power wheelchair
US7250114B2 (en) * 2003-05-30 2007-07-31 Lam Research Corporation Methods of finishing quartz glass surfaces and components made by the methods
US20050011859A1 (en) * 2003-07-15 2005-01-20 Bing Ji Unsaturated oxygenated fluorocarbons for selective aniostropic etch applications
US20050161061A1 (en) * 2003-09-17 2005-07-28 Hong Shih Methods for cleaning a set of structures comprising yttrium oxide in a plasma processing system
US7252780B2 (en) * 2004-05-26 2007-08-07 E.I. Du Pont De Nemours And Company 1,1,1,2,2,4,5,5,5-nonafluoro-4-(trifluoromethyl)-3-pentanone refrigerant and heat transfer compositions comprising a fluoroether
JP4573874B2 (en) 2005-07-29 2010-11-04 三井・デュポンフロロケミカル株式会社 Solvent composition and decontamination material for decontamination of radioactive material using hydrofluorocarbon, and decontamination method of radioactive material
US7385089B2 (en) * 2005-12-23 2008-06-10 3M Innovative Properties Company Fluorochemical ketone compounds and processes for their use
US7498296B2 (en) * 2006-02-28 2009-03-03 E. I. Dupont De Nemours And Company Azeotropic compositions comprising fluorinated compounds for cleaning applications
US8791254B2 (en) * 2006-05-19 2014-07-29 3M Innovative Properties Company Cyclic hydrofluoroether compounds and processes for their preparation and use
JP4884180B2 (en) * 2006-11-21 2012-02-29 東京エレクトロン株式会社 Substrate processing apparatus and substrate processing method
US8193397B2 (en) * 2006-12-06 2012-06-05 3M Innovative Properties Company Hydrofluoroether compounds and processes for their preparation and use
DE202009018239U1 (en) 2009-06-12 2011-06-01 Abb Technology Ag Switching device with dielectric insulation medium
DE202009018213U1 (en) 2009-06-12 2011-06-09 Abb Technology Ag Dielectric insulation medium
AP3244A (en) 2009-06-12 2015-05-31 Abb Technology Ag Dielectric insulation medium
DE202009009305U1 (en) 2009-06-17 2009-11-05 Ormazabal Gmbh Switching device for medium, high or very high voltage with a filling medium
WO2011029488A1 (en) 2009-09-11 2011-03-17 Abb Research Ltd Transformer comprising a heat pipe
WO2011048039A2 (en) 2009-10-19 2011-04-28 Abb Technology Ag Transformer
WO2012080222A1 (en) 2010-12-14 2012-06-21 Abb Research Ltd Dielectric insulation medium
WO2012080246A1 (en) 2010-12-14 2012-06-21 Abb Technology Ag Dielectric insulation medium
HUE028113T2 (en) * 2010-12-16 2016-11-28 Abb Technology Ag Dielectric insulation medium
FR2975820B1 (en) * 2011-05-24 2013-07-05 Schneider Electric Ind Sas MIXTURE OF DECAFLUORO-2-METHYLBUTAN-3-ONE AND A VECTOR GAS AS A MEDIUM ELECTRICAL INSULATION AND / OR EXTINGUISHING ELECTRIC ARCS AT MEDIUM VOLTAGE
US8545639B2 (en) * 2011-10-31 2013-10-01 Lam Research Corporation Method of cleaning aluminum plasma chamber parts
RU2472767C1 (en) * 2011-11-25 2013-01-20 Федеральное государственное унитарное предприятие "Российский научный центр "Прикладная химия" Method of producing perfluoroethylisopropyl ketone
WO2013087700A1 (en) 2011-12-13 2013-06-20 Abb Technology Ag Sealed and gas insulated high voltage converter environment for offshore platforms
RU2607897C1 (en) * 2015-09-10 2017-01-11 Федеральное государственное унитарное предприятие "Российский научный центр "Прикладная химия" Method of producing perfluoroethyl isopropyl ketone
US20170282220A1 (en) * 2016-04-01 2017-10-05 Tyco Fire & Security Gmbh Method and System for Liquid Cleaning of Smoke Sensor Heads
EP3689980A1 (en) * 2019-01-31 2020-08-05 3M Innovative Properties Company Fluoropolymer compositions

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3185734A (en) * 1960-10-25 1965-05-25 Du Pont Novel polyfluoro-substituted ketones and their preparation from polyfluoro acid fluorides
NL7711424A (en) * 1976-10-23 1978-04-25 Hoechst Ag PROCESS FOR THE PREPARATION OF FLUOR CONTAINING KETONES.
EP0609200A1 (en) * 1988-12-02 1994-08-10 Minnesota Mining And Manufacturing Company Direct fluorination process for making perfluorinated organic substances
JP2763083B2 (en) * 1993-06-01 1998-06-11 工業技術院長 Fluorine-based cleaning solvent composition
US5466877A (en) * 1994-03-15 1995-11-14 Minnesota Mining And Manufacturing Company Process for converting perfluorinated esters to perfluorinated acyl fluorides and/or ketones
JP2869432B2 (en) * 1996-10-04 1999-03-10 工業技術院長 Solvent and method for cleaning article surface using the same
JP2952414B2 (en) * 1997-09-22 1999-09-27 工業技術院長 Solvent and method for cleaning article surface using the same
US5998671A (en) * 1998-05-15 1999-12-07 Alliedsignal Inc. Fluorinated ketones and method for making same
DE69933025T2 (en) * 1998-05-26 2007-03-08 Tokyo Electron Ltd. CLEANING LIQUID AND CLEANING METHOD FOR SEMICONDUCTOR MACHINING COMPONENTS
JP3141325B2 (en) * 1999-01-14 2001-03-05 工業技術院長 Solvent and method for cleaning article surface using the same
JP4322346B2 (en) * 1999-02-26 2009-08-26 東京エレクトロン株式会社 Cleaning method for film forming apparatus

Also Published As

Publication number Publication date
KR20030090784A (en) 2003-11-28
WO2002086191A1 (en) 2002-10-31
JP2005507954A (en) 2005-03-24
US6394107B1 (en) 2002-05-28
CN1505693A (en) 2004-06-16
EP1381709A1 (en) 2004-01-21

Similar Documents

Publication Publication Date Title
JP4160403B2 (en) Use of fluorinated ketones as wet cleaners for gas phase reactors.
JP3099964B2 (en) Cleaning method, coating adhesion method, and composition therefor
JP2004536448A (en) Use of perfluoroketone as cleaning gas, etching gas and doping gas for steam reactor
KR100427738B1 (en) Azeotrope-like compositions and uses thereof
EP0760809A1 (en) Omega-hydrofluoroalkyl ethers, precursor carboxylic acids and derivatives thereof, and their preparation and application
JP2002501035A (en) Method for preparing hydrofluoroether
JP3783047B2 (en) Cleaning method and composition
JPH06293686A (en) Methyl 1,1,2,2,3,3-hexafluoropropyl ether, its production and detergent containing the same
US5696307A (en) Hydrofluoroalkanes as cleaning and degreasing solvents
CN109652235B (en) Azeotropic composition and application thereof
JP2869432B2 (en) Solvent and method for cleaning article surface using the same
US6548471B2 (en) Alkoxy-substituted perfluorocompounds
US6506459B2 (en) Coating compositions containing alkoxy substituted perfluoro compounds
JP2829322B2 (en) Azeotropic and azeotropic compositions containing fluorinated ethers
JP3030335B2 (en) Purification method of fluorinated ether
JP2589916B2 (en) 1,1,2-trifluoroethyl 2,2-difluoroethyl ether, method for producing the same, and detergent containing the same
JP2589048B2 (en) Method for producing trifluoromethoxyfluoroethanes
JP2589049B2 (en) Novel trifluoromethoxyfluoropropanes and method for producing the same
JP2021020870A (en) Method for producing 1,1,2-trichloro-2-fluoroethene (tcfe) and application thereof
JPH07173091A (en) Novel fluorinated compound and its production
EP1577284A1 (en) Fluorine-containing ether compound and method for producing same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050127

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080219

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080617

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080717

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees