JP4157968B2 - Alkenyl phosphinate and process for producing the same - Google Patents

Alkenyl phosphinate and process for producing the same Download PDF

Info

Publication number
JP4157968B2
JP4157968B2 JP36387697A JP36387697A JP4157968B2 JP 4157968 B2 JP4157968 B2 JP 4157968B2 JP 36387697 A JP36387697 A JP 36387697A JP 36387697 A JP36387697 A JP 36387697A JP 4157968 B2 JP4157968 B2 JP 4157968B2
Authority
JP
Japan
Prior art keywords
group
substituted
unsubstituted
alkenyl
phosphinic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP36387697A
Other languages
Japanese (ja)
Other versions
JPH11180990A (en
Inventor
正人 田中
瑞茂 華
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Advanced Industrial Science and Technology AIST
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Advanced Industrial Science and Technology AIST
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Advanced Industrial Science and Technology AIST, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP36387697A priority Critical patent/JP4157968B2/en
Publication of JPH11180990A publication Critical patent/JPH11180990A/en
Application granted granted Critical
Publication of JP4157968B2 publication Critical patent/JP4157968B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【0001】
【産業上の利用分野】
本発明は、医薬・農薬類、難燃剤等の合成に用いられる有用な物質であるホスフィン酸アルケニル類、及び、アセチレン化合物とホスフィン酸とを反応させることからなる新規なその製造法に関するものである。
【0002】
【従来の技術】
ホスフィン酸アルケニル類は、従来ケトン類のアルファー位をハロゲン化し、生成アルファーハロケトンとジオルガノホスフィナイトとを反応させるいわゆるベルコフ反応により合成されている。しかし、本方法には原料の入手上困難があり、また、生成物に含まれないハロゲンを使用し、しかも副反応を伴うため、工業的に有利な方法とは考えられない。
【0003】
【発明が解決しようとする課題】
本発明は、工業的に入手容易なアセチレン化合物にホスフィン酸を反応させることからなる、ホスフィン酸アルケニル類の新規かつ効率的な製造方法を提供することを目的とするものである。
【0004】
【課題を解決するための手段】
本発明者らは、前記目的を達するために鋭意研究の結果、遷移金属触媒、殊にルテニウム錯体触媒の存在下において、ホスフィン酸がアセチレン結合に容易に付加する事実を見いだし、それに基づいて本発明を完成するに至った。
【0005】
すなわち、本発明によれば、アセチレン化合物にホスフィン酸を反応させることからなるホスフィン酸アルケニル類の新規かつ効率的な製造方法が提供される。
本発明は、分子の末端に炭素−炭素3重結合を有する化合物と、有機ホスフィン酸とを、遷移金属触媒の存在下に反応させて、ホスフィン酸アルケニル誘導体を製造する方法に関する。
また、本発明は、分子の末端の3重結合に有機ホスフィン酸が付加した構造を有する新規なホスフィン酸アルケニル誘導体に関する。
【0006】
本発明において原料の一つとして用いる分子の末端に炭素−炭素3重結合を有するアセチレン化合物は、分子の末端に炭素−炭素3重結合を有し、本発明の化学反応を阻害する官能基を有さないものであれば特に制限はないが、次の一般式(I)、
C≡CH (I)
(式中、Rは置換又は非置換のアルキル基、置換又は非置換のシクロアルキル基、置換又は非置換のアリール基、置換又は非置換のアラルキル基、置換又は非置換の複素環基、置換又は非置換のエステル基、置換又は非置換のシリル基を示す。)で表されるものが好ましい。アルキル基としては、飽和又は不飽和の直鎖状又は分枝鎖状のものであり、その炭素数としては1〜30が好ましく、さらに1〜15程度の低級アルキル基が好ましい。シクロアルキル基としては、飽和又は不飽和の単環式又は多環式のものであり、3〜20員環、好ましくは3〜12員環、さらに好ましくは3〜7員環の単環式、多環式又は縮合環式のものが好ましい。
【0007】
アリール基としては、単環式、多環式又は縮合環式の六員芳香族環を有するもので、その炭素数としては1〜20のものが好ましく、さらには1〜12程度のものが好ましい。
アラルキル基としては、前記したアルキル基に前記したアリール基が置換したものであり、その総炭素数は7〜30が好ましく、さらに7〜12程度が好ましい。
複素環基としは、窒素原子、酸素原子又は硫黄原子などからなる異項原子を環系中に1個又はそれ以上有する、飽和又は不飽和の、好ましくは3〜10員環、より好ましくは5〜10員環からなる単環式、多環式又は縮合環式のものが好ましい。
エステル基としては、前記したアルキル基、シクロアルキル基、アリール基、アラルキル基又は複素環基でエステル化されたカルボキシル基が挙げられる。
シリル基としては、無機のシリル基でもよいが、前記したアルキル基、シクロアルキル基、アリール基、アラルキル基又は複素環基を有する有機シリル基が好ましい。
また、これらのアルキル基、シクロアルキル基、アリール基、アラルキル基又は複素環基の置換基としては、アルコキシ基、シアノ基、ジアルキルアミノ基、シリル基等の官能基が挙げられる。R1の具体例としては、フェニル基、ブチル基、ヘキシル基、シクロヘキシル基、シクロヘキセニル基、ベンジル基、チエニル基等が挙げられる。
【0008】
一方、本発明の反応において用いられる有機ホスフィン酸は、一般式(II)、
2 2P(O)OH (II)
(式中、R2は置換又は非置換のアルキル基、置換又は非置換のシクロアルキル基、置換又は非置換のアリール基、置換又は非置換のアラルキル基を示す。)で表されるものである。R2基としては、前記したアルキル基、シクロアルキル基、アリール基、又はアラルキル基が用いられる。また、R2基の置換基としては、アルコキシ基、シアノ基、ジアルキルアミノ基、シリル基等が挙げられるが、非置換のものが好ましい。R2の具体例としては、フェニル基、ナフチル基、メチル基、エチル基、フリル基等が挙げられる。
本発明の方法により製造されるホスフィン酸アルケニル誘導体は、分子の末端に炭素−炭素2重結合を有し、当該2重結合の分子の内側にホスフィン酸類が結合した化合物であり、好ましくは次式(III)、
【0009】
【化3】

Figure 0004157968
【0010】
(式中のR1及びR2は前記したものを示す。)
で示される化合物である。
【0011】
本発明の反応は、遷移金属触媒、好ましくは、錯体触媒、殊にルテニウム錯体触媒の存在下において好ましい速度で進行する。ルテニウム錯体としては種々の構造のものを用いることが出来るが、好適なものは、いわゆる低原子価のルテニウム錯体である。具体的には、Ru3(CO)12、Ru(cod)(cot)(cod、cotはそれぞれシクロオクタジエン、シクロオクタトリエンを示す)、RuCl2(p−C914)(PPh3)(p−C914はシメンを示す)、RuH2(CO)(PPh33等が例示される。
【0012】
これらのルテニウム錯体の使用量はいわゆる触媒量で良く、アセチレン化合物に対して20モル%以下であり、一般的には5モル%以下で十分である。
【0013】
反応は特に溶媒を用いなくてもよいが、必要に応じて溶媒中で実施することもできる。溶媒としては、炭化水素系もしくはエーテル系の溶媒が一般的に用いられる。反応温度は、アセチレン化合物の構造によるが一般には50℃以上に加熱するのが好ましく、通常は80〜200℃の範囲から選ばれる。本反応の中間体は酸素に敏感であり、反応の実施は、窒素やアルゴン、メタン等の不活性ガス雰囲気で行うのが好ましい。反応混合物からの精製物の分離は、クロマトグラフィー、蒸留または再結晶によって容易に達成される。
【0014】
【実施例】
本発明を以下の実施例によってさらに具体的に説明するが、実施態様は実施例に限定されるものではない。
【0015】
実施例1
1−オクチン(0.4mmol)、ジフェニルホスフィン酸(0.48mmol)、Ru3(CO)12(1−オクチンに対して2.5mol%)、および、トルエン(3ml)の混合物を、窒素雰囲気下、140℃で5時間攪拌した。反応液のNMR測定によりジフェニルホスフィン酸1−オクテン−2−イルが74%の収率で生成していることが判明した。反応液を濃縮し、カラムクロマトグラフイー(ヘキサン−アセトングラディエント、混合比5:1ないし1:5)により分離精製し、単離収率88%で純粋なジフェニルホスフィン酸1−オクテン−2−イルが得られた。
本化合物は文献未収載の新規化合物であり、以下のスペルトルデータが得られた。
1H NMR(300 MHz)δ 7.85−7.79(m,4H),7.52−7.40(m,6H),4.76(s,1H),4.37(s,1H),2.16(t,2H,J 7.5Hz),1.51−1.44(m,8H),0.85(t,3H,J 7.0Hz);
13C NMR(75MHz)δ155.7(JC-P 9.2Hz),132.2(JC-P 2.7),131・7(JC-P 10.3Hz),128.5(JC-P13.4Hz),97.6(JC-P 5.2Hz),35.3(JC-P 4.3Hz),31.6,28.5,26.4,22.6,14.1;
31P{H} NMR(121MHz)δ 28.2;
GC−MS m/z(相対強度)328(5,M+),219(100);
Figure 0004157968
【0016】
実施例2
触媒として、トリルテニウムドデカカルボニルの代わりにRuCl2(p−C914)(PPh3)(0.01mmol)を用いて、実施例1と同様に反応させた。反応液のNMR測定によりジフェニルホスフィン酸1−オクテン−2−イルが53%の収率で生成していることが判明した。
【0017】
実施例3
触媒として、トリルテニウムドデカカルボニルの代わりにRuH2(CO)(PPh33(0.01mmol)を用いて、実施例1と同様に反応させた。反応液のNMR測定によりジフェニルホスフィン酸1−オクテン−2−イルが18%の収率で生成していることが判明した。
【0018】
実施例4
触媒として、トリルテニウムドデカカルボニルの代わりに[RhCl(cod)]3(0.01mmol)を用いて、実施例1と同様に反応させた。反応液のNMR測定によりジフェニルホスフィン酸1−オクテン−2−イルが10%の収率で生成していることが判明した。
【0019】
実施例5
触媒として、トリルテニウムドデカカルボニルの代わりにRhCl(cod)(PPh3)(0.01 mmol)を用いて、実施例1と同様に反応させた。反応液のNMR測定によりジフェニルホスフィン酸1−オクテン−2−イルが21%の収率で生成していることが判明した。
【0020】
実施例6
1−へキシン(0.4mmol)、ジフェニルホスフィン酸(0.48mmol)、RuCl2(p−C914)(PPh3)(1−へキシンに対して2.5mol%)、および、トルエン(3ml)の混合物を、窒素雰囲気下、140℃で5時間攪拌した。反応液を濃縮しカラムクロマトグラフィー(ヘキサン−アセトングラディエント、混合比5:1ないし1:5)により分離精製し、単離収率67%で純粋なジフェニルホスフィン酸1−へキシン−2−イルが得られた。
本化合物は文献未収載の新規化合物であり、以下のスペルトルデータが得られた。
1H NMR(300 MHz)δ 7.86−7.80(m,4H),7.53−7.45(m,6H),4.75(d,1H,JH-P 1.9Hz),4.39(s,1H),2.17(t,2H,J 7.3Hz),1.53−1.26(m,4H),0.87(t,3H,J 7.1Hz);
13C NMR(75 MHz)δ 155.7(JC-P 10.0Hz),132.2(JC-P 2.8Hz),131.7(JC-P 10.3Hz),128.5(JC-P 13.4Hz),97.5(JC-P 5.2Hz),35.0(JC-P 4.2Hz),28.5,21.9,13.8;
31P{H} NMR(121 MHz)δ 28.3;
GC−MS m/z(相対強度)300(11,M+),219(100);
Figure 0004157968
【0021】
実施例7
フェニルアセチレン(0.4mmol)、ジフェニルホスフイン酸(0.48mmol)、Ru3(CO)12(フェニルアセチレンに対して2.5mol%)、および、トルエン(3ml)の混合物を、窒素雰囲気下、140℃で5時間攪拌した。反応液を濃縮しカラムクロマトグラフィー(ヘキサン−アセトングラディエント、混合比5:1ないし1:5)により分離精製し、単離収率70%で純粋なジフェニルホスフィン酸1−フェニルエテン−1−イルが得られた。
【0022】
実施例8
3−フェニル−1−プロピン(0.4mmol)、ジフェニルホスフィン酸(0.48mmol)、Ru3(CO)12(3−フェニル−1−プロピンに対して2.5mol%)、および、トルエン(3ml)の混合物を、窒素雰囲気下、140℃で5時間攪拌した。反応液を濃縮しカラムクロマトグラフィー(ヘキサン−アセトングラディエント、混合比5:1ないし1:5)により分離精製し、単離収率79%で純粋なジフェニルホスフィン酸3−フェニル−1−プロペン−2−イルが得られた。
本化合物は文献末収載の新規化合物であり、以下のスペルトルデータが得られた。
1H NMR(300 MHz)δ 7.83−6.48(m,15H),4.88(s,1H),4.41(s,1H),3.48(s,2H);
13C NMR(75 MHz)δ 154,9(JC-P 9.5Hz),136.8,132.2(JC-P 2.8Hz),131.6(JC-P 1O.4Hz),129.4,128.5,128.4(JC-P 13.4Hz),126.9,99.0(JC-P 5.1Hz),42.0(JC-P 4.7Hz);
31P{H} NMR(121 MHz)δ 28.7;
GC−MS m/z(相対強度)334(0.4,M+),219(100);
Figure 0004157968
【0023】
実施例9
5−へキシノニトリル(0.4mmol)、ジフェニルホスフィン酸(0.48mmol)、Ru3(CO)12(5−へキシノニトリルに対して2.5mol%)、および、トルエン(3ml)の混合物を、窒素雰囲気下、140℃で5時間攪拌した。反応液を濃縮しカラムクロマトグラフィー(ヘキサン−アセトングラディエント、混合比5:1ないし1:5)により分離精製し、単離収率82%で純粋なジフェニルホスフィン酸5−シアノ−1−ペンテン−2−イルが得られた。
本化合物は文献未収載の新規化合物であり、以下のスペルトルデー夕が得られた。
1H NMR(300 MHz)δ 7.87−7.82(m,4H),7.53−7.42(m,6H),4.75(d,1H,JH-P 1.7Hz),4.39(s,1H),2.17(t,2H,J 7.4Hz),1.49(t,2H,J 7.3Hz),1.36−1.26(m,2H);
13C NMR(75 MHz)δ 152.9(JC-P 9.5Hz),132.5(JC-P 2.9Hz),131.6(JC-P 10.3Hz),128.6(JC-P 13.4Hz),119.3,99.7(JC-P 5.3Hz),34.0(JC-P 4.2Hz),22.2,16.0;
31P{H} NMR(121 MHz)δ 28.3;
GC−MS m/z(相対強度)311(3,M+),201(100);
Figure 0004157968
【0024】
実施例10
シクロヘキセン−1−イルエチン(0.4mmol)、ジフェニルホスフィン酸(0.48mmol)、Ru3(CO)12(シクロヘキセン−1−イルエチンに対して2.5mol%)、および、トルエン(3ml)の混合物を、窒素雰囲気下、140℃で5時間攪拌した。反応液を濃縮しカラムクロマトグラフイー(ヘキサン−アセトングラディエント、混合比5:1ないし1:5)により分離精製し、単離収率65%で純粋なジフェニルホスフィン酸シクロヘキセン−1−イルエテン−1−イルが得られた。
本化合物は文献未収載の新規化合物であり、以下のスペルトルデータが得られた。
1H NMR(300 MHz)δ 7.88−7.81(m,4H),7.52−7.43(m,6H),6.31(bs,1H),4.88(s,1H),4.61(s,1H),2.39−1.58(m,8H);
13C NMR(75 MHz)δ 153.6(JC-P 9.0Hz)132.2(JC-P 2.8Hz),131.6(JC-P 10.3Hz),131.5(JC-P 10.2Hz),128.5(JC-P 13.4Hz),97.0(JC-P 4.8Hz),25.4,24.7,22.4,21.8;
31P{H} NMR(121 MHz)δ 29.1;
GC−MS m/z(相対強度)324(3,M+),219(100);
Figure 0004157968
【0025】
実施例11
ノナ−1,8−ジイン(0.4mmol)、ジフェニルホスフイン酸(0.9mmol)、Ru3(CO)12(ノナ−1,8−ジインに対して5mol%)、および、トルエン(3ml)の混合物を、窒素雰囲気下、140℃で5時間攪拌した。反応液を濃縮し力ラムクロマトグラフィー(ヘキサン−アセトングラディエント、混合比5:1ないし1:5)により分離精製し、単離収率86%で純粋な2,8−ビス(ジフェニルホスフィニロキシ)−ノナ−1,8−ジエンが得られた。
本化合物は文献未収載の新規化合物であり、以下のスペルトルデータが得られた。
1H NMR(300 MHz)δ 7.85−7.78(m,8H),7.51−7.43(m,12H),4.74(s,1H)4.36(S,1H),2.14(t,4H,J 7.0Hz),1.51−1.26(m,6H);
13C NMR(75 MHz)δ 155.5(JC-P 9.7Hz),132.3(JC-PP 2.7Hz),131.7(JC-P 10.3Hz),128.5(JC-P 13.3Hz),97.9(JC-P 5.2Hz),35.2(JC-P 4.3Hz),28.1,16.2;
31P{H} NMR(121 MHz)δ 28.2;
Figure 0004157968
【0026】
【発明の効果】
本発明の方法により、医薬・農薬、難燃剤等の合成に有用なホスフィン酸アルケニル類を、入手容易なホスフィン酸とアセチレンから効率的かつ安全に製造でき、その分離精製も容易である。従って、本発明は工業的に多大の効果をもたらす。[0001]
[Industrial application fields]
The present invention relates to alkenyl phosphinates, which are useful substances used in the synthesis of pharmaceuticals, agricultural chemicals, flame retardants, and the like, and a novel method for producing the same comprising reacting an acetylene compound and phosphinic acid. .
[0002]
[Prior art]
Alkenyl phosphinates are conventionally synthesized by the so-called Berkov reaction in which the alpha position of ketones is halogenated and the resulting alpha-haloketone and diorganophosphinite are reacted. However, this method has difficulty in obtaining raw materials, uses halogen not contained in the product, and involves a side reaction, and is not considered to be an industrially advantageous method.
[0003]
[Problems to be solved by the invention]
An object of the present invention is to provide a novel and efficient method for producing alkenyl phosphinates, which comprises reacting phosphinic acid with an acetylene compound which is easily available industrially.
[0004]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the present inventors have found that phosphinic acid is easily added to an acetylene bond in the presence of a transition metal catalyst, particularly a ruthenium complex catalyst. It came to complete.
[0005]
That is, according to the present invention, a novel and efficient method for producing alkenyl phosphinates comprising reacting acetylene compound with phosphinic acid is provided.
The present invention relates to a method for producing an phosphinic acid alkenyl derivative by reacting a compound having a carbon-carbon triple bond at the end of a molecule with an organic phosphinic acid in the presence of a transition metal catalyst.
The present invention also relates to a novel alkenyl phosphinate derivative having a structure in which an organic phosphinic acid is added to a triple bond at the end of the molecule.
[0006]
The acetylene compound having a carbon-carbon triple bond at the end of a molecule used as one of the raw materials in the present invention has a functional group that has a carbon-carbon triple bond at the end of the molecule and inhibits the chemical reaction of the present invention. There is no particular limitation as long as it does not have, but the following general formula (I),
R 1 C≡CH (I)
Wherein R 1 is a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted heterocyclic group, a substituted Or an unsubstituted ester group or a substituted or unsubstituted silyl group.) Is preferred. The alkyl group is a saturated or unsaturated straight chain or branched chain, and preferably has 1 to 30 carbon atoms, more preferably about 1 to 15 lower alkyl groups. The cycloalkyl group is a saturated or unsaturated monocyclic or polycyclic group, 3 to 20 membered ring, preferably 3 to 12 membered ring, more preferably 3 to 7 membered monocyclic ring, Polycyclic or condensed cyclic ones are preferred.
[0007]
The aryl group has a monocyclic, polycyclic or condensed cyclic 6-membered aromatic ring, and preferably has 1 to 20 carbon atoms, more preferably about 1 to 12 carbon atoms. .
As the aralkyl group, the above-mentioned alkyl group is substituted with the above-described aryl group, and the total carbon number is preferably 7 to 30, and more preferably about 7 to 12.
As the heterocyclic group, a saturated or unsaturated, preferably 3- to 10-membered ring, more preferably 5 having one or more hetero atoms consisting of nitrogen atom, oxygen atom or sulfur atom in the ring system. Monocyclic, polycyclic or condensed cyclic ones consisting of 10 to 10 members are preferred.
Examples of the ester group include a carboxyl group esterified with the aforementioned alkyl group, cycloalkyl group, aryl group, aralkyl group, or heterocyclic group.
The silyl group may be an inorganic silyl group, but is preferably an organic silyl group having an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group or a heterocyclic group.
Moreover, as a substituent of these alkyl groups, a cycloalkyl group, an aryl group, an aralkyl group, or a heterocyclic group, functional groups, such as an alkoxy group, a cyano group, a dialkylamino group, a silyl group, are mentioned. Specific examples of R 1 include phenyl group, butyl group, hexyl group, cyclohexyl group, cyclohexenyl group, benzyl group, thienyl group and the like.
[0008]
On the other hand, the organic phosphinic acid used in the reaction of the present invention has the general formula (II),
R 2 2 P (O) OH (II)
(Wherein R 2 represents a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted aralkyl group). . As the R 2 group, the aforementioned alkyl group, cycloalkyl group, aryl group, or aralkyl group is used. In addition, examples of the substituent for the R 2 group include an alkoxy group, a cyano group, a dialkylamino group, a silyl group, and the like, but an unsubstituted one is preferable. Specific examples of R 2 include a phenyl group, a naphthyl group, a methyl group, an ethyl group, and a furyl group.
The phosphinic acid alkenyl derivative produced by the method of the present invention is a compound having a carbon-carbon double bond at the end of the molecule and a phosphinic acid bonded to the inside of the double bond molecule. (III),
[0009]
[Chemical 3]
Figure 0004157968
[0010]
(R 1 and R 2 in the formula are as described above.)
It is a compound shown by these.
[0011]
The reaction of the present invention proceeds at a preferred rate in the presence of a transition metal catalyst, preferably a complex catalyst, especially a ruthenium complex catalyst. Although ruthenium complexes having various structures can be used, a so-called low-valent ruthenium complex is preferable. Specifically, Ru 3 (CO) 12 , Ru (cod) (cot) (cod and cot respectively represent cyclooctadiene and cyclooctatriene), RuCl 2 (p-C 9 H 14 ) (PPh 3 ) (P-C 9 H 14 represents cymene), RuH 2 (CO) (PPh 3 ) 3 and the like.
[0012]
The amount of these ruthenium complexes used may be a so-called catalytic amount, which is 20 mol% or less with respect to the acetylene compound, and generally 5 mol% or less is sufficient.
[0013]
The reaction is not particularly required to use a solvent, but can be carried out in a solvent if necessary. As the solvent, a hydrocarbon-based or ether-based solvent is generally used. Although the reaction temperature depends on the structure of the acetylene compound, it is generally preferable to heat to 50 ° C. or higher, and is usually selected from the range of 80 to 200 ° C. The intermediate of this reaction is sensitive to oxygen, and the reaction is preferably carried out in an inert gas atmosphere such as nitrogen, argon or methane. Separation of the purified product from the reaction mixture is easily accomplished by chromatography, distillation or recrystallization.
[0014]
【Example】
The present invention will be described more specifically with reference to the following examples, but the embodiments are not limited to the examples.
[0015]
Example 1
A mixture of 1-octyne (0.4 mmol), diphenylphosphinic acid (0.48 mmol), Ru 3 (CO) 12 (2.5 mol% with respect to 1-octyne), and toluene (3 ml) was placed under a nitrogen atmosphere. , And stirred at 140 ° C. for 5 hours. NMR measurement of the reaction solution revealed that 1-octen-2-yl diphenylphosphinate was produced in a yield of 74%. The reaction solution was concentrated, separated and purified by column chromatography (hexane-acetone gradient, mixing ratio 5: 1 to 1: 5), and pure 1-octen-2-yl diphenylphosphinate with an isolated yield of 88%. was gotten.
This compound is a novel compound not yet described in literature, and the following spell data was obtained.
1 H NMR (300 MHz) δ 7.85-7.79 (m, 4H), 7.52-7.40 (m, 6H), 4.76 (s, 1H), 4.37 (s, 1H ), 2.16 (t, 2H, J 7.5 Hz), 1.51-1.44 (m, 8H), 0.85 (t, 3H, J 7.0 Hz);
13 C NMR (75 MHz) δ 155.7 (J CP 9.2 Hz), 132.2 (J CP 2.7), 131.7 (J CP 10.3 Hz), 128.5 (J CP 13.4 Hz), 97.6 (J CP 5.2 Hz), 35.3 (J CP 4.3 Hz), 31.6, 28.5, 26.4, 22.6, 14.1;
31 P {H} NMR (121 MHz) δ 28.2;
GC-MS m / z (relative intensity) 328 (5, M +), 219 (100);
Figure 0004157968
[0016]
Example 2
The reaction was conducted in the same manner as in Example 1 using RuCl 2 (p-C 9 H 14 ) (PPh 3 ) (0.01 mmol) instead of triruthenium dodecacarbonyl as a catalyst. NMR measurement of the reaction solution revealed that 1-octen-2-yl diphenylphosphinate was produced in a yield of 53%.
[0017]
Example 3
The reaction was conducted in the same manner as in Example 1 using RuH 2 (CO) (PPh 3 ) 3 (0.01 mmol) instead of triruthenium dodecacarbonyl as a catalyst. NMR measurement of the reaction solution revealed that 1-octen-2-yl diphenylphosphinate was produced in a yield of 18%.
[0018]
Example 4
The reaction was carried out in the same manner as in Example 1, except that [RhCl (cod)] 3 (0.01 mmol) was used as the catalyst instead of triruthenium dodecacarbonyl. NMR measurement of the reaction solution revealed that 1-octen-2-yl diphenylphosphinate was produced in a yield of 10%.
[0019]
Example 5
The reaction was carried out in the same manner as in Example 1, except that RhCl (cod) (PPh 3 ) (0.01 mmol) was used instead of triruthenium dodecacarbonyl as a catalyst. NMR measurement of the reaction solution revealed that 1-octen-2-yl diphenylphosphinate was produced in a yield of 21%.
[0020]
Example 6
1-hexyne (0.4 mmol), diphenylphosphinic acid (0.48 mmol), RuCl 2 (p-C 9 H 14 ) (PPh 3 ) (2.5 mol% with respect to 1-hexyne), and toluene (3 ml) of the mixture was stirred at 140 ° C. for 5 hours under a nitrogen atmosphere. The reaction solution was concentrated and separated and purified by column chromatography (hexane-acetone gradient, mixing ratio 5: 1 to 1: 5), and pure 1-hexyn-2-yl diphenylphosphinate was isolated in 67% isolated yield. Obtained.
This compound is a novel compound not yet described in literature, and the following spell data was obtained.
1 H NMR (300 MHz) δ 7.86-7.80 (m, 4H), 7.53-7.45 (m, 6H), 4.75 (d, 1H, J HP 1.9 Hz), 4 .39 (s, 1H), 2.17 (t, 2H, J 7.3 Hz), 1.53-1.26 (m, 4H), 0.87 (t, 3H, J 7.1 Hz);
13 C NMR (75 MHz) δ 155.7 (J CP 10.0 Hz), 132.2 (J CP 2.8 Hz), 131.7 (J CP 10.3 Hz), 128.5 (J CP 13.4 Hz) ), 97.5 (J CP 5.2 Hz), 35.0 (J CP 4.2 Hz), 28.5, 21.9, 13.8;
31 P {H} NMR (121 MHz) δ 28.3;
GC-MS m / z (relative intensity) 300 (11, M +), 219 (100);
Figure 0004157968
[0021]
Example 7
A mixture of phenylacetylene (0.4 mmol), diphenylphosphinic acid (0.48 mmol), Ru 3 (CO) 12 (2.5 mol% with respect to phenylacetylene), and toluene (3 ml) was added under a nitrogen atmosphere. Stir at 140 ° C. for 5 hours. The reaction solution was concentrated and separated and purified by column chromatography (hexane-acetone gradient, mixing ratio 5: 1 to 1: 5). Pure 1-phenylethen-1-yl diphenylphosphinate was isolated in 70% isolated yield. Obtained.
[0022]
Example 8
3-phenyl-1-propyne (0.4 mmol), diphenylphosphinic acid (0.48 mmol), Ru 3 (CO) 12 (2.5 mol% with respect to 3-phenyl-1-propyne), and toluene (3 ml) ) Was stirred at 140 ° C. for 5 hours under a nitrogen atmosphere. The reaction solution was concentrated, separated and purified by column chromatography (hexane-acetone gradient, mixing ratio 5: 1 to 1: 5), and pure diphenylphosphinic acid 3-phenyl-1-propene-2 in 79% isolated yield. -Ile was obtained.
This compound is a novel compound listed at the end of the literature, and the following spell data was obtained.
1 H NMR (300 MHz) δ 7.83-6.48 (m, 15H), 4.88 (s, 1H), 4.41 (s, 1H), 3.48 (s, 2H);
13 C NMR (75 MHz) δ 154,9 (J CP 9.5Hz), 136.8,132.2 (J CP 2.8Hz), 131.6 (J CP 1O.4Hz), 129.4,128 5, 128.4 (J CP 13.4 Hz), 126.9, 99.0 (J CP 5.1 Hz), 42.0 (J CP 4.7 Hz);
31 P {H} NMR (121 MHz) δ 28.7;
GC-MS m / z (relative intensity) 334 (0.4, M +), 219 (100);
Figure 0004157968
[0023]
Example 9
A mixture of 5-hexinonitrile (0.4 mmol), diphenylphosphinic acid (0.48 mmol), Ru 3 (CO) 12 (2.5 mol% with respect to 5-hexinonitrile), and toluene (3 ml) was added. The mixture was stirred at 140 ° C. for 5 hours in a nitrogen atmosphere. The reaction solution was concentrated, separated and purified by column chromatography (hexane-acetone gradient, mixing ratio 5: 1 to 1: 5), and pure diphenylphosphinic acid 5-cyano-1-pentene-2 in an isolated yield of 82%. -Ile was obtained.
This compound is a novel compound not yet published in literature, and the following spelled evening was obtained.
1 H NMR (300 MHz) δ 7.87-7.82 (m, 4H), 7.53-7.42 (m, 6H), 4.75 (d, 1H, J HP 1.7 Hz), 4 .39 (s, 1H), 2.17 (t, 2H, J 7.4 Hz), 1.49 (t, 2H, J 7.3 Hz), 1.36-1.26 (m, 2H);
13 C NMR (75 MHz) δ 152.9 (J CP 9.5 Hz), 132.5 (J CP 2.9 Hz), 131.6 (J CP 10.3 Hz), 128.6 (J CP 13.4 Hz) ), 119.3, 99.7 (J CP 5.3 Hz), 34.0 (J CP 4.2 Hz), 22.2, 16.0;
31 P {H} NMR (121 MHz) δ 28.3;
GC-MS m / z (relative intensity) 311 (3, M +), 201 (100);
Figure 0004157968
[0024]
Example 10
A mixture of cyclohexen-1-ylethyne (0.4 mmol), diphenylphosphinic acid (0.48 mmol), Ru 3 (CO) 12 (2.5 mol% relative to cyclohexen-1-ylethyne), and toluene (3 ml) was added. The mixture was stirred at 140 ° C. for 5 hours in a nitrogen atmosphere. The reaction solution was concentrated, separated and purified by column chromatography (hexane-acetone gradient, mixing ratio 5: 1 to 1: 5), and pure diphenylphosphinic acid cyclohexen-1-ylethene-1- in an isolated yield of 65%. Ill was obtained.
This compound is a novel compound not yet described in literature, and the following spell data was obtained.
1 H NMR (300 MHz) δ 7.88-7.81 (m, 4H), 7.52-7.43 (m, 6H), 6.31 (bs, 1H), 4.88 (s, 1H ), 4.61 (s, 1H), 2.39-1.58 (m, 8H);
13 C NMR (75 MHz) δ 153.6 (J CP 9.0 Hz) 132.2 (J CP 2.8 Hz), 131.6 (J CP 10.3 Hz), 131.5 (J CP 10.2 Hz) , 128.5 (J CP 13.4 Hz), 97.0 (J CP 4.8 Hz), 25.4, 24.7, 22.4, 21.8;
31 P {H} NMR (121 MHz) δ 29.1;
GC-MS m / z (relative intensity) 324 (3, M +), 219 (100);
Figure 0004157968
[0025]
Example 11
Nona-1,8-diyne (0.4 mmol), diphenylphosphinic acid (0.9 mmol), Ru 3 (CO) 12 (5 mol% with respect to nona-1,8-diyne), and toluene (3 ml) The mixture was stirred at 140 ° C. for 5 hours under a nitrogen atmosphere. The reaction solution was concentrated and separated and purified by force ram chromatography (hexane-acetone gradient, mixing ratio 5: 1 to 1: 5), and pure 2,8-bis (diphenylphosphinyloxy) with an isolated yield of 86%. -Nona-1,8-diene was obtained.
This compound is a novel compound not yet described in literature, and the following spell data was obtained.
1 H NMR (300 MHz) δ 7.85-7.78 (m, 8H), 7.51-7.43 (m, 12H), 4.74 (s, 1H) 4.36 (S, 1H) 2.14 (t, 4H, J 7.0 Hz), 1.51-1.26 (m, 6H);
13 C NMR (75 MHz) δ 155.5 (J CP 9.7 Hz), 132.3 (J CP P 2.7 Hz), 131.7 (J CP 10.3 Hz), 128.5 (J CP 13. 3 Hz), 97.9 (J CP 5.2 Hz), 35.2 (J CP 4.3 Hz), 28.1, 16.2;
31 P {H} NMR (121 MHz) δ 28.2;
Figure 0004157968
[0026]
【The invention's effect】
By the method of the present invention, alkenyl phosphinates useful for the synthesis of pharmaceuticals, agricultural chemicals, flame retardants and the like can be efficiently and safely produced from readily available phosphinic acid and acetylene, and separation and purification thereof are also easy. Therefore, the present invention has a great industrial effect.

Claims (3)

分子の末端に炭素−炭素3重結合を有する化合物と、有機ホスフィン酸とを、ルテニウム錯体触媒の存在下に反応させて、ホスフィン酸アルケニル誘導体を製造する方法。A method for producing an phosphinic acid alkenyl derivative by reacting a compound having a carbon-carbon triple bond at the end of a molecule with an organic phosphinic acid in the presence of a ruthenium complex catalyst . ルテニウム錯体触媒の存在下において、一般式(I)
C≡CH (I)
(式中、Rは置換又は非置換のアルキル基、置換又は非置換のシクロアルキル基、置換又は非置換のアリール基、置換又は非置換のアラルキル基、置換又は非置換の複素環基、置換又は非置換のエステル基、置換又は非置換のシリル基を示す。)
で表されるアセチレン化合物を、一般式(II)
P(O)OH (II)
(式中、Rは置換又は非置換のアルキル基、置換又は非置換のシクロアルキル基、置換又は非置換のアリール基、置換又は非置換のアラルキル基を示す。)
で表されるホスフィン酸と反応させることを特徴とする一般式(III)
Figure 0004157968
(式中、R、Rは、前記一般式(I)、(II)で示されるものと同じ。)
で表されるホスフィン酸アルケニルの製造方法。
In the presence of a ruthenium complex catalyst , the general formula (I)
R 1 C≡CH (I)
Wherein R 1 is a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted heterocyclic group, a substituted Or an unsubstituted ester group or a substituted or unsubstituted silyl group.)
An acetylene compound represented by the general formula (II)
R 2 2 P (O) OH (II)
(Wherein R 2 represents a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted aralkyl group.)
(III), characterized by reacting with phosphinic acid represented by
Figure 0004157968
(In the formula, R 1 and R 2 are the same as those represented by the general formulas (I) and (II).)
The manufacturing method of alkenyl phosphinate represented by these.
ルテニウム錯体触媒が、低原子価のテニウム錯体である請求項1又は2に記載の方法。The method according to claim 1 or 2, wherein the ruthenium complex catalyst is a low-valent tenium complex.
JP36387697A 1997-12-18 1997-12-18 Alkenyl phosphinate and process for producing the same Expired - Lifetime JP4157968B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36387697A JP4157968B2 (en) 1997-12-18 1997-12-18 Alkenyl phosphinate and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36387697A JP4157968B2 (en) 1997-12-18 1997-12-18 Alkenyl phosphinate and process for producing the same

Publications (2)

Publication Number Publication Date
JPH11180990A JPH11180990A (en) 1999-07-06
JP4157968B2 true JP4157968B2 (en) 2008-10-01

Family

ID=18480413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36387697A Expired - Lifetime JP4157968B2 (en) 1997-12-18 1997-12-18 Alkenyl phosphinate and process for producing the same

Country Status (1)

Country Link
JP (1) JP4157968B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8691896B2 (en) * 2010-02-05 2014-04-08 Basf Se Halogen-free, phosphorus-containing flame-retardant polymer foams
CN110437277B (en) * 2019-08-27 2022-03-18 浙江工业大学 Synthetic method of phosphoalkenyl ester compound

Also Published As

Publication number Publication date
JPH11180990A (en) 1999-07-06

Similar Documents

Publication Publication Date Title
JP5284269B2 (en) Ruthenium-based catalyst complexes and use of said complexes for olefin metathesis
Wilson et al. Bis (2-diphenylphosphinoethyl) amine. A flexible synthesis of functionalized chelating diphosphines
JPS60152437A (en) Manufacture of 4-substituted butene-(3)-1-carboxylic acid and ester
JP4157968B2 (en) Alkenyl phosphinate and process for producing the same
JP3662501B2 (en) Process for producing alkenylphosphine oxides
JP3789508B2 (en) Optically active asymmetric diphosphine and method for obtaining optically active substance in the presence of the compound
CN113387886B (en) 2-aminodibenzo [ c, e ] azepine compound and synthetic method thereof
JPH06263681A (en) Production of optically active aldehyde
JP3877151B2 (en) Process for producing alkenylphosphinic acid esters
JP3564503B2 (en) Alkenylphosphonic esters and method for producing the same
JP3041396B1 (en) Method for producing unsaturated phosphonate esters
JP3738225B2 (en) Novel chiral copper catalyst and method for producing N-acylated amino acid derivative using the same
JP3872317B2 (en) 4-halo-2-oxo-3-butenoic acid ester derivative and method for producing the same
JP3007984B1 (en) Method for producing unsaturated phosphonate ester
JP2849712B2 (en) Method for producing alkenylphosphine oxide compound
JP2775426B2 (en) Method for producing unsaturated phosphonate ester
JP4863258B2 (en) Phosphorus compound and method for producing the same
JP2908919B2 (en) Method for producing optically active organosilicon compound
JP3699989B2 (en) Phosphinyl group-containing N-substituted amino acid derivative and method for producing the same
JP2838193B2 (en) Preparation of cyclic silyl enol ether
JP3589932B2 (en) Betastanyl acrylamide derivative and method for producing the same
JP3292559B2 (en) Method for producing catechol derivative
JPH0625088B2 (en) Process for producing α-phenylpropionic acid derivative
JP2004210672A (en) Bisphosphonium salt compound and method for producing the same
JP2001253890A (en) (alpha-AND/OR beta-FORMYLETHYL)PHOSPHINE OXIDE COMPOUND OR (alpha- AND/OR beta-FORMYLETHYL)PHOSPHONIC ESTER COMPOUND AND METHOD FOR PRODUCING THE SAME

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080626

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term