JP4156296B2 - Ice heat storage device - Google Patents

Ice heat storage device Download PDF

Info

Publication number
JP4156296B2
JP4156296B2 JP2002242398A JP2002242398A JP4156296B2 JP 4156296 B2 JP4156296 B2 JP 4156296B2 JP 2002242398 A JP2002242398 A JP 2002242398A JP 2002242398 A JP2002242398 A JP 2002242398A JP 4156296 B2 JP4156296 B2 JP 4156296B2
Authority
JP
Japan
Prior art keywords
ice
water
temperature
cooling device
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002242398A
Other languages
Japanese (ja)
Other versions
JP2004084964A (en
Inventor
光雄 関
勇二 大下
正浩 中村
猛 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOYO. SS. CO., LTD.
Original Assignee
TOYO. SS. CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOYO. SS. CO., LTD. filed Critical TOYO. SS. CO., LTD.
Priority to JP2002242398A priority Critical patent/JP4156296B2/en
Publication of JP2004084964A publication Critical patent/JP2004084964A/en
Application granted granted Critical
Publication of JP4156296B2 publication Critical patent/JP4156296B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は氷蓄熱装置に関し、より詳しくは蓄熱槽内の貯氷量が減少しても負荷側への供給冷水温度を低温に保つことができるようにした氷蓄熱装置に関する。
【0002】
【従来の技術とその問題点】
従来の氷蓄熱装置は、夜間に製氷した氷を氷蓄熱槽内に貯留し、熱負荷の大なる日中は氷蓄熱槽内に貯留した氷の融解による低温の水を送水ポンプで負荷側に送り、負荷側における熱交換で温度が上昇した戻り水を氷蓄熱槽内の氷に散布して冷却し、再び負荷側へ送っている。
【0003】
ところで、氷蓄熱装置は電気料金の安い夜間電力を利用して製氷を行なうことができるので、ビル内の空調や食品工場の冷却を要する工程等の日中に多量の冷熱を消費する施設への冷水の供給源として用いられており、供給する冷水の温度は常に一定の低温に維持されなければならない。
【0004】
しかし従来の氷蓄熱装置では、夜間に生成、貯留された氷蓄熱槽内の氷を日中に消費するので、日中は時間の経過とともに氷蓄熱槽内の氷の貯留量(貯氷量)が徐々に減少し、貯氷量が低下すると氷蓄熱槽内の温度にむらが生じて負荷側に供給する水の温度を一定に維持することができなくなる。
【0005】
したがって、従来の氷蓄熱装置で一定の低温の水を負荷側に供給するには氷蓄熱槽内に温度むらを生じさせない程度の十分な量の氷を常に貯留しておかなければならず、この場合、氷蓄熱槽の容積を大なるものとし、かつ製氷装置を大型のものにして、1日に消費される冷熱分に相当する量よりも格段に大量の氷を貯留することができるようにしておかなければならず、装置が大規模なものとなって占有スペースが大となり、また装置コストも嵩むという問題がある。
【0006】
【目的】
本発明の目的とするところは、負荷側へ供給する冷水の温度を常に一定の温度に維持することができ、しかも氷蓄熱槽の容積は負荷側にて1日に消費される冷熱量に相当する必要十分な量の氷を貯留できれば事が足り、装置の占有スペースが小でしかも装置コストを低減できる氷蓄熱装置を提供することにある。
【0007】
上記目的を達成するために、本発明に係る氷蓄熱装置は、水および氷が貯留される氷蓄熱槽と、供給される水の温度および冷却能力の容量制御によって水の冷却運転と製氷運転が切り替えられる冷却装置とを備え、熱負荷が小である間に冷却装置で生成される過冷却水による製氷運転によって小片状の氷と水が混合するシャーベット状の氷が貯留された氷蓄熱槽内に負荷側からの戻り水を通した解氷水をさらに冷却装置によってほぼ0℃の温度に冷却負荷の変動が大であっても常に一定温度の低温冷水を負荷側へ供給できるようにした構成のものとしてある。
【0008】
また、前記氷蓄熱槽を縦仕切板にて氷が貯留される貯氷部と氷が貯留されない非貯氷部に区画し、かつ負荷側からの冷水復管を非貯留部側に接続し、冷水復管の途中に設けた温度センサにより検出される戻り水の温度に応じ、貯留部内において貯留されている氷によって低温に冷却された解氷水と、貯留部内の氷とは接触しない非貯留部内の戻り水のいずれかあるいはこれら解氷水と戻り水とを所定温度になるように混合して前記冷却装置に送り、同冷却装置にて常にほぼ0℃の冷水を安定して生成して負荷側へ供給することができるようにした構成のものとしてある。
【0009】
さらに前記冷却装置が、冷却能力100%で運転されている場合に所定流量の水をΔT冷却することができ、また冷却装置の冷却能力を安定して容量制御できる容量の下限値がK%であり、さらに負荷側に供給しようとする冷水の温度をTSとするとき、熱負荷が大で前記戻り水の温度T1がT1>TS+ΔTである場合には解氷水と戻り水とを混合することによって混合後の水の温度をTS+ΔTに調節してから前記冷却装置に送り、冷却装置にて所定温度TSに冷却した冷水を負荷側に供給し、熱負荷が比較的小で前記戻り水の温度T1がTS+ΔT×K/100≦T1≦TS+ΔTである場合には戻り水を前記冷却装置に送り、冷却装置にて所定温度TSに冷却した冷水を負荷側に供給し、さらに熱負荷が小で前記戻り水の温度T1がT1<TS+ΔT×K/100である場合には解氷水を冷却せずに負荷側に供給するように構成したものとしてある。
【0010】
【実施例】
以下、本発明に係る氷蓄熱装置の実施例を添付図面に示す具体例に基づいて詳細に説明する。
氷蓄熱槽1内は縦仕切板2によって氷3が貯留される貯氷部1Aと氷が貯留されない非貯氷部1Bに区画されており、貯氷部と非貯氷部は少なくとも縦仕切板の下部開口部2aにて連通している。
【0011】
上記非貯氷部1B側に一端が接続された第1取水管4の他端は三方コントロール弁よりなる取水制御弁V1の第1入口ポートaに接続されており、また、前記貯氷部1A側に一端が接続された第2取水管5の他端は取水ヘッダ6を介して前記取水制御弁V1の第2入口ポートbに接続されていて、取水制御弁V1の出口ポートcに一端が接続された送水管7の他端が送水ポンプP1を介して冷却装置8の入口に接続されている。
なお、第2取水管5は氷蓄熱槽1の前記非貯氷部1Bから最も離れた位置に接続する。
【0012】
前記冷却装置8は、送水管7から供給される水の温度と冷却能力の制御により、冷水を供給する水冷却装置としてまたは氷水を生成する製氷装置として作用するものとしてあり、氷水を生成する場合には送水管からの水を氷点下の温度、例えば−2℃程度まで過冷却し、この過冷却状態の水に特殊な振動を与えて過冷却状態を解除することによって氷片と水が混合するいわゆるシャーベット状の氷水を生成する構成のものとしてある。
【0013】
しかして上記冷却装置8の出口に一端が接続された出口管8aの他端は、切替機構9を介して冷水供給管10と氷供給管11の各一端に接続されており、冷水供給管10の他端は冷水ヘッダ12に接続され、氷供給管11の他端は氷蓄熱槽1内の貯氷部1A側に上方から臨んでいる。
【0014】
上記切替機構9は、例えば冷水供給管10と氷供給管11にそれぞれ設けた開閉弁V2、V3よりなり、これら開閉弁V2とV3は一方が開かれている場合は他方が閉ざされるよう、すなわち相互に開閉状態が切り替えられるようになっており、切替機構を三方開閉弁で構成する場合もある。
【0015】
前記冷水ヘッダ12に一端が接続された冷水往管13の他端は、例えば被空調室の空気冷却用熱交換器等の負荷側の冷却器14に接続されていて、同冷却器14に一端が接続された冷水復管15の他端は前記氷蓄熱槽1内の非貯氷部1B側に臨むように接続されている。
【0016】
前記取水ヘッダ6と冷水ヘッダ12との間には、途中に開閉弁V4とバイパスポンプP2を備える第1バイパス管16を設けてあり、また、前記冷水往管13と同復管15の間には、第2バイパス管17を設けてあって、この第2バイパス管の途中には開閉制御弁V5を設けてある。
【0017】
しかして、図1における符号S1〜S4はいずれも装置各部における水温を検出する温度センサを示し、具体的には冷水復管15における第2バイパス管17との接続部よりも下流側に設けられた温度センサS1は負荷側冷却器14からの戻り水温度T1を検出し、送水管7における送水ポンプP1の下流側に設けられた温度センサS2は冷却装置8の入口に供給される水の水温T2を検出し、冷却装置8の出口管8aに設けられた温度センサS3は冷却装置出口の水温T3を検出し、冷水往管13に設けられた温度センサS4は負荷側への供給水温T4を検出する。
【0018】
次ぎに、上述のように構成された本発明の装置における各部の制御について説明する。
本発明の装置においては、氷蓄熱槽1内の水を冷却装置8にて冷却して負荷側へ供給する冷却専用運転モードおよび解氷・冷却運転モードと、冷却装置8は停止し、氷蓄熱槽内の水を冷却せずに負荷側へ供給する解氷専用運転モードと、氷蓄熱槽内の水を冷却せずに負荷側へそのまま供給するとともに、氷蓄熱槽内の水を冷却して氷を生成する製氷運転モードの4つの運転モードがあり、これらの運転モードの切替は原則として温度センサS1にて検出される負荷側からの戻り水温度T1と、冷却装置8の冷却能力との関係および氷蓄熱槽内における貯氷状態に基づいて行なわれる。
【0019】
ところで、冷却装置が100%の冷却能力で駆動されている際に所定量の水の温度をΔT℃下げることができるとすると、負荷側へ供給すべき水の温度(供給水設定温度)TSに対して冷却装置に供給する水の温度T2
0≦T2≦TS+ΔT
でなければならない。
【0020】
したがって、熱負荷が大で負荷側からの戻り水の水温T1
1>TS+ΔT
である場合には、負荷側からの戻り水と、ほぼ0℃である氷蓄熱槽の貯氷部1A内の解氷水とを三方制御弁V1にて混合し、冷却装置へ供給する水の温度T2
2=TS+ΔT
とし、冷水往管13によって冷水を負荷側の冷却器14に供給する(解氷・冷却運転モード)。
【0021】
上述した戻り水と解氷水との混合は、温度センサS2によって検出される冷却装置8への供給水温T2に基づき、T2=TS+ΔTとなるように三方制御弁V1における第1入口ポートa側と第2入口ポートb側の開度が自動制御されることにより行なわれる。
【0022】
また、熱負荷が比較的小で負荷側からの戻り水の水温T1
1≦TS+ΔT
である場合には、冷却装置8によって戻り水を前記供給水設定温度TSまで冷却することができるので、氷蓄熱槽1内の氷を解氷せず、冷水復管15から槽内の非貯氷部1B内に戻された戻り水を槽内の氷と接触させずに第1取水管4から導出し、冷却装置8にて前記供給水設定温度TSまで冷却し、冷水往管13によって冷水を負荷側の冷却器14に供給する(冷却専用運転モード)。
【0023】
上述のように冷却装置8にて戻り水の冷却を行なう場合、冷却装置へ供給する水の温度T2は、
2=T1≦TS+ΔT
∴TS≧T1−ΔT
となるので、
S=T1−ΔT×K/100 (0≦K≦100)
となるように戻り水の水温T1と供給水設定温度TSとの差に応じてK%の冷却装置の容量制御を行なう。
【0024】
しかし、冷却装置8の容量制御運転は容量が低くなるにつれて冷却効率が低下するので、熱負荷が減少して冷却装置の容量が予め設定された値、例えば50%(K=50)になると冷却装置の運転を停止し、氷蓄熱槽の貯氷部1A内の解氷水を冷却せずに負荷側の冷却器14へ送る(解氷専用運転)。
【0025】
上述した冷却専用運転から解氷専用運転への切り替えを決定する容量Kの値の下限値は、冷却装置8の仕様によっても異なるが、概ね30%〜70%に設定される。
【0026】
しかして解氷専用運転においては、ほぼ0℃である氷蓄熱槽1の貯氷部1A内の解氷水を第2取水管5および送水管7を介して冷却装置8に送り、同冷却装置内で冷却されることなくそのまま通過して出口管8a、冷水供給管10および冷水往管13を経て負荷側の冷却器14に供給される。
【0027】
なお、この解氷専用運転において熱負荷が極めて小である場合には、前記第2バイパス管17の開閉制御弁V5を開き、負荷側冷却器14への冷水供給量を調節する。
【0028】
また熱負荷が小であって、かつ貯氷量が小である場合には、氷蓄熱槽内の解氷水を冷却装置8に送って過冷却し、小片状の氷と水が混合するいわゆるシャーベット状の氷水を生成して氷蓄熱槽内に送り、一方、負荷側の冷却器14へは氷蓄熱槽内の解氷水を第1バイパス管16、冷水往管13によって供給する(製氷運転)。
【0029】
この際、冷却装置は100%の冷却能力で運転され、ほぼ0℃である解氷水の温度をΔT℃低下させて氷点下の温度すなわち過冷却の状態に冷却する。
なお、上述した製氷運転は原則として夜間に行なわれ、製氷用の動力に夜間電力を使用することによってランニングコストの低減を図るようにするが、熱負荷が小で、かつ貯氷量が小であれば夜間以外に製氷運転を行なう場合もある。
【0030】
次ぎに、各運転モードにおける本発明の装置の作用を図2に示す関連表に基づいて具体的に説明する。
なお、以下の具体例においては、冷却装置を冷却能力100%で運転した場合に所定流量の水を2℃下げることができる(ΔT=2℃)ものとし、また冷却装置の容量制御の下限値を50%(K=50)、負荷側に供給すべき設定温度を0℃(T3=0℃)とする。
したがって、温度センサS1にて検出される負荷側からの戻り水温度T1が2℃を超える場合には解氷・冷却運転、1℃以上2℃以下の場合は冷却専用運転、1℃未満の場合には解氷専用運転または製氷運転が行なわれる。
【0031】
<製氷運転>
製氷運転は、温度センサS1にて検出される戻り水温度T1が1℃未満となる熱負荷が小の場合であって、かつ貯氷量が満氷状態でない場合に行なわれ、例えばタイマ設定によって原則として夜間に行なわれる。
【0032】
この製氷運転においては、三方制御弁V1が第2入口ポートb側に全開されるとともに送水ポンプP1が駆動され、かつ冷却装置8が100%の冷却能力で稼動され、切替機構9が氷供給管11側に開すなわち開閉弁V2が閉止、V3が開成される。
また、第1バイパス管16の開閉弁V4が開成されるとともにバイパスポンプP2が駆動される。
【0033】
しかして氷蓄熱槽1の貯氷部1A内において氷3との接触によりほぼ0℃となっている解氷水が、ポンプP1およびP2の駆動によって第2取水管5から取水ヘッダ6に流入し、同ヘッダ内の解氷水は送水管7とバイパス管16に送られる。
【0034】
送水管7に流入した解氷水は冷却装置8に送られ、この冷却装置にて2℃冷却されて約−2℃の過冷却水となり、この過冷却水は冷却装置内または出口管8a内にて特殊な振動を与えられて小片状の氷と水が混合する氷水となり、氷供給管11を介して氷蓄熱槽1内に供給される。
【0035】
また、バイパス管16に流入した解氷水は、冷水ヘッダ12を経て冷水往管13により負荷側の冷却器14に送られ、同冷却器にて熱負荷と熱交換して温度が上昇させられた後、冷水復管15にて氷蓄熱槽1の非貯氷部1Bに送られる。
【0036】
非貯氷部1B内の戻り水は、縦仕切板2下部の開口部2aから貯氷部1A内に流入し、同貯氷部内の氷3と接触してほぼ0℃まで冷却され、再び解氷水として第2取水管5から外部に導出される。
【0037】
したがって、冷却装置8においては製氷が行なわれて氷蓄熱槽1内に氷が貯留され、また負荷側の冷却器14には氷蓄熱槽1の貯氷部1Aからのほぼ0℃の解氷水が供給される。
【0038】
<解氷専用運転>
温度センサS1にて検出される負荷側からの戻り水温度T1が1℃未満である場合および夜間の製氷運転によって氷蓄熱槽内の氷が満氷状態になると、三方制御弁V1が第2入口ポートb側に全開されるとともに送水ポンプP1が駆動され、かつ冷却装置8が停止され、切替機構9が冷水供給管10側に開すなわち開閉弁V2が開成、V3が閉止される。
また、第1バイパス管16の開閉弁V4が閉止されるとともにバイパスポンプP2も停止される。
【0039】
しかして氷蓄熱槽1の貯氷部1A内において氷3との接触によりほぼ0℃となっている解氷水が、ポンプP1の駆動によって第2取水管5から取水ヘッダ6に流入し、同ヘッダ内の解氷水は送水管7に送られる。
【0040】
送水管7に流入した解氷水は冷却装置8に送られるが、冷却装置は運転を停止した状態であるので、解氷水はそのままの温度で出口管8aから送出され、冷水供給管11、冷水ヘッダ12を経て冷水往管13により負荷側の冷却器14に送られる。
【0041】
冷却器14にて熱負荷と熱交換して温度が上昇させられた水は、冷水復管15にて氷蓄熱槽1の非貯氷部1Bに送られ、縦仕切板2下部の開口部2aから貯氷部1A内に流入し、同貯氷部内の氷3と接触してほぼ0℃まで冷却され、再び解氷水として第2取水管5から外部に導出される。
【0042】
したがって、冷却装置8は停止しているが、負荷側の冷却器14には氷蓄熱槽1の貯氷部1Aからのほぼ0℃の解氷水が供給される。
【0043】
<冷却専用運転>
熱負荷が増大して温度センサS1にて検出される負荷側からの戻り水温度T1が1℃以上2℃以下になると、三方制御弁V1が第1入口ポートa側に全開されるとともに送水ポンプP1が駆動され、かつ冷却装置8が運転され、切替機構9が冷水供給管10側に開すなわち開閉弁V2が開成、V3が閉止される。
【0044】
しかして氷蓄熱槽1の非貯氷部1B内の水すなわち冷水復管15によって負荷側から氷蓄熱槽に戻された戻り水が、ポンプP1の駆動によって第1取水管4から送水管7に送られ、送水管7に流入した解氷水は冷却装置8に送られる。
【0045】
冷却装置においては、送水管に設けた温度センサS2にて検出される供給水温T2に基づき、冷却能力の容量制御が行なわれる。
より詳しくは、上記供給水温T2は戻り水温度T1とほぼ同じ1〜2℃であり、負荷側に供給すべき設定温度T3が0℃であるので、冷却装置8は供給水温T2と設定温度T3との差に応じて冷却能力を50〜100%に容量制御される。
【0046】
冷却装置8にて設定温度の0℃に冷却された冷水は、出口管8aから冷水供給管11、冷水ヘッダ12を経て冷水往管13により負荷側の冷却器14に送られる。
【0047】
冷却器14にて熱負荷と熱交換して温度が上昇させられた水は、冷水復管15にて氷蓄熱槽1の非貯氷部1Bに送られ、貯氷部1A内に貯留されている氷3と接触せずにほぼそのままの温度で第1取水管4から外部に導出される。
【0048】
なお、冷水復管15からの戻り水は貯氷部1A内とは縦仕切板2にて区画されている非貯氷部1Bを通り、貯氷部内の氷とは接触しないので、氷が戻り水の熱によって融解することは殆どなく、したがってこの冷却専用運転では氷蓄熱槽内の貯氷量がほぼ一定に維持される。
【0049】
また戻り水には、負荷側の冷却器14における使用状態によっては気泡が含まれる場合があるが、戻り水中の気泡は貯氷部1B内に流入することによって分離され、第1取水管4内への気泡の混入が防止される。
【0050】
<解氷・冷却運転>
さらに熱負荷が増大して温度センサS1にて検出される負荷側からの戻り水温度T1が2℃を超えると、三方制御弁V1が第1入口ポートa側と第2入口ポートb側の両側に開かれるとともに送水ポンプP1が駆動され、かつ冷却装置8が運転され、切替機構9が冷水供給管10側に開すなわち開閉弁V2が開成、V3が閉止される。
【0051】
しかして送水ポンプP1の駆動により、氷蓄熱槽1の非貯氷部1B内の水すなわち冷水復管15によって負荷側から氷蓄熱槽に戻された戻り水が第1取水管4から三方制御弁V1の第1入口ポートaに入り、出口ポートcから送水管7に送られるとともに、貯氷部1A内において氷3との接触によりほぼ0℃となっている解氷水が第2取水管5から取水ヘッダ6を経て三方制御弁V1の第2入口ポートbに入り、出口ポートcから送水管7に送られる。
すなわち、非貯氷部1B内の戻り水と貯氷部1A内の解氷水がで混合されて送水管7から冷却装置8へ送出される。
【0052】
上記三方制御弁V1は、送水管7に設けた温度センサS2にて検出される冷却装置への供給水温T2に基づいて第1入口ポートa側と第2入口ポートb側の開度が自動制御され、具体的には上記供給水温T2が常に2℃すなわち冷却装置が100%の冷却能力の場合に冷却装置の出口水温が0℃となるように第1入口ポートa側と第2ポートb側の開度が自動制御され、したがって戻り水温度が上昇すると第1入口ポートa側の開度が小になるとともに第2入口ポートb側の開度が大になる。
この際、冷却装置8は冷却能力が100%となるように運転される。
【0053】
冷却装置8にて設定温度の0℃に冷却された冷水は、出口管8aから冷水供給管11、冷水ヘッダ12を経て冷水往管13により負荷側の冷却器14に送られる。
【0054】
冷却器14にて熱負荷と熱交換して温度が上昇させられた水は、冷水復管15にて氷蓄熱槽1の非貯氷部1Bに送られ、戻り水のうちの一部は貯氷部1A内に貯留されている氷3と接触せずにほぼそのままの温度で第1取水管4から外部に導出され、また戻り水のうちの残りは縦仕切板2下部の開口部2aから貯氷部1A内に流入し、同貯氷部内の氷3と接触してほぼ0℃まで冷却され、再び解氷水として第2取水管5から外部に導出される。
【0055】
したがって、この冷却・解氷運転では熱負荷の変動が大であっても冷却装置の冷却能力を100%の一定に保ったままで変化させる必要がなく、三方制御弁V1における自動的な開度制御によって負荷の変動に即時に対応することができ、負荷側へ供給する水の温度T4を常に一定に維持することができる。
【0056】
上述した実施例では冷却装置8を1台備える構成としてあるが、複数台の冷却装置を備える構成とし、三方制御弁 から、送水ポンプ 、冷却装置8、切替機構9および冷水供給管10と氷供給管11に至る送水経路を並列に複数設ける場合もあり、この場合には各送水経路の動作および各冷却装置の製氷、冷却の運転を個別に制御し、熱負荷の変動に対応して冷却装置の運転台数および容量制御を行なう。かくすると、冷却装置や送水ポンプは小型のもので事が足り、負荷が小である場合には冷却装置の運転台数および送水ポンプの駆動台数を最小限のものにでき、ランニングコストの低減を図ることができる。
【0057】
【本発明の作用、効果】
本発明によれば、氷蓄熱槽内の水を冷却装置によって所定の温度まで冷却してから負荷側へ送るので、氷蓄熱槽内の貯氷量の低下によって氷蓄熱槽から導出される水の温度が変動しても負荷側へ供給する冷水の温度を常に一定の温度に維持することができる。
【0058】
したがって、氷蓄熱槽は負荷側にて1日に消費される冷熱量に相当する必要十分な量の氷を貯留できる容積のものであれば事が足り、装置の占有スペースが小でしかも装置コストを低減することができる。
【0059】
また、氷蓄熱槽内を下部が開口する仕切板にて貯氷部と非貯氷部に区画して非貯氷部に負荷側からの戻り水を流入させるようにしてあり、かつ熱負荷の変動すなわち負荷側からの戻り水の温度の変化に応じて貯氷部内の解氷水と非貯氷部内の戻り水のいずれかまたはこれらを混合して所要の温度に調節してから冷却装置へ供給するので、熱負荷が急激に変動しても常に一定温度の低温冷水を負荷側へ供給することができる。
【図面の簡単な説明】
【図1】本発明に係る氷蓄熱装置の第1実施例を示す構成図。
【図2】第1実施例による装置の動作制御例を示す表。
【符号の説明】
1 氷蓄熱槽 2 縦仕切板
3 氷 4 第1取水管
5 第2取水管 6 取水ヘッダ
7 送水管 8 冷却装置
9 切替機構 10 冷水供給管
11 氷供給管 12 冷水ヘッダ
13 冷水往管 14 負荷側冷却器
15 冷水復管 16 第1バイパス管
17 第2バイパス管
1 三方制御弁 V2、V3、V4 開閉弁
5 開閉制御弁
1、S2、S3、S4 温度センサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ice heat storage device, and more particularly to an ice heat storage device that can keep the temperature of cold water supplied to a load side low even if the amount of ice storage in a heat storage tank decreases.
[0002]
[Prior art and its problems]
Conventional ice storage devices store ice produced at night in an ice storage tank, and during the day when the heat load is high, cool water from the melting of ice stored in the ice storage tank is transferred to the load side by a water pump. The return water whose temperature has risen due to the heat exchange on the load side is sprayed on the ice in the ice heat storage tank, cooled, and sent again to the load side.
[0003]
By the way, the ice heat storage device can make ice using night electricity with low electricity charges, so it can be used for facilities that consume large amounts of cold during the day, such as air conditioning in buildings or processes that require cooling of food factories. It is used as a source of cold water, and the temperature of the supplied cold water must always be maintained at a constant low temperature.
[0004]
However, in the conventional ice heat storage device, the ice stored in the ice heat storage tank generated and stored at night is consumed during the day, so the amount of ice stored in the ice heat storage tank (the amount of ice storage) increases over time during the day. When the amount of ice storage gradually decreases and the ice storage amount decreases, the temperature in the ice heat storage tank becomes uneven, and the temperature of the water supplied to the load cannot be kept constant.
[0005]
Therefore, in order to supply water at a constant low temperature to the load side with a conventional ice heat storage device, a sufficient amount of ice must not be stored in the ice heat storage tank at all times. In this case, the volume of the ice heat storage tank is increased, and the ice making device is made large so that a much larger amount of ice can be stored than the amount corresponding to the cold energy consumed per day. In other words, there is a problem that the apparatus becomes large-scale, occupies a large space, and the apparatus cost increases.
[0006]
【the purpose】
The object of the present invention is that the temperature of the cold water supplied to the load side can always be maintained at a constant temperature, and the volume of the ice heat storage tank corresponds to the amount of cold heat consumed per day on the load side. It is an object of the present invention to provide an ice heat storage device that is sufficient if it can store a necessary and sufficient amount of ice and that the space occupied by the device is small and the device cost can be reduced.
[0007]
In order to achieve the above object, an ice heat storage device according to the present invention includes an ice heat storage tank in which water and ice are stored, and a water cooling operation and an ice making operation by controlling the temperature of the supplied water and the cooling capacity. An ice heat storage tank in which sherbet-like ice is stored in which ice is mixed with small pieces of ice by ice-making operation using supercooled water generated by the cooling device while the heat load is small as can be supplied to the load side substantially cooled to a temperature of 0 ° C., always cold cold water constant temperature fluctuation of the load is a large by further cooling device solutions ice water through the return water from the load side within It is as the thing of the structure.
[0008]
In addition, the ice heat storage tank is partitioned into an ice storage part where ice is stored and a non-ice storage part where ice is not stored by a vertical partition plate, and a cold water return pipe from the load side is connected to the non-storage part side, Depending on the temperature of the return water detected by the temperature sensor provided in the middle of the pipe, the deiced water cooled to a low temperature by the ice stored in the storage section and the return in the non-storage section where the ice in the storage section does not contact either water or a mixture of return and water to these solutions ice water to a predetermined temperature Ri sent to the cooling device, always cold water approximately 0 ℃ stably generated and the load side at the same cooling device there as a configuration to allow you to supply.
[0009]
Furthermore, when the cooling device is operated at a cooling capacity of 100%, a predetermined flow rate of water can be cooled by ΔT, and the lower limit value of the capacity capable of stably controlling the cooling capacity of the cooling device is K%. Furthermore, when the temperature of the cold water to be supplied to the load side is T S , if the heat load is large and the temperature T 1 of the return water is T 1 > T S + ΔT, The temperature of the mixed water is adjusted to T S + ΔT by mixing and then sent to the cooling device, and chilled water cooled to a predetermined temperature T S by the cooling device is supplied to the load side, so that the heat load is relatively If the temperature T 1 of the return water is small and T S + ΔT × K / 100 ≦ T 1 ≦ T S + ΔT, the return water is sent to the cooling device and cooled to a predetermined temperature T S by the cooling device. Is supplied to the load side, the heat load is small, and the temperature T 1 of the return water is T 1 <T In the case of S + ΔT × K / 100, the deicing water is supplied to the load side without being cooled.
[0010]
【Example】
Embodiments of the ice heat storage device according to the present invention will be described below in detail based on specific examples shown in the accompanying drawings.
The ice storage tank 1 is divided into an ice storage part 1A in which ice 3 is stored by a vertical partition plate 2 and a non-ice storage part 1B in which ice is not stored. The ice storage part and the non-ice storage part are at least a lower opening of the vertical partition plate. It communicates with 2a.
[0011]
The other end of the first intake pipe 4 having one end to the non-ice storage portion 1B side is connected is connected to the first inlet port a water intake control valve V 1 consisting way control valve, also, the ice storage unit 1A side The other end of the second intake pipe 5 is connected to the second inlet port b of the intake control valve V 1 via the intake header 6 and is connected to the outlet port c of the intake control valve V 1 at one end. Is connected to the inlet of the cooling device 8 via a water pump P 1 .
The second intake pipe 5 is connected to a position farthest from the non-ice storage part 1B of the ice heat storage tank 1.
[0012]
The cooling device 8 acts as a water cooling device for supplying cold water or an ice making device for generating ice water by controlling the temperature and cooling capacity of the water supplied from the water supply pipe 7, and generates ice water. In this case, the water from the water pipe is supercooled to a temperature below the freezing point, for example, about −2 ° C., and a special vibration is applied to the supercooled water to release the supercooled state, thereby mixing the ice pieces and water. It is configured to generate so-called sherbet-like ice water.
[0013]
Thus, the other end of the outlet pipe 8a whose one end is connected to the outlet of the cooling device 8 is connected to one end of the cold water supply pipe 10 and the ice supply pipe 11 via the switching mechanism 9, and the cold water supply pipe 10 The other end of the ice supply pipe 11 is connected to the cold water header 12, and the other end of the ice supply pipe 11 faces the ice storage section 1 </ b> A side in the ice heat storage tank 1 from above.
[0014]
The switching mechanism 9 is composed of, for example, on-off valves V 2 and V 3 provided in the cold water supply pipe 10 and the ice supply pipe 11, respectively. When one of the on-off valves V 2 and V 3 is open, the other is closed. In other words, the open / close state can be switched between each other, and the switching mechanism may be constituted by a three-way open / close valve.
[0015]
The other end of the chilled water outgoing pipe 13 having one end connected to the chilled water header 12 is connected to a load-side cooler 14 such as an air cooling heat exchanger in the air-conditioned room, and the other end is connected to the cooler 14. The other end of the cold water return pipe 15 connected to is connected to face the non-ice storage part 1B side in the ice heat storage tank 1.
[0016]
A first bypass pipe 16 having an on-off valve V 4 and a bypass pump P 2 is provided in the middle between the intake header 6 and the cold water header 12, and the cold water outlet pipe 13 and the return pipe 15 are connected to each other. A second bypass pipe 17 is provided between them, and an opening / closing control valve V 5 is provided in the middle of the second bypass pipe.
[0017]
Thus, any code S 1 to S 4 in FIG. 1 shows a temperature sensor for detecting the water temperature in each section of the device, in particular downstream of the connection portion of the second bypass pipe 17 in the cold water condensate pipe 15 The provided temperature sensor S 1 detects the return water temperature T 1 from the load side cooler 14, and the temperature sensor S 2 provided on the downstream side of the water supply pump P 1 in the water supply pipe 7 is at the inlet of the cooling device 8. The temperature sensor S 3 provided to the outlet pipe 8 a of the cooling device 8 detects the water temperature T 2 of the supplied water, detects the water temperature T 3 at the outlet of the cooling device, and the temperature sensor S provided to the cold water outgoing pipe 13. 4 detects the supply water temperature T 4 to the load side.
[0018]
Next, control of each part in the apparatus of the present invention configured as described above will be described.
In the apparatus of the present invention, the cooling-only operation mode and the de-icing / cooling operation mode in which the water in the ice heat storage tank 1 is cooled by the cooling device 8 and supplied to the load side, the cooling device 8 stops, and the ice heat storage De-icing operation mode that supplies water to the load side without cooling the water in the tank, and supplies water to the load side as it is without cooling the water in the ice heat storage tank, while cooling the water in the ice heat storage tank There are four operating modes of the ice-making operation mode for generating ice, and return water temperatures T 1 from the load side switching detected by the temperature sensor S 1 in principle of these operating modes, the cooling capacity of the cooling device 8 And the ice storage condition in the ice storage tank.
[0019]
By the way, if the temperature of the predetermined amount of water can be lowered by ΔT ° C. when the cooling device is driven with a cooling capacity of 100%, the temperature of water to be supplied to the load side (supply water set temperature) T S The temperature T 2 of water supplied to the cooling device is 0 ≦ T 2 ≦ T S + ΔT
Must.
[0020]
Therefore, the heat load is large, and the return water temperature T 1 from the load side is T 1 > T S + ΔT.
In this case, the return water from the load side and the deicing water in the ice storage section 1A of the ice heat storage tank at approximately 0 ° C. are mixed by the three-way control valve V 1 and the temperature of the water supplied to the cooling device T 2 is T 2 = T S + ΔT
Then, chilled water is supplied to the load side cooler 14 by the chilled water outgoing pipe 13 (ice removal / cooling operation mode).
[0021]
The mixing of the return water and the deicing water described above is based on the supply water temperature T 2 to the cooling device 8 detected by the temperature sensor S 2 , and the first one in the three-way control valve V 1 is T 2 = T S + ΔT. The opening degree on the inlet port a side and the second inlet port b side is automatically controlled.
[0022]
In addition, the heat load T is relatively small and the return water temperature T 1 from the load side is T 1 ≦ T S + ΔT.
In this case, the return water can be cooled to the supply water set temperature T S by the cooling device 8, so that the ice in the ice heat storage tank 1 is not defrosted, and the cold water return pipe 15 does not melt the ice in the tank. The return water returned into the ice storage section 1B is led out from the first intake pipe 4 without contacting the ice in the tank, cooled to the supply water set temperature T S by the cooling device 8, and cooled by the chilled water outgoing pipe 13. Chilled water is supplied to the load side cooler 14 (cooling-only operation mode).
[0023]
When returning water is cooled by the cooling device 8 as described above, the temperature T 2 of water supplied to the cooling device is:
T 2 = T 1 ≦ T S + ΔT
∴T S ≧ T 1 −ΔT
So,
T S = T 1 −ΔT × K / 100 (0 ≦ K ≦ 100)
The capacity control of the cooling device of K% is performed in accordance with the difference between the return water temperature T 1 and the supply water set temperature T S.
[0024]
However, in the capacity control operation of the cooling device 8, the cooling efficiency decreases as the capacity decreases. Therefore, when the heat load decreases and the capacity of the cooling device reaches a preset value, for example, 50% (K = 50), the cooling is performed. The operation of the apparatus is stopped, and the deicing water in the ice storage section 1A of the ice heat storage tank is sent to the load side cooler 14 without being cooled (deicing only operation).
[0025]
The lower limit of the value of the capacity K that determines the switching from the cooling-only operation to the ice-free operation described above varies depending on the specifications of the cooling device 8, but is generally set to 30% to 70%.
[0026]
Therefore, in the ice melting operation, the ice melting water in the ice storage section 1A of the ice heat storage tank 1 at approximately 0 ° C. is sent to the cooling device 8 through the second intake pipe 5 and the water supply pipe 7, and in the cooling apparatus. It passes without being cooled and is supplied to the load side cooler 14 through the outlet pipe 8a, the cold water supply pipe 10 and the cold water forward pipe 13.
[0027]
When the heat load is extremely small in this ice melting exclusive operation, the open / close control valve V 5 of the second bypass pipe 17 is opened to adjust the amount of cold water supplied to the load side cooler 14.
[0028]
In addition, when the heat load is small and the ice storage amount is small, the deicing water in the ice heat storage tank is sent to the cooling device 8 for supercooling, so-called sherbet in which small pieces of ice and water are mixed. Ice water is generated and sent into the ice heat storage tank, while the deicing water in the ice heat storage tank is supplied to the load side cooler 14 by the first bypass pipe 16 and the cold water forward pipe 13 (ice making operation).
[0029]
At this time, the cooling device is operated with a cooling capacity of 100%, and the temperature of the deicing water that is approximately 0 ° C. is lowered by ΔT ° C. to cool to a temperature below the freezing point, that is, a state of supercooling.
In addition, the ice making operation described above is performed at night, and the running cost is reduced by using night electricity as power for ice making. However, if the heat load is small and the amount of ice stored is small. For example, ice making operation may be performed at night.
[0030]
Next, the operation of the device of the present invention in each operation mode will be specifically described based on the relation table shown in FIG.
In the following specific example, when the cooling device is operated at a cooling capacity of 100%, it is assumed that the water at a predetermined flow rate can be lowered by 2 ° C. (ΔT = 2 ° C.), and the lower limit value of the capacity control of the cooling device. Is 50% (K = 50), and the set temperature to be supplied to the load side is 0 ° C. (T 3 = 0 ° C.).
Therefore, when the return water temperature T 1 detected by the temperature sensor S 1 exceeds 2 ° C, the ice-freezing / cooling operation is performed. In the case of, ice-only operation or ice-making operation is performed.
[0031]
<Ice making operation>
The ice making operation is performed when the heat load at which the return water temperature T 1 detected by the temperature sensor S 1 is less than 1 ° C. is small and the ice storage amount is not full. As a rule, it is performed at night.
[0032]
In this ice making operation, the three-way control valve V 1 is fully opened to the second inlet port b side, the water pump P 1 is driven, the cooling device 8 is operated with a cooling capacity of 100%, and the switching mechanism 9 is Open on the supply pipe 11 side, that is, the on-off valve V 2 is closed and V 3 is opened.
Further, the on-off valve V 4 of the first bypass pipe 16 is opened and the bypass pump P 2 is driven.
[0033]
Accordingly, the deicing water, which has reached approximately 0 ° C. due to contact with the ice 3 in the ice storage section 1A of the ice heat storage tank 1, flows into the intake header 6 from the second intake pipe 5 by driving the pumps P 1 and P 2. The deicing water in the header is sent to the water pipe 7 and the bypass pipe 16.
[0034]
The deicing water that has flowed into the water supply pipe 7 is sent to the cooling device 8, where it is cooled by 2 ° C. to become super-cooling water of about −2 ° C., and this super-cooling water enters the cooling device or the outlet pipe 8a. The ice is mixed with small pieces of ice and water, and is supplied into the ice heat storage tank 1 through the ice supply pipe 11.
[0035]
Further, the deicing water flowing into the bypass pipe 16 is sent to the load side cooler 14 through the cold water header 12 through the cold water header 12, and the temperature is raised by exchanging heat with the heat load in the cooler. Then, it is sent to the non-ice storage part 1 </ b> B of the ice heat storage tank 1 by the cold water return pipe 15.
[0036]
The return water in the non-ice storage part 1B flows into the ice storage part 1A from the opening 2a at the lower part of the vertical partition plate 2, contacts with the ice 3 in the ice storage part, is cooled to almost 0 ° C. 2 Derived from the intake pipe 5 to the outside.
[0037]
Therefore, ice is made in the cooling device 8 and ice is stored in the ice heat storage tank 1, and the ice cooler at approximately 0 ° C. is supplied from the ice storage section 1 A of the ice heat storage tank 1 to the cooler 14 on the load side. Is done.
[0038]
<De-icing operation>
When the return water temperature T 1 from the load side detected by the temperature sensor S 1 is less than 1 ° C. or when the ice in the ice heat storage tank becomes full due to the ice making operation at night, the three-way control valve V 1 Fully opened on the second inlet port b side, the water pump P 1 is driven, the cooling device 8 is stopped, the switching mechanism 9 is opened on the cold water supply pipe 10 side, that is, the on-off valve V 2 is opened, and V 3 is closed. Is done.
Further, the on-off valve V 4 of the first bypass pipe 16 is closed and the bypass pump P 2 is also stopped.
[0039]
Thus, the deicing water, which is approximately 0 ° C. due to contact with the ice 3 in the ice storage section 1A of the ice heat storage tank 1, flows into the intake header 6 from the second intake pipe 5 by the drive of the pump P 1. The deicing water inside is sent to the water pipe 7.
[0040]
The deicing water that has flowed into the water supply pipe 7 is sent to the cooling device 8, but since the cooling device is in a stopped state, the deicing water is sent from the outlet pipe 8a at the same temperature, and the cold water supply pipe 11, the cold water header 12 is sent to the cooler 14 on the load side by the chilled water outgoing pipe 13.
[0041]
The water whose temperature has been increased by heat exchange with the heat load in the cooler 14 is sent to the non-ice storage part 1B of the ice heat storage tank 1 through the cold water return pipe 15 and from the opening 2a below the vertical partition plate 2 It flows into the ice storage unit 1A, contacts with the ice 3 in the ice storage unit, is cooled to approximately 0 ° C., and is led out from the second intake pipe 5 as deiced water again.
[0042]
Therefore, although the cooling device 8 is stopped, the ice cooler at approximately 0 ° C. is supplied from the ice storage section 1A of the ice heat storage tank 1 to the cooler 14 on the load side.
[0043]
<Exclusive cooling operation>
When the heat load increases and the return water temperature T 1 from the load side detected by the temperature sensor S 1 becomes 1 ° C. or higher and 2 ° C. or lower, the three-way control valve V 1 is fully opened to the first inlet port a side. At the same time, the water pump P 1 is driven, the cooling device 8 is operated, the switching mechanism 9 is opened on the cold water supply pipe 10 side, that is, the on-off valve V 2 is opened, and V 3 is closed.
[0044]
Thus return water returned to the ice thermal storage tank from the load side by the water ie cold condensate pipe 15 of the non-ice storage portion 1B of the ice thermal storage tank 1, the water pipe 7 from the first intake pipe 4 by the driving of the pump P 1 The deicing water that has been sent and flowed into the water pipe 7 is sent to the cooling device 8.
[0045]
In the cooling device, capacity control of the cooling capacity is performed based on the supply water temperature T 2 detected by the temperature sensor S 2 provided in the water pipe.
More specifically, the supply water temperature T 2 is 1 to 2 ° C. which is substantially the same as the return water temperature T 1, and the set temperature T 3 to be supplied to the load side is 0 ° C. Therefore, the cooling device 8 is connected to the supply water temperature T 2. The capacity of the cooling capacity is controlled to 50 to 100% according to the difference from the set temperature T 3 .
[0046]
The cold water cooled to the set temperature of 0 ° C. by the cooling device 8 is sent from the outlet pipe 8a to the load side cooler 14 through the cold water supply pipe 11 and the cold water header 12 through the cold water forward pipe 13.
[0047]
The water whose temperature has been raised by heat exchange with the heat load in the cooler 14 is sent to the non-ice storage part 1B of the ice heat storage tank 1 through the cold water return pipe 15, and is stored in the ice storage part 1A. 3, the first intake pipe 4 is led out to the outside at substantially the same temperature without contact with the first intake pipe 3.
[0048]
The return water from the cold water return pipe 15 passes through the non-ice storage part 1B partitioned by the vertical partition plate 2 from the ice storage part 1A and does not come into contact with the ice in the ice storage part. Therefore, the amount of ice stored in the ice heat storage tank is maintained almost constant in this cooling-only operation.
[0049]
The return water may contain bubbles depending on the usage state in the cooler 14 on the load side, but the bubbles in the return water are separated by flowing into the ice storage part 1B and into the first intake pipe 4. Air bubbles are prevented from entering.
[0050]
<De-icing / cooling operation>
When the heat load further increases and the return water temperature T 1 from the load side detected by the temperature sensor S 1 exceeds 2 ° C., the three-way control valve V 1 is connected to the first inlet port a side and the second inlet port b. The water supply pump P 1 is driven and the cooling device 8 is operated, the switching mechanism 9 is opened on the cold water supply pipe 10 side, that is, the on-off valve V 2 is opened and V 3 is closed.
[0051]
Accordingly, the water in the non-ice storage portion 1B of the ice heat storage tank 1, that is, the return water returned to the ice heat storage tank from the load side by the cold water return pipe 15 by the drive of the water supply pump P 1 is transferred from the first intake pipe 4 to the three-way control valve. V 1 enters the first inlet port a and is sent from the outlet port c to the water supply pipe 7, and the deicing water that has reached approximately 0 ° C. due to contact with the ice 3 in the ice storage unit 1 A is discharged from the second intake pipe 5. The water enters the second inlet port b of the three-way control valve V 1 through the intake header 6 and is sent to the water pipe 7 from the outlet port c.
That is, the return water in the non-ice storage part 1B and the deicing water in the ice storage part 1A are mixed together and sent out from the water pipe 7 to the cooling device 8.
[0052]
The three-way control valve V 1 has openings on the first inlet port a side and the second inlet port b side based on the supply water temperature T 2 to the cooling device detected by the temperature sensor S 2 provided in the water pipe 7. Specifically, when the supply water temperature T 2 is always 2 ° C., that is, when the cooling device has a cooling capacity of 100%, the outlet water temperature of the first inlet port a and the first Therefore, when the return water temperature rises, the opening on the first inlet port a becomes smaller and the opening on the second inlet port b becomes larger.
At this time, the cooling device 8 is operated so that the cooling capacity becomes 100%.
[0053]
The cold water cooled to the set temperature of 0 ° C. by the cooling device 8 is sent from the outlet pipe 8a to the load side cooler 14 through the cold water supply pipe 11 and the cold water header 12 through the cold water forward pipe 13.
[0054]
The water whose temperature is increased by heat exchange with the heat load in the cooler 14 is sent to the non-ice storage part 1B of the ice heat storage tank 1 through the cold water return pipe 15, and a part of the return water is the ice storage part. It is led out from the first intake pipe 4 at substantially the same temperature without coming into contact with the ice 3 stored in 1A, and the rest of the return water is stored in the ice storage section from the opening 2a below the vertical partition plate 2. It flows into 1A, contacts with the ice 3 in the ice storage section, is cooled to about 0 ° C., and is led out from the second intake pipe 5 as deicing water again.
[0055]
Therefore, in this cooling / de-icing operation, it is not necessary to change the cooling capacity of the cooling device while keeping the cooling capacity constant at 100% even if the fluctuation of the thermal load is large, and the automatic opening degree at the three-way control valve V 1 By controlling, it is possible to immediately respond to the fluctuation of the load, and the temperature T 4 of the water supplied to the load side can always be kept constant.
[0056]
Although the embodiment described above is configured to include one of the cooling device 8, a structure comprising a plurality of cooling devices, from the three-way control valve V 1, the water pump P 1, the cooling device 8, switching mechanism 9 and cold water supply pipe In some cases, a plurality of water supply paths leading to 10 and the ice supply pipe 11 are provided in parallel. In this case, the operation of each water supply path and the ice making and cooling operations of each cooling device are individually controlled to cope with fluctuations in heat load. Then, the number of operating cooling units and capacity control are performed. In this way, it is sufficient that the cooling device and the water pump are small, and when the load is small, the number of operating cooling devices and the number of water pumps can be minimized, thereby reducing the running cost. be able to.
[0057]
[Operation and effect of the present invention]
According to the present invention, since the water in the ice heat storage tank is cooled to a predetermined temperature by the cooling device and then sent to the load side, the temperature of the water derived from the ice heat storage tank due to the decrease in the amount of ice stored in the ice heat storage tank Even if fluctuates, the temperature of the cold water supplied to the load side can always be maintained at a constant temperature.
[0058]
Therefore, it is sufficient that the ice storage tank has a capacity that can store a necessary and sufficient amount of ice corresponding to the amount of cold consumed per day on the load side. Can be reduced.
[0059]
In addition, the ice storage tank is partitioned into an ice storage part and a non-ice storage part by a partition plate that opens at the bottom, and the return water from the load side is allowed to flow into the non-ice storage part, and the fluctuation of the heat load, that is, the load Depending on the temperature change of the return water from the side, either the deiced water in the ice storage part and the return water in the non-ice storage part or these are mixed and adjusted to the required temperature before being supplied to the cooling device. Even if fluctuates rapidly, low-temperature cold water having a constant temperature can always be supplied to the load side.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing a first embodiment of an ice heat storage device according to the present invention.
FIG. 2 is a table showing an example of operation control of the apparatus according to the first embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Ice thermal storage tank 2 Vertical partition plate 3 Ice 4 1st intake pipe 5 2nd intake pipe 6 Intake header 7 Water supply pipe 8 Cooling device 9 Switching mechanism 10 Cold water supply pipe 11 Ice supply pipe 12 Cold water header 13 Cold water forward pipe 14 Load side Cooler 15 Cold water return pipe 16 First bypass pipe 17 Second bypass pipe V 1 Three-way control valve V 2 , V 3 , V 4 Open / close valve V 5 Open / close control valve S 1 , S 2 , S 3 , S 4 Temperature sensor

Claims (3)

水および氷が貯留される氷蓄熱槽と、供給される水の温度および冷却能力の容量制御によって水の冷却運転と製氷運転が切り替えられる冷却装置とを備え、熱負荷が小である間に冷却装置で生成される過冷却水による製氷運転によって小片状の氷と水が混合するシャーベット状の氷が貯留された氷蓄熱槽内に負荷側からの戻り水を通した解氷水をさらに冷却装置によってほぼ0℃の温度に冷却負荷の変動が大であっても常に一定温度の低温冷水を負荷側へ供給できるようにした氷蓄熱装置。Equipped with an ice heat storage tank that stores water and ice, and a cooling device that can switch between water cooling and ice making operations by controlling the temperature and cooling capacity of the supplied water, and cooling while the heat load is small A cooling device that further supplies deiced water that has passed through the return water from the load side into an ice heat storage tank in which sherbet-like ice mixed with small pieces of ice and water is mixed by ice-making operation using supercooled water generated by the device The ice heat storage device that cools to a temperature of approximately 0 ° C. and can always supply low-temperature cold water at a constant temperature to the load side even if the load fluctuates greatly. 前記氷蓄熱槽を縦仕切板にて氷が貯留される貯氷部と氷が貯留されない非貯氷部に区画し、かつ負荷側からの冷水復管を非貯留部側に接続し、冷水復管の途中に設けた温度センサにより検出される戻り水の温度に応じ、貯留部内において貯留されている氷によって低温に冷却された解氷水と、貯留部内の氷とは接触しない非貯留部内の戻り水のいずれかあるいはこれら解氷水と戻り水とを所定温度になるように混合して前記冷却装置に送り、同冷却装置にて常にほぼ0℃の冷水を安定して生成して負荷側へ供給することができるようにした請求項1に記載の氷蓄熱装置。The ice heat storage tank is partitioned into an ice storage part where ice is stored and a non-ice storage part where ice is not stored by a vertical partition plate, and a cold water return pipe from the load side is connected to the non-storage part side, Depending on the temperature of the return water detected by the temperature sensor provided in the middle, the deicing water cooled to a low temperature by the ice stored in the storage section and the return water in the non-storage section that does not contact the ice in the storage section Ri feed and any or water return these solutions ice to the cooling device as a mixture to a predetermined temperature, to always supply the cold water approximately 0 ℃ to stably generated by the load-side at the same cooling device The ice heat storage device according to claim 1, wherein the ice heat storage device can be used. 前記冷却装置が、冷却能力100%で運転されている場合に所定流量の水をΔT冷却することができ、また冷却装置の冷却能力を安定して容量制御できる容量の下限値がK%であり、さらに負荷側に供給しようとする冷水の温度をTSとするとき、
熱負荷が大で前記戻り水の温度T1
1>TS+ΔT
である場合には解氷水と戻り水とを混合することによって混合後の水の温度をTS+ΔTに調節してから前記冷却装置に送り、冷却装置にて所定温度TSに冷却した冷水を負荷側に供給し、
熱負荷が比較的小で前記戻り水の温度T1
S+ΔT×K/100≦T1≦TS+ΔT
である場合には戻り水を前記冷却装置に送り、冷却装置にて所定温度TSに冷却した冷水を負荷側に供給し、
さらに熱負荷が小で前記戻り水の温度T1
1<TS+ΔT×K/100
である場合には解氷水を冷却せずに負荷側に供給するように構成してなる請求項2に記載の氷蓄熱装置。
When the cooling device is operated at a cooling capacity of 100%, a predetermined flow rate of water can be cooled by ΔT, and the lower limit value of the capacity capable of stably controlling the cooling capacity of the cooling device is K%. When the temperature of cold water to be supplied to the load side is T S ,
The heat load is large and the temperature T 1 of the return water is T 1 > T S + ΔT
In this case, the temperature of the mixed water is adjusted to T S + ΔT by mixing the deicing water and the return water, and then sent to the cooling device, and the chilled water cooled to the predetermined temperature T S by the cooling device is supplied. Supply to the load side,
The heat load is relatively small and the temperature T 1 of the return water is T S + ΔT × K / 100 ≦ T 1 ≦ T S + ΔT
If it is, the return water is sent to the cooling device, and the cold water cooled to the predetermined temperature T S by the cooling device is supplied to the load side,
Furthermore, the heat load is small, and the temperature T 1 of the return water is T 1 <T S + ΔT × K / 100
In such a case, the ice heat storage device according to claim 2, wherein the ice heat storage device is configured to be supplied to the load side without cooling.
JP2002242398A 2002-08-22 2002-08-22 Ice heat storage device Expired - Fee Related JP4156296B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002242398A JP4156296B2 (en) 2002-08-22 2002-08-22 Ice heat storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002242398A JP4156296B2 (en) 2002-08-22 2002-08-22 Ice heat storage device

Publications (2)

Publication Number Publication Date
JP2004084964A JP2004084964A (en) 2004-03-18
JP4156296B2 true JP4156296B2 (en) 2008-09-24

Family

ID=32051489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002242398A Expired - Fee Related JP4156296B2 (en) 2002-08-22 2002-08-22 Ice heat storage device

Country Status (1)

Country Link
JP (1) JP4156296B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6337412B2 (en) * 2017-02-09 2018-06-06 三菱重工冷熱株式会社 Aqueous solution supercooling control method, aqueous solution supercooling control device, cooling device, and cooling system
CN114999682B (en) * 2022-06-13 2023-06-20 西安交通大学 Passive residual heat hydraulic test device and method for polar environment nuclear power device

Also Published As

Publication number Publication date
JP2004084964A (en) 2004-03-18

Similar Documents

Publication Publication Date Title
KR0136075B1 (en) Method and apparatus for subcooling liquid refrigerant circuits
US8650896B2 (en) Ice thermal storage
CN100419349C (en) Refrigeration system
JP2012072921A (en) Intermediate temperature heat source system concurrently utilizing free cooling operation
CN107421030B (en) Cooling system based on phase-change microcapsule liquid slurry cold storage device and operation method
CN103328911A (en) Flexible use of an inverter in a refrigeration unit
JP4022383B2 (en) Integrated heat source system
JP4156296B2 (en) Ice heat storage device
CN105387644A (en) Water chilling unit and control method thereof
JP3304010B2 (en) Ice storage refrigerator and operation method
WO1999040383A1 (en) Cooling system
JP5150225B2 (en) Heat pump system
JP5166840B2 (en) Heat pump system
JP2004361053A (en) Ice heat storage device, and ice heat storage method
JP3856572B2 (en) Heat storage system
JP3272146B2 (en) Ice storage system
JP4399309B2 (en) Ice heat storage device
KR100715839B1 (en) Forice-on-coil a device inclusion of thermal stroage package system
JP2002318050A (en) Device for supplying chilled water and control method therefor
JP4507274B2 (en) Ice storage type cold water system
JP3276013B2 (en) Thermal storage system
JP3788391B2 (en) Ice heat storage device
JPH09318106A (en) Heat storage air-conditioning system
JP2021173449A (en) Heat storage system
CN117500243A (en) Thermal management system and control method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040928

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080709

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees