JP4157358B2 - Evaluation method of tire rain groove wonder performance - Google Patents
Evaluation method of tire rain groove wonder performance Download PDFInfo
- Publication number
- JP4157358B2 JP4157358B2 JP2002304567A JP2002304567A JP4157358B2 JP 4157358 B2 JP4157358 B2 JP 4157358B2 JP 2002304567 A JP2002304567 A JP 2002304567A JP 2002304567 A JP2002304567 A JP 2002304567A JP 4157358 B2 JP4157358 B2 JP 4157358B2
- Authority
- JP
- Japan
- Prior art keywords
- tire
- model
- road surface
- wheel
- performance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/80—Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
- Y02T10/82—Elements for improving aerodynamics
Landscapes
- Tires In General (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、タイヤ、ホイール及びタイヤ進行方向に傾斜角を付与したレイングルーブを有する路面の有限要素法解析モデルを使用して、タイヤ回転中にホイールに作用するサイドフォースの上ピークと下ピークとの差(P−P値)により、レイングルーブワンダー(RGW)性能を評価するタイヤのレイングルーブワンダー性能評価法に関するものである。
【0002】
【従来技術】
タイヤの走行性能評価項目の一つとしてレイングルーブワンダー(以下、「RGW」という)性能がある。これは、道路の排水性を良好にするために走行方向と平行に縦溝が刻設された路面上を自動車が走行すると、タイヤに刻設されたパターン溝と、路面のレイングルーブ(縦溝)とが相互に影響し合って自動車にふらつき現象(RGW)が生じる。そのため、タイヤの設計に当たっては、このRGW性能をも評価要素としなければならない。
【0003】
従来、この種のRGW性能評価法としては、以下の2通りの方法があった。
1)実路での実車官能評価法
実車官能評価法は、評価するタイヤを実車に装着してレイングルーブ路面にて走行させ、走行中のハンドル手ごたえ感により、RGW性能を官能評価する方法である。
2)レイングルーブ模擬路ドラムによる室内試験評価法
室内評価法は、室内試験場において実路と同様な走行状態が得られるように、タイヤと接触する試験ドラム表面に、タイヤ進行方向に傾斜角を付与した複数のレイングルーブを備えた模擬路を巻き付けて、ドラム回転中にタイヤに発生するサイドフォースの時間的変化を計測し、そのサイドフォースの上ピークと下ピークとの差(P−P値)からRGW性能を評価する方法である。
【0004】
【発明が解決しようとする課題】
ところで、上記実車官能評価法及び室内試験評価法のいずれの場合も、実物のタイヤを用いているため、設計変更タイヤのRGW性能評価には、パターン無しタイヤの試作・パターン彫り等を行う必要があり、場合によっては新規モールド製作が必要となり、タイヤ開発費用が増大し、またタイヤ開発期間が長期化するといった問題点があった。
【0005】
本発明は、上記課題に鑑み、評価するタイヤを製作することなく、タイヤのRGW性能を評価できる手法の提供を目的としている。
【0006】
【課題を解決するための手段】
上記目的を達成するため、本発明に係るタイヤのRGW性能評価法は、タイヤを複数の要素に分割してメッシュ化したタイヤモデルと、タイヤとホイールの接触範囲を剛体シェル要素でモデル化したホイールモデルと、タイヤ進行方向に傾斜角を付与した複数のレイングルーブを備えたタイヤの接地面の路面モデルとを使用して、有限要素法による解析によりRGW性能を解析評価することを特徴としている。
【0007】
上記評価法によれば、タイヤモデル内面に内圧を充填し、ホイールモデルの中心節点に縦荷重を負荷した後に、路面モデルをタイヤ反進行方向に移動させ、路面定速下において、レイングルーブが1ピッチ変化する解析時間内で、ホイールに作用するサイドフォースの時系列波形をフィルタリングし、その上下のピーク差(P−P値)をRGW性能の評価指標値として算出するので、タイヤを試作することなく従来の室内試験法と同様なRGW性能の評価ができる。
【0008】
なお、路面モデルにおいて、レイングルーブのタイヤ進行方向に対する傾斜角は、好適なRGW性能を評価する上において、0.1〜2.0度に設定するのが好適である。また、タイヤ進行方向に細メッシュ化を施さず解析すると、タイヤモデルの外周部が路面モデルのレイングルーブ内に異常に進入した解析結果が得られる場合がある。そのため、路面モデルにおいてもタイヤ進行方向に細メッシュ化して、タイヤモデルと路面モデルとの整合を図ることが必要であり、そのメッシュ長5〜30mmに設定するのが好適である。
【0009】
RGW性能評価指標の算出方法としては、路面モデルをタイヤ反進行方向に移動させ、路面定速下において、レイングルーブが1ピッチ変化する解析時間内で、ホイールに作用するサイドフォースの時系列波形をフィルタリングし、その上下のピーク差(P−P値)をRGW性能の評価指標値として算出するのが好ましい。
【0010】
また、タイヤモデルは、タイヤを構成するゴム部材についてソリッド要素を、ゴムとコードから成るコンポジット部材について異方性シェル要素を夫々採用し、トレッド部の実パターンをモデル化する場合は、トレッド部を構成するパターンブロックと、トレッド部以外のタイヤボディとの接合部は、パターンブロック内面とタイヤボディ外面とを面接合するのが好ましい。
【0011】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて説明する。図1は本発明に係るタイヤのRGW評価法で使用する全体モデル、図2は同じくタイヤモデルと路面モデルとの関係を示す平面図、図3はタイヤとホイールの組み合わせモデルを示す斜視図、図4はタイヤモデルの斜視図、図5はホイールモデルの斜視図、図6は図1のA部位拡大図、図7は図1のB部位拡大図、図8は図7の拡大図である。
【0012】
図に示すように、タイヤ1のRGW評価法は、有限要素法に基づき、タイヤモデル2、ホイールモデル3、及び路面モデル4を作成し、次に、材料物性の設定、内圧・縦荷重の負荷条件、タイヤの転動条件、拘束条件等の条件を設定し、RGW性能の評価指標算出の基礎となるタイヤ回転中のホイールに作用するサイドフォースを算出させるための有限要素法解析を実行する。
【0013】
タイヤモデル2は、以下の方法により作成する。まず、図4に示すように、目的とするタイヤをメッシュ状に分割する。トレッド部の実パターンをモデル化する場合は、トレッド部を構成するパターンブロックと、トレッド部以外のタイヤボディとの接合部は、パターンブロック内面とタイヤボディ外面とを面接合する。タイヤを構成する部材のうち、トレッドやサイドウォールなどのゴム部材はソリッド要素を採用し、カーカスやベルトなどのコードとゴムとのコンポジット部材については異方性シェル要素を採用する。
【0014】
ホイールモデル3は、図5に示すように、タイヤとホイールとの接触範囲を剛体シェル要素とする。
【0015】
路面モデルは、タイヤ進行方向に対して0.1〜2.0度の傾斜角を付与した複数のレイングループを形成する。また、路面モデル4にタイヤ進行方向へ細メッシュ化を施さず解析すると、タイヤモデルの外周部が路面モデルのレイングルーブ内に異常に進入した解析結果が得られる場合があるため、図7及び図8に示すように、タイヤ進行方向に細メッシュ化してタイヤモデルと路面モデルとの整合を図るようにする。図7におけるX方向(タイヤ進行方向)のメッシュ要素長さ(L)は5mm〜30mmに設定するのが好ましい。また、図8は溝5の間隔(ピッチ)が19.05mm、溝幅が2.4mm、溝深さが5mmの路面モデルを例示している。
【0016】
上記タイヤ、ホイール及び路面のモデル化を行った後、材料物性の設定、内圧・縦荷重の負荷条件、路面の並進条件、タイヤと路面との接触条件、ホイールと路面の拘束条件等の解析条件を設定する。
【0017】
本実施形態では、テストタイヤが225/60R15、リムが15*6 1/2−JJにおいて、タイヤ内面に内圧(200kPa)を充填し、ホイール中心に縦荷重(4.9kN)を負荷した状態で、路面をタイヤ反進行方向に移動させる。
【0018】
RGW性能評価指標の算出方法としては、路面モデルをタイヤ反進行方向に移動させ、路面定速下において、レイングルーブが1ピッチ変化する解析時間内で、ホイールに作用するサイドフォースの時系列波形をノイズ除去のためにフィルタリングし、その上下のピーク差(P−P値:peak to peak 値)を算出し、この値をRGW性能の評価指標値とする。
【0019】
図9に、サイドフォースの時間的変化について、室内実験結果と本発明のRGW評価法に基づくFEM解析結果との相関図を示す。テストタイヤは225/60R15、リムは15*6 1/2−JJ、内圧は200kPa、縦荷重は4.9kN、走行速度は20km/hである。図9に示すように、室内実験結果と本発明のRGW評価法に基づくFEM解析結果は、ほぼ一致した波形が得られる。
【0020】
従って、上記評価法によれば、タイヤ進行方向に傾斜角を付与した複数のレイングルーブを備えた路面モデル上で、タイヤモデルを回転させて、RGWに関与するサイドフォースを算出するので、タイヤを試作しなくても、従来の室内試験評価法と同様なRGW性能の評価ができる。
【0021】
【発明の効果】
以上の説明から明らかな通り、本発明によると、タイヤモデルとホイールモデルと路面モデルを使用して有限要素法による解析により、RGW性能を評価するので、タイヤを試作することなく、タイヤのRGW性能を評価することができる。
【図面の簡単な説明】
【図1】本発明に係るタイヤにRGW評価法に使用する全体モデル
【図2】同じくタイヤモデルと路面モデルとの関係を示す平面図
【図3】タイヤとホイールの組み合わせモデルを示す斜視図
【図4】タイヤモデルの斜視図
【図5】ホイールモデルの斜視図
【図6】図1のA部位拡大図
【図7】図1のB部位拡大図
【図8】図7の拡大図
【図9】サイドフォースの室内実験結果とFEM解析結果との相関図
【符号の説明】
1 タイヤ
2 タイヤモデル
3 ホイールモデル
4 路面モデル
5 溝[0001]
BACKGROUND OF THE INVENTION
The present invention uses a finite element method analysis model of a road surface having a tire, a wheel, and a rain groove with an inclination angle in a tire traveling direction, and an upper peak and a lower peak of a side force acting on the wheel during tire rotation. It is related with the rain groove wonder performance evaluation method of the tire which evaluates a rain groove wonder (RGW) performance by the difference (PP value).
[0002]
[Prior art]
One of the performance evaluation items of a tire is a rain groove wonder (hereinafter referred to as “RGW”) performance. This is because when a car travels on a road surface in which vertical grooves are engraved in parallel with the traveling direction in order to improve the drainage performance of the road, the pattern grooves inscribed on the tires and the rain grooves (vertical grooves on the road surface) ) Interact with each other to cause a wobbling phenomenon (RGW) in the car. Therefore, when designing a tire, this RGW performance must also be an evaluation factor.
[0003]
Conventionally, this type of RGW performance evaluation method has the following two methods.
1) Actual vehicle sensory evaluation method on the actual road The actual vehicle sensory evaluation method is a method in which the RGW performance is sensorially evaluated by attaching the tire to be evaluated to the actual vehicle and running on the rain groove road surface and feeling the grip of the steering wheel while driving. .
2) Indoor test evaluation method using rain groove simulated road drum The indoor evaluation method gives an inclination angle in the tire traveling direction on the surface of the test drum in contact with the tire so that the same running condition as the actual road can be obtained at the indoor test site. Winding a simulated road with multiple rain grooves and measuring the temporal change of the side force generated in the tire during drum rotation, the difference between the upper peak and lower peak of the side force (PP value) This is a method for evaluating RGW performance.
[0004]
[Problems to be solved by the invention]
By the way, since the real tire sensor is used in both the actual vehicle sensory evaluation method and the indoor test evaluation method, the RGW performance evaluation of the design-changed tire requires the trial production / pattern carving of a patternless tire. In some cases, it is necessary to produce a new mold, increasing the tire development cost and prolonging the tire development period.
[0005]
The present invention has been made in view of the above problems, and an object of the present invention is to provide a method capable of evaluating the RGW performance of a tire without producing a tire to be evaluated.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, a tire RGW performance evaluation method according to the present invention includes a tire model in which a tire is divided into a plurality of elements and meshed, and a wheel in which a contact range between the tire and the wheel is modeled by a rigid shell element. The RGW performance is analyzed and evaluated by analysis using a finite element method, using a model and a road surface model of a tire contact surface provided with a plurality of rain grooves with inclination angles in the tire traveling direction.
[0007]
According to the above evaluation method, the tire model inner surface is filled with internal pressure, and a longitudinal load is applied to the center node of the wheel model. Then, the road surface model is moved in the direction opposite to the tire traveling direction. Since the time series waveform of the side force acting on the wheel is filtered within the analysis time where the pitch changes, the peak difference (PP value) between the top and bottom is calculated as the evaluation index value of the RGW performance. RGW performance can be evaluated in the same way as in the conventional laboratory test method.
[0008]
In the road surface model, it is preferable that the inclination angle of the rain groove with respect to the tire traveling direction is set to 0.1 to 2.0 degrees in evaluating a suitable RGW performance. Further, if analysis is performed without applying a fine mesh in the tire traveling direction, there may be obtained an analysis result in which the outer peripheral portion of the tire model abnormally enters the rain groove of the road surface model. Therefore, it is necessary to make a fine mesh in the tire traveling direction also in the road surface model so as to match the tire model and the road surface model, and it is preferable to set the mesh length to 5 to 30 mm.
[0009]
The RGW performance evaluation index is calculated by moving the road surface model in the anti-travel direction of the tire, and analyzing the time series waveform of the side force acting on the wheel within the analysis time when the rain groove changes by 1 pitch under the constant road surface speed. It is preferable to perform filtering and calculate the peak difference (PP value) between the upper and lower sides as an evaluation index value of RGW performance.
[0010]
The tire model employs solid elements for the rubber members that make up the tire, and anisotropic shell elements for the composite members made of rubber and cord. When modeling the actual pattern of the tread, It is preferable that the joint portion between the pattern block to be configured and the tire body other than the tread portion is surface-bonded between the pattern block inner surface and the tire body outer surface.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an overall model used in the tire RGW evaluation method according to the present invention, FIG. 2 is a plan view showing the relationship between the tire model and the road surface model, and FIG. 3 is a perspective view showing a tire / wheel combination model. 4 is a perspective view of a tire model, FIG. 5 is a perspective view of a wheel model, FIG. 6 is an enlarged view of a portion A in FIG. 1, FIG. 7 is an enlarged view of a portion B in FIG.
[0012]
As shown in the figure, the RGW evaluation method for the tire 1 is based on the finite element method, creating a
[0013]
The
[0014]
As shown in FIG. 5, the
[0015]
The road surface model forms a plurality of rain groups having an inclination angle of 0.1 to 2.0 degrees with respect to the tire traveling direction. Further, if the
[0016]
After modeling the tire, wheel and road surface, analysis conditions such as material property setting, internal pressure / longitudinal load condition, road surface translation condition, tire-road contact condition, wheel-road surface constraint condition, etc. Set.
[0017]
In this embodiment, the test tire is 225 / 60R15, the rim is 15 * 6 1 / 2-JJ, the tire inner surface is filled with internal pressure (200 kPa), and the wheel center is loaded with a longitudinal load (4.9 kPa). The road surface is moved in the tire anti-travel direction.
[0018]
The RGW performance evaluation index is calculated by moving the road surface model in the anti-travel direction of the tire, and analyzing the time series waveform of the side force acting on the wheel within the analysis time when the rain groove changes by 1 pitch under the constant road surface speed. It filters for noise removal, calculates the peak difference (PP value: peak to peak value) of the upper and lower sides, and makes this value the evaluation index value of RGW performance.
[0019]
FIG. 9 shows a correlation diagram between the laboratory test result and the FEM analysis result based on the RGW evaluation method of the present invention regarding the temporal change of the side force. The test tire is 225 / 60R15, the rim is 15 * 6 1 / 2-JJ, the internal pressure is 200 kPa, the longitudinal load is 4.9 kN, and the running speed is 20 km / h. As shown in FIG. 9, a substantially identical waveform is obtained between the laboratory experiment result and the FEM analysis result based on the RGW evaluation method of the present invention.
[0020]
Therefore, according to the evaluation method described above, the tire model is rotated on the road surface model having a plurality of rain grooves with inclination angles in the tire traveling direction, and the side force involved in the RGW is calculated. The RGW performance can be evaluated in the same way as the conventional laboratory test evaluation method without making a prototype.
[0021]
【The invention's effect】
As is apparent from the above description, according to the present invention, the RGW performance is evaluated by the analysis by the finite element method using the tire model, the wheel model and the road surface model. Can be evaluated.
[Brief description of the drawings]
FIG. 1 is an overall model used for an RGW evaluation method for a tire according to the present invention. FIG. 2 is a plan view showing the relationship between the tire model and a road surface model. FIG. 3 is a perspective view showing a tire / wheel combination model. 4 is a perspective view of a tire model. FIG. 5 is a perspective view of a wheel model. FIG. 6 is an enlarged view of a portion A in FIG. 1. FIG. 7 is an enlarged view of a portion B in FIG. 9] Correlation diagram between side force laboratory test results and FEM analysis results 【Explanation of symbols】
1
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002304567A JP4157358B2 (en) | 2002-10-18 | 2002-10-18 | Evaluation method of tire rain groove wonder performance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002304567A JP4157358B2 (en) | 2002-10-18 | 2002-10-18 | Evaluation method of tire rain groove wonder performance |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004136815A JP2004136815A (en) | 2004-05-13 |
JP4157358B2 true JP4157358B2 (en) | 2008-10-01 |
Family
ID=32451951
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002304567A Expired - Lifetime JP4157358B2 (en) | 2002-10-18 | 2002-10-18 | Evaluation method of tire rain groove wonder performance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4157358B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4639912B2 (en) * | 2004-12-22 | 2011-02-23 | 横浜ゴム株式会社 | Tire performance prediction method, tire performance prediction computer program, and tire / wheel assembly model creation method |
JP5902986B2 (en) * | 2012-03-30 | 2016-04-13 | 公益財団法人鉄道総合技術研究所 | Finite element analysis system |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0853004A (en) * | 1994-08-12 | 1996-02-27 | Bridgestone Corp | Pneumatic tyre |
JPH0939515A (en) * | 1995-07-26 | 1997-02-10 | Yokohama Rubber Co Ltd:The | Pneumatic tire for automobile |
JPH11153520A (en) * | 1997-11-25 | 1999-06-08 | Sumitomo Rubber Ind Ltd | Method and apparatus for simulation of performance of tire |
JP3431817B2 (en) * | 1998-01-19 | 2003-07-28 | 住友ゴム工業株式会社 | Simulation method of tire performance |
JP2001356080A (en) * | 2000-04-12 | 2001-12-26 | Bridgestone Corp | Method and apparatus for simulating capacity of tire and recording medium |
JP4448247B2 (en) * | 2000-04-25 | 2010-04-07 | 住友ゴム工業株式会社 | Tire hydro-planing simulation method |
JP2002103930A (en) * | 2000-06-14 | 2002-04-09 | Sumitomo Rubber Ind Ltd | Simulation method for vehicle tire performance |
JP3253952B1 (en) * | 2000-06-14 | 2002-02-04 | 住友ゴム工業株式会社 | Simulation method of vehicle / tire performance |
JP4299446B2 (en) * | 2000-09-11 | 2009-07-22 | 横浜ゴム株式会社 | Evaluation method of tire wandering performance |
JP3363443B2 (en) * | 2001-04-26 | 2003-01-08 | 住友ゴム工業株式会社 | Simulation method of tire performance |
JP3314082B2 (en) * | 2001-04-26 | 2002-08-12 | 住友ゴム工業株式会社 | How to create a tire finite element model |
-
2002
- 2002-10-18 JP JP2002304567A patent/JP4157358B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2004136815A (en) | 2004-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69831642T2 (en) | Method and apparatus for simulating a rolling tire | |
RU2521033C2 (en) | Automotive tire | |
CN103575551B (en) | Tire bench testing apparatus and tire performance testing method using the same | |
KR101059719B1 (en) | Pneumatic Tire, Tire Mold, and Pneumatic Tire Manufacturing Method | |
US7308390B2 (en) | Method and apparatus for estimating tire/wheel performance by simulation | |
CN103963571B (en) | The motorcycle tire of running on rough terrain | |
JP4715902B2 (en) | Tire vibration characteristic evaluation method, tire vibration characteristic evaluation computer program, and tire manufacturing method | |
US20180201077A1 (en) | Method of generating tire load histories and testing tires | |
JP4157358B2 (en) | Evaluation method of tire rain groove wonder performance | |
US11731464B2 (en) | Tyre tread | |
JP3431818B2 (en) | Simulation method of tire performance | |
JP4437884B2 (en) | Tire performance prediction method, fluid simulation method, tire design method, recording medium, and tire performance prediction program | |
EP3880493A1 (en) | Average void depth truck tire with angled ribs having decoupled shoulder blocks | |
JP2000255226A (en) | Method for determining prelimianrily selected performance characteristic of tire tread and tire with tread having optimum characteristic with respect to this performance characteristic | |
JP3431817B2 (en) | Simulation method of tire performance | |
JP4594030B2 (en) | Tire performance prediction method, tire simulation method, tire performance prediction program, and recording medium | |
JP4233473B2 (en) | Tire vibration characteristic evaluation method, tire vibration characteristic evaluation computer program, and tire manufacturing method | |
DE50210498D1 (en) | Method and apparatus for automatically classifying wheeled vehicles | |
JP4426769B2 (en) | Evaluation method for residual cornering force of pneumatic tires | |
RU2372210C2 (en) | Car tyre | |
JP7487567B2 (en) | Tire simulation method and tire simulation device | |
JP2002007489A (en) | Method for preparing tire finite element model | |
JP2001356080A (en) | Method and apparatus for simulating capacity of tire and recording medium | |
JPH11173972A (en) | Simulated deformation formation apparatus for paved road surface | |
JP4141706B2 (en) | Road cutting method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20040531 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050819 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080310 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080318 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080507 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080708 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080711 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110718 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4157358 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110718 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140718 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |