JP4156966B2 - Method for modifying aluminum alloy tire mold - Google Patents

Method for modifying aluminum alloy tire mold Download PDF

Info

Publication number
JP4156966B2
JP4156966B2 JP2003115456A JP2003115456A JP4156966B2 JP 4156966 B2 JP4156966 B2 JP 4156966B2 JP 2003115456 A JP2003115456 A JP 2003115456A JP 2003115456 A JP2003115456 A JP 2003115456A JP 4156966 B2 JP4156966 B2 JP 4156966B2
Authority
JP
Japan
Prior art keywords
hours
heat treatment
tire mold
temperature range
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003115456A
Other languages
Japanese (ja)
Other versions
JP2004315952A (en
Inventor
雅士 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2003115456A priority Critical patent/JP4156966B2/en
Publication of JP2004315952A publication Critical patent/JP2004315952A/en
Application granted granted Critical
Publication of JP4156966B2 publication Critical patent/JP4156966B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
この発明は、タイヤの加硫成形に供するタイヤモールド、特にアルミニウム合金からなるタイヤモールドを改質する方法に関するものである。
【0002】
【従来の技術】
タイヤモールド(以下、単にモールドと示す)、特に複数のセグメントを集合させて用いるモールドは、主に鋳造性の観点から、アルミニウム合金からなることが一般的である。このアルミニウム合金製モールドは、例えばモールド材の典型例である鋼材に比べて硬度が低いため、比較的早期に磨耗が生じ易い。その結果、モールド内面の補修を頻繁に行う必要があり、その保守点検の費用が嵩むことが問題であった。
【0003】
この問題の解消には、アルミニウム合金製モールドの硬度を高めることが有効であるが、この種のモールドの硬度を高める、直截的な手法については何ら提案されていないのが現状である。
【0004】
【発明が解決しようとする課題】
そこで、この発明は、アルミニウム合金製モールドの耐磨耗性を向上するために、このモールドを直接改質する方途について、提案することを目的とするものである。
【0005】
【課題を解決するための手段】
この発明の要旨構成は、次の通りである。
(1)Al−Cu系合金からなるタイヤモールドを、500〜530℃の温度域に2〜10時間保持したのち急冷する、第1の熱処理を施し、次いで3時間以上室温に保持してから、120〜200℃の温度域に1〜10時間保持したのち冷却する、第2の熱処理を施すことを特徴とするアルミニウム合金製タイヤモールドの改質方法。
【0006】
(2)Al−Si系合金からなるタイヤモールドに、500〜560℃の温度域に2〜10時間保持したのち急冷する、第1の熱処理を施し、次いで3時間以上室温に保持してから、120〜200℃の温度域に1〜10時間保持したのち冷却する、第2の熱処理を施すことを特徴とするアルミニウム合金製タイヤモールドの改質方法。
【0007】
(3)Al−Mg系合金からなるタイヤモールドを、400〜500℃の温度域に2〜10時間保持したのち急冷する、第1の熱処理を施し、次いで3時間以上室温に保持してから、120〜200℃の温度域に1〜10時間保持したのち冷却する、第2の熱処理を施すことを特徴とするアルミニウム合金製タイヤモールドの改質方法。
【0008】
(4)上記(1)ないし(3)のいずれかにおいて、第1の熱処理の直後に、100〜200℃の温度域での塑性変形加工を施し、第1の熱処理で生じた変形を修正することを特徴とするアルミニウム合金製タイヤモールドの改質方法。
【0009】
【発明の実施の形態】
以下に、この発明のアルミニウム合金製モールドの改質方法について、各成分系毎に詳しく説明する。
(Al−Cu系合金)
Al−Cu系合金製のモールドは、500〜530℃の温度域に2〜10時間保持したのち急冷する、第1の熱処理を施し、次いで3時間以上室温に保持してから、120〜200℃の温度域に1〜10時間保持したのち冷却する、第2の熱処理を施すことによって、その機械的特性を向上することができる。
【0010】
すなわち、500〜530℃の温度域に2〜10時間保持したのち急冷する、第1の熱処理では、Cuなどの溶解度線以上の温度域に加熱し、室温へ急冷することによって過飽和固溶状態を現出させる。この第1の熱処理における処理温度が500℃に満たないか、保持時間が2時間未満であると、Al母層へのCu原子の固溶が十分でないため、時効析出で均一微細なθ相生成が困難となり、物性が向上しない。すなわち、硬度上昇が図れない。一方、処理温度が530℃を超えるか、保持時間が10時間を超えると、粒界の再結晶化が進み、均一組織が維持できなくなり、時効析出時に製品内の物性ばらつきが大きくなる。また、再結晶化の促進により、軟化が進み製品の変形も大きくなる。
【0011】
この第1の熱処理は、500℃で3時間の保持後に急冷を行うことが好適である。なお、所定温度及び時間に保持後の急冷は、水冷により行うことが好ましく、具体的には、10.0〜100.0℃/sの冷却速度で行うことが有利である。なぜなら、10℃/sec未満では冷却中にG.P.ゾーンが生成し、均一析出核生成を困難にし、100℃/sをこえると表面と内部との温度差が大きくなり、熱衝撃歪による割れが発生するためである。
【0012】
引き続き、この過飽和固溶状態で3時間以上好ましくは12時間程度、室温に保持することにより、微細な析出核を生成させる。ここでの保持時間が3時間未満では、時効による析出核成長時の内部歪によって、転位密度の高い領域が優先析出核となり均一核出核生成を得ることができない。なお、保持時間は24時間以下とすることが、大きく硬度上昇しない内に、焼き入れ歪修正加工を実施するために好ましい。
【0013】
次いで、120〜200℃の温度域に1〜10時間保持したのち冷却する、第2の熱処理を施すことによって、析出核から球状のθ相の均一成長が図られ、物性が向上する。すなわち、強度上昇を図るための材料組織が得られる。
すなわち、第2の熱処理における処理温度が120℃に満たないか、保持時間が1時間未満であると、不安定相のZ.P.ゾーンが存在し、経時変化しやすい材料組織となる。一方処理温度が200℃を超えるか、保持時間が10時間を超えると、球状θ相は板状及び針状に変化し、軟化がはじまる。そのため、物性はむしろ低下する方向へ動くことになる。
【0014】
この第2の熱処理は、200℃で2時間の保持後に冷却を行うことが好適である。なお、所定温度及び時間に保持後の冷却は、放冷により行ことが好ましく、具体的には、0.005〜0.050℃/sの冷却速度で行うことが有利である。なぜなら、0.005℃/s未満であると、再び不安定相のZ.P.ゾーンが出現し、物性が安定しない。また、0.005℃/sをこえると、表面と内部で熱歪を生じて変形しやすいからである。
【0015】
ここに、Al−Cu系合金としては、JIS H5202(1992)に規定された、AC1A,AC1B,AC2A,AC2B,AC4B,AC4D,AC5Aなどの時効性を有するものが適合する。
【0016】
(Al−Si系合金)
Al−Si系合金製のモールドは、500〜560℃の温度域に2〜10時間保持したのち急冷する、第1の熱処理を施し、次いで3時間以上室温に保持してから、120〜200℃の温度域に1〜10時間保持したのち冷却する、第2の熱処理を施すことによって、その機械的特性を向上することができる。
【0017】
すなわち、500〜560℃の温度域に2〜10時間保持したのち急冷する、第1の熱処理では、過冷シリコン相を固溶させると共に、補助強化合金として添加されているCu、Zn、Mgも同時に固溶させる状態を現出させる。この第1の熱処理における処理温度が500℃に満たないか、保持時間が2時間未満であると、過冷シリコン相及び補助強化合金を母相(Al相)に十分固溶させる事ができない。
一方、処理温度が560℃を超えるか、保持時間が10時間を超えると、溶体化は進むが、一方で、再結晶化が進み、大きく軟化して変形が進むため、好ましくない。
【0018】
この第1の熱処理は、550℃で3時間の保持後に急冷を行うことが好適である。なお、所定温度及び時間に保持後の急冷は、水冷により行うことが好ましく、具体的には、10.0〜100.0℃/sの冷却速度で行うことが有利である。なぜなら、10.0℃/s未満では過冷シリコン相の晶出核が大きくなり物性を低下させ、100.0℃/sをこえると、過冷シリコン晶出物同士がお互いぶつかり合う晶出構造を取り、構造欠陥となって物性を低下させるからである。
【0019】
引き続き、この急冷した状態で3時間以上好ましくは12時間程度室温に保持することにより、微細な過冷晶出核を生成させる。ここでの保持時間が3時間未満では、安定して微細かつ均一な過冷晶出核を形成させることはできない。
なお、保持時間は8時間以下とすることが、補助添加合金元素であるZn、Cu、MgのZ.P.ゾーンを十分に形成させない点で望ましい。
【0020】
なお、その後の第2の熱処理についての意義は、Al−Cu系合金の場合と同様である。
【0021】
ここに、Al−Si系合金としては、JIS H5202(1992)に規定された、AC4A,AC4C,AC8A,AC8B,AC9A,AC9Bなどの時効性を有するものが適合する。
【0022】
(Al−Mg系合金)
Al−Mg系合金製のモールドは、400〜500℃の温度域に2〜10時間保持したのち急冷する、第1の熱処理を施し、次いで3時間以上室温に保持してから、120〜200℃の温度域に1〜10時間保持したのち冷却する、第2の熱処理を施すことによって、その機械的特性を向上することができる。
【0023】
すなわち、400〜500℃の温度域に2〜10時間保持したのち急冷する、第1の熱処理では、Mgなどの溶解度線以上の温度域に加熱し、室温へ急冷することによって過飽和固溶状態を現出させる。この第1の熱処理における処理温度が500℃に満たないか、保持時間が2時間未満であると、溶質原子Mgの母相への溶体化を十分に図る事ができない。一方、処理温度が530℃を超えるか、保持時間が10時間を超えると、再結晶化による軟化が進み焼き入れ時に変形が大きくなる。
【0024】
この第1の熱処理は、450℃で3時間の保持後に急冷を行うことが好適である。なお、所定温度及び時間に保持後の急冷は、水冷により行うことが好ましく、具体的には、10.0〜100.0℃/sの冷却速度で行うことが有利である。なぜなら、10.0℃/s未満ではZ.P.ゾーンを形成し、均一析出核生成を困難にし、100.0℃/sをこえると、焼き入れ歪による転位核が粒界に優先的に発生し、粒内に均一析出核を形成させる事が困難なためである。
【0025】
引き続く室温での保持、その後の第2の熱処理についての意義は、Al−Cu系合金の場合と同様である。
【0026】
ここに、Al−Mg系合金としては、JIS H5202(1992)に規定された、AC5A,AC7Bなどの時効性を有するものが適合する。
【0027】
また、第1の熱処理においてモールドに変形が生じることがあり、そのような場合は、第1の熱処理の直後に、100〜250℃の温度域での塑性変形加工を施し、第1の熱処理で生じた変形を修正することが好ましい。
【0028】
すなわち、第1の熱処理において生じた、モールドの変形を修正するには、弾性限を超える歪みを与える必要があるが、モールド用アルミニウム合金は、室温での弾性限が0.2%歪であり、その上の0.2〜2.0%歪域で弾塑性変形するため、完全塑性変形を強いるには2.0%を超える歪みが必要になる。従って、変形修正のための比較的に軽微の加工は、弾性域または弾塑性域内にあるため、弾性回復を伴うことから、精度の高い修正を困難にしていた。さらに、変形歪みによる加工硬化によって弾性限が変化し、かつ弾性率が上昇するために、なおさら、精度の高い塑性変形域の修正を難しくしている。
【0029】
ところで、この発明で対象とするアルミニウム合金は、100℃以上になると塑性変形がしやすくなるという、性質がある。すなわち、100℃以上の温度域での弾性限は0.2%歪から大きく変化しないが、弾塑性域が狭くなる結果、完全塑性変形は0.5%歪程度で実現できる。また、加工硬化は無視できるほど小さく、さらに弾性率は1/2程度になる。従って、モールドを100℃以上の温度域にて加工することによって、塑性域での変形が実現される結果、高精度の修正が可能になる。
【0030】
一方、250℃を超えると、再結晶化して軟化の程度が大きくなり、加工部分に集中して変形が生じて、却って修正の精度が低下することになる。従って、加工時の温度は250℃以下とする。
【0031】
また、上記塑性変形加工の加工率としては、3〜30%程度とすることが好ましい。なぜなら、3%未満では塑性変形加工精度から低温加工の方が有利になり、一方30%をこえると、局部くびれが生じやすく十分な塑性加工精度(2/100以下)が得られないからである。
【0032】
【実施例】
表1に示す成分組成の各種アルミニウム系合金から、タイヤの加硫成形に供するセグメントモールドを鋳造した。次いで、各モールドに対して、表2に示す条件の下で改質処理を行った。そして、改質処理後のモールドについて、その機械的性質を調査した。この調査結果を、各モールドの改質前の機械的特性と比較して、表3に示す。
【0033】
【表1】

Figure 0004156966
【0034】
【表2】
Figure 0004156966
【0035】
【表3】
Figure 0004156966
【0036】
【発明の効果】
この発明によれば、アルミニウム合金製モールドの機械的性質が簡便かつ確実に改善されるから、このモールドのとりわけ耐磨耗性を格段に向上し、モールド寿命を延ばすことが可能である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for modifying a tire mold used for vulcanization molding of a tire, particularly a tire mold made of an aluminum alloy.
[0002]
[Prior art]
A tire mold (hereinafter simply referred to as a mold), particularly a mold in which a plurality of segments are assembled, is generally made of an aluminum alloy mainly from the viewpoint of castability. Since this aluminum alloy mold has a lower hardness than, for example, a steel material that is a typical example of a mold material, wear tends to occur relatively early. As a result, it is necessary to frequently repair the inner surface of the mold, and the problem is that the cost of maintenance and inspection increases.
[0003]
In order to solve this problem, it is effective to increase the hardness of the mold made of an aluminum alloy. However, at present, no direct method for increasing the hardness of this type of mold has been proposed.
[0004]
[Problems to be solved by the invention]
In view of this, an object of the present invention is to propose a method for directly modifying the mold in order to improve the wear resistance of the aluminum alloy mold.
[0005]
[Means for Solving the Problems]
The gist configuration of the present invention is as follows.
(1) A tire mold made of an Al—Cu alloy is held in a temperature range of 500 to 530 ° C. for 2 to 10 hours and then rapidly cooled, and then subjected to a first heat treatment, and then kept at room temperature for 3 hours or more. A method for reforming an aluminum alloy tire mold, characterized in that a second heat treatment is performed in which a second heat treatment is performed after cooling in a temperature range of 120 to 200 ° C for 1 to 10 hours.
[0006]
(2) A tire mold made of an Al-Si alloy is subjected to a first heat treatment in which the tire mold is kept in a temperature range of 500 to 560 ° C for 2 to 10 hours and then rapidly cooled, and then kept at room temperature for 3 hours or more. A method for reforming an aluminum alloy tire mold, characterized in that a second heat treatment is performed in which a second heat treatment is performed after cooling in a temperature range of 120 to 200 ° C for 1 to 10 hours.
[0007]
(3) A tire mold made of an Al-Mg alloy is held in a temperature range of 400 to 500 ° C for 2 to 10 hours and then rapidly cooled, and then subjected to a first heat treatment, and then held at room temperature for 3 hours or more. A method for reforming an aluminum alloy tire mold, characterized in that a second heat treatment is performed in which a second heat treatment is performed after cooling in a temperature range of 120 to 200 ° C for 1 to 10 hours.
[0008]
(4) In any one of the above (1) to (3), immediately after the first heat treatment, plastic deformation is performed in a temperature range of 100 to 200 ° C. to correct the deformation caused by the first heat treatment. A method for modifying an aluminum alloy tire mold.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Below, the modification | reformation method of the aluminum alloy mold of this invention is demonstrated in detail for every component system.
(Al-Cu alloy)
The mold made of an Al—Cu alloy is held at a temperature range of 500 to 530 ° C. for 2 to 10 hours and then rapidly cooled, and then subjected to a first heat treatment, and then kept at room temperature for 3 hours or more, and then 120 to 200 ° C. The mechanical properties can be improved by applying a second heat treatment in which the temperature is maintained for 1 to 10 hours and then cooled.
[0010]
That is, in the first heat treatment, which is rapidly cooled after being held in a temperature range of 500 to 530 ° C. for 2 to 10 hours, a supersaturated solid solution state is obtained by heating to a temperature range above the solubility line such as Cu and rapidly cooling to room temperature. Make it appear. If the treatment temperature in this first heat treatment is less than 500 ° C. or the holding time is less than 2 hours, the solid solution of Cu atoms in the Al base layer is not sufficient, so that a uniform and fine θ phase is generated by aging precipitation. Is difficult and physical properties are not improved. That is, the hardness cannot be increased. On the other hand, if the treatment temperature exceeds 530 ° C. or the holding time exceeds 10 hours, recrystallization of the grain boundaries proceeds, and a uniform structure cannot be maintained, resulting in large variations in physical properties in the product during aging precipitation. Further, the recrystallization promotes the softening and the deformation of the product increases.
[0011]
In the first heat treatment, it is preferable to perform rapid cooling after holding at 500 ° C. for 3 hours. In addition, it is preferable to perform rapid cooling after holding | maintaining to predetermined temperature and time by water cooling, and specifically, it is advantageous to carry out with the cooling rate of 10.0-10.0 degreeC / s. This is because if the temperature is less than 10 ° C./sec, a GP zone is formed during cooling, making uniform precipitation nucleation difficult, and if the temperature exceeds 100 ° C./s, the temperature difference between the surface and the interior increases, resulting in thermal shock strain. This is because cracks occur.
[0012]
Subsequently, fine precipitation nuclei are generated by maintaining this supersaturated solid solution at room temperature for 3 hours or more, preferably about 12 hours. If the holding time here is less than 3 hours, a region with a high dislocation density becomes a preferential precipitation nucleus due to internal strain during growth of precipitation nuclei due to aging, and uniform nucleation nucleation cannot be obtained. The holding time is preferably 24 hours or less in order to carry out quenching distortion correction processing without significantly increasing the hardness.
[0013]
Next, by applying a second heat treatment, which is held for 1 to 10 hours in a temperature range of 120 to 200 ° C. and then cooled, the spherical θ phase is uniformly grown from the precipitation nuclei, and the physical properties are improved. That is, a material structure for increasing the strength is obtained.
That is, when the treatment temperature in the second heat treatment is less than 120 ° C. or the holding time is less than 1 hour, Z. P. There is a zone, and the material structure easily changes with time. On the other hand, when the treatment temperature exceeds 200 ° C. or the holding time exceeds 10 hours, the spherical θ phase changes into a plate shape and a needle shape, and softening starts. Therefore, the physical properties will move in the direction of decreasing rather.
[0014]
In the second heat treatment, cooling is preferably performed after holding at 200 ° C. for 2 hours. The cooling after holding at a predetermined temperature and time is preferably performed by cooling, and specifically, it is advantageous to carry out at a cooling rate of 0.005 to 0.050 ° C./s. This is because if it is less than 0.005 ° C./s, the Z. P. Zones appear and physical properties are not stable. Further, if the temperature exceeds 0.005 ° C./s, thermal distortion occurs on the surface and inside, and deformation is likely to occur.
[0015]
Here, as the Al—Cu alloy, those having aging properties such as AC1A, AC1B, AC2A, AC2B, AC4B, AC4D, and AC5A specified in JIS H5202 (1992) are suitable.
[0016]
(Al-Si alloy)
The mold made of an Al-Si alloy is held in a temperature range of 500 to 560 ° C for 2 to 10 hours, and then rapidly cooled, and then subjected to a first heat treatment, and then kept at room temperature for 3 hours or more, and then 120 to 200 ° C. The mechanical properties can be improved by applying a second heat treatment in which the temperature is maintained for 1 to 10 hours and then cooled.
[0017]
That is, in the first heat treatment, in which the supercooled silicon phase is dissolved in the first heat treatment, which is rapidly cooled after being held in a temperature range of 500 to 560 ° C. for 2 to 10 hours, Cu, Zn and Mg added as auxiliary strengthening alloys are also included. At the same time, the state of solid solution appears. If the treatment temperature in the first heat treatment is less than 500 ° C. or the holding time is less than 2 hours, the supercooled silicon phase and the auxiliary strengthened alloy cannot be sufficiently dissolved in the parent phase (Al phase).
On the other hand, when the processing temperature exceeds 560 ° C. or the holding time exceeds 10 hours, solutionization proceeds, but on the other hand, recrystallization proceeds and softens greatly to cause deformation, which is not preferable.
[0018]
In the first heat treatment, it is preferable to perform rapid cooling after holding at 550 ° C. for 3 hours. In addition, it is preferable to perform rapid cooling after holding | maintaining to predetermined temperature and time by water cooling, and specifically, it is advantageous to carry out with the cooling rate of 10.0-10.0 degreeC / s. This is because, if the temperature is less than 10.0 ° C./s, the crystallization nuclei of the supercooled silicon phase become large and the physical properties are deteriorated. This is because the structure defect becomes a physical defect and the physical properties are deteriorated.
[0019]
Subsequently, fine supercooled crystallization nuclei are generated by maintaining the rapidly cooled state at room temperature for 3 hours or more, preferably about 12 hours. If the holding time here is less than 3 hours, stable and fine supercooled crystallization nuclei cannot be formed.
The holding time should be 8 hours or less, and the auxiliary additive alloy elements Zn, Cu, Mg Z. P. It is desirable in that the zone is not sufficiently formed.
[0020]
The significance of the subsequent second heat treatment is the same as in the case of the Al—Cu alloy.
[0021]
Here, as the Al-Si alloy, those having aging properties such as AC4A, AC4C, AC8A, AC8B, AC9A, and AC9B specified in JIS H5202 (1992) are suitable.
[0022]
(Al-Mg alloy)
The mold made of an Al-Mg alloy is subjected to a first heat treatment in which the mold is kept in a temperature range of 400 to 500 ° C for 2 to 10 hours and then rapidly cooled, and then kept at room temperature for 3 hours or more, and then 120 to 200 ° C. The mechanical properties can be improved by applying a second heat treatment in which the temperature is maintained for 1 to 10 hours and then cooled.
[0023]
That is, in the first heat treatment, which is rapidly cooled after being held in a temperature range of 400 to 500 ° C. for 2 to 10 hours, a supersaturated solid solution state is obtained by heating to a temperature range above the solubility line such as Mg and rapidly cooling to room temperature. Make it appear. When the treatment temperature in the first heat treatment is less than 500 ° C. or the holding time is less than 2 hours, the solute atoms Mg cannot be sufficiently formed into the matrix. On the other hand, when the treatment temperature exceeds 530 ° C. or the holding time exceeds 10 hours, the softening due to recrystallization proceeds and deformation increases during quenching.
[0024]
In the first heat treatment, it is preferable to perform rapid cooling after holding at 450 ° C. for 3 hours. In addition, it is preferable to perform rapid cooling after holding | maintaining to predetermined temperature and time by water cooling, and specifically, it is advantageous to carry out with the cooling rate of 10.0-10.0 degreeC / s. Because, if it is less than 10.0 ° C./s, Z. When the P. zone is formed and uniform precipitation nucleation is difficult and the temperature exceeds 100.0 ° C./s, dislocation nuclei are preferentially generated at the grain boundaries, and uniform precipitation nuclei are formed in the grains. Because things are difficult.
[0025]
The significance of the subsequent holding at room temperature and the subsequent second heat treatment is the same as in the case of the Al—Cu alloy.
[0026]
Here, as the Al-Mg alloy, those having aging properties such as AC5A and AC7B specified in JIS H5202 (1992) are suitable.
[0027]
Further, the mold may be deformed in the first heat treatment. In such a case, plastic deformation is performed in a temperature range of 100 to 250 ° C. immediately after the first heat treatment, and the first heat treatment is performed. It is preferable to correct the resulting deformation.
[0028]
That is, in order to correct the deformation of the mold that occurred in the first heat treatment, it is necessary to give a strain that exceeds the elastic limit, but the aluminum alloy for mold has an elastic limit at room temperature of 0.2% strain. In addition, since it undergoes elastoplastic deformation in the 0.2 to 2.0% strain region above it, strain exceeding 2.0% is required to force complete plastic deformation. Accordingly, since relatively minor processing for deformation correction is in an elastic region or an elasto-plastic region, it is difficult to perform highly accurate correction because it involves elastic recovery. Furthermore, since the elastic limit is changed by work hardening due to deformation strain and the elastic modulus is increased, it is difficult to correct the plastic deformation region with high accuracy.
[0029]
By the way, the aluminum alloy which is the object of the present invention has a property that plastic deformation easily occurs when the temperature is 100 ° C. or higher. That is, the elastic limit in the temperature range of 100 ° C. or higher does not change greatly from 0.2% strain, but as a result of the elastoplastic region becoming narrower, complete plastic deformation can be realized at about 0.5% strain. Further, work hardening is negligibly small, and the elastic modulus is about ½. Therefore, by processing the mold in the temperature range of 100 ° C. or higher, the deformation in the plastic range is realized, and as a result, high-precision correction becomes possible.
[0030]
On the other hand, if it exceeds 250 ° C., the degree of softening will increase due to recrystallization, and deformation will occur concentrating on the processed part, and on the contrary, the accuracy of correction will decrease. Accordingly, the processing temperature is set to 250 ° C. or lower.
[0031]
The processing rate of the plastic deformation processing is preferably about 3 to 30%. This is because if it is less than 3%, low-temperature machining is more advantageous because of plastic deformation machining accuracy, whereas if it exceeds 30%, local constriction is likely to occur and sufficient plastic machining accuracy (2/100 or less) cannot be obtained. .
[0032]
【Example】
Segment molds used for vulcanization molding of tires were cast from various aluminum alloys having the composition shown in Table 1. Subsequently, each mold was subjected to a modification treatment under the conditions shown in Table 2. And the mechanical property was investigated about the mold after a modification process. The results of this investigation are shown in Table 3 in comparison with the mechanical properties of each mold before modification.
[0033]
[Table 1]
Figure 0004156966
[0034]
[Table 2]
Figure 0004156966
[0035]
[Table 3]
Figure 0004156966
[0036]
【The invention's effect】
According to the present invention, the mechanical properties of the aluminum alloy mold can be easily and reliably improved, so that particularly the wear resistance of the mold can be remarkably improved and the mold life can be extended.

Claims (4)

Al−Cu系合金からなるタイヤモールドを、500〜530℃の温度域に2〜10時間保持したのち急冷する、第1の熱処理を施し、次いで3時間以上室温に保持してから、120〜200℃の温度域に1〜10時間保持したのち冷却する、第2の熱処理を施すことを特徴とするアルミニウム合金製タイヤモールドの改質方法。A tire mold made of an Al—Cu alloy is held in a temperature range of 500 to 530 ° C. for 2 to 10 hours and then rapidly cooled, then subjected to a first heat treatment, and then kept at room temperature for 3 hours or more, and then 120 to 200 A method for reforming an aluminum alloy tire mold, wherein the second heat treatment is performed in which the second heat treatment is performed after holding in a temperature range of 1 ° C for 1 to 10 hours. Al−Si系合金からなるタイヤモールドに、500〜560℃の温度域に2〜10時間保持したのち急冷する、第1の熱処理を施し、次いで3時間以上室温に保持してから、120〜200℃の温度域に1〜10時間保持したのち冷却する、第2の熱処理を施すことを特徴とするアルミニウム合金製タイヤモールドの改質方法。A tire mold made of an Al—Si alloy is subjected to a first heat treatment in which the tire mold is kept in a temperature range of 500 to 560 ° C. for 2 to 10 hours and then rapidly cooled, and then kept at room temperature for 3 hours or more. A method for reforming an aluminum alloy tire mold, wherein the second heat treatment is performed in which the second heat treatment is performed after holding in a temperature range of 1 ° C for 1 to 10 hours. Al−Mg系合金からなるタイヤモールドを、400〜500℃の温度域に2〜10時間保持したのち急冷する、第1の熱処理を施し、次いで3時間以上室温に保持してから、120〜200℃の温度域に1〜10時間保持したのち冷却する、第2の熱処理を施すことを特徴とするアルミニウム合金製タイヤモールドの改質方法。A tire mold made of an Al—Mg alloy is held in a temperature range of 400 to 500 ° C. for 2 to 10 hours and then rapidly cooled. Then, the tire mold is held at room temperature for 3 hours or more, and then 120 to 200 A method for reforming an aluminum alloy tire mold, wherein the second heat treatment is performed in which the second heat treatment is performed after holding in a temperature range of 1 ° C for 1 to 10 hours. 請求項1ないし3のいずれかにおいて、第1の熱処理の直後に、100〜200℃の温度域での塑性変形加工を施し、第1の熱処理で生じた変形を修正することを特徴とするアルミニウム合金製タイヤモールドの改質方法。4. The aluminum according to claim 1, wherein plastic deformation is performed in a temperature range of 100 to 200 ° C. immediately after the first heat treatment to correct the deformation caused by the first heat treatment. A method for modifying an alloy tire mold.
JP2003115456A 2003-04-21 2003-04-21 Method for modifying aluminum alloy tire mold Expired - Fee Related JP4156966B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003115456A JP4156966B2 (en) 2003-04-21 2003-04-21 Method for modifying aluminum alloy tire mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003115456A JP4156966B2 (en) 2003-04-21 2003-04-21 Method for modifying aluminum alloy tire mold

Publications (2)

Publication Number Publication Date
JP2004315952A JP2004315952A (en) 2004-11-11
JP4156966B2 true JP4156966B2 (en) 2008-09-24

Family

ID=33474653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003115456A Expired - Fee Related JP4156966B2 (en) 2003-04-21 2003-04-21 Method for modifying aluminum alloy tire mold

Country Status (1)

Country Link
JP (1) JP4156966B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005314803A (en) * 2004-03-31 2005-11-10 Asahi Tec Corp Method for producing aluminum product
WO2008001758A1 (en) 2006-06-29 2008-01-03 Hitachi Metals Precision, Ltd. Casting aluminum alloy, cast compressor impeller comprising the alloy, and process for producing the same

Also Published As

Publication number Publication date
JP2004315952A (en) 2004-11-11

Similar Documents

Publication Publication Date Title
JP4328996B2 (en) Al-Mg-Si aluminum alloy cold forging manufacturing method
US20030143101A1 (en) Aluminum die casting alloy, aluminum die cast product and production process
JP6064874B2 (en) Method for producing aluminum alloy material
KR101950595B1 (en) Aluminium alloy and methods of fabricating the same
TW201435092A (en) High strength aluminum-magnesium-silicon alloy and production process thereof
TWI434939B (en) Aluminium alloy and process of preparation thereof
JP6298640B2 (en) Under bracket for motorcycle and tricycle and method for manufacturing the same
JP3656150B2 (en) Method for producing aluminum alloy plate
JP4156966B2 (en) Method for modifying aluminum alloy tire mold
JPH08269652A (en) Production of aluminum alloy extruded shape having excellent bendability and high strength
JP2021143371A (en) Aluminum alloy forged article and method for producing aluminum alloy forged article
JP2021143369A (en) Aluminum alloy forged article and method for producing aluminum alloy forged article
JP2021143374A (en) Aluminum alloy forged article and method for producing aluminum alloy forged article
JP5279119B2 (en) Partially modified aluminum alloy member and manufacturing method thereof
US20220195573A1 (en) Aluminum alloy forging and method of producing the same
JPH08232035A (en) High strength aluminum alloy material for bumper, excellent in bendability, and its production
US7172664B2 (en) Method of making aluminum foil for fins
US20210147969A1 (en) Production method of aluminum alloy forging for automobile suspension
US20210123123A1 (en) Aluminum alloy forging and production method thereof
JPH073409A (en) Heat treatment for extruded billet of al-mg-si based aluminum alloy
JP2006137994A (en) Aluminum alloy, heat-resistant high-strength aluminum alloy part, and manufacturing method therefor
JP2007039714A (en) Aluminum alloy sheet for high temperature high speed forming, and method of high temperature high speed forming using it
JP5088703B2 (en) Al-Mg-Si aluminum alloy cold forging with excellent appearance quality
JP2000273567A (en) Aluminum alloy sheet excellent in formability and corrosion resistance and its production
JP2007239005A (en) Method for producing 6000 series aluminum alloy sheet having excellent room temperature non-aging property, formability and coating/baking hardenability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080617

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080710

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees