JP4154936B2 - Single crystal defect-free region simulation method - Google Patents

Single crystal defect-free region simulation method Download PDF

Info

Publication number
JP4154936B2
JP4154936B2 JP2002185046A JP2002185046A JP4154936B2 JP 4154936 B2 JP4154936 B2 JP 4154936B2 JP 2002185046 A JP2002185046 A JP 2002185046A JP 2002185046 A JP2002185046 A JP 2002185046A JP 4154936 B2 JP4154936 B2 JP 4154936B2
Authority
JP
Japan
Prior art keywords
single crystal
mesh
silicon
distribution
obtaining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002185046A
Other languages
Japanese (ja)
Other versions
JP2004026567A (en
Inventor
浩之介 北村
純 古川
直樹 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2002185046A priority Critical patent/JP4154936B2/en
Publication of JP2004026567A publication Critical patent/JP2004026567A/en
Application granted granted Critical
Publication of JP4154936B2 publication Critical patent/JP4154936B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、チョクラルスキー(以下、CZという。)法にて引上げられるシリコン等の単結晶の無欠陥領域をコンピュータシミュレーションする方法に関するものである。
【0002】
【従来の技術】
近年の半導体集積回路の超微細化にともないデバイスの歩留まりを低下させる要因として、結晶に起因したパーティクル(Crystal Originated Particle、以下、COPという。)や、酸化誘起積層欠陥(Oxidation Induced Stacking Fault、以下、OISFという。)の核となる酸素析出物の微小欠陥や、或いは侵入型転位(Interstitial-type Large Dislocation、以下、L/Dという。)の存在が挙げられている。
【0003】
COPは、鏡面研磨されたシリコンウェーハをアンモニアと過酸化水素の混合液で洗浄すると、ウェーハ表面に出現するピットである。このウェーハをパーティクルカウンタで測定すると、このピットがパーティクルとして検出される。このピットは結晶に起因する。COPは電気的特性、例えば酸化膜の経時絶縁破壊特性(Time Dependent dielectric Breakdown、TDDB)、酸化膜耐圧特性(Time Zero Dielectric Breakdown、TZDB)等を劣化させる原因となる。またCOPがウェーハ表面に存在するとデバイスの配線工程において段差を生じ、断線の原因となり得る。そして素子分離部分においてもリーク等の原因となり、製品の歩留りを低くする。
【0004】
OISFは、結晶成長時に微小な酸素析出核がシリコン単結晶中に導入され、半導体デバイスを製造する際の熱酸化工程等で顕在化する欠陥である。このOISFは、デバイスのリーク電流を増加させる等の不良原因になる。L/Dは、転位クラスタとも呼ばれたり、或いはこの欠陥を生じたシリコンウェーハをフッ酸を主成分とする選択エッチング液に浸漬するとピットを生じることから転位ピットとも呼ばれる。このL/Dも、電気的特性、例えばリーク特性、アイソレーション特性等を劣化させる原因となる。以上のことから、半導体集積回路を製造するために用いられるシリコンウェーハからCOP、OISF及びL/Dを減少させることが必要となっている。
【0005】
このCOP、OISF及びL/Dを有しない無欠陥の単結晶インゴット及びこの単結晶インゴットからスライスされたシリコンウェーハが米国特許番号6,045,610号に対応する特開平11−1393号公報に開示されている。この無欠陥の単結晶インゴットは、単結晶インゴット内での空孔型点欠陥の凝集体及び格子間シリコン型点欠陥の凝集体がそれぞれ存在しないパーフェクト領域を[P]とするとき、パーフェクト領域[P]からなる単結晶インゴットである。パーフェクト領域[P]は、単結晶インゴット内で空孔型点欠陥が優勢であって凝集した点欠陥を有する領域[V]と、格子間シリコン型点欠陥が優勢であって凝集した点欠陥を有する領域[I]との間に介在する。
【0006】
【発明が解決しようとする課題】
しかし、上記従来の特開平11−1393号公報に示された無欠陥の単結晶インゴットでは、単結晶インゴットの全長にわたって空孔型点欠陥の凝集体及び格子間シリコン型点欠陥の凝集体が存在しない引上げ条件を設定するために、引上げ機の種類や単結晶インゴットの太さ毎に実際に単結晶インゴットを引上げてそのライフタイムを測定するという実験を数多く繰返さなければならず、最適な引上げ条件を設定するのに極めて多くの時間と労力を要する不具合があった。
また、上記従来の無欠陥の単結晶インゴットでは、点欠陥濃度を求めるために用いているV/G理論、即ち単結晶の引上げ速度をV(mm/分)とし、単結晶及び融液の固液界面近傍の温度勾配をG(℃/mm)とするときに、V/G(mm2/分・℃)を制御するボロンコフの理論を簡略化した一次元モデル(単結晶の引上げ方向だけのモデル)であるため、単結晶の半径方向への点欠陥の拡散(外方拡散)が考慮されておらず、単結晶の半径方向への点欠陥の濃度勾配を求めることができない問題点があった。
更に、上記従来の無欠陥の単結晶インゴットでは、V/G理論にて点欠陥の濃度を求める場合に、上記Gを高精度で求めるために融液の対流をモデル化して計算する必要があるにも拘らず、このような考慮が全くなされていないため、単結晶内の点欠陥の濃度分布を精度良く求めることができない問題点もあった。
本発明の目的は、実際に単結晶を引上げるという実験の回数を少なくすることができ、これにより比較的少ない時間と労力で、単結晶の最適な引上げ条件を設定できる、単結晶の無欠陥領域シミュレーション方法を提供することにある。
【0007】
【課題を解決するための手段】
請求項1に係る発明は、図1〜図5に示すように、引上げ機11により単結晶14を引上げるときの単結晶製造条件としてフィードバックされる変数を一定の間隔で変量させたパラメータ群P1,P2,…,PNを任意に定義する第1ステップと、引上げ機11により単結晶14を所定長さまで引上げた状態における単結晶14の引上げ機11のホットゾーンをメッシュ構造でモデル化する第2ステップと、ホットゾーンの各部材毎にメッシュをまとめかつこのまとめられたメッシュに対する各部材の物性値とともにパラメータ群P1,P2,…,PNのうちのパラメータP1をコンピュータに入力する第3ステップと、各部材の表面温度分布をヒータの発熱量及び各部材の輻射率に基づいて求める第4ステップと、各部材の表面温度分布及び熱伝導率に基づいて熱伝導方程式を解くことにより各部材の内部温度分布を求めた後に融液12が乱流であると仮定して得られた乱流モデル式及びナビエ・ストークスの方程式を連結して解くことにより対流を考慮した融液12の内部温度分布を更に求める第5ステップと、単結晶14及び融液12の固液界面形状を単結晶の三重点Sを含む等温線に合せて求める第6ステップと、第4ステップから第6ステップを三重点Sが単結晶14の融点になるまで繰返し引上げ機11内の温度分布を計算して単結晶14のメッシュの座標及び温度を求めこれらのデータをそれぞれコンピュータに入力する第7ステップと、単結晶14の引上げ長を段階的に変えて第2ステップから第7ステップまでを繰返し引上げ機11内の温度分布を計算して単結晶14のメッシュの座標及び温度を求めこれらのデータをそれぞれコンピュータに入力する第8ステップと、単結晶14のメッシュの座標及び温度のデータと単結晶14内の格子間原子及び空孔の拡散係数及び境界条件をそれぞれコンピュータに入力する第9ステップと、単結晶14のメッシュの座標及び温度と格子間原子及び空孔の拡散係数及び境界条件に基づいて拡散方程式を解くことにより単結晶14の冷却後の格子間原子濃度及び空孔濃度の分布を求める第10ステップと、単結晶14内の格子間原子濃度及び空孔濃度が等量となる分布線CLXを求める第11ステップと、分布線CLXの変曲点の座標の最大値と最小値との差ΔZを求める第12ステップと、単結晶製造条件のパラメータをP2からPNに順次変え第2ステップから第12ステップを繰返して分布線CLXの変曲点の座標の最大値と最小値との差ΔZを求めた後にこの差ΔZが最も小さくなる単結晶製造条件を求める第13ステップとを含むコンピュータを用いて単結晶の点欠陥分布のシミュレーションを行う方法である。
【0008】
この請求項1に記載された単結晶の点欠陥分布のシミュレーション方法では、パラメータP1の単結晶製造条件で融液12の対流を考慮して単結晶14の内部温度分布を計算により求め、この単結晶14の内部温度分布に基づきかつ単結晶14内の点欠陥の拡散を考慮して単結晶14内の点欠陥分布を計算により求めた後に、単結晶14内の格子間原子濃度及び空孔濃度が等量となる分布線CLXを計算により求めて、この分布線CLXの変曲点Qの最大値及び最小値の差ΔZを計算により求める。次に上記単結晶製造条件のパラメータをP2から順にPNまで変え、上記と同様に単結晶14内の格子間原子濃度及び空孔濃度が等量となる分布線CLXを計算により求めて、これらの分布線CLXの変曲点Qの最大値及び最小値の差ΔZを計算によりそれぞれ求める。更に上記分布線CLXの変曲点Qの最大値及び最小値の差ΔZが最も小さくなる単結晶製造条件を求める。この単結晶製造条件で単結晶14を引上げると、無欠陥領域が半径方向に均一に分布した単結晶14を引上げることができる。
【0009】
【発明の実施の形態】
次に本発明の実施の形態を図面に基づいて説明する。
図4に示すように、シリコン単結晶引上げ機11のチャンバ内には、シリコン融液12を貯留する石英るつぼ13が設けられる。この石英るつぼ13は図示しないが黒鉛サセプタ及び支軸を介してるつぼ駆動手段に接続され、るつぼ駆動手段は石英るつぼ13を回転させるとともに昇降させるように構成される。また石英るつぼ13の外周面は石英るつぼ13から所定の間隔をあけてヒータ(図示せず)により包囲され、このヒータは保温筒(図示せず)により包囲される。ヒータは石英るつぼ13に投入された高純度のシリコン多結晶体を加熱・溶融してシリコン融液12にする。またチャンバの上端には図示しないが円筒状のケーシングが接続され、このケーシングには引上げ手段が設けられる。引上げ手段はシリコン単結晶14を回転させながら引上げるように構成される。更にチャンバ内にはアルゴンガス等の不活性ガスが流通し、引上げ中のシリコン単結晶14は不活性ガスの整流やヒータからの輻射熱の遮断等を目的とするヒートキャップ(図示せず)により包囲される。
【0010】
このように構成されたシリコン単結晶引上げ機11におけるシリコン単結晶14の点欠陥分布のシミュレーション方法を図1〜図5に基づいて説明する。
先ず第1ステップとして、シリコン単結晶引上げ機11によりシリコン単結晶14を引上げるときの単結晶製造条件を任意に定義する。この単結晶製造条件は引上げ機11によりシリコン単結晶11を引上げるときに、後述する引上げ機11のホットゾーンにフィードバックされる変数を一定の間隔で変量させたパラメータ群P1,P2,…,PNである。また単結晶製造条件としては、シリコン単結晶14の引上げ速度、シリコン単結晶14の回転速度、石英るつぼ13の回転速度、アルゴンガスの流量、ヒートキャップを構成する部材の形状及び材質、ヒートキャップの下端及びシリコン融液12表面間のギャップ、ヒータ出力等が挙げられる。
【0011】
第2ステップとして、シリコン単結晶14を所定長さL1(例えば100mm)まで引上げた状態における引上げ機11のホットゾーンの各部材、即ちチャンバ,石英るつぼ13,シリコン融液12,シリコン単結晶14,黒鉛サセプタ,保温筒等をメッシュ分割してモデル化する。具体的には上記ホットゾーンの各部材のメッシュ点の座標データをコンピュータに入力する。このときシリコン融液12のメッシュのうちシリコン単結晶14の径方向のメッシュであってかつシリコン融液12のシリコン単結晶14直下の一部又は全部のメッシュ(以下、径方向メッシュという。)を0.01〜5.00mm、好ましくは0.25〜1.00mmに設定する。またシリコン融液12のメッシュのうちシリコン単結晶14の長手方向のメッシュであってかつシリコン融液12の一部又は全部のメッシュ(以下、長手方向メッシュという。)を0.01〜5.00mm、好ましくは0.1〜0.5mmに設定する。
【0012】
径方向メッシュを0.01〜5.00mmの範囲に限定したのは、0.01mm未満では計算時間が極めて長くなり、5.00mmを越えると計算が不安定になり、繰返し計算を行っても固液界面形状が一定に定まらなくなるからである。また長手方向メッシュを0.01〜5.00mmの範囲に限定したのは、0.01mm未満では計算時間が極めて長くなり、5.00mmを越えると固液界面形状の計算値が実測値と一致しなくなるからである。なお、径方向メッシュの一部を0.01〜5.00の範囲に限定する場合には、シリコン単結晶14直下のシリコン融液12のうちシリコン単結晶14外周縁近傍のシリコン融液12を上記範囲に限定することが好ましく、長手方向メッシュの一部を0.01〜5.00の範囲に限定する場合には、シリコン融液12の液面近傍及び底近傍を上記範囲に限定することが好ましい。
【0013】
第3ステップとして上記ホットゾーンの各部材毎にメッシュをまとめ、かつこのまとめられたメッシュに対して各部材の物性値をそれぞれコンピュータに入力する。例えば、チャンバがステンレス鋼にて形成されていれば、そのステンレス鋼の熱伝導率,輻射率,粘性率,体積膨張係数,密度及び比熱がコンピュータに入力される。またシリコン単結晶14の引上げ長と、この引上げ長に対応するシリコン単結晶14の引上げ速度等の単結晶製造条件としてパラメータP1と、後述する乱流モデル式(2)の乱数パラメータCとをコンピュータに入力する。
【0014】
第4ステップとして、ホットゾーンの各部材の表面温度分布をヒータの発熱量及び各部材の輻射率に基づいてコンピュータを用いて計算により求める。即ち、ヒータの発熱量を任意に設定してコンピュータに入力するとともに、各部材の輻射率から各部材の表面温度分布をコンピュータを用いて計算により求める。次に第5ステップとしてホットゾーンの各部材の表面温度分布及び熱伝導率に基づいて熱伝導方程式(1)をコンピュータを用いて解くことにより各部材の内部温度分布を計算により求める。ここでは、記述を簡単にするためxyz直交座標系を用いたが、実際の計算では円筒座標系を用いる。
【0015】
【数1】

Figure 0004154936
ここで、ρは各部材の密度であり、cは各部材の比熱であり、Tは各部材の各メッシュ点での絶対温度であり、tは時間であり、λx,λy及びλzは各部材の熱伝導率のx,y及びz方向成分であり、qはヒータの発熱量である。
一方、シリコン融液12に関しては、上記熱伝導方程式(1)でシリコン融液12の内部温度分布を求めた後に、このシリコン融液12の内部温度分布に基づき、シリコン融液12が乱流であると仮定して得られた乱流モデル式(2)及びナビエ・ストークスの方程式(3)〜(5)を連結して、シリコン融液12の内部流速分布をコンピュータを用いて計算により求める。
【0016】
【数2】
Figure 0004154936
ここで、κtはシリコン融液12の乱流熱伝導率であり、cはシリコン融液12の比熱であり、Prtはプラントル数であり、ρはシリコン融液12の密度であり、Cは乱流パラメータであり、dはシリコン融液12を貯留する石英るつぼ13壁からの距離であり、kはシリコン融液12の平均流速に対する変動成分の二乗和である。
【0017】
【数3】
Figure 0004154936
【0018】
ここで、u,v及びwはシリコン融液12の各メッシュ点での流速のx,y及びz方向成分であり、νlはシリコン融液12の分子動粘性係数(物性値)であり、νtはシリコン融液12の乱流の効果による動粘性係数であり、Fx,Fy及びFzはシリコン融液12に作用する体積力のx,y及びz方向成分である。
上記乱流モデル式(2)はkl(ケイエル)−モデル式と呼ばれ、このモデル式の乱流パラメータCは0.4〜0.6の範囲内の任意の値が用いられることが好ましい。乱流パラメータCを0.4〜0.6の範囲に限定したのは、0.4未満又は0.6を越えると計算により求めた界面形状が実測値と一致しないという不具合があるからである。また上記ナビエ・ストークスの方程式(3)〜(5)はシリコン融液12が非圧縮性であって粘度が一定である流体としたときの運動方程式である。
上記求められたシリコン融液12の内部流速分布に基づいて熱エネルギ方程式(6)を解くことにより、シリコン融液12の対流を考慮したシリコン融液12の内部温度分布をコンピュータを用いて更に計算により求める。
【0019】
【数4】
Figure 0004154936
ここで、u,v及びwはシリコン融液12の各メッシュ点での流速のx,y及びz方向成分であり、Tはシリコン融液12の各メッシュ点での絶対温度であり、ρはシリコン融液12の密度であり、cはシリコン融液12の比熱であり、κlは分子熱伝導率(物性値)であり、κtは式(2)を用いて計算される乱流熱伝導率である。
【0020】
次いで第6ステップとして、シリコン単結晶14及びシリコン融液12の固液界面形状を図4の点Sで示すシリコンの三重点S(固体と液体と気体の三重点(tri-junction))を含む等温線に合せてコンピュータを用いて計算により求める。第7ステップとして、コンピュータに入力するヒータの発熱量を変更し(次第に増大し)、上記第4ステップから第6ステップを三重点Sがシリコン単結晶14の融点になるまで繰返した後に、引上げ機11内の温度分布を計算してシリコン単結晶のメッシュの座標及び温度を求め、これらのデータをコンピュータに記憶させる。
【0021】
次に第8ステップとして、シリコン単結晶14の引上げ長L1にδ(例えば50mm)だけ加えて上記第2ステップから第7ステップまでを繰返した後に、引上げ機11内の温度分布を計算してシリコン単結晶14のメッシュの座標及び温度を求め、これらのデータをコンピュータに記憶させる。この第8ステップはシリコン単結晶14の引上げ長L1が長さL2に達するまで行われる。シリコン単結晶14の引上げ長L1が長さL2に達すると、第9ステップに移行して、シリコン単結晶14のメッシュの座標及び温度のデータを、シリコン単結晶14内の格子間シリコン及び空孔の拡散係数及び境界条件とともにそれぞれコンピュータに入力する。更に第10ステップに移行して、上記格子間シリコン及び空孔の拡散係数及び境界条件に基づいて拡散方程式を解くことによりシリコン単結晶14の冷却後の格子間シリコン及び空孔の濃度分布を計算により求める。
【0022】
具体的には、格子間シリコンの濃度Ciの計算式が次の式(7)で、空孔の濃度Cvの計算式が次の式(8)で示される。式(7)及び式(8)において、濃度Ci及び濃度Cvの経時的進展を計算するために、格子間シリコンと空孔の熱平衡が結晶の側面、上面及び固液界面では維持されると仮定する。
【0023】
【数5】
Figure 0004154936
ここで、K1及びK2は定数、Ei及びEvはそれぞれ格子間シリコン及び空孔の形成エネルギー、肩付き文字eは平衡量、kはボルツマン定数、Tは絶対温度を意味する。
上記平衡式は時間で微分され、格子間シリコン及び空孔に対してそれぞれ次の式(9)及び式(10)になる。
【0024】
【数6】
Figure 0004154936
式(9)及び(10)のそれぞれ右側の第1項のDi及びDvは、次の式(11)及び(12)に示すように拡散係数を有するFickian拡散を表す。
【0025】
【数7】
Figure 0004154936
ここで△Ei及び△Evはそれぞれ格子間シリコン及び空孔の活性化エネルギーであり、di及びdvはそれぞれ定数である。また式(9)及び式(10)のそれぞれ右側の第2項の
【数8】
Figure 0004154936
は熱拡散による格子間シリコン及び空孔の活性化エネルギーであり、式(9)及び式(10)のそれぞれ右側の第3項のkivは格子間シリコン及び空孔ペアの再結合定数である。
【0026】
第11ステップとして、第10ステップで求めたシリコン単結晶14内の格子間シリコン濃度及び空孔濃度からこれらの濃度が等量となる分布線CLX、即ちシリコン単結晶14が冷却した後のシリコン単結晶14内の格子間シリコン濃度及び空孔濃度が等量となる分布線CLXを計算により求める(図4及び図5)。その後、第12ステップとして、上記分布線CLXの変曲点を計算により求める。例えば変曲点が5つある場合には(図5)、各変曲点Q(1,X)、Q(2,X)、Q(3,X)、Q(4,X)及びQ(5,X)の座標を(rQ(1,X),zQ(1,X))、(rQ(2,X),zQ(2,X))、(rQ(3,X),zQ(3,X))、(rQ(4,X),zQ(4,X))及び(rQ(5,X),zQ(5,X))とすると、これらの座標のうちz座標zQ(1,X)、zQ(2,X)、zQ(3,X)、zQ(4,X)及びzQ(5,X)の最大値zQ(3,X)と最小値zQ(2,X)との差ΔZ(X)を求める。
【0027】
第13ステップとして、単結晶製造条件のパラメータをP2に変え第2ステップから第12ステップを実行し、単結晶製造条件のパラメータをP3に変え第2ステップから第12ステップを実行するというように、単結晶製造条件のパラメータがPNになるまで上記第2ステップから第12ステップを繰返した後に、分布線CLXの変曲点Qの座標の最大値と最小値との差ΔZ(X)をそれぞれ計算により求める。更に上記各差ΔZ(X)のうち最も小さくなる単結晶製造条件を計算により求める。
【0028】
このように計算して求められたシリコン単結晶引上げ機11における単結晶製造条件は、分布線CLXが略水平にフラットになるため、この単結晶製造条件でシリコン単結晶を引上げると、格子間原子優勢無欠陥領域[PI]及び空孔優勢無欠陥領域[PV]を含む無欠陥領域[P]が半径方向に均一に分布したシリコン単結晶14を引上げることができる。換言すれば、上述のようにコンピュータを用いた計算によりシリコン単結晶14の最適な単結晶製造条件を設定することができるので、実際にシリコン単結晶を引上げてライフタイム等を測定する実験は上記単結晶製造条件が最適なものであるか否かの確認のためにだけ行えば済む。この結果、上記実験の回数を低減できるので、比較的少ない時間と労力で、最適な単結晶製造条件を得ることができる。
なお、この実施の形態では、シリコン単結晶を挙げたが、GaAs単結晶,InP単結晶,ZnS単結晶若しくはZnSe単結晶でもよい。
【0029】
【発明の効果】
以上述べたように、本発明によれば、所定の単結晶製造条件で融液の対流を考慮することにより、計算した結晶及び融液の固液界面形状が実際の単結晶の引上げ時の形状とほぼ一致するようにして単結晶の内部温度を求め、この単結晶の内部温度分布に基づきかつ単結晶内の点欠陥の拡散を考慮して単結晶内の点欠陥分布を求めた後に、単結晶内の格子間原子濃度及び空孔濃度が等量となる分布線を求めてこの分布線の変曲点の最大値及び最小値の差を求め、上記単結晶製造条件を変え上記と同様にして単結晶内の格子間原子濃度及び空孔濃度が等量となる分布線を求め、この分布線の変曲点の最大値及び最小値の差を求め、更に分布線の変曲点の最大値及び最小値の差が最も小さくなる単結晶製造条件を求めたので、この単結晶製造条件で単結晶を引上げれば、無欠陥領域が半径方向に均一に分布した単結晶を引上げることができる。このため単結晶の最適な引上げ条件を設定するのに数多くの実験を繰返す必要のあった従来の無欠陥の単結晶インゴットと比較して、本発明では、単結晶の最適な引上げ条件を設定するための実験の回数を低減できる。この結果、本発明では、比較的少ない時間と労力で、最適な単結晶製造条件を得ることができる。
【図面の簡単な説明】
【図1】本発明実施形態シリコン単結晶の無欠陥領域シミュレーション方法の前段を示すフローチャート。
【図2】そのシリコン単結晶の無欠陥領域シミュレーション方法の中段を示すフローチャート。
【図3】そのシリコン単結晶の無欠陥領域シミュレーション方法の後段を示すフローチャート。
【図4】本発明実施形態のシリコン融液をメッシュ構造とした引上げ機の要部断面図。
【図5】本発明実施形態のシリコン単結晶内の格子間シリコン及び空孔の分布を示す説明図。
【符号の説明】
11 シリコン単結晶引上げ機
12 シリコン融液
14 シリコン単結晶
S シリコンの三重点
CLX 分布線[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for computer simulation of a defect-free region of a single crystal such as silicon that is pulled by the Czochralski (hereinafter referred to as CZ) method.
[0002]
[Prior art]
Factors that reduce device yields due to the recent miniaturization of semiconductor integrated circuits include crystal-origin particles (hereinafter referred to as COP), oxidation-induced stacking faults (hereinafter referred to as COP), The presence of microdefects in oxygen precipitates, which are the core of OISF, or interstitial-type large dislocation (hereinafter referred to as L / D).
[0003]
COP is a pit that appears on the wafer surface when a mirror-polished silicon wafer is washed with a mixed solution of ammonia and hydrogen peroxide. When this wafer is measured with a particle counter, the pits are detected as particles. This pit is caused by crystals. COP causes deterioration of electrical characteristics, for example, dielectric breakdown characteristics (Time Dependent dielectric Breakdown, TDDB) of oxide film, breakdown voltage characteristics of oxide film (Time Zero Dielectric Breakdown, TZDB), and the like. Further, if COP exists on the wafer surface, a step is generated in the device wiring process, which may cause disconnection. In addition, the element isolation portion also causes leakage and the like, thereby reducing the product yield.
[0004]
OISF is a defect that is manifested in a thermal oxidation process or the like when a semiconductor device is manufactured by introducing minute oxygen precipitation nuclei into a silicon single crystal during crystal growth. This OISF causes a failure such as increasing the leakage current of the device. L / D is also referred to as a dislocation cluster, or it is also referred to as a dislocation pit because a pit is generated when a silicon wafer having such a defect is immersed in a selective etching solution containing hydrofluoric acid as a main component. This L / D also causes deterioration of electrical characteristics such as leakage characteristics and isolation characteristics. From the above, it is necessary to reduce COP, OISF, and L / D from a silicon wafer used for manufacturing a semiconductor integrated circuit.
[0005]
A defect-free single crystal ingot having no COP, OISF and L / D and a silicon wafer sliced from the single crystal ingot are disclosed in Japanese Patent Laid-Open No. 11-1393 corresponding to US Pat. No. 6,045,610 Has been. This defect-free single crystal ingot has a perfect region [P] when a perfect region in which no agglomerates of vacancy-type point defects and agglomerates of interstitial silicon type point defects exist in the single crystal ingot, respectively. P] is a single crystal ingot. The perfect region [P] includes a region [V] having point defects in which vacancy-type point defects are dominant and agglomerated in a single crystal ingot, and a point defect in which interstitial silicon type point defects are dominant and agglomerated. It is interposed between the region [I].
[0006]
[Problems to be solved by the invention]
However, the conventional defect-free single crystal ingot disclosed in Japanese Patent Application Laid-Open No. 11-1393 has a void-type point defect aggregate and an interstitial silicon-type point defect aggregate over the entire length of the single crystal ingot. In order to set the pulling conditions that do not occur, the experiment of measuring the lifetime of the single crystal ingot by actually pulling it up for each type of puller and the thickness of the single crystal ingot must be repeated a number of times. There was a problem that required a great deal of time and effort to set up.
In addition, in the conventional defect-free single crystal ingot, the V / G theory used for obtaining the point defect concentration, that is, the pulling rate of the single crystal is V (mm / min), and the solid crystals and the melt are solidified. A one-dimensional model that simplifies Boronkov's theory of controlling V / G (mm 2 / min · ° C) when the temperature gradient near the liquid interface is G (° C / mm) (only in the pulling direction of the single crystal) Therefore, the point defect diffusion (outward diffusion) in the radial direction of the single crystal is not taken into account, and the concentration gradient of the point defect in the radial direction of the single crystal cannot be obtained. It was.
Further, in the conventional defect-free single crystal ingot, when the concentration of point defects is determined by V / G theory, it is necessary to model and calculate the convection of the melt in order to determine G with high accuracy. Nevertheless, since such consideration is not made at all, there is a problem that the concentration distribution of point defects in the single crystal cannot be obtained with high accuracy.
The object of the present invention is to reduce the number of experiments of actually pulling up a single crystal, thereby enabling the setting of optimum pulling conditions for the single crystal with relatively little time and effort, and no defects in the single crystal. It is to provide a region simulation method.
[0007]
[Means for Solving the Problems]
As shown in FIGS. 1 to 5, the invention according to claim 1 is a parameter group P in which variables fed back as a single crystal production condition when the single crystal 14 is pulled up by the puller 11 are varied at regular intervals. 1 , P 2 ,..., P N are arbitrarily defined, and the hot zone of the puller 11 of the single crystal 14 in a state where the single crystal 14 is pulled up to a predetermined length by the puller 11 is modeled in a mesh structure. a second step of the parameter group P 1 with physical properties of each member to the mesh summarized and the summary of the mesh for each member of the hot zone, P 2, ..., the parameters P 1 of the P N to the computer A third step of inputting, a fourth step of obtaining a surface temperature distribution of each member based on a heat generation amount of the heater and a radiation rate of each member, a surface temperature distribution of each member, and After obtaining the internal temperature distribution of each member by solving the heat conduction equation based on the conductivity, the turbulent model equation obtained by assuming that the melt 12 is turbulent and the Navier-Stokes equation are connected. The fifth step for further determining the internal temperature distribution of the melt 12 in consideration of the convection by solving, and the solid-liquid interface shape of the single crystal 14 and the melt 12 is determined according to the isotherm including the triple point S of the single crystal. The sixth step and the fourth to sixth steps are repeated until the triple point S reaches the melting point of the single crystal 14, and the temperature distribution in the puller 11 is calculated to obtain the mesh coordinates and temperature of the single crystal 14. a seventh step of inputting data to the computer, respectively, the temperature distribution of the pull-up length of the single crystal 14 from the second step is changed stepwise in the pulling machine 11 repeatedly until the seventh step calculated monocrystal The eighth step of obtaining the coordinates and temperature of the mesh 4 and inputting these data to the computer, respectively, the mesh coordinates and temperature data of the single crystal 14, the diffusion coefficients of interstitial atoms and vacancies in the single crystal 14, and After cooling the single crystal 14, the ninth step of inputting boundary conditions to the computer, respectively, and solving the diffusion equation based on the mesh coordinates and temperature of the single crystal 14, diffusion coefficients of interstitial atoms and vacancies, and boundary conditions A tenth step for obtaining the distribution of the interstitial atom concentration and the vacancy concentration, an eleventh step for obtaining a distribution line CL X in which the interstitial atom concentration and the vacancy concentration in the single crystal 14 are equal, and the distribution line CL. a twelfth step of obtaining a difference ΔZ between the maximum value and the minimum value of the coordinates of the inflection point of the X, the parameters of the single crystal manufacturing condition from sequentially changing the second step from P 2 to P N the first Repeat steps using a computer including a thirteenth step for the difference ΔZ after obtaining a difference ΔZ between the maximum value and the minimum value of the coordinates of the inflection point of the distribution line CL X Find the smallest single crystal manufacturing condition This is a method of simulating the point defect distribution of a single crystal.
[0008]
In the method for simulating the point defect distribution of a single crystal described in claim 1, the internal temperature distribution of the single crystal 14 is obtained by calculation in consideration of the convection of the melt 12 under the single crystal production conditions of the parameter P 1. After calculating the point defect distribution in the single crystal 14 based on the internal temperature distribution of the single crystal 14 and considering the diffusion of point defects in the single crystal 14, the interstitial atom concentration and vacancies in the single crystal 14 are calculated. seeking by calculation a distribution line CL X concentration becomes equal amount, determined by calculating a difference ΔZ between the maximum value and the minimum value of the inflection point Q of the distribution line CL X. Next, the parameters of the single crystal production conditions are changed from P 2 to P N in order, and the distribution line CL X where the interstitial atom concentration and the vacancy concentration in the single crystal 14 are equal is obtained by calculation in the same manner as described above. The difference ΔZ between the maximum value and the minimum value of the inflection point Q of these distribution lines CL X is obtained by calculation. Further, a single crystal production condition is obtained in which the difference ΔZ between the maximum value and the minimum value of the inflection point Q of the distribution line CL X is minimized. When the single crystal 14 is pulled up under the single crystal manufacturing conditions, the single crystal 14 in which defect-free regions are uniformly distributed in the radial direction can be pulled up.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the drawings.
As shown in FIG. 4, a quartz crucible 13 for storing the silicon melt 12 is provided in the chamber of the silicon single crystal puller 11. Although not shown, the quartz crucible 13 is connected to a crucible driving means via a graphite susceptor and a support shaft, and the crucible driving means is configured to rotate and raise and lower the quartz crucible 13. Further, the outer peripheral surface of the quartz crucible 13 is surrounded by a heater (not shown) at a predetermined interval from the quartz crucible 13, and the heater is surrounded by a heat insulating cylinder (not shown). The heater heats and melts the high-purity silicon polycrystal charged in the quartz crucible 13 to form the silicon melt 12. A cylindrical casing (not shown) is connected to the upper end of the chamber, and this casing is provided with a pulling means. The pulling means is configured to pull the silicon single crystal 14 while rotating it. Further, an inert gas such as argon gas circulates in the chamber, and the silicon single crystal 14 being pulled is surrounded by a heat cap (not shown) for the purpose of rectifying the inert gas and blocking radiant heat from the heater. Is done.
[0010]
A method for simulating the point defect distribution of the silicon single crystal 14 in the silicon single crystal puller 11 configured as described above will be described with reference to FIGS.
First, as a first step, single crystal manufacturing conditions for pulling the silicon single crystal 14 by the silicon single crystal puller 11 are arbitrarily defined. This single crystal manufacturing condition is a parameter group P 1 , P 2 ,... In which variables fed back to a hot zone of the pulling machine 11 to be described later are changed at regular intervals when the silicon single crystal 11 is pulled by the pulling machine 11. , P N. The single crystal manufacturing conditions include the pulling speed of the silicon single crystal 14, the rotating speed of the silicon single crystal 14, the rotating speed of the quartz crucible 13, the flow rate of argon gas, the shape and material of the members constituting the heat cap, Examples include a gap between the lower end and the surface of the silicon melt 12, a heater output, and the like.
[0011]
As a second step, each member of the hot zone of the puller 11 in a state where the silicon single crystal 14 is pulled up to a predetermined length L 1 (for example, 100 mm), that is, the chamber, the quartz crucible 13, the silicon melt 12, and the silicon single crystal 14 , Graphite susceptor, insulation cylinder, etc. are modeled by dividing the mesh. Specifically, coordinate data of mesh points of each member in the hot zone is input to the computer. At this time, among the mesh of the silicon melt 12, a mesh in the radial direction of the silicon single crystal 14 and a part or all of the mesh immediately below the silicon single crystal 14 of the silicon melt 12 (hereinafter referred to as a radial mesh). The thickness is set to 0.01 to 5.00 mm, preferably 0.25 to 1.00 mm. Of the mesh of the silicon melt 12, a mesh in the longitudinal direction of the silicon single crystal 14 and a part or all of the silicon melt 12 (hereinafter referred to as a longitudinal mesh) is 0.01 to 5.00 mm. The thickness is preferably set to 0.1 to 0.5 mm.
[0012]
The reason why the radial mesh is limited to the range of 0.01 to 5.00 mm is that the calculation time becomes extremely long if it is less than 0.01 mm, and the calculation becomes unstable if it exceeds 5.00 mm. This is because the solid-liquid interface shape cannot be fixed. The longitudinal mesh is limited to the range of 0.01 to 5.00 mm because the calculation time is extremely long if it is less than 0.01 mm, and the calculated value of the solid-liquid interface shape matches the actual measurement value if it exceeds 5.00 mm. Because it will not do. When a part of the radial mesh is limited to the range of 0.01 to 5.00, the silicon melt 12 near the outer peripheral edge of the silicon single crystal 14 out of the silicon melt 12 immediately below the silicon single crystal 14 is used. It is preferable to limit to the above range. When a part of the longitudinal mesh is limited to the range of 0.01 to 5.00, the vicinity of the liquid surface and the bottom of the silicon melt 12 is limited to the above range. Is preferred.
[0013]
As a third step, the meshes are grouped for each member in the hot zone, and the physical property values of the members are input to the computer for the grouped meshes. For example, if the chamber is made of stainless steel, the thermal conductivity, emissivity, viscosity, volume expansion coefficient, density and specific heat of the stainless steel are input to the computer. Further, as a single crystal manufacturing condition such as a pulling length of the silicon single crystal 14 and a pulling speed of the silicon single crystal 14 corresponding to the pulling length, a parameter P 1 and a random parameter C of a turbulent flow model equation (2) described later are used. Input to the computer.
[0014]
As a fourth step, the surface temperature distribution of each member in the hot zone is obtained by calculation using a computer based on the amount of heat generated by the heater and the radiation rate of each member. That is, the heating value of the heater is arbitrarily set and input to the computer, and the surface temperature distribution of each member is obtained by calculation using the computer from the emissivity of each member. Next, as a fifth step, the internal temperature distribution of each member is calculated by solving the heat conduction equation (1) using a computer based on the surface temperature distribution and the thermal conductivity of each member in the hot zone. Here, in order to simplify the description, the xyz orthogonal coordinate system is used, but in the actual calculation, a cylindrical coordinate system is used.
[0015]
[Expression 1]
Figure 0004154936
Where ρ is the density of each member, c is the specific heat of each member, T is the absolute temperature at each mesh point of each member, t is time, λ x , λ y and λ z Is the x, y and z direction components of the thermal conductivity of each member, and q is the amount of heat generated by the heater.
On the other hand, for the silicon melt 12, after obtaining the internal temperature distribution of the silicon melt 12 by the above heat conduction equation (1), the silicon melt 12 is turbulent based on the internal temperature distribution of the silicon melt 12. By connecting the turbulent flow model equation (2) and Navier-Stokes equations (3) to (5) obtained by assuming that there is, the internal flow velocity distribution of the silicon melt 12 is obtained by calculation using a computer.
[0016]
[Expression 2]
Figure 0004154936
Here, κ t is the turbulent thermal conductivity of the silicon melt 12, c is the specific heat of the silicon melt 12, Pr t is the Prandtl number, ρ is the density of the silicon melt 12, and C Is a turbulent flow parameter, d is a distance from the wall of the quartz crucible 13 storing the silicon melt 12, and k is a square sum of fluctuation components with respect to the average flow velocity of the silicon melt 12.
[0017]
[Equation 3]
Figure 0004154936
[0018]
Here, u, v and w are x, y and z direction components of the flow velocity at each mesh point of the silicon melt 12, and ν l is a molecular kinematic viscosity coefficient (physical property value) of the silicon melt 12. ν t is a kinematic viscosity coefficient due to the effect of turbulent flow of the silicon melt 12, and F x , F y, and F z are x, y, and z direction components of the body force acting on the silicon melt 12.
The turbulent model equation (2) is referred to as a kl-model equation, and an arbitrary value within the range of 0.4 to 0.6 is preferably used as the turbulent parameter C of the model equation. The reason why the turbulent flow parameter C is limited to the range of 0.4 to 0.6 is that when the value is less than 0.4 or exceeds 0.6, there is a problem that the interface shape obtained by calculation does not match the actual measurement value. . The Navier-Stokes equations (3) to (5) are equations of motion when the silicon melt 12 is a fluid that is incompressible and has a constant viscosity.
By solving the thermal energy equation (6) based on the obtained internal flow velocity distribution of the silicon melt 12, the internal temperature distribution of the silicon melt 12 considering the convection of the silicon melt 12 is further calculated using a computer. Ask for.
[0019]
[Expression 4]
Figure 0004154936
Here, u, v, and w are the x, y, and z direction components of the flow velocity at each mesh point of the silicon melt 12, T is the absolute temperature at each mesh point of the silicon melt 12, and ρ is The density of the silicon melt 12, c is the specific heat of the silicon melt 12, κ l is the molecular thermal conductivity (physical property value), and κ t is the turbulent heat calculated using equation (2). Conductivity.
[0020]
Next, as a sixth step, a silicon-solid interface 14 and a silicon-melt interface 12 include a silicon triple point S (solid-liquid-gas triple point) indicated by a point S in FIG. It is obtained by calculation using a computer according to the isotherm. As a seventh step, the amount of heat generated by the heater input to the computer is changed (increase gradually), and the fourth to sixth steps are repeated until the triple point S reaches the melting point of the silicon single crystal 14, and then the puller The temperature distribution in 11 is calculated to obtain the coordinates and temperature of the mesh of the silicon single crystal, and these data are stored in the computer.
[0021]
Next, as an eighth step, after adding δ (for example, 50 mm) to the pulling length L 1 of the silicon single crystal 14 and repeating the second to seventh steps, the temperature distribution in the pulling machine 11 is calculated. The coordinates and temperature of the mesh of the silicon single crystal 14 are obtained, and these data are stored in a computer. This eighth step is performed until the pulling length L 1 of the silicon single crystal 14 reaches the length L 2 . When the pulling length L 1 of the silicon single crystal 14 reaches the length L 2 , the process proceeds to the ninth step, and the coordinates and temperature data of the mesh of the silicon single crystal 14 are converted into the interstitial silicon and silicon in the silicon single crystal 14. Each is input to the computer along with the diffusion coefficient of the pores and the boundary conditions. Further, the process proceeds to the tenth step, and the concentration distribution of interstitial silicon and vacancies after cooling of the silicon single crystal 14 is calculated by solving the diffusion equation based on the diffusion coefficient and boundary conditions of the interstitial silicon and vacancies. Ask for.
[0022]
Specifically, the formula for calculating the interstitial silicon concentration C i is given by the following formula (7), and the formula for calculating the vacancy density C v is given by the following formula (8). In equations (7) and (8), the thermal equilibrium between interstitial silicon and vacancies is maintained at the crystal side, top and solid-liquid interface to calculate the evolution of concentration C i and concentration C v over time. Assume that
[0023]
[Equation 5]
Figure 0004154936
Here, K 1 and K 2 are constants, E i and E v are the formation energy of interstitial silicon and vacancies, the shoulder letter e is the equilibrium amount, k is the Boltzmann constant, and T is the absolute temperature.
The above equilibrium equation is differentiated with respect to time, and becomes the following equations (9) and (10) for interstitial silicon and vacancies, respectively.
[0024]
[Formula 6]
Figure 0004154936
The first terms D i and D v on the right side of the equations (9) and (10) respectively represent Fickian diffusion having diffusion coefficients as shown in the following equations (11) and (12).
[0025]
[Expression 7]
Figure 0004154936
Here, ΔE i and ΔE v are activation energies of interstitial silicon and vacancies, respectively, and d i and d v are constants, respectively. In addition, in the second term on the right side of each of the equations (9) and (10),
Figure 0004154936
Is the activation energy of interstitial silicon and vacancies due to thermal diffusion, and k iv in the third term on the right side of equations (9) and (10) is the recombination constant of interstitial silicon and vacancy pairs, respectively. .
[0026]
As an eleventh step, the distribution line CL X in which these concentrations are equal from the interstitial silicon concentration and the vacancy concentration in the silicon single crystal 14 obtained in the tenth step, that is, the silicon after the silicon single crystal 14 is cooled. A distribution line CL X in which the interstitial silicon concentration and the vacancy concentration in the single crystal 14 are equal is obtained by calculation (FIGS. 4 and 5). Thereafter, as a twelfth step, an inflection point of the distribution line CL X is obtained by calculation. For example, when there are five inflection points (FIG. 5), each inflection point Q (1, X), Q (2, X), Q (3, X), Q (4, X) and Q ( 5, X) coordinates (r Q (1, X), z Q (1, X)), (r Q (2, X), z Q (2, X)), (r Q (3, X ), Z Q (3, X)), (r Q (4, X), z Q (4, X)) and (r Q (5, X), z Q (5, X)) z-coordinate z Q of the coordinates (1, X), z Q (2, X), z Q (3, X), z Q (4, X) and z maximum z Q of Q (5, X) A difference ΔZ (X) between (3, X) and the minimum value z Q (2, X) is obtained.
[0027]
As the thirteenth step, the parameter of the single crystal production condition is changed to P 2 , the second step to the twelfth step are executed, the parameter of the single crystal production condition is changed to P 3, and the second step to the twelfth step are executed. In addition, after repeating the second step to the twelfth step until the parameter of the single crystal production condition becomes P N , the difference ΔZ (X between the maximum value and the minimum value of the inflection point Q of the distribution line CL X is obtained. ) By calculation. Further, the smallest single crystal production condition among the above differences ΔZ (X) is obtained by calculation.
[0028]
The single crystal manufacturing conditions in the silicon single crystal pulling machine 11 calculated in this way are such that the distribution line CL X is flat in a substantially horizontal manner. It is possible to pull up the silicon single crystal 14 in which the defect-free region [P] including the interatomic dominant defect-free region [P I ] and the hole dominant defect-free region [P V ] is uniformly distributed in the radial direction. In other words, since the optimum single crystal manufacturing conditions of the silicon single crystal 14 can be set by calculation using a computer as described above, experiments for actually measuring the lifetime and the like by pulling up the silicon single crystal are as described above. It is only necessary to confirm whether or not the single crystal production conditions are optimum. As a result, since the number of experiments can be reduced, the optimum single crystal production conditions can be obtained with relatively little time and effort.
In this embodiment, a silicon single crystal is used, but a GaAs single crystal, an InP single crystal, a ZnS single crystal, or a ZnSe single crystal may be used.
[0029]
【The invention's effect】
As described above, according to the present invention, by considering the convection of the melt under predetermined single crystal production conditions, the calculated solid-liquid interface shape of the crystal and the melt is the shape when the actual single crystal is pulled up. After obtaining the point temperature distribution in the single crystal based on the internal temperature distribution of the single crystal and taking into account the diffusion of point defects in the single crystal, Obtain a distribution line in which the interstitial atom concentration and vacancy concentration in the crystal are equal, find the difference between the maximum value and the minimum value of the inflection point of this distribution line, change the above-mentioned single crystal production conditions, and perform the same as above. To obtain a distribution line in which the interstitial atom concentration and the vacancy concentration in the single crystal are equal, find the difference between the maximum value and the minimum value of the inflection point of the distribution line, and further determine the maximum of the inflection point of the distribution line. The single crystal manufacturing conditions that minimize the difference between the minimum value and the minimum value were determined. If Re pulled crystal can be pulled single crystal defect-free region is uniformly distributed in the radial direction. For this reason, in the present invention, the optimum pulling condition for the single crystal is set as compared with the conventional defect-free single crystal ingot that required many experiments to set the optimum pulling condition for the single crystal. The number of experiments can be reduced. As a result, in the present invention, it is possible to obtain optimum single crystal production conditions with relatively little time and effort.
[Brief description of the drawings]
FIG. 1 is a flowchart showing a first stage of a defect-free region simulation method for a silicon single crystal according to an embodiment of the present invention.
FIG. 2 is a flowchart showing a middle stage of the defect-free region simulation method for the silicon single crystal.
FIG. 3 is a flowchart showing the latter stage of the silicon single crystal defect-free region simulation method.
FIG. 4 is a cross-sectional view of a main part of a pulling machine having a mesh structure of silicon melt according to an embodiment of the present invention.
FIG. 5 is an explanatory view showing the distribution of interstitial silicon and vacancies in the silicon single crystal according to the embodiment of the present invention.
[Explanation of symbols]
11 Silicon single crystal pulling machine 12 Silicon melt 14 Silicon single crystal S Silicon triple point CL X distribution line

Claims (1)

引上げ機(11)により単結晶(14)を引上げるときの単結晶製造条件としてフィードバックされる変数を一定の間隔で変量させたパラメータ群P1,P2,…,PNを任意に定義する第1ステップと、
前記引上げ機(11)により前記単結晶(14)を所定長さまで引上げた状態における前記単結晶(14)の引上げ機(11)のホットゾーンをメッシュ構造でモデル化する第2ステップと、
前記ホットゾーンの各部材毎にメッシュをまとめかつこのまとめられたメッシュに対する前記各部材の物性値とともに前記パラメータ群P1,P2,…,PNのうちのパラメータP1をコンピュータに入力する第3ステップと、
前記各部材の表面温度分布をヒータの発熱量及び前記各部材の輻射率に基づいて求める第4ステップと、
前記各部材の表面温度分布及び熱伝導率に基づいて熱伝導方程式を解くことにより前記各部材の内部温度分布を求めた後に融液(12)が乱流であると仮定して得られた乱流モデル式及びナビエ・ストークスの方程式を連結して解くことにより対流を考慮した前記融液(12)の内部温度分布を更に求める第5ステップと、
前記単結晶(14)及び前記融液(12)の固液界面形状を前記単結晶の三重点(S)を含む等温線に合せて求める第6ステップと、
前記第4ステップから前記第6ステップを前記三重点(S)が前記単結晶(14)の融点になるまで繰返し前記引上げ機(11)内の温度分布を計算して前記単結晶(14)のメッシュの座標及び温度を求めこれらのデータをそれぞれ前記コンピュータに入力する第7ステップと、
前記単結晶(14)の引上げ長を段階的に変えて前記第2ステップから前記第7ステップまでを繰返し前記引上げ機(11)内の温度分布を計算して前記単結晶(14)のメッシュの座標及び温度を求めこれらのデータをそれぞれ前記コンピュータに入力する第8ステップと、
前記単結晶(14)のメッシュの座標及び温度のデータと前記単結晶(14)内の格子間原子及び空孔の拡散係数及び境界条件をそれぞれ前記コンピュータに入力する第9ステップと、
前記単結晶(14)のメッシュの座標及び温度と前記格子間原子及び前記空孔の拡散係数及び境界条件に基づいて拡散方程式を解くことにより前記単結晶(14)の冷却後の前記格子間原子濃度及び前記空孔濃度の分布を求める第10ステップと、
前記単結晶(14)内の前記格子間原子濃度及び前記空孔濃度が等量となる分布線(CLX)を求める第11ステップと、
前記分布線(CLX)の変曲点の座標の最大値と最小値との差(ΔZ)を求める第12ステップと、
前記単結晶製造条件のパラメータをP2からPNに順次変え前記第2ステップから前記第12ステップを繰返して前記分布線(CLX)の変曲点の座標の最大値と最小値との差(ΔZ)を求めた後に前記差(ΔZ)が最も小さくなる単結晶製造条件を求める第13ステップと
を含むコンピュータを用いて単結晶の点欠陥分布のシミュレーションを行う方法。
Parameter groups P 1 , P 2 ,..., P N are arbitrarily defined by varying variables fed back as a single crystal production condition when pulling up the single crystal 14 by the puller 11. The first step;
A second step of modeling a hot zone of the puller (11) of the single crystal (14) in a state where the single crystal (14) is pulled up to a predetermined length by the puller (11) with a mesh structure;
The summarized mesh for each member of the hot zone and the with physical properties of each member for the gathered mesh parameter groups P 1, P 2, ..., first enter the parameters P 1 of the P N to the computer 3 steps,
A fourth step of obtaining the surface temperature distribution of each member based on the heat value of the heater and the radiation rate of each member;
The turbulence obtained by assuming that the melt (12) is turbulent after obtaining the internal temperature distribution of each member by solving the heat conduction equation based on the surface temperature distribution and thermal conductivity of each member. A fifth step of further determining the internal temperature distribution of the melt (12) considering convection by connecting and solving the flow model equation and the Navier-Stokes equations;
A sixth step of obtaining a solid-liquid interface shape of the single crystal (14) and the melt (12) according to an isotherm including a triple point (S) of the single crystal;
The fourth step to the sixth step are repeated until the triple point (S) reaches the melting point of the single crystal (14), and the temperature distribution in the puller (11) is calculated to calculate the single crystal (14). A seventh step of obtaining the coordinates and temperature of the mesh and inputting these data to the computer, respectively;
By changing the pulling length of the single crystal (14) stepwise, the temperature distribution in the pulling machine (11) is calculated repeatedly from the second step to the seventh step, and the mesh of the single crystal (14) is calculated. An eighth step of obtaining coordinates and temperature and inputting these data to the computer, respectively;
Ninth step of inputting the coordinates and temperature data of the mesh of the single crystal (14) and the diffusion coefficients and boundary conditions of interstitial atoms and vacancies and boundary conditions in the single crystal (14), respectively, to the computer;
The interstitial atoms after cooling of the single crystal (14) by solving the diffusion equation based on the coordinates and temperature of the mesh of the single crystal (14) and the diffusion coefficients and boundary conditions of the interstitial atoms and the vacancies A tenth step for determining a concentration and a distribution of the pore concentration;
An eleventh step of obtaining a distribution line (CL X ) in which the interstitial atom concentration and the vacancy concentration in the single crystal (14) are equal;
A twelfth step of obtaining a difference (ΔZ) between the maximum value and the minimum value of the inflection point of the distribution line (CL X );
The parameter of the single crystal production condition is sequentially changed from P 2 to PN, and the second step to the twelfth step are repeated, and the difference between the maximum value and the minimum value of the inflection point of the distribution line (CL X ) is determined. A method of simulating a point defect distribution of a single crystal using a computer including a thirteenth step of determining a single crystal manufacturing condition that minimizes the difference (ΔZ) after determining (ΔZ).
JP2002185046A 2002-06-25 2002-06-25 Single crystal defect-free region simulation method Expired - Lifetime JP4154936B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002185046A JP4154936B2 (en) 2002-06-25 2002-06-25 Single crystal defect-free region simulation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002185046A JP4154936B2 (en) 2002-06-25 2002-06-25 Single crystal defect-free region simulation method

Publications (2)

Publication Number Publication Date
JP2004026567A JP2004026567A (en) 2004-01-29
JP4154936B2 true JP4154936B2 (en) 2008-09-24

Family

ID=31180803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002185046A Expired - Lifetime JP4154936B2 (en) 2002-06-25 2002-06-25 Single crystal defect-free region simulation method

Country Status (1)

Country Link
JP (1) JP4154936B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10077485B2 (en) 2012-06-27 2018-09-18 Jfe Steel Corporation Steel sheet for soft-nitriding and method for manufacturing the same
US10301698B2 (en) 2012-01-31 2019-05-28 Jfe Steel Corporation Hot-rolled steel sheet for generator rim and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10301698B2 (en) 2012-01-31 2019-05-28 Jfe Steel Corporation Hot-rolled steel sheet for generator rim and method for manufacturing the same
US10077485B2 (en) 2012-06-27 2018-09-18 Jfe Steel Corporation Steel sheet for soft-nitriding and method for manufacturing the same

Also Published As

Publication number Publication date
JP2004026567A (en) 2004-01-29

Similar Documents

Publication Publication Date Title
US6045610A (en) Methods of manufacturing monocrystalline silicon ingots and wafers by controlling pull rate profiles in a hot zone furnance
Sinno et al. Defect engineering of Czochralski single-crystal silicon
US6472040B1 (en) Semi-pure and pure monocrystalline silicon ingots and wafers
EP1310583B1 (en) Method for manufacturing of silicon single crystal wafer
US20050247259A1 (en) Silicon wafer and method for manufacturing the same
JP4380537B2 (en) Method for producing silicon single crystal
WO1994016124A1 (en) Method and apparatus for predicting crystal quality of single-crystal semiconductor
JPH11199387A (en) Production of silicon single crystal and silicon single crystal wafer
JP4701738B2 (en) Single crystal pulling method
US9850595B2 (en) Method for heat treatment of silicon single crystal wafer
JP3731417B2 (en) Method for producing silicon wafer free of agglomerates of point defects
JP2001217251A (en) Method of heat-treating silicon wafer
KR101862157B1 (en) Method and apparatus for manufacturing silicon monocrystalline ingot
JP4154936B2 (en) Single crystal defect-free region simulation method
JP4131077B2 (en) Silicon wafer manufacturing method
JP2003055092A (en) Method of pulling silicon single crystal
JP4192704B2 (en) A simulation method to maximize the defect-free region of a single crystal
JP2001089294A (en) Method of continuously pulling up silicon single crystal free from agglomerates of point defects
KR100665683B1 (en) Method for manufacturing silicon single crystal
JP4750916B2 (en) Method for growing silicon single crystal ingot and silicon wafer using the same
Virzi et al. Computer simulation of Czochralski silicon thermal history and its effect on bulk stacking fault nuclei generation
JP2002134518A (en) Resistibility-adjusted silicon wafer and its manufacturing method
JP3933010B2 (en) Method for measuring point defect distribution of silicon single crystal ingot
JP4147758B2 (en) Method for determining wafer manufacturing conditions
JP4102966B2 (en) Pulling method of silicon single crystal

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20050603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080617

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080630

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4154936

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term