JP3589932B2 - Betastanyl acrylamide derivative and method for producing the same - Google Patents

Betastanyl acrylamide derivative and method for producing the same Download PDF

Info

Publication number
JP3589932B2
JP3589932B2 JP2000070914A JP2000070914A JP3589932B2 JP 3589932 B2 JP3589932 B2 JP 3589932B2 JP 2000070914 A JP2000070914 A JP 2000070914A JP 2000070914 A JP2000070914 A JP 2000070914A JP 3589932 B2 JP3589932 B2 JP 3589932B2
Authority
JP
Japan
Prior art keywords
group
formula
compound
iii
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000070914A
Other languages
Japanese (ja)
Other versions
JP2001261687A (en
Inventor
正人 田中
瑞茂 華
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Japan Science and Technology Agency
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Advanced Industrial Science and Technology AIST filed Critical Japan Science and Technology Agency
Priority to JP2000070914A priority Critical patent/JP3589932B2/en
Publication of JP2001261687A publication Critical patent/JP2001261687A/en
Application granted granted Critical
Publication of JP3589932B2 publication Critical patent/JP3589932B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、遷移金属錯体触媒存在下に、末端アセチレン化合物とカルバモイルスズ化合物を反応させることを特徴とする、ベータスタニルアクリルアミド誘導体の製造方法、及びベータスタニルアクリルアミド誘導体に関するものである。ベータスタニルアクリルアミド誘導体は、そのスズ−炭素結合を遷移金属含有触媒の存在下に種々変換して、スズを他の置換基に置換できることから、医薬・農薬等のファインケミカルズの合成上有用な化合物である。
【0002】
【従来の技術】
ベータスタニルアクリルアミド誘導体の一般的な製造方法は知られていない。原理的にはアセチレンカルボン酸エステルにヒドロスタナンを反応させて合成する方法が考えられるが、ヒドロスタナンは保存中に徐々に分解してジスタナンを生成すること、アセチレンカルボン酸エステルは一般には工業的に入手しにくいこと等から、工業的に有利な方法とは考えられない。
【0003】
【発明が解決しようとする課題】
本発明は、前記した問題点を回避するために、アセチレンカルボン酸エステルよりも容易に入手できる末端アセチレン化合物を用いる、新規なベータスタニルアクリルアミド誘導体の製造方法、及び新規なベータスタニルアクリルアミド誘導体を開発することを目的とするものである。
【0004】
【課題を解決するための手段】
前記目的を達するために、カルバモイルスズ化合物と遷移金属錯体の反応性について鋭意研究の結果、カルバモイルスズ化合物が低原子価錯体と反応し、カルバモイルスズ化合物の炭素−スズ結合が開裂・酸化的に付加することを見いだし、その事実に基づいて本発明を完成するに至った。
【0005】
すなわち、本発明によれば、遷移金属錯体触媒存在下にカルバモイルスズ化合物と末端アセチレン類を反応させることを特徴とする、ベータスタニルアクリルアミド誘導体の製造方法が提供される。また、本合成法により、新規化合物であるベータスタニルアクリルアミド誘導体が提供される。
【0006】
本発明において用いるカルバモイルスズ化合物は、一般式(II)
SnCONR (II)
(式中、R、R、R、R、Rは、アルキル基、シクロアルキル基、アラルキル基またはアリール基を示す。)
で表される一群の化合物であり、その具体例としては、メチル基、エチル基、ブチル基、オクチル基、シクロヘキシル基、フェニル基、ベンジル基等を例示することが出来る。このようにR、R、R、R、Rは、置換基を有してもよい炭化水素基であるということもできる。
本発明において用いる末端アセチレン化合物は、一般式(I)
【0007】
【化2】

Figure 0003589932
【0008】
(式中、Rは、水素原子、アルキル基、シクロアルキル基、アリール基、ヘテロアリール基、アラルキル基、アルケニル基、シリル基の中から選ばれる1価の基を示す。)
で表されるものである。Rとしては、例えば、水素原子、メチル基、プロピル基、ベンジル基、フェニル基、チエニル基、3−ブテニル基、トリメチルシリル基等が挙げられる。このように、Rは、水素原子、置換基を有してもよい炭化水素基、置換基を有してもよいヘテロアリール基、置換基を有してもよいシリル基であるということもできる。
【0009】
一般式(I)、(II)で表される末端アセチレン化合物およびカルバモイルスズ化合物中のR、R、R、R、R、Rがさらに官能基や低級炭化水素基で置換されているものでも、反応に供することが出来る。このような官能基や低級炭化水素基としては、例えば、メトキシ基、エトキシ基などの低級アルコキシ基、メトキシカルボニル基、エトキシカルボニル基などの低級アルコキシカルボニル基、ハロゲン、メチル基、エチル基、フェニル基などの低級炭化水素基などが挙げられる。
したがって、本発明の製造方法に好適なアセチレン化合物としては、無置換アセチレン、1−ブチン、1−オクチン、フェニルアセチレン、トリメチルシリルアセチレン、エチニルチオフェン、ジエチニルベンゼン、1,8−ノナジイン、ヘキシノニトリル、シクロヘキセニルアセチレン、6−t−ブチルジメチルシロキシ−1−ヘキシン、(4−ブチニル)ベンゼン等が含まれるが、これらに限定されるものではない。
【0010】
本発明の反応は、錯体触媒、殊にロジウム錯体触媒の存在下において好ましい速度で進行する。ロジウム錯体としては種々の構造のものを用いることが出来るが、好適なものは、いわゆる低原子価のロジウム錯体である。具体的には、RhCl(CO)(PPh、RhCl(CO)(PPhMe、RhCl(CO)(PMe、RhCl(cod)(PPh)(codはシクロオクタジエンを示す。以下同じ。)、RhCl(cod)(PPhMe)、RhCl(cod)(PMe)、[RhCl(cod)]等が例示される。また、低原子価のロジウム錯体に配位子を添加して反応系中で活性種を発生させてそのまま触媒として用いる方法も、本発明の態様に含まれる。
【0011】
これらのロジウム錯体の使用量はいわゆる触媒量で良く、アセチレン化合物に対して20モル%以下であり、一般的には10モル%以下で十分である。
【0012】
反応は特に溶媒を用いなくてもよいが、必要に応じて溶媒中で実施することもできる。溶媒としては、炭化水素系もしくはエーテル系の溶媒が一般的に用いられ、ベンゼン、トルエン、ヘキサン、テトラヒドロフラン、等が例示される。反応温度はアセチレン化合物の構造によるが、一般には加熱するのが好ましく、通常は50〜200℃の範囲から選ばれる。本反応は反応中間体が酸素にやや敏感であるため、窒素やアルゴン、メタン等の不活性ガス雰囲気で反応させるのが好ましい。反応混合物からの精製物の分離は、クロマトグラフィー、蒸留または再結晶によって容易に達成される。
【0013】
【実施例】
本発明を以下の実施例によってさらに具体的に説明するが、実施態様は実施例に限定されるものではない。
【0014】
実施例1
トルエン0.3mlに1−ヘキシンを0.45ミリモル、N,N−ジイソプロピルカルバモイルトリメチルスタナンを0.3ミリモル、Rh(acac)(CO)を0.015ミリモル加え、窒素雰囲気下、110℃で5時間加熱した。反応液を冷却後、ガスクロマトグラフィーで分析したところ、トランス−N,N−ジイソプロピル−3−トリメチルスタニル−2−ヘプテン酸アミドが68%の収率で生成していることが判明した。反応液を蒸留し、純粋な生成物を単離した。その沸点は、90℃、1.6mmHgで本化合物は文献未収載の新規化合物であり、その性状、物性値およびスペクトルデータ等は以下の通りであった。
Figure 0003589932
【0015】
実施例2
1−ヘキシンの代わりに3,3−ジメチル−1−ブチンを用いて実施例1と同様に処理することにより、ガスクロマトグラフィーでの収率71%で、トランス−N,N−ジイソプロピル−3−トリメチルスタニル−4,4−ジメチル−2−ペンテン酸アミドが得られた。反応液を蒸留し、純粋な生成物を単離した。
本化合物は文献未収載の新規化合物であり、その性状、物性値およびスペクトルデータ等は以下の通りであった。
Figure 0003589932
【0016】
実施例3
1−ヘキシンの代わりに3−フェニル−1−プロピンを用いて実施例1と同様に処理することにより、ガスクロマトグラフィーでの収率38%で、トランス−N,N−ジイソプロピル−3−トリメチルスタニル−4−フェニル−2−ブテン酸アミドが得られた。反応液を蒸留し、純粋な生成物を単離した。
本化合物は文献未収載の新規化合物であり、その性状、物性値およびスペクトルデータ等は以下の通りであった。
Figure 0003589932
【0017】
実施例4
1−ヘキシンの代わりにフェニルアセチレンを用いて実施例1と同様に処理することにより、ガスクロマトグラフィーでの収率42%で、トランス−N,N−ジイソプロピル−3−トリメチルスタニル桂皮酸アミドが得られた。反応液を蒸留し、純粋な生成物を単離した。
本化合物は文献未収載の新規化合物であり、その性状、物性値およびスペクトルデータ等は以下の通りであった。
Figure 0003589932
【0018】
実施例5
Rh(acac)(CO)の代わりに(η−CMe)Rh(CO)を用いて実施例1と同様に処理することにより、ガスクロマトグラフィーでの収率25%で、トランス−N,N−ジイソプロピル−3−トリメチルスタニル−2−ヘプテン酸アミドが得られた。
【0019】
実施例6
トルエン0.3mlに1−ヘキシンを1.2ミリモル、N,N−ジイソプロピルカルバモイルトリメチルスタナンを0.3ミリモル、Ni(cod)を0.03ミリモル加え、窒素雰囲気下、110℃で10時間加熱した。反応液を冷却後、ガスクロマトグラフィーで分析したところ、(Z)−N,N−ジイソプロピル−3−トリメチルスタニル−2−プロペン酸アミドが49%の収率で生成していることが判明した。反応液を蒸留し、純粋な生成物を単離した。
本化合物は文献未収載の新規化合物であり、その性状、物性値およびスペクトルデータ等は以下の通りであった。
Figure 0003589932
【0020】
実施例7
1−ヘキシンの代わりに6−t−ブチルヂメチルシリル−1−ヘキシンを用いて実施例1と同様に処理することにより、ガスクロマトグラフィーでの収率41%で、トランス−N,N−ジイソプロピル−3−トリメチルスタニル−6−t−ブチルヂメチルシリル−2−ヘプテン酸アミドが生成していることが判明した。反応液を蒸留し、純粋な生成物を単離した。
本化合物は文献未収載の新規化合物であり、その性状、物性値およびスペクトルデータ等は以下の通りであった。
Figure 0003589932
【0021】
実施例8
1−ヘキシンの代わりにp−メトキシフェニルアセチレンを用いて実施例1と同様に処理することにより、ガスクロマトグラフィーでの収率21%で、トランス−N,N−ジイソプロピル−3−トリメチルスタニル−p−メトキシ桂皮酸アミドが得られた。
【0022】
実施例9
1−ヘキシンの代わりにp−フルオロフェニルアセチレンを用いて実施例1と同様に処理することにより、ガスクロマトグラフィーでの収率17%で、トランス−N,N−ジイソプロピル−3−トリメチルスタニル−p−フルオロ桂皮酸アミドが得られた。
【0023】
実施例10
1−ヘキシンの代わりに1−ヘキシノニトリルを用いて実施例1と同様に処理することにより、ガスクロマトグラフィーの分析の結果、トランス−N,N−ジイソプロピル−3−トリメチルスタニル−6−シアノ−2−ヘキセン酸アミドが生成していることが判明した。
【0024】
【発明の効果】
本発明の方法により、医薬・農薬等の合成に有用なベータスタニルアクリルアミド誘導体を、末端アセチレンから効率的かつ安全に製造でき、その分離精製も容易である。従って、本発明は工業的に多大の効果をもたらす。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a betastannylacrylamide derivative and a method for producing a betastannylacrylamide derivative, which comprises reacting a terminal acetylene compound with a carbamoyltin compound in the presence of a transition metal complex catalyst. Betastanyl acrylamide derivative is a compound useful in the synthesis of fine chemicals such as pharmaceuticals and agricultural chemicals, because its tin-carbon bond can be variously converted in the presence of a transition metal-containing catalyst to replace tin with other substituents. is there.
[0002]
[Prior art]
A general method for producing a betastanyl acrylamide derivative is not known. In principle, a method of synthesizing acetylene carboxylate by reacting hydrostannane with it is conceivable.However, hydrostannane gradually decomposes during storage to produce distannane, and acetylene carboxylate is generally obtained industrially. Because of the difficulty, it is not considered to be an industrially advantageous method.
[0003]
[Problems to be solved by the invention]
The present invention uses a terminal acetylene compound that is more easily obtainable than acetylene carboxylate to avoid the above-mentioned problems, and provides a method for producing a novel betastannylacrylamide derivative, and a novel betastannylacrylamide derivative. It is intended to be developed.
[0004]
[Means for Solving the Problems]
In order to achieve the above objective, as a result of intensive research on the reactivity of the carbamoyltin compound and the transition metal complex, the carbamoyltin compound reacts with the low-valent complex, and the carbon-tin bond of the carbamoyltin compound is cleaved and oxidatively added. And completed the present invention based on that fact.
[0005]
That is, according to the present invention, there is provided a method for producing a betastannylacrylamide derivative, comprising reacting a carbamoyltin compound with a terminal acetylene in the presence of a transition metal complex catalyst. The present synthesis method also provides a novel compound, a betastanyl acrylamide derivative.
[0006]
The carbamoyltin compound used in the present invention has the general formula (II)
R 2 R 3 R 4 SnCONR 5 R 6 (II)
(In the formula, R 2 , R 3 , R 4 , R 5 , and R 6 represent an alkyl group, a cycloalkyl group, an aralkyl group, or an aryl group.)
And specific examples thereof include a methyl group, an ethyl group, a butyl group, an octyl group, a cyclohexyl group, a phenyl group, a benzyl group and the like. Thus, it can be said that R 2 , R 3 , R 4 , R 5 , and R 6 are hydrocarbon groups which may have a substituent.
The terminal acetylene compound used in the present invention has the general formula (I)
[0007]
Embedded image
Figure 0003589932
[0008]
(In the formula, R 1 represents a monovalent group selected from a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, a heteroaryl group, an aralkyl group, an alkenyl group, and a silyl group.)
It is represented by Examples of R 1 include a hydrogen atom, a methyl group, a propyl group, a benzyl group, a phenyl group, a thienyl group, a 3-butenyl group, a trimethylsilyl group, and the like. Thus, R 1 may be a hydrogen atom, a hydrocarbon group optionally having a substituent, a heteroaryl group optionally having a substituent, or a silyl group optionally having a substituent. it can.
[0009]
R 1 , R 2 , R 3 , R 4 , R 5 and R 6 in the terminal acetylene compounds and carbamoyltin compounds represented by the general formulas (I) and (II) are further substituted with a functional group or a lower hydrocarbon group. What has been used can be used for the reaction. Examples of such a functional group or lower hydrocarbon group include a lower alkoxy group such as a methoxy group and an ethoxy group, a lower alkoxycarbonyl group such as a methoxycarbonyl group and an ethoxycarbonyl group, a halogen, a methyl group, an ethyl group, and a phenyl group. And lower hydrocarbon groups.
Therefore, acetylene compounds suitable for the production method of the present invention include unsubstituted acetylene, 1-butyne, 1-octyne, phenylacetylene, trimethylsilylacetylene, ethynylthiophene, diethynylbenzene, 1,8-nonadiyne, hexononitrile, cyclohexenyl Examples include, but are not limited to, acetylene, 6-t-butyldimethylsiloxy-1-hexyne, (4-butynyl) benzene, and the like.
[0010]
The reaction of the present invention proceeds at a preferred rate in the presence of a complex catalyst, especially a rhodium complex catalyst. Various structures can be used as the rhodium complex, and a preferable one is a so-called low-valent rhodium complex. Specifically, RhCl (CO) (PPh 3 ) 2 , RhCl (CO) (PPhMe 2 ) 2 , RhCl (CO) (PMe 3 ) 2 , RhCl (cod) (PPh 3 ) (cod is cyclooctadiene) The same applies hereinafter.), RhCl (cod) (PPhMe 2 ), RhCl (cod) (PMe 3 ), [RhCl (cod)] 2 and the like. Further, a method of adding a ligand to a low-valent rhodium complex to generate an active species in a reaction system and using the active species as it is as a catalyst is also included in the embodiment of the present invention.
[0011]
The amount of these rhodium complexes used may be a so-called catalytic amount, which is 20 mol% or less, and generally 10 mol% or less, based on the acetylene compound.
[0012]
The reaction does not particularly require the use of a solvent, but can be carried out in a solvent if necessary. As the solvent, a hydrocarbon-based or ether-based solvent is generally used, and examples thereof include benzene, toluene, hexane, and tetrahydrofuran. The reaction temperature depends on the structure of the acetylene compound, but it is generally preferable to heat it, and is usually selected from the range of 50 to 200 ° C. This reaction is preferably performed in an atmosphere of an inert gas such as nitrogen, argon, or methane because the reaction intermediate is slightly sensitive to oxygen. Separation of the purified product from the reaction mixture is easily achieved by chromatography, distillation or recrystallization.
[0013]
【Example】
The present invention will be described more specifically with reference to the following examples, but the embodiments are not limited to the examples.
[0014]
Example 1
0.45 mmol of 1-hexyne, 0.3 mmol of N, N-diisopropylcarbamoyltrimethylstannane and 0.015 mmol of Rh (acac) (CO) 2 were added to 0.3 ml of toluene, and 110 ° C. under a nitrogen atmosphere. For 5 hours. After cooling, the reaction solution was analyzed by gas chromatography, and it was found that trans-N, N-diisopropyl-3-trimethylstannyl-2-heptenoic acid amide was produced in a yield of 68%. The reaction was distilled and the pure product was isolated. Its boiling point is 90 ° C., 1.6 mmHg, and this compound is a novel compound not described in any literature. Its properties, physical properties, spectrum data and the like are as follows.
Figure 0003589932
[0015]
Example 2
By treating in the same manner as in Example 1 using 3,3-dimethyl-1-butyne instead of 1-hexyne, trans-N, N-diisopropyl-3- was obtained in a gas chromatography yield of 71%. Trimethylstannyl-4,4-dimethyl-2-pentenoic acid amide was obtained. The reaction was distilled and the pure product was isolated.
This compound is a novel compound which has not been described in any literature, and its properties, physical properties, spectrum data and the like are as follows.
Figure 0003589932
[0016]
Example 3
By treating in the same manner as in Example 1 using 3-phenyl-1-propyne instead of 1-hexyne, the yield of trans-N, N-diisopropyl-3-trimethylsta- Nyl-4-phenyl-2-butenoic acid amide was obtained. The reaction was distilled and the pure product was isolated.
This compound is a novel compound which has not been described in any literature, and its properties, physical properties, spectrum data and the like are as follows.
Figure 0003589932
[0017]
Example 4
By treating in the same manner as in Example 1 using phenylacetylene instead of 1-hexyne, trans-N, N-diisopropyl-3-trimethylstannylcinnamide was obtained in a gas chromatography yield of 42%. Obtained. The reaction was distilled and the pure product was isolated.
This compound is a novel compound which has not been described in any literature, and its properties, physical properties, spectrum data and the like are as follows.
Figure 0003589932
[0018]
Example 5
By treating in the same manner as in Example 1 by using (η 5 -C 5 Me 5 ) Rh (CO) 2 instead of Rh (acac) (CO) 2 , the yield by gas chromatography was 25%. Trans-N, N-diisopropyl-3-trimethylstannyl-2-heptenoic amide was obtained.
[0019]
Example 6
1.2 mmol of 1-hexyne, 0.3 mmol of N, N-diisopropylcarbamoyltrimethylstannane and 0.03 mmol of Ni (cod) 2 were added to 0.3 ml of toluene, and the mixture was added at 110 ° C. for 10 hours under a nitrogen atmosphere. Heated. After the reaction solution was cooled, it was analyzed by gas chromatography, and it was found that (Z) -N, N-diisopropyl-3-trimethylstannyl-2-propenoic acid amide was produced in a yield of 49%. . The reaction was distilled and the pure product was isolated.
This compound is a novel compound which has not been described in any literature, and its properties, physical properties, spectrum data and the like are as follows.
Figure 0003589932
[0020]
Example 7
By treating in the same manner as in Example 1 using 6-t-butyl @ methylsilyl-1-hexine instead of 1-hexyne, trans-N, N-diisopropyl was obtained in a gas chromatography yield of 41%. It was found that -3-trimethylstannyl-6-t-butyl {methylsilyl-2-heptenoic acid amide was formed. The reaction was distilled and the pure product was isolated.
This compound is a novel compound which has not been described in any literature, and its properties, physical properties, spectrum data and the like are as follows.
Figure 0003589932
[0021]
Example 8
By treating in the same manner as in Example 1 using p-methoxyphenylacetylene instead of 1-hexyne, trans-N, N-diisopropyl-3-trimethylstannyl- was obtained in a gas chromatography yield of 21%. p-Methoxycinnamic acid amide was obtained.
[0022]
Example 9
By treating in the same manner as in Example 1 using p-fluorophenylacetylene instead of 1-hexyne, trans-N, N-diisopropyl-3-trimethylstannyl- was obtained in a gas chromatography yield of 17%. The p-fluorocinnamic acid amide was obtained.
[0023]
Example 10
By treating in the same manner as in Example 1 using 1-hexynonitrile instead of 1-hexyne, the result of gas chromatography analysis showed that trans-N, N-diisopropyl-3-trimethylstannyl-6-cyano-2 was obtained. -Hexenoic acid amide was found to have formed.
[0024]
【The invention's effect】
According to the method of the present invention, a betastannylacrylamide derivative useful for the synthesis of medicines, agricultural chemicals and the like can be efficiently and safely produced from terminal acetylene, and its separation and purification are easy. Therefore, the present invention has a great effect industrially.

Claims (3)

遷移金属錯体触媒の存在下に、一般式(I)
C≡CH (I)
(式中、Rは、水素原子、アルキル基、シクロアルキル基、アリール基、ヘテロアリール基、アラルキル基、アルケニル基、シリル基の中から選ばれる1価の基を示す。)
で表される末端アセチレン化合物に、一般式(II)
SnCONR (II)
(式中、R、R、R、R、Rは、アルキル基、シクロアルキル基、アラルキル基またはアリール基を示す。)
で表されるカルバモイルスズ化合物を反応させることを特徴とする一般式(III)
(RSn)C=CH−CONR (III)
(式中、R、R、R、R、R、Rは、前記一般式(I)または(II)で示されるものと同じものを示す。)
で表されるベータスタニルアクリルアミド誘導体の製造方法。
Formula (I) in the presence of a transition metal complex catalyst
R 1 C≡CH (I)
(In the formula, R 1 represents a monovalent group selected from a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, a heteroaryl group, an aralkyl group, an alkenyl group, and a silyl group.)
The terminal acetylene compound represented by the general formula (II)
R 2 R 3 R 4 SnCONR 5 R 6 (II)
(In the formula, R 2 , R 3 , R 4 , R 5 , and R 6 represent an alkyl group, a cycloalkyl group, an aralkyl group, or an aryl group.)
Reacting a carbamoyltin compound represented by the general formula (III):
R 1 (R 2 R 3 R 4 Sn) C = CH-CONR 5 R 6 (III)
(In the formula, R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 are the same as those represented by the general formula (I) or (II).)
A method for producing a betastannylacrylamide derivative represented by the formula:
遷移金属がロジウムである請求項1に記載の方法。The method according to claim 1, wherein the transition metal is rhodium. 一般式(III)
(RSn)C=CH−CONR (III)
(式中、R、R、R、R、R、Rは、前記一般式(I)または(II)で示されるものと同じものを示す。ただし、R、Rの両方が、水素原子又はメチル基の場合を除く。)
で表されるベータスタニルアクリルアミド誘導体。
General formula (III)
R 1 (R 2 R 3 R 4 Sn) C = CH-CONR 5 R 6 (III)
(Wherein, R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 are the same as those represented by formula (I) or (II) above, provided that R 5 , R 6 Except when both are a hydrogen atom or a methyl group.)
A betastanyl acrylamide derivative represented by the formula:
JP2000070914A 2000-03-14 2000-03-14 Betastanyl acrylamide derivative and method for producing the same Expired - Lifetime JP3589932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000070914A JP3589932B2 (en) 2000-03-14 2000-03-14 Betastanyl acrylamide derivative and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000070914A JP3589932B2 (en) 2000-03-14 2000-03-14 Betastanyl acrylamide derivative and method for producing the same

Publications (2)

Publication Number Publication Date
JP2001261687A JP2001261687A (en) 2001-09-26
JP3589932B2 true JP3589932B2 (en) 2004-11-17

Family

ID=18589574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000070914A Expired - Lifetime JP3589932B2 (en) 2000-03-14 2000-03-14 Betastanyl acrylamide derivative and method for producing the same

Country Status (1)

Country Link
JP (1) JP3589932B2 (en)

Also Published As

Publication number Publication date
JP2001261687A (en) 2001-09-26

Similar Documents

Publication Publication Date Title
Barr et al. Titanocene-catalyzed reduction of esters using polymethylhydrosiloxane as the stoichiometric reductant
Kisanga et al. Synthesis of new proazaphosphatranes and their application in organic synthesis
Zhu et al. The first half-sandwich d0-metallacarboranes stabilized by metal–nitrogen sigma bond using C (cage)-appended anionic alkylamido moiety: a synthetic investigation
JP4934823B2 (en) Silicon-containing cross-coupling reagent and method for producing organic compound using the same
JP3589932B2 (en) Betastanyl acrylamide derivative and method for producing the same
JP3861570B2 (en) Method for producing cyclododecene
JP4025384B2 (en) Method for purifying 3-methacryloxypropyldimethylhalosilane or 3-methacryloxypropylmethyldihalosilane
JP4157968B2 (en) Alkenyl phosphinate and process for producing the same
JP2004075650A (en) Alkenylphosphorus compound and method for producing the same
Shtelman et al. Synthesis of α-silylcarboxylic acids
JP3872317B2 (en) 4-halo-2-oxo-3-butenoic acid ester derivative and method for producing the same
JP4113281B2 (en) Method for producing cyclopentenone derivative
JP3041396B1 (en) Method for producing unsaturated phosphonate esters
JP3007984B1 (en) Method for producing unsaturated phosphonate ester
CN110305155B (en) Alkynyl-containing imine derivative and preparation method and application thereof
JP3561237B2 (en) Method for producing beta-arylthioacrylate derivatives
JP2838193B2 (en) Preparation of cyclic silyl enol ether
US5332852A (en) 1,4-O-metallation process
JP2773362B2 (en) Quinoxaline-palladium complex and method for producing the same
JP3257393B2 (en) Method for producing (E) -allylsilane
JP2001114788A (en) Method for silylating hydroxyl group-having compound
JP3049316B1 (en) Method for producing alkenylsilanes
JP5678655B2 (en) Method for producing α-silyldifluoromethylcarbonyl compound
JP2542117B2 (en) Method for producing silyl unsaturated carboxylate
JPH0737467B2 (en) Method for producing tert-butyltrialkoxysilane

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040810

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040818

R150 Certificate of patent or registration of utility model

Ref document number: 3589932

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070827

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070827

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070827

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term