JP4153994B2 - Embossed structuring method for thin material sheets - Google Patents

Embossed structuring method for thin material sheets Download PDF

Info

Publication number
JP4153994B2
JP4153994B2 JP53402597A JP53402597A JP4153994B2 JP 4153994 B2 JP4153994 B2 JP 4153994B2 JP 53402597 A JP53402597 A JP 53402597A JP 53402597 A JP53402597 A JP 53402597A JP 4153994 B2 JP4153994 B2 JP 4153994B2
Authority
JP
Japan
Prior art keywords
support
raised
relief
material sheet
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP53402597A
Other languages
Japanese (ja)
Other versions
JP2000507888A (en
JP2000507888A5 (en
Inventor
フランク ミルツ
オラフ ビトナー
ヨヒェン エレルト
Original Assignee
フランク ミルツ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by フランク ミルツ filed Critical フランク ミルツ
Publication of JP2000507888A publication Critical patent/JP2000507888A/en
Publication of JP2000507888A5 publication Critical patent/JP2000507888A5/ja
Application granted granted Critical
Publication of JP4153994B2 publication Critical patent/JP4153994B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D51/00Making hollow objects
    • B21D51/16Making hollow objects characterised by the use of the objects
    • B21D51/26Making hollow objects characterised by the use of the objects cans or tins; Closing same in a permanent manner
    • B21D51/2646Of particular non cylindrical shape, e.g. conical, rectangular, polygonal, bulged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/10Stamping using yieldable or resilient pads
    • B21D22/105Stamping using yieldable or resilient pads of tubular products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/08Deep drawing or matched-mould forming, i.e. using mechanical means only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/022Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing characterised by the disposition or the configuration, e.g. dimensions, of the embossments or the shaping tools therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/0014Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 for shaping tubes or blown tubular films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/04Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing using rollers or endless belts

Abstract

According to the invention thin sheets of foil are stiffened in a particular way by means of vault-structuring. The vault-structuring occurs either by self-organizing or following a self-organized design with a spade-shaped or drop-shaped pattern.

Description

【技術分野】
【0001】
本発明は間隔をおいて配置された支持体上の曲がった材料シートに圧力をかける、浮き出し構造化方法に関する。
【背景技術】
【0002】
薄壁材質面の構造化方法は、数多く知られている。これには三次元硬化を発生させる際の複雑な成形工具を利用した条溝のローラー押し込み、あるいは構造刻み込みのような、良く知られている変形方法がある。これらの機械的変形方法では、複雑で高価な成形工具を必要とし、構造化材料シートが強度に可塑性変形し、また原料表面材が、機械的平面加圧により損なわれるという不備が生じる。
【0003】
欧州公開特許公報第0 441 618 A1号には、機械成形工具(二つの型押しローラー)により、多面体構造を成形する構造化方法が記載されている。更に缶に軸方向の溝を刻み込むために、缶の内側を軸性の剛性エレメントで支え、弾性ローラーで外側に圧力をかける装置が知られている(ドイツ特許明細書DE35 87 768 T2号)。また別の申請(米国特許第4,576,669号明細書)では、プラスチックホイルを内部に小さな鉢のあるロール上に導き、真空によりその中へと引き込む方法が提示されている。しかしながらこの方法ではホイルの形剛度が改善されることはない。同様に丸い構造を形成し、その構造間に幅の広い変形していない部分面を残すプラスチックホイルをくぼます方法においても、ホイルの形剛度が著しく改善されることはない(フランス特許申請第1,283,530号)。
【0004】
また薄い材料シートあるいはホイルを浮き出し状に構造化する方法も知られている。この方法では曲がった薄い材料シートあるいはホイルは、内側で線状の支持体で支えられ、外部から圧力がかけられる。外部からの圧力は油圧による。このようにして材料シートの形剛度を改善する位置をそれぞれずらした浮き出し構造が形成される(ドイツ開示書25 57 215号、ドイツ特許明細書DE 43 11 978号)。この浮き出し構造化プロセスは、機械的に作用する二本の型押しローラーを必要とせず、材料シートが置かれ、この材料シートが油圧により加圧される支持核だけを必要とするという点において、前記欧州公開公報第0 441 618A1号の場合とその原則において異る。多面の例として、六角形の構造形成はPCT/EP 94/01043として公開された国際特許出願に記載されている(第5B及び5c図参照)。油圧による加圧の代わりに非構造化弾性クッションあるいは非構造化弾性プラスチックで加圧することもできる。材料シートが押しつけられる支持体は剛性のあるいは核上で位置をずらせる柔軟な材質から構成し得る。
【0005】
前記欧州特許公報第0 441 618 A1号に記載された純機械的成形方法は、強度の機械的変形により原料表面材が著しい損傷を受ける。ドイツ特許明細書DE 35 87 768 T2号に記載された縦条溝形成装置は、線状、軸性そして剛性の支持体と弾性圧力体を使用する。しかしながら軸性条溝を有するこのようにして構造化された材質の形剛性は、条溝が幾何的理由により多元性形剛性を生じないので満足のいくものではない。前記ドイツ開示書25 57215号、ドイツ特許第DE 43 11 978号及びPCT/EP 94/01043号に記載された変形方法は、位置をずらした浮き出し構造による条溝とは逆に、表面材に何の悪影響も及ぼすことなく多元性形剛性を生み出す。
【0006】
本発明の課題はこれまで知られている方法の不備を甘受することなく、その利点を使用する方法を示すことにある。
これまで知られている浮き出し構造化方法の問題としては、深い浮き出し折り目域に構造化する工材の非常に強い局部的伸延及び圧縮ひずみが発生し、これによりこの域で材料を弱化させ、工材を裂く恐れのある著しい可塑性変形が生じることである。
【0007】
これまで知られている薄い材料シートあるいはホイルの構造化方法の別の問題としては、形剛度改善に作用する折り目の自己形成が、いくつかの応用時には全く不可能、あるいは不十分になることである。浮き出し折り目の自己形成は、工材が自己の形剛性を改善するように、多次元に折り目をつけるプロセスとして理解されなければならない。この浮き出し構造の変形プロセスは、例えば、内部において間隔をもって配置された剛性支持リング、あるいはネジ状の剛性支持螺旋(ドイツ開示書第25 57 215号)により支えられる、曲がった薄壁の材料が、外部圧力により不安定となることにより生じる。この不安定性により、多次元の折り目が生じ、そしてこれにより位置をずらした四角形の浮き出し構造が形成される。このようにして薄壁の材料は、最も重要な特質が改善された形剛性となる新しい状態へと移る。この位置をずらした、四角形の浮き出し構造の問題点は、浮き出し折り目域に材料を弱める強い可塑性変形が生じる可能性があることである。剛性支持体の代わりに浮き出し構造化中に核上で軸方向に移ることのできる、例えばゴム性の柔軟性支持体を使用するならば、六角形の浮き出し構造が生じる。この六角形の浮き出し構造は、六角形の剛性支持体により形成することができる(PCT/EP94/01043)。研究により六角形の浮き出し構造部においても、位置をずらした四角形の浮き出し構造と同様に、材料を弱める強い可塑性変形が生じ得ることがわかった。この四角形あるいは六角形の浮き出し構造は、更に、このようにして構造化された材料シートが、等方性形剛性を著しく損なうことなしに、円筒形状から平坦な形状に直すことが困難であるという問題点を有する。研究により材料シートの移動方向に配置された水平の浮き出し折り目は、非常な力をもってのみ平坦な形状に曲げることができることがわかった。材料シートの移動方向に対し横向きに配置されている浮き出し構造は、その際、同時に平らになり、また少し内側に曲がるために、この浮き出し構造は平坦な形状にすることにより、当初あった形剛性の一部を失う。材料シートの壁が厚ければ厚いほど、この問題は重大に作用し、この方法で構造化材料シートの等方性形剛性を得ることはできない。この理由によりこれまで知られている構造化方法は、四角形及び六角形の浮き出し構造と角を有するものに制限されている。この制限により、これまで浮き出し折り目の最適化構造が発見されることがなかった。この最適化は構造幾何及び折り目の幾何形自体にまで関連する。浮き出し構造、例としてその大きさと深さは、材料の厚みにおいて形剛性の増加を決定する。折り目の輪郭は、その発現にもかかわらず可塑性変形が最小になるような形を受容しなければならない。材料がこのような方法での自由な自己調整において変形する際に、この基準が達成されることが発見された。
【発明の開示】
【発明が解決しようとする課題】
【0008】
本発明におけるこの問題の解決は、油圧あるいは弾性圧力を加えて材料シートを変形させる時に、巨視的な浮き出し構造が支持体により単に定められ、この支持体が構造化時にたわみ、構造折り目自体が支持体機能を引き継ぐ。そして浮き出し折り目及び浮き出しくぼみが自由な自己調整を経て、最小の可塑性変形で強変形圧力に耐えられる最適をとることにより、浮き出し折り目の最適化された形を実現させることにある。
【発明を実施するための最良の形態】
【0009】
この方法の一態様は、曲がった薄い壁の材料シートあるいはホイルが、内側で渦巻き状のしなやかな支持螺旋で支えられ、外部から圧力がかけられることである。しなやかな支持螺旋は外部圧力において少し内側にたわみ、その際少しねじれ、これにより支持螺旋の直径が少し小さくなる。このような方法でまず、ほぼ四角形の浮き出し折り目が形成され、これがその後最適に自由調整される。その際、当初弱く形成されたほぼ四角形の浮き出し折り目は深さを増しながら、折り目同士が相互支持し合うようにな、支持螺旋の支持作用を徐々に引き継ぐ。これにしてしなやかな渦巻き形の支持螺旋は、外部圧力の増加に伴い内側にたわむゆえに、その支持作用は段々と弱まる。このようにして浮き出し折り目は、いわば自分で自由に自己形成することができ、自己形成の過程において、変形圧力に耐えるのに最適形を取る。これは浮き出し構造の最適化された幾何配置ばかりでなく、個々の浮き出し折り目の外形、つまりその外部輪郭または丸みに対しても有効となる。
【0010】
このようにして最適化された浮き出し折り目の幾何配置は、例として細い側が先端へと尖り、また縦側が丸くなった平行四辺形から生じた紋章形構造である。先端へと尖る浮き出し折り目は、内側から渦巻き状の支持螺旋により支えられている湾曲し材料シート支持螺旋の回転軸に平行に、つまり材料シートの移動方向に対して垂直な方向に短縮された自己形成された浮き出し折り目が最適な方法で生じたものである。移動方向における個々の浮き出し折り目の形成の最適化は、材料シート移動方向において、丸くなった、例としてS形の浮き出し折り目だけが生じたこと、つまり大きな可塑性変形を有する浮き出し座屈が発生しなかったことによって理解できる。浮き出し折り目の相互集中域では柔らかな屈曲半径を有し、ほぼ平坦になった折り目鞍状部が形成される。このようにして工材の大きな可塑性変形の原因となる多軸性の屈曲折り目が防止される。
【0011】
材料シート移動方向での浮き出し折り目が丸くなり、それゆえに変形しやすくなるために、この浮き出し折り目はわずかな力の消費と、工材の最小限の可塑性変形によって平らな形に曲げることができる。また支持螺旋の回転軸に平行に、つまり材料シートの移動方向に垂直方向の浮き出し折り目が短くなる。この結果、このように構造化された材料シートは、等方性の形剛性を保持しながら簡単に平らな形に直せる。また最小限の可塑性変形よって材料シートの高度な形剛性を得ることができる。それゆえにこのような方法で壁の厚い材料シートも構造化でき、平らな形に直すことができる。
【0012】
しかしながらこのようにして形成された、ほぼ紋章形の浮き出し折り目は、依然として正確に一様な形を有していない。この原因としては特に、工材の避けることのできない不質性、原工材の壁厚み公差及び材料シートにかかる圧力が一様でないことを挙げることができる。従って、本発明の更なる態様は、最適な浮き出し構造の形成のためにできる限り有利な前提条件を作ることである。これは自由調整における最適折り目をまず決定し、その後に形成される浮き出し構造、特に折り目の輪郭が自己形成された幾何にできるだけ相当するものになるよう、支持体を形成することにより達成できる。
【0013】
このようにして最適化された支持体の本質的特徴は、横方向の支持体が、例えばS形のようなみを有すること、及び、その支持体上に存在する、多数の支持体が相互に集中する域が、平坦なあるいは単にほんの少しだけ反りのついた輪郭になることである。その際、横方向の支持体の、前記S形のような丸みの、個々の半径は規定されない。その結果、原材料のわずかな可塑性変形において高度な形剛性を示多様な紋章形の浮き出し構造が形成される。材料シート移動方向に垂直に短縮された浮き出し折り目も同様にわずかに可塑性変形するだけであり、それゆえにその支持体は丸くなった輪郭を保持する。
【0014】
このよう最適化された支持体の幾何寸法は、方程式(1)により近似計算できる。この方程式(1)は実験的にほぼ四角形の浮き出し構造の自己形成用に開発された(ドイツ開示書第2557 215号)ものであり、ほぼ紋章形の浮き出し構造にも近似的に応用できる。

Figure 0004153994
方程式(1)において
nは支持体1回転に対する材料シートの、移動方向における浮き出し構造数
は支持体の直径(単位mm)
は横方向の支持体間の中間間隔(単位mm)、及び
は材料シートの厚み(単位mm)
をそれぞれ意味する。
【0015】
支持体円周上の浮き出し数nに関する幾何関係(2)により、ほぼ正方形(h=b)の場合の浮き出し構造値の関連(3)が得られる。
Figure 0004153994
【0016】
ほぼ正方形の浮き出し構造に有効なこの方程式(3)は近似的にほぼ紋章形の浮き出し構造にも応用でき、その際、横方向の支持体の中間間隔h(mm)が選択される。ほぼ紋章形の浮き出し構造用のこの方程式(3)は単に近似示すので、方程式(3)による基準値から少し逸脱してもよい
【0017】
方程式(1)、(2)及び(3)から導かれるものは、例として:構造化材料シートの壁の厚みsが大きければ大きいほど、支持体間の間隔hはより大きくなり、支持体の直径Dはより大きなものを選択しなければならない。それゆえに壁厚みsが大きい材料シートは、壁の薄い材料シートよりもより大きな浮き出し構造となる
【0018】
本発明方法は、工材の少ない可塑性変形で構造化材料シートの高度な形剛性を保証する。構造化材料シートに依然として存在する可塑は、二次的変形プロセスに利用できる。本発明方法の更なる態様は、形剛性を更に改善するために構造化された材料シートが有する、まだ利用し尽くされていない可塑利用である。これは本発明に基づく方法において、例えば、弾性あるいは油圧クッションを材料シートと支持体に対して押しつけることにより前記の浮き出しプロセスを開始させ、その後クッションを、浮き出しくぼみ域に工材の事後伸延が生じるように、材料シートに対しより強い圧力で押しつけることにより達成される。同時に材料シートと支持体との間の摩擦作用により、材料シートが支持体域内で裂けないように、浮き出しくぼみ方向への材料シートの流れが中断、あるいは制限される。この摩擦作用は伸開線を浮き出しくぼみ方向に支持体に幾何適合させることにより得ることができる。支持体輪郭の幾何様式においては、特に壁の厚みと変形する材料シートの材質に依存する最小屈曲半径を考慮する。
【0019】
本発明を、以下、例に基づき説明する。
図1は、上部に支持体が置かれているローラーと柔軟な圧力ローラーを有する浮き出し構造化材料シート、及び/又は、ホイル製造装置の、半径方向の断面図である。
図2は、弾性、単ねじ山でネジ状の支持螺旋を有する装置により製造された、二つの浮き出し構造の俯瞰図である。
図3は、弾性、複ねじ山でネジ状の支持螺旋を有する装置により製造された、一つの浮き出し構造の俯瞰図である。
図4は、紋章形の剛性支持体を有する装置により製造された、一つの浮き出し構造の俯瞰図である。
図5は、紋章形の浮き出し構造化材料シート製造用支持体俯瞰図及び四つの支持体の断面である。
図6は、工材の事後伸延を有する紋章形浮き出し構造化材料シート製造用の剛性支持体の構造の例である。
図7は、紋章形浮き出し構造化缶製造用の支持体及び柔軟性圧力ローラーを有するローラーを用いた、本発明方法応用した装置の構造の例である。
図8は、紋章形浮き出し構造化缶製造用の支持体と凹形の柔軟性圧力クッションを有するローラーの本発明方法応用した装置の構造の例である。
図9は、紋章形浮き出し構造化缶の側面図である。
【0020】
図1は浮き出し構造化材料シートあるいはホイル製造のための本発明の方法を用いた応用装置の原則的構造を示す。材料シート1は上に支持体3が置かれるローラー2の周囲に導かれ、柔軟性圧力ローラー4に圧力を加え、押しつけることにより曲げられる。これにより材料シート内に浮き出し構造が生じる。
【0021】
図2及び3は、展開された浮き出し構造化材料シートの俯瞰図である。
図2及び3は、浮き出し折り目の自己形成によ調整された浮き出し折り目の構造を示す。これは、例えば、剛性のネジ状螺旋の代わりに、圧力方向にたわむしなやかなネジ状螺旋を支持体として使用することにより生じる。材料シートの移動方向に対して垂直な方向に、先端へと尖る浮き出し折り目、及び、材料シートの移動方向に対して横向きの、ほぼS形の浮き出し折り目を有する紋章形の構造が、自由調整によって生じる。移動方向は図2の俯瞰図では紙面の縦方向となる。図2では、単ねじ山のネジ状支持螺旋が使用されている。図2では、例えば、及び先端が異なる浮き出し構造を有する二つの紋章形の構造が示される。浮き出し折り目の横方向においては、相互に中間間隔hを示し、材料シートの移動方向に対して垂直方向の浮き出し折り目は、相互に中間間隔bを示す。図3では複ねじ山のネジ状支持螺旋が使用されている。この方法により浮き出し構造と材料シートの移動方向との角度調整できる。なぜならば形剛性の方向依存性により、浮き出し構造は、移動方向、あるいは材料シートの移動方向に対して垂直に配置された支持体によってではなく、移動方向に対して調整可能な角度に配置された支持体によって製造される方が有利となからである。
【0022】
図4は、紋章形で剛性の支持体を有する装置により製造される、浮き出し構造の俯瞰図である。この剛性支持体の外形及び輪郭は自己形成により調整される紋章形の浮き出し折り目にほぼ相当する。丸くなった、例としてS形の支持体の半径は個々に規定されていないので、紋章形の浮き出し構造は非常に大きな変動幅を有する。
【0023】
図5は、紋章形の浮き出し構造化材料シート製造用の支持体の俯瞰図及び4つの横断面における構造図を示す。俯瞰図においては支持体の域は横断面における支持体輪郭が示されている切断線で記載されている。1....1の印は、横向きのほぼS形の浮き出し折り目域の支持体の横断面を示す。支持体の丸くなった輪郭のデザインいては、変形する材料シートの最小屈曲半径を考慮しなければならない。2....2の印は材料シートの移動方向に垂直な方向浮き出し折り目域内の支持体横断面を示す。この支持体の輪郭も同様に丸くなっている。3....3及び4....4の印は多数の支持体が集中することによって丸くなった鞍状部の2つの横断面の例を示す。俯瞰図における支持体は先端へと尖る形となっているにもかかわらず、この鞍状部は横断面において、このように柔らかく丸くなった輪郭をしめす。
【0024】
図6は、形剛性を更に改善するために、材料シートの事後伸延を有する紋章形の浮き出し構造化材料シート作成用の剛性支持体の拡大横断面における構造図を示す。弾性又は油圧クッション5が材料シート及び支持体3に押しつけられることにより浮き出しプロセスを生じさせる。材料シート6の浮き出しくぼみ最初は自由に形成され可塑を充分に保持する。その後クッション5をより強い圧力で材料シートに押しつけると、材料シートの浮き出しくぼみ7域において事後伸延が生じる。材料シート1と支持体3間の摩擦作用により、浮き出しくぼみ方向への材料シート1の流れが中断あるいは制限され、これにより支持体3の上部の丸くなった輪郭域内で材料シート1が裂けることはない。この摩擦作用は伸開線8を支持体3に幾何的に適合させることにより得ることができる。
【0025】
図7は、本発明を応用した、支持体ローラー10と柔軟性圧力ローラー11(横断面と縦断面内)からなる、構造化缶9製造する装置の原理構造を示す。缶直径り小さ支持ローラー10缶内部を、そして圧力ローラー11は外部を走り、これにより上記の浮き出しが生じる。
【0026】
図8は、本発明の更なる応用に基づく構造化缶製造用の装置の原理構造を示す。缶胴体に密着し、缶胴体及び支持体ローラー14に対する一様な圧力を保証する凹形の柔軟性クッション12が、柔軟性圧力ローラーの代わりに缶胴体13に対し押しつけられる。
【0027】
図9は、軸方向において先端へと尖る、紋章形の浮き出し折り目を有する構造化缶の側面図を示す。
本発明の浮き出し構造化の利点は、回転方向(異方性である)、増大した形剛性を有すると共に、全方向(等方性質)に一様な形剛性を有する缶が提供されることである
【図面の簡単な説明】
【0028】
【図1】本発明の浮き出し構造化方法に用いられる、浮き出し構造化材料シート、及び/又は、ホイル製造装置の、半径方向の構造図
【図2】弾性、単ねじ山でネジ状の支持螺旋を有する装置により製造された、二つの浮き出し構造の俯瞰図。
【図3】弾性、複ねじ山でネジ状の支持螺旋を有する装置により製造された、浮き出し構造の俯瞰図。
【図4】紋章形の剛性支持体を有する装置により製造された、浮き出し構造の俯瞰図。
【図5】紋章形の浮き出し構造化材料シート製造用支持体の俯瞰図、及び、四つの支持体の断面図。
【図6】工材の事後伸延を有する紋章形浮き出し構造化材料シート製造用の剛性支持体の構造図。
【図7】本発明の方法を応用した、紋章形浮き出し構造化缶製造用の装置の構造図。
【図8】紋章形浮き出し構造化缶製造用の支持体と凹形の柔軟性圧力クッションを有するローラーの本発明に基づく方法応用装置の構造図。
【図9】紋章形浮き出し構造化缶の側面図。
【符号の説明】
【0029】
1 材料シート
2 ローラー
3 支持体
4 柔軟性圧力ローラー
5 油圧クッション
6 材料シート
7 浮き出しくぼみ
8 伸開線
9 構造化缶
10 支持ローラー
11 圧力ローラー
12 凹形クッション
13 缶
14 支持ローラー 【Technical field】
[0001]
The present invention relates to a raised structuring method in which pressure is applied to a bent sheet of material on a spaced support.
[Background]
[0002]
Many methods for structuring thin-wall material surfaces are known. This includes well-known deformation methods such as roller pressing of a groove using a complex forming tool when generating three-dimensional hardening, or structural indentation. These mechanical deformation methods require complex and expensive forming tools, resulting in a deficiency that the structured material sheet is plastically deformed with strength, and the raw material surface material is damaged by mechanical plane pressure.
[0003]
European Patent Publication No. 0 441 618 A1 describes a structuring method for forming a polyhedral structure with a mechanical forming tool (two embossing rollers). Furthermore, in order to engrave an axial groove in the can, an apparatus is known in which the inside of the can is supported by an axial rigid element and pressure is applied to the outside by an elastic roller (German Patent Specification DE 35 87 768 T2). Another application (US Pat. No. 4,576,669) presents a method of guiding plastic foil onto a roll with a small bowl inside and drawing it into it by vacuum. However, this method does not improve the shape rigidity of the foil. Similarly, in the method of forming a round structure and leaving a plastic foil that leaves a wide undeformed partial surface between the structures, the shape rigidity of the foil is not significantly improved (French patent application no. 1,283,530).
[0004]
Also known is a method of structuring a thin material sheet or foil into a raised shape. In this method, a bent thin sheet of material or foil is supported on the inside by a linear support, and pressure is applied from the outside. External pressure depends on hydraulic pressure. In this way, raised structures are formed in which the positions for improving the shape rigidity of the material sheet are shifted (German Disclosure No. 25 57 215, German Patent Specification DE 43 11 978). This raised structuring process does not require two mechanically acting embossing rollers, only in that the material sheet is placed and this material sheet only requires a support core that is pressurized by hydraulic pressure. The principle differs from the case of the above-mentioned European publication No. 0 441 618A1. As a multifaceted example, hexagonal structure formation is described in an international patent application published as PCT / EP 94/01043 (see FIGS. 5B and 5c). It is also possible to apply pressure with an unstructured elastic cushion or an unstructured elastic plastic instead of hydraulic pressure. The support against which the material sheet is pressed can be composed of a rigid material or a flexible material that shifts its position on the core.
[0005]
In the pure mechanical forming method described in the above-mentioned European Patent Publication No. 0 441 618 A1, the raw material surface material is significantly damaged by mechanical deformation of strength. The longitudinal groove forming device described in German Patent Specification DE 35 87 768 T2 uses linear, axial and rigid supports and elastic pressure bodies. However, the shape rigidity of the material thus structured with axial grooves is not satisfactory because the grooves do not produce multi-dimensional rigidity for geometric reasons. The deformation methods described in German Disclosure No. 25 57215, German Patent No. DE 43 11 978 and PCT / EP 94/01043 are different from the groove with the raised structure shifted in position. Produces multi-dimensional rigidity without adverse effects.
[0006]
It is an object of the present invention to show how to use the advantages of the methods known so far without taking the deficiencies of the methods.
The problem of the known embossing structuring method is that the material to be structured in the deep embossed crease area has very strong local elongation and compressive strain, which weakens the material in this area, A significant plastic deformation that can tear the material.
[0007]
Another problem with previously known methods of structuring thin material sheets or foils is that the crease self-formation, which improves shape stiffness, is completely impossible or insufficient for some applications. is there. Self-formation of raised folds must be understood as a multi-dimensional crease process so that the material improves its shape stiffness. The process of deformation of this raised structure is, for example, that a curved thin wall material supported by rigid support rings or screw-like rigid support spirals (German Disclosure No. 25 57 215) spaced inside is used. Caused by instability due to external pressure. This instability creates a multi-dimensional fold and thereby forms a square raised structure that is displaced in position. In this way, thin-walled materials move to a new state where the most important attributes are improved shape stiffness. The problem with the square raised structure, shifted in position, is that strong plastic deformation that weakens the material may occur in the raised crease area. If, for example, a rubbery flexible support is used instead of a rigid support that can move axially on the core during the relief structuring, a hexagonal relief structure results. This hexagonal raised structure can be formed by a hexagonal rigid support (PCT / EP94 / 01043). Also in hexagonal relief structure studies, like the relief structure of the rectangle shifted position, it was found that the plasticizer strong weakening the material deformation can occur. This square or hexagonal raised structure is further said that it is difficult for the material sheet thus structured to change from a cylindrical shape to a flat shape without significantly impairing the isotropic rigidity. Has a problem. Studies have shown that horizontal raised folds placed in the direction of movement of the material sheet can be bent into a flat shape only with extreme force. The raised structure arranged transversely to the direction of movement of the material sheet is flattened at the same time and bent slightly inward. Therefore, the raised structure is made flat by making it flat. Lose some of the. The thicker the wall of the material sheet, the more serious this problem is, and it is not possible to obtain the isotropic shape stiffness of the structured material sheet in this way. For this reason, the structuring methods known so far are limited to square and hexagonal raised structures and corners. Due to this limitation, an optimized structure of the raised fold has not been found so far. This optimization is related to the structural geometry and the fold geometry itself. The raised structure, for example its size and depth, determines the increase in shape stiffness in the thickness of the material. The contour of the crease must accept a shape that minimizes plastic deformation despite its manifestation. It has been discovered that this criterion is achieved when the material is deformed in a free self-adjustment in this way.
DISCLOSURE OF THE INVENTION
[Problems to be solved by the invention]
[0008]
The solution to this problem in the present invention is that when a material sheet is deformed by applying hydraulic pressure or elastic pressure, a macroscopic raised structure is simply defined by the support, and the support is bent when structured, and the structural fold itself is supported. Take over body functions . The relief via the folds and embossed depressions free self-adjusting, by taking the minimum optimal way to withstand the deformation pressure strong in plastic deformation is to be realized in the form that is optimized for relief folds.
BEST MODE FOR CARRYING OUT THE INVENTION
[0009]
One aspect of this method is that a bent thin walled material sheet or foil is supported by a spiral flexible support helix on the inside and pressure is applied from the outside. The supple support helix bends inward a little at external pressure and twists a little while doing so, which reduces the diameter of the support helix a little. First, in this manner, it is formed folds relief of substantially square, which is then freely adjusted optimally. At that time, it raised folds of substantially square, which is initially weakly formed, with increasing depth, Ri as Na folds each other mutually support each other, take over gradually supporting action of the support helix. And pairs to support the spiral supple spiral form, because the flexed inwardly with increasing external pressure, the support effect gradually weakens. Folds embossed in this way, so to speak his freely can be self-formed, in the process of self-forming, take the optimum shape to resist deformation pressure. This is valid not only for the optimized geometry of the raised structure, but also for the contour of the individual raised folds, ie its outer contour or roundness.
[0010]
The geometry of the raised folds optimized in this way is, for example, a heraldic structure resulting from a parallelogram with the narrow side pointed to the tip and the vertical side rounded. Fold relief pointed to tip, reduced to a curved sheet of material is supported by a spiral-shaped support helix from the inside, parallel to the axis of rotation of the support helix, that is, against the movement direction of the material sheet in a direction perpendicular The self-formed embossed crease produced is the optimum method . Optimization of formation of individual relief folds in the direction of movement is in the direction of movement of the material sheet, rounded, that only embossed fold S-shaped occurs as an example, that is raised buckling occurs with a large plastic deformation It can be understood by not having. The mutual concentration range of embossed fold, have a soft bend radius, fold saddle portion became substantially flat is formed. In this way, multiaxial bending creases that cause large plastic deformation of the work material are prevented.
[0011]
Rounded is raised creases on the moving direction of the material sheet, in order to be easily deformed hence, bending the relief folds and consuming only power, a flat shape by a minimum of plastic deformation of Industrial Materials Can do. Further , the raised folds parallel to the rotation axis of the support spiral, that is, perpendicular to the moving direction of the material sheet are shortened. As a result, the structured material sheet as is can fix easily flattened shape while maintaining the shape rigidity isotropic. Also it is possible to obtain a result advanced form rigid material sheet to a minimum of plastic deformation. Therefore can be structured thick material sheet of wall in this manner, it is possible to fix a flat shape.
[0012]
However, the generally heraldic raised folds formed in this way still do not have a precisely uniform shape. As this cause, especially, it may be mentioned that the disproportionation quality properties that can not be avoided of Industrial Materials, the pressure exerted on the wall thickness tolerance and material sheet of the original Industrial Materials not uniform. Accordingly, a further aspect of the present onset Ming is to create a favorable preconditions as possible for the formation of optimal relief structure. It was first determined optimum crease in free adjustment, relief structure is then formed, in particular so that the contour of the fold is that possible corresponding to geometry are self-forming, can be achieved by forming the support.
[0013]
An essential feature of the optimized support in this way, the transverse direction of the support, for example to have a round Mi such as S-shaped, and is present on the support, a number of support frequency to focus on each other, is to be a flat or contour with a warp a little bit of single Japan. In so doing, the individual radii of the lateral support, rounded as in the S shape, are not defined. As a result, shows the high degree of form rigid in slight plastic deformation of the raw materials, relief structures of a variety of emblem shape is formed. Embossed fold the material sheet is reduced vertically to the movement direction, only similarly slightly plastic deformation, therefore the support holds the rounded contour.
[0014]
Geometric dimensions of such optimized support may approximate calculation by Equation (1). This equation (1) was experimentally developed for self-formation of a substantially rectangular raised structure (German Disclosure No. 2557 215), and can be applied approximately to a substantially heraldic raised structure.
Figure 0004153994
In equation (1), n is the number of raised structures D in the movement direction of the material sheet with respect to one rotation of the support, and the diameter D of the support (unit mm)
h is the intermediate distance between the supports in the transverse direction (unit: mm), and s is the thickness of the material sheet (unit: mm)
Means each.
[0015]
The relationships (2) relating to relief the number n on the support circumference, substantially square (h = b) relief structure value of the associated equation in the case of (3) is obtained.
Figure 0004153994
[0016]
Valid This equation relief structure of substantially square (3) is approximately also be applied to relief structure of almost emblem shaped, where the intermediate gap h between the lateral support (mm) is Ru is selected. Approximately the equation (3) for emblem shaped relief structure is simply because shows the approximation, may be slightly deviate from the reference value by equation (3).
[0017]
What is derived from equations (1), (2) and (3) is as an example: the greater the wall thickness s of the structured material sheet, the greater the spacing h between supports, A larger diameter D must be selected. Therefore wall thickness s is large sheet of material, a larger relief structures than thin material sheet walls.
[0018]
The method of the present invention, a small plastic deformation of Industrial Materials, ensures a high degree of shape rigidity of a structured material sheet. Plasticity still present in the structured material sheet is applicable to secondary deformation process. A further aspect of the method of the invention further structured material sheet has to improve the shape rigidity is still available in plastic that is not us perfect use. This is the method according to the present invention, for example, by pressing an elastic or hydraulic cushion against the material sheet and the support to start the above-mentioned lifting process, after which the post-extension of the work material occurs in the raised recess area. Thus, it is achieved by pressing the material sheet with a stronger pressure. The friction action between the same time the material sheet and the support sheet of material so as not to tear the support region, the sheet of material flow in the embossed depression direction interrupted or limited. This friction effect can give Rukoto Ri by the be geometric fit to the support in a direction depressions raised the involute. In geometric style of the support contour, considered in particular the thickness of the wall, the minimum bending radius depending on the material of the sheet of material deformed.
[0019]
The invention will now be described by way of example.
FIG. 1 is a radial cross-sectional view of a raised structured material sheet and / or foil manufacturing apparatus having a roller with a support on top and a flexible pressure roller.
FIG. 2 is an overhead view of two raised structures manufactured by an apparatus having an elastic, single threaded and threaded support spiral.
FIG. 3 is an overhead view of one raised structure manufactured by an apparatus having an elastic, multi-threaded screw-like support spiral.
FIG. 4 is an overhead view of one raised structure manufactured by an apparatus having a crest-shaped rigid support.
Figure 5 is a top view of a relief structured material sheet for producing the support of the emblem shape, and a cross-sectional view of the four support.
FIG. 6 is an example of the structure of a rigid support for producing a heraldic raised structured material sheet with post-extension of the work material.
FIG. 7 is an example of the structure of an apparatus to which the method of the present invention is applied using a roller having a support for producing a heraldic raised structured can and a flexible pressure roller.
FIG. 8 is an example of the structure of an apparatus to which the method of the present invention is applied , including a support for manufacturing a heraldic raised structured can and a roller having a concave flexible pressure cushion.
FIG. 9 is a side view of a crest-type raised structured can.
[0020]
FIG. 1 shows the principle structure of an application device using the method of the present invention for the production of raised structured material sheets or foils. Material sheet 1 is guided around a roller 2 which support 3 above is placed, the pressure on the flexible pressure roller 4 is bent by pressing. This creates a raised structure in the material sheet .
[0021]
2 and 3 is an overhead view of a structured material sheet embossed deployed.
2 and 3 show the structure of the folds embossed adjusted Ri by the self-formation of the relief folds. This is caused, for example, by using a flexible screw-like helix that bends in the pressure direction as a support instead of a rigid screw-like helix. In a direction perpendicular to the moving direction of the material sheet, the folds embossed pointed to the tip, and, the sideways against the moving direction of the material sheet, the structure of emblem shape with a raised folds of substantially S-shaped, the free adjustment Arise. The moving direction is the vertical direction of the paper in the overhead view of FIG. In Figure 2, the screw-like support helix of a single thread is used. In FIG. 2, for example, two emblem-shaped structures having raised structures with different sides and tips are shown . In the lateral direction of the fold-out come floating, mutually illustrates an intermediate distance h, embossed crease in the vertical direction against the movement direction of the material sheet, an intermediate distance b from each other. In FIG. 3, a double threaded threaded support helix is used. By this method, it is possible to adjust the angle between the relief structure and the moving direction of the material sheet. Because the direction dependence of the form rigid, raised structure, rather than by the movement direction, or support located perpendicularly to the movement direction of the material sheet, arranged in adjustable angle to the direction of movement This is because that advantageously the Do people manufactured by support was.
[0022]
FIG. 4 is an overhead view of a raised structure manufactured by an apparatus having a heraldic and rigid support. The outer shape and contour of the rigid support substantially correspond to a crest-shaped relief fold adjusted by self-formation. Since the radii of the rounded, eg S-shaped supports are not individually defined , the heraldic raised structure has a very large variation.
[0023]
Figure 5 shows a structural view of overhead view and four cross-sections of the supporting lifting body for relief structured material sheet manufacturing crest-shaped. In overhead view, realm of the support is described in section line shown support contours in cross section. 1. . . . First indicia showing the cross section of the support of the relief fold area transverse substantially S-shaped. Support, One in the design of a rounded contour information, must be considered the minimum bend radius of the sheet of material deformed. 2. . . . 2 The mark in a direction perpendicular to the moving direction of the material sheet, showing the support cross-section of the relief fold territory region. The contour of this support is also rounded. 3. . . . 3 and 4. . . . 4 of indicia, the saddle portion rounded by a large number of supports are concentrated, showing an example of a two cross-sections. Even though the support in the overhead view is pointed toward the tip, the saddle-like portion has such a soft and round outline in the cross section.
[0024]
6, in order to further improve the shape rigidity, shows a structural view of enlarged cross-section of the rigid support for the relief structured material sheet creation emblem shape with a posterior distraction of the material sheet. The Rukoto elastic or hydraulic cushion 5 is trained push the material sheet 1 and the support 3, causing the relief process. Relief recesses of the material sheet 6 is initially be freely formed, sufficiently retain plasticity. After that, when pressed against the cushion 5 to the sheet of material with a stronger pressure, posterior distraction occurs at raised recess 7 area of the material sheet. The frictional action between the material sheet 1 and the support 3 interrupts or restricts the flow of the material sheet 1 in the direction of the embossed depression, which causes the material sheet 1 to tear within the rounded contour area of the upper part of the support 3. There is no. This frictional action can be obtained by geometrically fitting the extension wire 8 to the support 3.
[0025]
FIG. 7 shows the principle structure of an apparatus for manufacturing a structured can 9 composed of a support roller 10 and a flexible pressure roller 11 (within a transverse section and a longitudinal section) to which the present invention is applied . The small not support roller 10 can internal Ri by the diameter of the can, and the pressure roller 11 runs the external, thereby relief of the results.
[0026]
FIG. 8 shows the principle structure of an apparatus for manufacturing structured cans according to a further application of the invention . In close contact with the can body, a concave flexible cushion 12 to ensure uniform pressure on the can body and the support roller 14 is pressed against the can body 13 in place of the flexible pressure roller.
[0027]
FIG. 9 shows a side view of a structured can with a crest-shaped raised crease pointed to the tip in the axial direction.
The advantage of relief structuring of the present invention, in the rotating direction (an anisotropic), which has a shape stiffness increases, the can is provided with a uniform shape rigidity in all directions (isotropic properties) It is .
[Brief description of the drawings]
[0028]
FIG. 1 is a radial structural diagram of an embossed structured material sheet and / or foil manufacturing apparatus used in the embossed structuring method of the present invention .
FIG. 2 is an overhead view of two raised structures manufactured by a device having an elastic, single-threaded screw-like support spiral.
FIG. 3 is an overhead view of a raised structure manufactured by an apparatus having elastic, double-threaded screw-like support spirals.
FIG. 4 is an overhead view of a raised structure manufactured by an apparatus having a crest-shaped rigid support.
FIG. 5 is an overhead view of a support for manufacturing a crest-shaped raised structured material sheet, and a cross-sectional view of four supports.
FIG. 6 is a structural diagram of a rigid support for manufacturing a heraldic embossed structured material sheet with post-extension of the work material.
FIG. 7 is a structural diagram of an apparatus for manufacturing a heraldic raised structured can, to which the method of the present invention is applied.
FIG. 8 is a structural diagram of a method application apparatus according to the present invention of a roller having a support for manufacturing a heraldic raised structured can and a concave flexible pressure cushion.
FIG. 9 is a side view of a crest-type raised structured can.
[Explanation of symbols]
[0029]
1 Material sheet
2 Roller
3 Support
4 Flexible pressure roller
5 Hydraulic cushion
6 Material sheet
7 Embossed depression
8 Extension line
9 Structured can
10 Support roller
11 Pressure roller
12 Recessed cushion
13 cans
14 Support roller

Claims (6)

屈曲した材料シート間隔をおいて相互配置された支持体上で支えられると共に、前記材料シートに、前記支持体の向かい側から空気油圧又は弾性プラスチックにより変形圧力が加えられ、該変形圧力によって支持体が変形圧力の方向にたわむことにより浮き出し折り目が自己形成される浮き出し構造化方法であって、前記支持体がたわむことにより自己形成される前記浮き出し折り目が、最小の可塑性変形によって変形圧力に耐える、角のない形状であることを特徴とする浮き出し構造化方法。 Bent sheet of material, Rutotomoni supported on a support arranged in mutually spaced, said sheet of material, air, deformation pressure Ri by the hydraulic or resilient plastic applied from opposite the support A relief structuring method in which a raised fold is self-formed by bending the support in the direction of the deformation pressure by the deformation pressure, and the raised fold self-formed by the bending of the support has a minimum plasticity. An embossed structuring method characterized by having a cornerless shape that resists deformation pressure by deformation. 前記浮き出し折り目が相互に支え合う折り目である、請求項1に記載された浮き出し構造化方法。 The raised structuring method according to claim 1, wherein the raised folds are folds that support each other. 前記角のない形状が、紋章形あるいはしずく状形の浮き出し構造である請求項1又は2に記載された浮き出し構造化方法。 Shape without the angle, relief structured method according to claim 1 or 2 which is relief structure crest-shaped or drop Jogata. 前記材料シートの自己形成によって調整される浮き出し折り目の寸法が計算によって決定されたものであると共に、支持体が、前記決定された浮き出し折り目の寸法に適合されたものである、請求項13のいずれか記載された浮き出し構造化方法。 Wherein with dimensions of relief fold is adjusted I by the self-forming material sheet is one that was determined by calculation, the support is one which is adapted to the dimensions of raised fold said determined claims relief structuring method according to any of 1 to 3. 前記浮き出し折り目を生じさせる初期変形圧力と事後伸延を生じさせる強化された二段目の変形圧力をかける浮き出し構造化方法であって、前記事後伸延において材料シートと支持体間に摩擦が存在する、請求項14のいずれか記載された浮き出し構造化方法。 Wherein the initial deformation pressure causing folds embossing, a relief structuring method applying a deformation pressure of the two-stage reinforced cause posterior distraction, friction previous have you to posterior extending between the sheet of material and the support there exists, embossed structured method as claimed in any one of claims 1 to 4. 前記変形圧力を生じさせるために柔軟性圧力ローラーあるいは凹形クッションを使用する、請求項15のいずれか記載された浮き出し構造化方法。To generate the deformation pressure, flexibility pressure roller A Rui that use concave cushions, it has been embossed structured method according to any one of claims 1 to 5.
JP53402597A 1996-03-23 1997-03-22 Embossed structuring method for thin material sheets Expired - Lifetime JP4153994B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19611478.0 1996-03-23
DE19611478A DE19611478A1 (en) 1996-03-23 1996-03-23 Process for increasing the dimensional stability of thin material webs
PCT/EP1997/001465 WO1997035705A1 (en) 1996-03-23 1997-03-22 Process for producing an embossed structure in thin material webs

Publications (3)

Publication Number Publication Date
JP2000507888A JP2000507888A (en) 2000-06-27
JP2000507888A5 JP2000507888A5 (en) 2004-12-02
JP4153994B2 true JP4153994B2 (en) 2008-09-24

Family

ID=7789170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53402597A Expired - Lifetime JP4153994B2 (en) 1996-03-23 1997-03-22 Embossed structuring method for thin material sheets

Country Status (7)

Country Link
US (1) US6217811B1 (en)
EP (1) EP0888208B1 (en)
JP (1) JP4153994B2 (en)
AT (1) ATE212899T1 (en)
DE (2) DE19611478A1 (en)
ES (1) ES2172779T3 (en)
WO (1) WO1997035705A1 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19858432B4 (en) * 1998-12-17 2008-04-10 Dr. Mirtsch Gmbh Energy absorbing deformation element
DE10021456C2 (en) * 2000-05-03 2003-03-27 Miele & Cie Method for embossing arch structures in a hollow cylinder and device for carrying out the method
DE50015941D1 (en) 2000-11-28 2010-07-29 Siteco Beleuchtungstech Gmbh Outdoor light with improved radiation characteristics
DE60306780T2 (en) * 2002-06-21 2007-06-14 CROWN Packaging Technology, Inc, Alsip forming rolls
DE10236350A1 (en) * 2002-08-08 2004-02-19 Basf Coatings Ag Bismuth compound-containing electrophoretic coating composition comprises a crosslinking binding agent having (potential) cationic or anionic groups and bismuth sub-salicylate
DE102004044509B4 (en) * 2004-09-15 2007-10-04 Dr. Mirtsch Gmbh Method for joining and stabilizing thermally and mechanically loaded, thin walls with a flat frame
DE102006002669B4 (en) * 2006-01-19 2010-04-01 Dr. Mirtsch Gmbh Multi-dimensionally structured sliding and skateboard
DE102006014049B4 (en) * 2006-03-27 2009-06-04 Dr. Mirtsch Gmbh Process for producing a structured plastic component
DE102006055657A1 (en) 2006-11-23 2008-05-29 Behrens, Arno, W. Dr.-Ing. Component of a flat material and method for its production
DE102006062189B4 (en) 2006-12-22 2009-03-19 Dr. Mirtsch Gmbh Method for producing a structured material web for the passage of fluid media, structured material web and use thereof
DE102008056500A1 (en) * 2008-11-08 2010-05-12 Innova-Paper-Form Gmbh Material sheet e.g. web material, structuring method for calender, involves bringing material sheet into horizontal shape by breaker rollers after leaving structured roller gap, which is formed by stamping and counter-pressure rollers
DE102009049573B4 (en) 2009-10-15 2013-03-14 Dr. Mirtsch Gmbh Method for producing a structured material web with bevelled partial areas, bent-off, structured material web produced according to the method and use thereof
DE102009051603B4 (en) 2009-11-02 2011-09-22 Dr. Mirtsch Gmbh A method of producing a structured pipe, structured product produced by the method and use thereof
DE102009058098B4 (en) 2009-12-12 2012-08-16 Dr. Mirtsch Gmbh Structured belt conveyor
DE102010034076B3 (en) 2010-08-12 2011-12-22 Dr. Mirtsch Gmbh Method for producing a structured, straight or one- or two-dimensionally curved material web / profile, associated / associated three-dimensionally structured / structured, straight / straight or one- or two-dimensionally curved / curved material web / profile, use thereof and a device for producing the same
DE102011109123B3 (en) * 2011-08-02 2012-08-02 Dr. Mirtsch Gmbh Method for producing sound absorbing component for door used in building, involves moving concave curved shell regions against supporting element tool so as to create pressure membrane stresses in shell
DE102011111845A1 (en) 2011-08-27 2013-02-28 Bernd Späth Hand-guided or hand-operated tool i.e. snow shovel, for use in snow cleaning device, has tool handle, and base or primary structure comprising structural elements with different sizes, where structural elements are formed from projections
DE102013017644B4 (en) * 2012-10-25 2017-09-21 Dr. Mirtsch Gmbh Method for producing a multi-dimensionally structured material web and use thereof
DE102013002213B4 (en) 2013-02-07 2016-06-02 Dr. Mirtsch Gmbh Method for producing a structured material web from knitted, knitted or woven threads and use of the same
DE102013003094A1 (en) 2013-02-25 2014-08-28 Bernd Späth Handheld snow removal tool e.g. snow shovel has shovel blade that is comprised of hexagonal primary patterning structure and provided with reinforcing ribs, where material thickness of blade and ribs are different from each other
DE102014000083B4 (en) * 2014-01-02 2017-12-07 Dr. Mirtsch Gmbh Method for producing a partially three-dimensional vault-shaped structured material web, partially three-dimensional vault-shaped structured material web, use of the same and a device for producing the same
DE102014006096B4 (en) 2014-04-29 2018-01-25 Dr. Mirtsch Gmbh Method for producing a multi-dimensionally structured material web for thin-walled planar wall elements and use thereof
GB2528289A (en) 2014-07-16 2016-01-20 Kraft Foods R&D Inc A die-cut lid and associated container and method

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3130412A (en) * 1959-07-31 1964-04-21 Scott Paper Co Process of and apparatus for treating sheet materials and product
AT269628B (en) * 1965-11-15 1969-03-25 Karl Dipl Ing Dr Mont Hanke Method and device for three-dimensional shaping of flat fibrous webs that are wet during production
FR1463640A (en) * 1966-01-14 1966-06-03 Improvements in the manufacture of forms for pleating textile materials
AT285290B (en) * 1969-03-03 1970-10-27 Gernot Dr Zippe Method and device for producing beads in thin-walled, hard metal sheets
DE2023775B2 (en) * 1970-05-15 1972-01-13 Deutsche Tafelglas AG Detag, 851OFürth Folded products from fibre reinforced resin laminates - - using mould consisting of angular plates
DE2318680A1 (en) * 1973-04-13 1974-10-31 Baier Kg Maschinenfabrik Geb Plastics sheet applied hot by rolling - onto articles of varying shapes and thickness at uniform speed
US4027517A (en) * 1974-01-07 1977-06-07 Bodnar Ernest R Method and apparatus for embossing sheet metal strip and sheet metal panel
CA1029580A (en) * 1975-08-29 1978-04-18 B And K Machinery International Limited Rotary embosser and process of embossing strip sheet metal
JPS58131036A (en) * 1982-01-29 1983-08-04 Toshiba Corp Molding method of bellows
JPS60143926A (en) * 1983-12-30 1985-07-30 Nippon Petrochem Co Ltd Method and apparatus for forming rugged sheet
US4576669A (en) * 1984-11-09 1986-03-18 Caputo Garry L "On demand" apparatus and method for producing air-cushioning product
US4842794A (en) * 1987-07-30 1989-06-27 Applied Extrusion Technologies, Inc. Method of making apertured films and net like fabrics
FR2665119A1 (en) * 1990-07-30 1992-01-31 Cebal Method of obtaining recessed marks or outlines on a plastic or metal-plastic tubular sheet or part and its use in the manufacture of a flexible tube
GB9201880D0 (en) * 1992-01-29 1992-03-18 Rasmussen O B Laminated films
DE4401974A1 (en) * 1993-04-06 1995-07-27 Frank Prof Dr Mirtsch Buckling method and apparatus
DE4311978C1 (en) * 1993-04-06 1994-04-21 Frank Prof Dr Mirtsch Forming dimples in thin sheet - by winding sheet on shaped support and deforming by fluid pressure
US5887470A (en) * 1993-04-06 1999-03-30 Mirtsch; Frank Method and apparatus for dent profiling
DE4437986A1 (en) * 1994-10-24 1996-04-25 Frank Dr Mirtsch Structuring a material surface with bulges

Also Published As

Publication number Publication date
EP0888208A1 (en) 1999-01-07
EP0888208B1 (en) 2002-02-06
DE59706310D1 (en) 2002-03-21
JP2000507888A (en) 2000-06-27
US6217811B1 (en) 2001-04-17
WO1997035705A1 (en) 1997-10-02
ATE212899T1 (en) 2002-02-15
ES2172779T3 (en) 2002-10-01
DE19611478A1 (en) 1997-09-25

Similar Documents

Publication Publication Date Title
JP4153994B2 (en) Embossed structuring method for thin material sheets
JP2932006B2 (en) Container
TW295555B (en)
CN1261249C (en) Squential forming device
PL181398B1 (en) Method of structuring thin material web in a manner ensuring surface protection and increasing rigidity of such web
JPH05131540A (en) Method for forming depressed line or contour on sheet or tubular part made of plastic material or metal/ plastic material and use of said method in manufacturing flexible tube container
US20190022968A1 (en) Folding method and apparatus
KR20100015615A (en) Embossing apparatus
KR880000629B1 (en) Apparatus for drawing of vessel
JPH08244113A (en) Equipment and method for deformation of edge in web
GB2187804A (en) A roller cage
US6221299B1 (en) Structuring process that stiffens and protects the surface of thin material webs
US5125252A (en) Variable geometry tube bending dies
KR20040058090A (en) Apparatus and method for spreading and shaping can bodies
JP2009208577A (en) Manufacturing method for torsion beam
WO2014112391A1 (en) Method for manufacturing metal component with three-dimensional edge, and die for manufacturing
JP3576357B2 (en) Sheet material forming method
DE19847902B4 (en) Process for forming thin, beulstrukturierter material webs
JP2002153917A (en) Bulging method
CN110997174B (en) Can manufacturing method, can manufacturing device, can, and can manufacturing tool set
JP2000246357A (en) Molding method and device for punch streching metal plate successively and molded article
EP0916429A1 (en) Method and device for forming a side wall on a base plate
JP2007237261A (en) Building plate curving and forming machine
JPH11333527A (en) Manufacture of cylindrical member for vehicle body structure
JP2001062517A (en) Forming method and equipment for ribbed plate material

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040315

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061010

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070104

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080707

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term