JP4157358B2 - Evaluation method of tire rain groove wonder performance - Google Patents

Evaluation method of tire rain groove wonder performance Download PDF

Info

Publication number
JP4157358B2
JP4157358B2 JP2002304567A JP2002304567A JP4157358B2 JP 4157358 B2 JP4157358 B2 JP 4157358B2 JP 2002304567 A JP2002304567 A JP 2002304567A JP 2002304567 A JP2002304567 A JP 2002304567A JP 4157358 B2 JP4157358 B2 JP 4157358B2
Authority
JP
Japan
Prior art keywords
tire
model
road surface
wheel
performance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002304567A
Other languages
Japanese (ja)
Other versions
JP2004136815A (en
Inventor
禎邦 辻本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP2002304567A priority Critical patent/JP4157358B2/en
Publication of JP2004136815A publication Critical patent/JP2004136815A/en
Application granted granted Critical
Publication of JP4157358B2 publication Critical patent/JP4157358B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/82Elements for improving aerodynamics

Landscapes

  • Tires In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、タイヤ、ホイール及びタイヤ進行方向に傾斜角を付与したレイングルーブを有する路面の有限要素法解析モデルを使用して、タイヤ回転中にホイールに作用するサイドフォースの上ピークと下ピークとの差(P−P値)により、レイングルーブワンダー(RGW)性能を評価するタイヤのレイングルーブワンダー性能評価法に関するものである。
【0002】
【従来技術】
タイヤの走行性能評価項目の一つとしてレイングルーブワンダー(以下、「RGW」という)性能がある。これは、道路の排水性を良好にするために走行方向と平行に縦溝が刻設された路面上を自動車が走行すると、タイヤに刻設されたパターン溝と、路面のレイングルーブ(縦溝)とが相互に影響し合って自動車にふらつき現象(RGW)が生じる。そのため、タイヤの設計に当たっては、このRGW性能をも評価要素としなければならない。
【0003】
従来、この種のRGW性能評価法としては、以下の2通りの方法があった。
1)実路での実車官能評価法
実車官能評価法は、評価するタイヤを実車に装着してレイングルーブ路面にて走行させ、走行中のハンドル手ごたえ感により、RGW性能を官能評価する方法である。
2)レイングルーブ模擬路ドラムによる室内試験評価法
室内評価法は、室内試験場において実路と同様な走行状態が得られるように、タイヤと接触する試験ドラム表面に、タイヤ進行方向に傾斜角を付与した複数のレイングルーブを備えた模擬路を巻き付けて、ドラム回転中にタイヤに発生するサイドフォースの時間的変化を計測し、そのサイドフォースの上ピークと下ピークとの差(P−P値)からRGW性能を評価する方法である。
【0004】
【発明が解決しようとする課題】
ところで、上記実車官能評価法及び室内試験評価法のいずれの場合も、実物のタイヤを用いているため、設計変更タイヤのRGW性能評価には、パターン無しタイヤの試作・パターン彫り等を行う必要があり、場合によっては新規モールド製作が必要となり、タイヤ開発費用が増大し、またタイヤ開発期間が長期化するといった問題点があった。
【0005】
本発明は、上記課題に鑑み、評価するタイヤを製作することなく、タイヤのRGW性能を評価できる手法の提供を目的としている。
【0006】
【課題を解決するための手段】
上記目的を達成するため、本発明に係るタイヤのRGW性能評価法は、タイヤを複数の要素に分割してメッシュ化したタイヤモデルと、タイヤとホイールの接触範囲を剛体シェル要素でモデル化したホイールモデルと、タイヤ進行方向に傾斜角を付与した複数のレイングルーブを備えたタイヤの接地面の路面モデルとを使用して、有限要素法による解析によりRGW性能を解析評価することを特徴としている。
【0007】
上記評価法によれば、タイヤモデル内面に内圧を充填し、ホイールモデルの中心節点に縦荷重を負荷した後に、路面モデルをタイヤ反進行方向に移動させ、路面定速下において、レイングルーブが1ピッチ変化する解析時間内で、ホイールに作用するサイドフォースの時系列波形をフィルタリングし、その上下のピーク差(P−P値)をRGW性能の評価指標値として算出するので、タイヤを試作することなく従来の室内試験法と同様なRGW性能の評価ができる。
【0008】
なお、路面モデルにおいて、レイングルーブのタイヤ進行方向に対する傾斜角は、好適なRGW性能を評価する上において、0.1〜2.0度に設定するのが好適である。また、タイヤ進行方向に細メッシュ化を施さず解析すると、タイヤモデルの外周部が路面モデルのレイングルーブ内に異常に進入した解析結果が得られる場合がある。そのため、路面モデルにおいてもタイヤ進行方向に細メッシュ化して、タイヤモデルと路面モデルとの整合を図ることが必要であり、そのメッシュ長5〜30mmに設定するのが好適である。
【0009】
RGW性能評価指標の算出方法としては、路面モデルをタイヤ反進行方向に移動させ、路面定速下において、レイングルーブが1ピッチ変化する解析時間内で、ホイールに作用するサイドフォースの時系列波形をフィルタリングし、その上下のピーク差(P−P値)をRGW性能の評価指標値として算出するのが好ましい。
【0010】
また、タイヤモデルは、タイヤを構成するゴム部材についてソリッド要素を、ゴムとコードから成るコンポジット部材について異方性シェル要素を夫々採用し、トレッド部の実パターンをモデル化する場合は、トレッド部を構成するパターンブロックと、トレッド部以外のタイヤボディとの接合部は、パターンブロック内面とタイヤボディ外面とを面接合するのが好ましい。
【0011】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて説明する。図1は本発明に係るタイヤのRGW評価法で使用する全体モデル、図2は同じくタイヤモデルと路面モデルとの関係を示す平面図、図3はタイヤとホイールの組み合わせモデルを示す斜視図、図4はタイヤモデルの斜視図、図5はホイールモデルの斜視図、図6は図1のA部位拡大図、図7は図1のB部位拡大図、図8は図7の拡大図である。
【0012】
図に示すように、タイヤ1のRGW評価法は、有限要素法に基づき、タイヤモデル2、ホイールモデル3、及び路面モデル4を作成し、次に、材料物性の設定、内圧・縦荷重の負荷条件、タイヤの転動条件、拘束条件等の条件を設定し、RGW性能の評価指標算出の基礎となるタイヤ回転中のホイールに作用するサイドフォースを算出させるための有限要素法解析を実行する。
【0013】
タイヤモデル2は、以下の方法により作成する。まず、図4に示すように、目的とするタイヤをメッシュ状に分割する。トレッド部の実パターンをモデル化する場合は、トレッド部を構成するパターンブロックと、トレッド部以外のタイヤボディとの接合部は、パターンブロック内面とタイヤボディ外面とを面接合する。タイヤを構成する部材のうち、トレッドやサイドウォールなどのゴム部材はソリッド要素を採用し、カーカスやベルトなどのコードとゴムとのコンポジット部材については異方性シェル要素を採用する。
【0014】
ホイールモデル3は、図5に示すように、タイヤとホイールとの接触範囲を剛体シェル要素とする。
【0015】
路面モデルは、タイヤ進行方向に対して0.1〜2.0度の傾斜角を付与した複数のレイングループを形成する。また、路面モデル4にタイヤ進行方向へ細メッシュ化を施さず解析すると、タイヤモデルの外周部が路面モデルのレイングルーブ内に異常に進入した解析結果が得られる場合があるため、図7及び図8に示すように、タイヤ進行方向に細メッシュ化してタイヤモデルと路面モデルとの整合を図るようにする。図7におけるX方向(タイヤ進行方向)のメッシュ要素長さ(L)は5mm〜30mmに設定するのが好ましい。また、図8は溝5の間隔(ピッチ)が19.05mm、溝幅が2.4mm、溝深さが5mmの路面モデルを例示している。
【0016】
上記タイヤ、ホイール及び路面のモデル化を行った後、材料物性の設定、内圧・縦荷重の負荷条件、路面の並進条件、タイヤと路面との接触条件、ホイールと路面の拘束条件等の解析条件を設定する。
【0017】
本実施形態では、テストタイヤが225/60R15、リムが15*6 1/2−JJにおいて、タイヤ内面に内圧(200kPa)を充填し、ホイール中心に縦荷重(4.9kN)を負荷した状態で、路面をタイヤ反進行方向に移動させる。
【0018】
RGW性能評価指標の算出方法としては、路面モデルをタイヤ反進行方向に移動させ、路面定速下において、レイングルーブが1ピッチ変化する解析時間内で、ホイールに作用するサイドフォースの時系列波形をノイズ除去のためにフィルタリングし、その上下のピーク差(P−P値:peak to peak 値)を算出し、この値をRGW性能の評価指標値とする。
【0019】
図9に、サイドフォースの時間的変化について、室内実験結果と本発明のRGW評価法に基づくFEM解析結果との相関図を示す。テストタイヤは225/60R15、リムは15*6 1/2−JJ、内圧は200kPa、縦荷重は4.9kN、走行速度は20km/hである。図9に示すように、室内実験結果と本発明のRGW評価法に基づくFEM解析結果は、ほぼ一致した波形が得られる。
【0020】
従って、上記評価法によれば、タイヤ進行方向に傾斜角を付与した複数のレイングルーブを備えた路面モデル上で、タイヤモデルを回転させて、RGWに関与するサイドフォースを算出するので、タイヤを試作しなくても、従来の室内試験評価法と同様なRGW性能の評価ができる。
【0021】
【発明の効果】
以上の説明から明らかな通り、本発明によると、タイヤモデルとホイールモデルと路面モデルを使用して有限要素法による解析により、RGW性能を評価するので、タイヤを試作することなく、タイヤのRGW性能を評価することができる。
【図面の簡単な説明】
【図1】本発明に係るタイヤにRGW評価法に使用する全体モデル
【図2】同じくタイヤモデルと路面モデルとの関係を示す平面図
【図3】タイヤとホイールの組み合わせモデルを示す斜視図
【図4】タイヤモデルの斜視図
【図5】ホイールモデルの斜視図
【図6】図1のA部位拡大図
【図7】図1のB部位拡大図
【図8】図7の拡大図
【図9】サイドフォースの室内実験結果とFEM解析結果との相関図
【符号の説明】
1 タイヤ
2 タイヤモデル
3 ホイールモデル
4 路面モデル
5 溝
[0001]
BACKGROUND OF THE INVENTION
The present invention uses a finite element method analysis model of a road surface having a tire, a wheel, and a rain groove with an inclination angle in a tire traveling direction, and an upper peak and a lower peak of a side force acting on the wheel during tire rotation. It is related with the rain groove wonder performance evaluation method of the tire which evaluates a rain groove wonder (RGW) performance by the difference (PP value).
[0002]
[Prior art]
One of the performance evaluation items of a tire is a rain groove wonder (hereinafter referred to as “RGW”) performance. This is because when a car travels on a road surface in which vertical grooves are engraved in parallel with the traveling direction in order to improve the drainage performance of the road, the pattern grooves inscribed on the tires and the rain grooves (vertical grooves on the road surface) ) Interact with each other to cause a wobbling phenomenon (RGW) in the car. Therefore, when designing a tire, this RGW performance must also be an evaluation factor.
[0003]
Conventionally, this type of RGW performance evaluation method has the following two methods.
1) Actual vehicle sensory evaluation method on the actual road The actual vehicle sensory evaluation method is a method in which the RGW performance is sensorially evaluated by attaching the tire to be evaluated to the actual vehicle and running on the rain groove road surface and feeling the grip of the steering wheel while driving. .
2) Indoor test evaluation method using rain groove simulated road drum The indoor evaluation method gives an inclination angle in the tire traveling direction on the surface of the test drum in contact with the tire so that the same running condition as the actual road can be obtained at the indoor test site. Winding a simulated road with multiple rain grooves and measuring the temporal change of the side force generated in the tire during drum rotation, the difference between the upper peak and lower peak of the side force (PP value) This is a method for evaluating RGW performance.
[0004]
[Problems to be solved by the invention]
By the way, since the real tire sensor is used in both the actual vehicle sensory evaluation method and the indoor test evaluation method, the RGW performance evaluation of the design-changed tire requires the trial production / pattern carving of a patternless tire. In some cases, it is necessary to produce a new mold, increasing the tire development cost and prolonging the tire development period.
[0005]
The present invention has been made in view of the above problems, and an object of the present invention is to provide a method capable of evaluating the RGW performance of a tire without producing a tire to be evaluated.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, a tire RGW performance evaluation method according to the present invention includes a tire model in which a tire is divided into a plurality of elements and meshed, and a wheel in which a contact range between the tire and the wheel is modeled by a rigid shell element. The RGW performance is analyzed and evaluated by analysis using a finite element method, using a model and a road surface model of a tire contact surface provided with a plurality of rain grooves with inclination angles in the tire traveling direction.
[0007]
According to the above evaluation method, the tire model inner surface is filled with internal pressure, and a longitudinal load is applied to the center node of the wheel model. Then, the road surface model is moved in the direction opposite to the tire traveling direction. Since the time series waveform of the side force acting on the wheel is filtered within the analysis time where the pitch changes, the peak difference (PP value) between the top and bottom is calculated as the evaluation index value of the RGW performance. RGW performance can be evaluated in the same way as in the conventional laboratory test method.
[0008]
In the road surface model, it is preferable that the inclination angle of the rain groove with respect to the tire traveling direction is set to 0.1 to 2.0 degrees in evaluating a suitable RGW performance. Further, if analysis is performed without applying a fine mesh in the tire traveling direction, there may be obtained an analysis result in which the outer peripheral portion of the tire model abnormally enters the rain groove of the road surface model. Therefore, it is necessary to make a fine mesh in the tire traveling direction also in the road surface model so as to match the tire model and the road surface model, and it is preferable to set the mesh length to 5 to 30 mm.
[0009]
The RGW performance evaluation index is calculated by moving the road surface model in the anti-travel direction of the tire, and analyzing the time series waveform of the side force acting on the wheel within the analysis time when the rain groove changes by 1 pitch under the constant road surface speed. It is preferable to perform filtering and calculate the peak difference (PP value) between the upper and lower sides as an evaluation index value of RGW performance.
[0010]
The tire model employs solid elements for the rubber members that make up the tire, and anisotropic shell elements for the composite members made of rubber and cord. When modeling the actual pattern of the tread, It is preferable that the joint portion between the pattern block to be configured and the tire body other than the tread portion is surface-bonded between the pattern block inner surface and the tire body outer surface.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an overall model used in the tire RGW evaluation method according to the present invention, FIG. 2 is a plan view showing the relationship between the tire model and the road surface model, and FIG. 3 is a perspective view showing a tire / wheel combination model. 4 is a perspective view of a tire model, FIG. 5 is a perspective view of a wheel model, FIG. 6 is an enlarged view of a portion A in FIG. 1, FIG. 7 is an enlarged view of a portion B in FIG.
[0012]
As shown in the figure, the RGW evaluation method for the tire 1 is based on the finite element method, creating a tire model 2, a wheel model 3, and a road surface model 4, and then setting the material physical properties, loading the internal pressure / longitudinal load Conditions such as tire rolling conditions and constraint conditions are set, and a finite element method analysis is performed to calculate a side force acting on a rotating wheel as a basis for calculating an RGW performance evaluation index.
[0013]
The tire model 2 is created by the following method. First, as shown in FIG. 4, the target tire is divided into meshes. When modeling the actual pattern of the tread portion, the joint portion between the pattern block constituting the tread portion and the tire body other than the tread portion is joined to the pattern block inner surface and the tire body outer surface. Among the members constituting the tire, a rubber element such as a tread or a sidewall employs a solid element, and an anisotropic shell element is employed for a composite member of a cord and rubber such as a carcass or a belt.
[0014]
As shown in FIG. 5, the wheel model 3 has a contact range between the tire and the wheel as a rigid shell element.
[0015]
The road surface model forms a plurality of rain groups having an inclination angle of 0.1 to 2.0 degrees with respect to the tire traveling direction. Further, if the road surface model 4 is analyzed without applying a fine mesh in the tire traveling direction, an analysis result in which the outer peripheral portion of the tire model abnormally enters the rain groove of the road surface model may be obtained. As shown in FIG. 8, a fine mesh is formed in the tire traveling direction so as to match the tire model with the road surface model. The mesh element length (L) in the X direction (tire traveling direction) in FIG. 7 is preferably set to 5 mm to 30 mm. FIG. 8 illustrates a road surface model in which the interval (pitch) of the grooves 5 is 19.05 mm, the groove width is 2.4 mm, and the groove depth is 5 mm.
[0016]
After modeling the tire, wheel and road surface, analysis conditions such as material property setting, internal pressure / longitudinal load condition, road surface translation condition, tire-road contact condition, wheel-road surface constraint condition, etc. Set.
[0017]
In this embodiment, the test tire is 225 / 60R15, the rim is 15 * 6 1 / 2-JJ, the tire inner surface is filled with internal pressure (200 kPa), and the wheel center is loaded with a longitudinal load (4.9 kPa). The road surface is moved in the tire anti-travel direction.
[0018]
The RGW performance evaluation index is calculated by moving the road surface model in the anti-travel direction of the tire, and analyzing the time series waveform of the side force acting on the wheel within the analysis time when the rain groove changes by 1 pitch under the constant road surface speed. It filters for noise removal, calculates the peak difference (PP value: peak to peak value) of the upper and lower sides, and makes this value the evaluation index value of RGW performance.
[0019]
FIG. 9 shows a correlation diagram between the laboratory test result and the FEM analysis result based on the RGW evaluation method of the present invention regarding the temporal change of the side force. The test tire is 225 / 60R15, the rim is 15 * 6 1 / 2-JJ, the internal pressure is 200 kPa, the longitudinal load is 4.9 kN, and the running speed is 20 km / h. As shown in FIG. 9, a substantially identical waveform is obtained between the laboratory experiment result and the FEM analysis result based on the RGW evaluation method of the present invention.
[0020]
Therefore, according to the evaluation method described above, the tire model is rotated on the road surface model having a plurality of rain grooves with inclination angles in the tire traveling direction, and the side force involved in the RGW is calculated. The RGW performance can be evaluated in the same way as the conventional laboratory test evaluation method without making a prototype.
[0021]
【The invention's effect】
As is apparent from the above description, according to the present invention, the RGW performance is evaluated by the analysis by the finite element method using the tire model, the wheel model and the road surface model. Can be evaluated.
[Brief description of the drawings]
FIG. 1 is an overall model used for an RGW evaluation method for a tire according to the present invention. FIG. 2 is a plan view showing the relationship between the tire model and a road surface model. FIG. 3 is a perspective view showing a tire / wheel combination model. 4 is a perspective view of a tire model. FIG. 5 is a perspective view of a wheel model. FIG. 6 is an enlarged view of a portion A in FIG. 1. FIG. 7 is an enlarged view of a portion B in FIG. 9] Correlation diagram between side force laboratory test results and FEM analysis results 【Explanation of symbols】
1 Tire 2 Tire Model 3 Wheel Model 4 Road Surface Model 5 Groove

Claims (1)

タイヤを複数の要素に分割してメッシュ化したタイヤモデルと、タイヤとホイールの接触範囲を剛体シェル要素でモデル化したホイールモデルと、タイヤ進行方向に傾斜角を付与した複数のレイングルーブを備えたタイヤ接地面の路面モデルとを使用して、有限要素法解析によりレイングルーブワンダー性能を解析評価するとき、前記タイヤモデル内面に内圧を充填し、ホイールモデルの中心節点に縦荷重を負荷した後に、前記路面モデルをタイヤ反進行方向に移動させ、路面定速下において、レイングルーブが1ピッチ変化する解析時間内で、ホイールモデルに作用するサイドフォースの時系列波形をフィルタリングし、その上下のピーク差をレイングルーブワンダー性能の評価指標値として算出することを特徴とするタイヤのレイングルーブワンダー性能評価法。A tire model in which the tire is divided into a plurality of elements and meshed, a wheel model in which the contact range of the tire and the wheel is modeled with a rigid shell element, and a plurality of rain grooves with an inclination angle in the tire traveling direction are provided. When using the road surface model of the tire contact surface and analyzing and evaluating the rain groove wonder performance by finite element method analysis , after filling the tire model inner surface with internal pressure and applying a longitudinal load to the center node of the wheel model, The road surface model is moved in the direction opposite to the tire traveling direction, and the time series waveform of the side force acting on the wheel model is filtered within the analysis time in which the rain groove changes by 1 pitch at a constant road surface speed. Reinguru the tire and calculates as an evaluation index value of the rain groove wander performance Buwanda performance evaluation method.
JP2002304567A 2002-10-18 2002-10-18 Evaluation method of tire rain groove wonder performance Expired - Lifetime JP4157358B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002304567A JP4157358B2 (en) 2002-10-18 2002-10-18 Evaluation method of tire rain groove wonder performance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002304567A JP4157358B2 (en) 2002-10-18 2002-10-18 Evaluation method of tire rain groove wonder performance

Publications (2)

Publication Number Publication Date
JP2004136815A JP2004136815A (en) 2004-05-13
JP4157358B2 true JP4157358B2 (en) 2008-10-01

Family

ID=32451951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002304567A Expired - Lifetime JP4157358B2 (en) 2002-10-18 2002-10-18 Evaluation method of tire rain groove wonder performance

Country Status (1)

Country Link
JP (1) JP4157358B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4639912B2 (en) * 2004-12-22 2011-02-23 横浜ゴム株式会社 Tire performance prediction method, tire performance prediction computer program, and tire / wheel assembly model creation method
JP5902986B2 (en) * 2012-03-30 2016-04-13 公益財団法人鉄道総合技術研究所 Finite element analysis system

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0853004A (en) * 1994-08-12 1996-02-27 Bridgestone Corp Pneumatic tyre
JPH0939515A (en) * 1995-07-26 1997-02-10 Yokohama Rubber Co Ltd:The Pneumatic tire for automobile
JPH11153520A (en) * 1997-11-25 1999-06-08 Sumitomo Rubber Ind Ltd Method and apparatus for simulation of performance of tire
JP3431817B2 (en) * 1998-01-19 2003-07-28 住友ゴム工業株式会社 Simulation method of tire performance
JP2001356080A (en) * 2000-04-12 2001-12-26 Bridgestone Corp Method and apparatus for simulating capacity of tire and recording medium
JP4448247B2 (en) * 2000-04-25 2010-04-07 住友ゴム工業株式会社 Tire hydro-planing simulation method
JP2002103930A (en) * 2000-06-14 2002-04-09 Sumitomo Rubber Ind Ltd Simulation method for vehicle tire performance
JP3253952B1 (en) * 2000-06-14 2002-02-04 住友ゴム工業株式会社 Simulation method of vehicle / tire performance
JP4299446B2 (en) * 2000-09-11 2009-07-22 横浜ゴム株式会社 Evaluation method of tire wandering performance
JP3363443B2 (en) * 2001-04-26 2003-01-08 住友ゴム工業株式会社 Simulation method of tire performance
JP3314082B2 (en) * 2001-04-26 2002-08-12 住友ゴム工業株式会社 How to create a tire finite element model

Also Published As

Publication number Publication date
JP2004136815A (en) 2004-05-13

Similar Documents

Publication Publication Date Title
DE69831642T2 (en) Method and apparatus for simulating a rolling tire
RU2521033C2 (en) Automotive tire
CN103575551B (en) Tire bench testing apparatus and tire performance testing method using the same
KR101059719B1 (en) Pneumatic Tire, Tire Mold, and Pneumatic Tire Manufacturing Method
US7308390B2 (en) Method and apparatus for estimating tire/wheel performance by simulation
CN103963571B (en) The motorcycle tire of running on rough terrain
JP4715902B2 (en) Tire vibration characteristic evaluation method, tire vibration characteristic evaluation computer program, and tire manufacturing method
US20180201077A1 (en) Method of generating tire load histories and testing tires
JP4157358B2 (en) Evaluation method of tire rain groove wonder performance
US11731464B2 (en) Tyre tread
JP3431818B2 (en) Simulation method of tire performance
JP4437884B2 (en) Tire performance prediction method, fluid simulation method, tire design method, recording medium, and tire performance prediction program
EP3880493A1 (en) Average void depth truck tire with angled ribs having decoupled shoulder blocks
JP2000255226A (en) Method for determining prelimianrily selected performance characteristic of tire tread and tire with tread having optimum characteristic with respect to this performance characteristic
JP3431817B2 (en) Simulation method of tire performance
JP4594030B2 (en) Tire performance prediction method, tire simulation method, tire performance prediction program, and recording medium
JP4233473B2 (en) Tire vibration characteristic evaluation method, tire vibration characteristic evaluation computer program, and tire manufacturing method
DE50210498D1 (en) Method and apparatus for automatically classifying wheeled vehicles
JP4426769B2 (en) Evaluation method for residual cornering force of pneumatic tires
RU2372210C2 (en) Car tyre
JP7487567B2 (en) Tire simulation method and tire simulation device
JP2002007489A (en) Method for preparing tire finite element model
JP2001356080A (en) Method and apparatus for simulating capacity of tire and recording medium
JPH11173972A (en) Simulated deformation formation apparatus for paved road surface
JP4141706B2 (en) Road cutting method

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040531

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080711

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4157358

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140718

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term