EP0888208B1 - Process for producing an embossed structure in thin material webs - Google Patents

Process for producing an embossed structure in thin material webs Download PDF

Info

Publication number
EP0888208B1
EP0888208B1 EP97916376A EP97916376A EP0888208B1 EP 0888208 B1 EP0888208 B1 EP 0888208B1 EP 97916376 A EP97916376 A EP 97916376A EP 97916376 A EP97916376 A EP 97916376A EP 0888208 B1 EP0888208 B1 EP 0888208B1
Authority
EP
European Patent Office
Prior art keywords
process according
fact
vault
folds
several
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97916376A
Other languages
German (de)
French (fr)
Other versions
EP0888208A1 (en
Inventor
Frank Mirtsch
Olaf Büttner
Jochen Ellert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0888208A1 publication Critical patent/EP0888208A1/en
Application granted granted Critical
Publication of EP0888208B1 publication Critical patent/EP0888208B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D51/00Making hollow objects
    • B21D51/16Making hollow objects characterised by the use of the objects
    • B21D51/26Making hollow objects characterised by the use of the objects cans or tins; Closing same in a permanent manner
    • B21D51/2646Of particular non cylindrical shape, e.g. conical, rectangular, polygonal, bulged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/10Stamping using yieldable or resilient pads
    • B21D22/105Stamping using yieldable or resilient pads of tubular products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/08Deep drawing or matched-mould forming, i.e. using mechanical means only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/022Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing characterised by the disposition or the configuration, e.g. dimensions, of the embossments or the shaping tools therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/0014Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 for shaping tubes or blown tubular films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/04Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing using rollers or endless belts

Definitions

  • the invention relates to a method for dent structuring, in which curved Material webs with support elements arranged at a distance from each other with pressure be charged.
  • PCT / EP 94/01043 Patent application has been described (see Fig. 5 b and 5 c there).
  • the pressure can also be achieved by means of a non-structured, elastic cushion or by a non-structured elastomer.
  • the Support elements against which the material web is pressed can be made from a rigid or on the core displaceable, flexible material.
  • the object of the present invention is to provide a method which Uses advantages of the known methods without accepting their disadvantages.
  • Another major disadvantage of the known methods for structuring thin Material webs or foils consists in the self-organization of the folds that the Improve the stiffness, is not possible or is made possible only inadequately.
  • Self-organization of the bulges is a process in which the Folds material multidimensionally in such a way that its stiffness improves.
  • This Forming process of dent structuring takes place, for example, in such a way that the curved, thin-walled material, the inside by spaced rigid support rings or is supported by a helical, rigid support spiral (O.S. 25 57 215) external pressure becomes unstable. The instability triggers a multidimensional fold, and this creates staggered, square dent structures.
  • the structuring process consists in that the structures are based on angular shapes, such as four and hexagonal dent structures, remain limited. Due to this limitation, one optimal structure of the bulges have not yet been found.
  • the stretches Optimization on the geometry of the structure and the geometric shape of the fold itself The structure of the bumps, for example their size and depth, are determined for a given one Material thickness the increase in stiffness.
  • the contours of the folds must be such Take shape that, despite their characteristics, only a minimum of plastic deformation occurs. It has now been found that these criteria can only be achieved if the Material deformed in this way in free self-adjustment.
  • the optimal shape of the Bulging is found in that the deformation of the web by means of a hydraulic or elastic pressure transmission by means of the macroscopic dent structure Support elements is only specified that these support elements in the course of the structuring give in that the structural folds take over the function of the supporting elements themselves, and that the bulges and the bulges in free self-adjustment such an optimal shape assume that they meet the prevailing deformation pressure with minimal plasticization withstand.
  • An embodiment of the method is that a curved, thin-walled Material web or film on the inside by means of a screw-shaped, flexible Supporting spiral is supported and pressure is applied from the outside.
  • the flexible support spiral yields a little under external pressure and twists a little, so that the The diameter of the support spiral is slightly reduced.
  • initially form Buckling of roughly square shape which is then optimal through free self-adjustment Taking form.
  • the initially poorly developed dent folds take over square structure gradually the supporting effect of the support spiral, as the Support buckling folds with each other to an ever greater extent by themselves.
  • the supportive effect of the flexible, spiral-shaped support spiral decreases gradually, as it gives inward with increasing external pressure.
  • the bulges can practically develop by themselves, and they take it self-organizing to the optimal shape that withstands the deformation pressure. This applies not only for the optimized geometric arrangement of the dent structure, but also for the Formation of the individual dent folds, i.e. their outer contour or rounding.
  • the geometrical arrangements of the buckling pleats optimized in this way are for example, crest-like structures that have arisen from parallelograms, their Narrow ends taper and the long sides are rounded.
  • the tapered Bulges are created in an optimized way by the self-organization of the Bulge deformation on a curved web of material, which inside by means of a spiral Supporting spiral was supported, shortened dent folds parallel to the axis of rotation of the Support spiral, i.e. perpendicular to the direction of transport of the material web, favored.
  • the optimized Formation of the individual dent folds in the lateral direction is shown in that in the lateral In the direction of the material web, only rounded, for example S-shaped buckling folds have formed, i.e.
  • the buckling folds are rounded in the lateral direction of the material web and are therefore easy can be deformed, they can be applied with little effort and with minimal plasticization of the material are bent into the flat shape. Furthermore, the bulges are parallel to Axis of rotation of the support spiral, i.e. perpendicular to the direction of transport of the material web, shortened.
  • the result is a simple straightening of material webs structured in this way into the plane Shape, whereby the isotropic stiffness of the structured material web is preserved.
  • the result is high dimensional stability of the material web with minimized plastic Deformation. Therefore, material webs with larger ones can also be used in this way Structuring wall thicknesses and aligning them in the flat shape.
  • the approximately crest-shaped bulge structures produced in this way are not yet precise uniform shape.
  • the reasons for this include unavoidable inhomogeneities of the Material, the tolerances of the wall thickness of the starting material and a not exact even pressurization of the material web.
  • Another embodiment of the The method according to the invention is therefore for the optimal formation of the To create dent structure as favorable as possible. This is achieved in that the optimal folding is first determined with free adjustment, and that support elements so be designed so that the resulting buckling structures, especially the contours of the Wrinkles that largely correspond to the geometries formed by self-organization.
  • the essential feature of the optimized support elements is that the lateral Support elements have a rounded, for example S-shaped course and that the Support elements in the areas in which several support elements converge, one flattened or only slightly curved contour.
  • the radii are these rounded, for example S-shaped, lateral support elements not specified in detail.
  • the result is a wide range of variations, for example crest-shaped dent structures, one have high stiffness with little plastic deformation of the starting material.
  • the shortened buckling folds perpendicular to the transport direction of the material web should also be are plasticized only slightly, and therefore the support elements receive rounded contours.
  • Equation (1) The geometric dimensions of the support elements optimized in this way can be approximately calculated using equation (1).
  • This equation (1) was developed experimentally for the self-assembly of approximately square dent structures (OS 25 57 215), and it can also be used approximately for approximately crest-shaped dent structures.
  • n 2.45 • D 0.5 H 0.333 • d 0.2
  • the method according to the invention ensures a high degree of structural rigidity Material webs with little plastic deformation of the material.
  • the Plasticization reserves that are still in the structured material web can be used for secondary forming processes are used.
  • Another embodiment of the process according to the invention the unused plasticization reserves of the to use structured material web to further improve the dimensional stability. This can be achieved by the method according to the invention in that first for example, by an elastic or hydraulic cushion, which against the material web and the support elements is pressed, initiates the described buckling process, and that one then presses the pillow against the material web with greater pressure, so that in the area of the Buckling troughs a subsequent stretching of the material takes place.
  • Fig. 1 shows the schematic structure of a device for producing dent structured Material webs and / or foils with a roller on which support elements are arranged, and a flexible pressure roller (radial cross section).
  • Fig. 2 shows the top view of two buckling structures, which are produced with the aid of a device are equipped with an elastic, catchy, helical support spiral has been.
  • FIG 3 shows the top view of a dent structure which is produced with the aid of a device, which was equipped with an elastic, multi-start, helical support spiral.
  • FIG. 4 shows the top view of a dent structure which is produced with the aid of a device, which was equipped with coat of arms-shaped, rigid support elements.
  • Fig. 5 shows the schematic structure of support elements for the production of a coat of arms dent structured material webs in a top view of support elements and in four cross sections through support elements.
  • Fig. 6 shows the schematic structure of rigid support elements for production embossed, dent-structured material webs with post-stretching of the material.
  • Fig. 7 shows an example of the schematic structure of a device for using the Method according to the invention with a roller with support elements and with a flexible Printing roller for the manufacture of crate-shaped, dent-structured cans.
  • Fig. 8 shows an example of the schematic structure of a device for using the Method according to the invention with a roller with support elements and with a concave, flexible pressure pad for the manufacture of dented cans.
  • Fig. 9 shows the side view of a crest-shaped dent structure.
  • Fig. 1 shows the basic structure of a device for applying the method according to the invention for the production of dent-structured material webs or foils.
  • the Material web 1 is bent around the roller 2 on which the support elements 3 are attached and pressurized by pressing the elastic pressure roller 4. Thereby the buckling structures arise in the material web.
  • FIGS. 2 and 3 Structures are shown in FIGS. 2 and 3 that result when the bulges fold adjust freely through self-organization. This happens, for example, that instead of rigid, helical spiral a flexible, helical spiral as a supporting element is used, which yields in the printing direction. Free adjustment then results heraldic structures with pointed bulges perpendicular to the direction of transport the material web and lateral, approximately S-shaped bulges in the transport direction of the Web. In Fig. 2 a catchy, helical support spiral was used. In 2 schematically shows two coat of arms structures, which are located in the Distinguish the shape of the lateral and tapered bulges.
  • the lateral Buckling pleats have the mean distance h from one another, and the buckling pleats perpendicular to The direction of transport of the material ban is at an average distance b from one another. 3 a multi-start, helical support spiral was used. In this way you can different angles between the arrangement of the dent structures and the direction of the Adjust material web. Because due to the directional dependence of the stiffness, it can proved to be advantageous not to generate the dent structure by means of support elements which are arranged in the direction or transverse to the transport movement of the material web, but the are at an adjustable angle.
  • FIG. 4 shows the top view of a dent structure which is produced with the aid of a device, which was equipped with coat-of-arms, rigid support elements.
  • the shape and the Contour of these rigid support elements largely correspond to those resulting from self-organization adjusting crest-shaped bulges. Because the radii of the rounded, for example S-shaped Support elements are not specified in detail, there is a wide range of variation about heraldic bulge structures.
  • FIG. 5 shows the schematic structure of rigid support elements for production Crest-like bulged material webs in a top view and in four cross sections.
  • the areas of the support elements are marked by broken lines for the supervision the contours of the support elements are shown in cross section.
  • the mark 1 ?? 1 represents the cross section of a support element in the region of the lateral, approximately S-shaped bulge folds.
  • the mark 2 ?? 2 represents the Cross section of a support element in the area of the bulging folds perpendicular to the transport direction of the Material contour.
  • the contour of this support element is also rounded.
  • the mark 3 .... 3 and the marking 4 bib 4 represent two cross-sections of a rounded saddle several converging support elements. This saddle receives in this way in Cross-section of gently rounded contours, although the support elements in the top view are pointed have a tapering shape.
  • Fig. 6 shows in an enlarged cross section the schematic structure of rigid Support elements for the production of material webs with a crest-like structure Post-stretching of the material to further improve the dimensional stability.
  • the elastic or hydraulic cushion 5 presses against the material web 1 and the support element 3 and releases so the dent process.
  • the bulges of the material web 6 initially form freely, and they still have large plasticization reserves. If you then the pillow 5 with a presses greater pressure against the material web, there is a subsequent stretching of the Material in the area of the buckling troughs 7.
  • Fig. 7 shows the basic structure of a device for using the Method according to the invention for producing a structured can 9 by means of a Support element roller 10 and a flexible pressure roller 11 (in cross section and in Longitudinal section).
  • FIG. 8 shows the basic structure of a further device for using the Process according to the invention for the production of structured cans.
  • flexible Pressure roller presses a concave, flexible cushion 12 against the can body 13, the hugs the can body closely and distributes pressure evenly over the can Can body and the support element roller 14 guaranteed.
  • Fig. 9 shows the side view of a crest-shaped structured box with pointed leaking bumps in the axial direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Laminated Bodies (AREA)
  • Luminescent Compositions (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

According to the invention thin sheets of foil are stiffened in a particular way by means of vault-structuring. The vault-structuring occurs either by self-organizing or following a self-organized design with a spade-shaped or drop-shaped pattern.

Description

Die Erfindung betrifft ein Verfahren zur Beulstrukturierung, bei dem gekrümmte Materialbahnen über im Abstand zueinander angeordneten Stützelementen mit Druck beaufschlagt werden.The invention relates to a method for dent structuring, in which curved Material webs with support elements arranged at a distance from each other with pressure be charged.

Es sind zahlreiche Verfahren bekannt, um dünnwandige Materialbahnen zu strukturieren. Zu diesen Verfahren gehören die bekannten Umformverfahren, wie das Einwalzen von Sicken oder das Einprägen von Strukturen mit Hilfe komplizierter Formwerkzeuge, wenn dreidimensionale Versteifungen erzeugt werden sollen. Diese mechanischen Umformverfahren besitzen den Nachteil, daß man dazu aufwendige und teure Formwerkzeuge benötigt, daß die zu strukturierenden Materialbahnen stark plastifiziert werden und daß die Oberflächengüte des Ausgangsmaterials durch die mechanische Flächenpressung leidet.Numerous methods are known for structuring thin-walled material webs. To These processes include the well-known forming processes, such as the rolling in of beads or stamping structures with the help of complicated molding tools, if three-dimensional stiffeners are to be generated. This mechanical forming process have the disadvantage that you need complex and expensive molding tools that the to be structured material webs are strongly plasticized and that the surface quality of the Starting material suffers from the mechanical surface pressure.

In der Europäischen Patentanmeldung 0 441 618 A 1 wird ein Strukturierungsverfahren beschrieben, bei dem polyedrische Strukturen durch mechanische Formwerkzeuge (zwei Prägewalzen) erzeugt werden. Um axiale Sicken in Dosen einzuprägen, ist ferner eine Vorrichtung bekannt, mit deren Hilfe die Dose auf der Innenseite mit axialen, starren Elementen abgestützt und auf der Außenseite mit einer elastischen Rolle mit Druck beaufschlagt wird (DE 35 87 768 T 2). Es ist auch vorgeschlagen worden (US Patent 4.576.669), eine Kunststoffolie über eine Walze zu führen, in der sich Näpfchen befinden, in die der Kunststoff durch Vakuum hineingezogen wird. Auf diese Weise läßt sich die Formsteifigkeit der Folie aber nicht verbessern. Ein Verfahren zum Einbeulen von Kunststoffolie, das runde Strukturen erzeugt, zwischen denen breite, nicht verformte Teilflächen stehen bleiben (Französische Anmeldung 1.283.530), ergibt ebenfalls keine nennenswerte Verbesserung der Formsteifigkeit der so behandelten Folie.A structuring method is described in European patent application 0 441 618 A1 described, in which polyhedral structures by mechanical molding tools (two Embossing rollers) are generated. To emboss axial beads in cans is also one Device known, with the help of the can on the inside with axial, rigid Supported elements and on the outside with an elastic roller with pressure is applied (DE 35 87 768 T 2). It has also been proposed (U.S. Patent 4.576.669), to run a plastic film over a roller in which there are cells, in which the plastic is drawn in by vacuum. In this way, the But do not improve the stiffness of the film. A procedure for denting Plastic film that creates round structures, between which wide, undeformed Partial areas remain (French application 1,283,530), also does not result in any significant improvement in the stiffness of the film treated in this way.

Ferner ist ein Verfahren bekannt, nach dem dünne Materialbahnen oder Folien beulartig strukturiert werden. Dabei wird die gekrümmte, dünne Materialbahn oder Folie auf der Innenseite durch linienförmige Stützelemente abgestützt und von außen mit Druck beaufschlagt. Der äußere Druck wird hydraulisch aufgebracht. Auf diese Weise entstehen versetzte Beulstrukturen, die die Formsteifigkeit der Materialbahn verbessern (Deutsche Offenlegungsschrift 25 57 215, Deutsche Patentschrift DE 43 11 978). Dieser Prozeß des Beulstrukturierens unterscheidet sich von dem in der Anmeldung 0 441 618 A 1 prinzipiell dadurch, daß nicht zwei Prägewalzen erforderlich sind, die mechanisch wirken, sondern daß nur ein Stützkern benötigt wird, auf dem die Materialbahn aufliegt, und gegen den sie hydraulisch angepreßt wird. Die hydraulische Herstellung polyedrischer, beispielsweise hexagonaler Strukturen, ist in der unter Nr PCT/EP 94/01043 veröffentlichten internationalen Patentanmeldung beschrieben worden (siehe dort Abb. 5 b und 5 c). Anstelle der hydraulischen Druckaufprägung kann der Druck auch mittels eines nicht strukturierten, elastischen Kissens oder durch einen nicht strukturierten Elastomeren aufgebracht werden. Die Stützelemente, gegen die die Materialbahn gedrückt wird, können aus einem starren oder auf dem Kern verschiebbaren, flexiblen Werkstoff bestehen.Furthermore, a method is known by which thin material webs or foils bulge be structured. The curved, thin sheet of material or film on the Supported on the inside by linear support elements and pressure from the outside applied. The external pressure is applied hydraulically. This way arise offset buckling structures that improve the dimensional stability of the material web (German Laid-open specification 25 57 215, German patent DE 43 11 978). This process of Dent structuring differs in principle from that in application 0 441 618 A1 in that it does not require two embossing rollers that act mechanically, but that only a support core is required, on which the material web rests, and against which it is pressed hydraulically. Hydraulic manufacture of polyhedral, for example hexagonal structures, is in the international published under No. PCT / EP 94/01043 Patent application has been described (see Fig. 5 b and 5 c there). Instead of hydraulic pressure impressions, the pressure can also be achieved by means of a non-structured, elastic cushion or by a non-structured elastomer. The Support elements against which the material web is pressed can be made from a rigid or on the core displaceable, flexible material.

Bei dem in der Europäischen Patentschrift 0 441 618 A 1 beschriebenen, rein mechanischen Formgebungsverfahren wird die Oberflächengüte des Ausgangswerkstoffs infolge starker mechanischer Verformung erheblich beeinträchtigt. Die in DE 35 87 768 T 2 beschriebene Vorrichtung zur Herstellung von Längssicken verwendet linienförmige, axiale, starre Stützelemente und ein elastisches Druckelement. Die Formsteifigkeit des so strukturierten Materials mit den axialen Sicken ist jedoch unbefriedigend, da Sicken aus geometrischen Gründen keine mehrdimensionale Formsteifigkeit ergeben. Die in O.S. 25 57 215, DE 43 11 978 und PCT/EP 94/01043 beschriebenen Umformverfahren erzeugen im Gegensatz zur Sicke durch versetze Beulstrukturen eine mehrdimensionale Formsteifigkeit ohne Beeinträchtigung der Oberflächengüte.In the purely mechanical described in European Patent 0 441 618 A1 Shaping processes make the surface quality of the raw material stronger as a result mechanical deformation significantly affected. The one described in DE 35 87 768 T 2 Device for producing longitudinal beads uses linear, axial, rigid Support elements and an elastic pressure element. The stiffness of the structured Material with the axial beads is unsatisfactory, however, because the beads are geometrical No multidimensional stiffness. The in O.S. 25 57 215, DE 43 11 978 and PCT / EP 94/01043 produce forming processes in contrast to the bead due to offset buckling structures, a multidimensional stiffness without impairment the surface quality.

Die Aufgabe der vorliegenden Erfindung besteht darin, ein Verfahren anzugeben, das die Vorteile der bekannten Verfahren nutzt, ohne ihre Nachteile in Kauf zu nehmen.The object of the present invention is to provide a method which Uses advantages of the known methods without accepting their disadvantages.

Zu den wesentlichen Nachteilen der bekannten Verfahren zum Beulstrukturieren gehört, daß im Bereich tiefer Beulfalten örtliche Dehnungen und Stauchungen des zu strukturierenden Werkstoffs auftreten, die so stark sind, daß erhebliche plastische Verformungen entstehen, die in diesen Bereichen zu einer Schwächung des Materials führen, so daß der Werkstoff reißen kann.One of the major disadvantages of the known methods for dent structuring is that in the area of deep bulges, local expansion and compression of the structure to be structured Material occur that are so strong that significant plastic deformations occur lead to weakening of the material in these areas, causing the material to tear can.

Ein weiterer, wesentlicher Nachteil der bekannten Verfahren zum Strukturieren von dünnen Materialbahnen oder Folien besteht darin, daß dabei die Selbstorganisation der Falten, die die Verbesserung der Formsteifigkeit bewirken, gar nicht oder nur unzulänglich ermöglicht wird. Unter Selbstorganisation der Beulfalten ist ein Vorgang zu verstehen, bei dem sich der Werkstoff mehrdimensional derart faltet, daß sich seine Formsteifigkeit verbessert. Dieser Umformprozeß des Beulstrukturierens erfolgt beispielsweise in der Weise, daß das gekrümmte, dünnwandige Material, das innen durch im Abstand zueinander angeordnete, starre Stützringe oder durch eine schraubenförmige, starre Stützspirale (O.S. 25 57 215) abgestützt wird, durch äußeren Druck instabil wird. Die Instabilität löst eine mehrdimensionale Faltung aus, und dadurch bilden sich versetzte, viereckige Beulstrukturen. So geht das dünnwandige Material in einen neuen Zustand über, dessen wichtigste Eigenschaft in einer verbesserten Formsteifigkeit besteht. Ein wesentlicher Nachteil dieser versetzten, viereckigen Beulstrukturen besteht darin, daß im Bereich der Beulfalten starke plastische Verformungen entstehen, die das Material schwächen. Werden anstatt der starren Stützelemente flexible Stützelemente, beispielsweise aus Gummi, die sich während des Beulstrukturierens in axialer Richtung auf einem Kern verschieben können, verwendet, entstehen sechseckige Beulstrukturen. Diese sechseckigen Beulstrukturen lassen sich auch durch sechseckige, starre Stützelemente herstellen (PCT/EP 94/01043). Untersuchungen haben gezeigt, daß im Bereich der sechseckigen Beulfalten starke plastische Verformungen entstehen, die das Material schwächen, ähnlich wie bei den versetzten, viereckigen Beulstrukturen. Diese viereckigen oder sechseckigen Beulstrukturen weisen ferner den wesentlichen Nachteil auf, daß sich die so strukturierte Materialbahn nicht von der zylindrischen Gestalt in die ebene Form richten läßt, ohne erheblich an isotroper Formsteifigkeit einzubüßen. Untersuchungen haben gezeigt, daß die lateralen Beulfalten, die in Transportrichtung der Materialbahn angeordnet sind, nur mit erheblicher Kraft in die ebene Form gebogen werden können. Da sich dabei gleichzeitig die Beulfalten, die quer zur Transportrichtung der Materialbahn angeordnet sind, abflachen und nach innen etwas einwölben, verlieren diese Beulfalten durch das Richten in die ebene Form einen Teil ihrer ursprünglichen Formsteifigkeit. Je größer die Wanddicke der Materialbahn ist, desto gravierender wirken sich diese Nachteile aus, und eine isotrope Formsteifigkeit der strukturierten Materialbahn ist so nicht zu erzielen. Der wesentliche Nachteil dieser bekannten Strukturierverfahren besteht darin, daß die Strukturen auf eckige Formen, wie vier- und sechseckige Beulstrukturen, beschränkt bleiben. Durch diese Beschränkung konnte eine optimale Struktur der Beulfalten bisher nicht gefunden werden. Dabei erstreckt sich die Optimierung auf die Geometrie der Struktur und die geometrische Form der Falte selbst. Die Struktur der Beulen, beispielsweise ihre Größe und Tiefe, bestimmen bei gegebener Materialdicke den Zuwachs an Formsteifigkeit. Die Konturen der Falten müssen eine solche Form annehmen, daß trotz ihrer Ausprägung nur ein Minimum an plastischer Verformung auftritt. Es wurde nun gefunden, daß diese Kriterien nur erreichbar sind, wenn sich das Material in freier Selbsteinstellung in dieser Weise verformt.Another major disadvantage of the known methods for structuring thin Material webs or foils consists in the self-organization of the folds that the Improve the stiffness, is not possible or is made possible only inadequately. Self-organization of the bulges is a process in which the Folds material multidimensionally in such a way that its stiffness improves. This Forming process of dent structuring takes place, for example, in such a way that the curved, thin-walled material, the inside by spaced rigid support rings or is supported by a helical, rigid support spiral (O.S. 25 57 215) external pressure becomes unstable. The instability triggers a multidimensional fold, and this creates staggered, square dent structures. So the thin-walled material goes in a new state, the main characteristic of which is an improved stiffness consists. A major disadvantage of these staggered, square dent structures is that that strong plastic deformations occur in the area of the bulges, which the material weaknesses. Instead of the rigid support elements, flexible support elements, for example made of rubber, which during the dent structuring in the axial direction on a core can move, used, hexagonal dent structures arise. These hexagonal ones Buckling structures can also be produced using hexagonal, rigid support elements (PCT / EP 94/01043). Investigations have shown that in the area of the hexagonal dent folds strong plastic deformations occur, which weaken the material, similar to the staggered, square dent structures. These square or hexagonal dent structures also have the essential disadvantage that the material web structured in this way does not from the cylindrical shape to the flat shape, without being significantly isotropic Losing rigidity. Studies have shown that the lateral buckling folds in Transport direction of the material web are arranged only with considerable force in the plane Shape can be bent. Since at the same time the bulges that cross across Transport direction of the material web are arranged, flatten and slightly inward bulge, these bulges lose part of their shape when straightened original stiffness. The greater the wall thickness of the material web, the more These disadvantages have a more serious effect, and an isotropic stiffness of the structured material web cannot be achieved in this way. The main disadvantage of this known The structuring process consists in that the structures are based on angular shapes, such as four and hexagonal dent structures, remain limited. Due to this limitation, one optimal structure of the bulges have not yet been found. The stretches Optimization on the geometry of the structure and the geometric shape of the fold itself The structure of the bumps, for example their size and depth, are determined for a given one Material thickness the increase in stiffness. The contours of the folds must be such Take shape that, despite their characteristics, only a minimum of plastic deformation occurs. It has now been found that these criteria can only be achieved if the Material deformed in this way in free self-adjustment.

Die Lösung dieser Aufgabe besteht erfindungsgemäß darin, daß die optimale Form der Beulfalten dadurch gefunden wird, daß bei der Verformung der Materialbahn mittels einer hydraulischen oder elastischen Druckübertragung die makroskopische Beulstruktur mittels Stützelementen nur vorgegeben wird, daß diese Stützelemente im Laufe der Strukturierung nachgeben, daß die Strukturfalten die Funktion der Stützelemente selbst übernehmen, und daß die Beulfalten und die Beulmulden in freier Selbsteinstellung eine solche optimale Form annehmen, daß sie dem herrschenden Verformungsdruck bei minimaler Plastifizierung standhalten.The solution to this problem is, according to the invention, that the optimal shape of the Bulging is found in that the deformation of the web by means of a hydraulic or elastic pressure transmission by means of the macroscopic dent structure Support elements is only specified that these support elements in the course of the structuring give in that the structural folds take over the function of the supporting elements themselves, and that the bulges and the bulges in free self-adjustment such an optimal shape assume that they meet the prevailing deformation pressure with minimal plasticization withstand.

Eine Ausgestaltung des Verfahrens besteht darin, daß eine gekrümmte, dünnwandige Materialbahn oder Folie auf der Innenseite mittels einer schneckenförmigen, biegsamen Stützspirale abgestützt und von außen mit Druck beaufschlagt wird. Die biegsame Stützspirale gibt bei äußerem Druck nach innen etwas nach und verdrillt sich dabei etwas, so daß sich der Durchmesser der Stützspirale ein wenig verringert. Auf diese Weise bilden sich zunächst Beulfalten von etwa viereckiger Form, die dann durch freie Selbsteinstellung eine optimale Form annehmen. Dabei übernehmen die anfangs schwach ausgebildeten Beulfalten der etwa viereckigen Struktur schrittweise die abstützende Wirkung der Stützspirale, da sich die Beulfalten mit zunehmender Tiefe in immer stärkerem Maße von selbst gegenseitig abstützen. Dagegen nimmt die abstützende Wirkung der biegsamen, spiralförmigen Stützspirale schrittweise ab, da sie mit zunehmendem äußeren Druck nach innen nachgibt. Auf diese Weise können sich die Beulfalten quasi von selbst frei ausbilden, und sie nehmen dabei selbstorganisierend die optimale Gestalt an, die dem Verformungsdruck standhält. Dies gilt nicht nur für die optimierte geometrische Anordnung der Beulstruktur, sondern auch für die Ausformung der einzelnen Beulfalte, d.h. ihrer äußeren Kontur bzw. Rundung.An embodiment of the method is that a curved, thin-walled Material web or film on the inside by means of a screw-shaped, flexible Supporting spiral is supported and pressure is applied from the outside. The flexible support spiral yields a little under external pressure and twists a little, so that the The diameter of the support spiral is slightly reduced. In this way, initially form Buckling of roughly square shape, which is then optimal through free self-adjustment Taking form. The initially poorly developed dent folds take over square structure gradually the supporting effect of the support spiral, as the Support buckling folds with each other to an ever greater extent by themselves. In contrast, the supportive effect of the flexible, spiral-shaped support spiral decreases gradually, as it gives inward with increasing external pressure. In this way the bulges can practically develop by themselves, and they take it self-organizing to the optimal shape that withstands the deformation pressure. this applies not only for the optimized geometric arrangement of the dent structure, but also for the Formation of the individual dent folds, i.e. their outer contour or rounding.

Die geometrischen Anordnungen der auf diese Weise optimierten Beulfalten sind beispielsweise wappenförmige Strukturen, die aus Parallelogrammen entstanden sind, deren Schmalseiten spitz auslaufen und deren Längsseiten abgerundet sind. Die spitz auslaufenden Beulfalten sind auf optimierte Weise dadurch entstanden, daß die Selbstorganisation der Beulverformung bei einer gekrümmten Materialbahn, die innen mittels einer spiralförmigen Stützspirale abgestützt wurde, verkürzte Beulfalten parallel zur Rotationsachse der Stützspirale, d.h. senkrecht zur Transportrichtung der Materialbahn, begünstigt. Die optimierte Ausformung der einzelnen Beulfalten in lateraler Richtung zeigt sich darin, daß in lateraler Richtung der Materialbahn nur gerundete, beispielsweise S-förmige Beulfalten entstanden sind, d.h. daß Beulknicke mit großen plastischen Verformungen nicht auftreten. In den Bereichen der Materialbahn, in denen die Beulfalten zusammenlaufen, bilden sich etwa abgeflachte Faltsättel mit sanften Biegeradien. So werden mehrachsige Biegefalten, die große Plastifizierungen des Werkstoffs verursachen, vermieden.The geometrical arrangements of the buckling pleats optimized in this way are for example, crest-like structures that have arisen from parallelograms, their Narrow ends taper and the long sides are rounded. The tapered Bulges are created in an optimized way by the self-organization of the Bulge deformation on a curved web of material, which inside by means of a spiral Supporting spiral was supported, shortened dent folds parallel to the axis of rotation of the Support spiral, i.e. perpendicular to the direction of transport of the material web, favored. The optimized Formation of the individual dent folds in the lateral direction is shown in that in the lateral In the direction of the material web, only rounded, for example S-shaped buckling folds have formed, i.e. that buckling kinks with large plastic deformations do not occur. In the fields of the material web, in which the buckling folds converge, forms approximately flattened Folding saddles with gentle bending radii. This is how multi-axis bending folds, the big ones Avoid plasticizing the material.

Da die Beulfalten in lateraler Richtung der Materialbahn gerundet sind und sich deshalb leicht verformen lassen, können sie mit geringem Kraftaufwand und mit minimierter Plastifizierung des Werkstoffs in die ebene Form gebogen werden. Ferner sind die Beulfalten parallel zur Rotationsachse der Stützspirale, d.h. senkrecht zur Transportrichtung der Materialbahn, verkürzt. Das Ergebnis ist ein einfaches Richten so strukturierter Materialbahnen in die ebene Form, wobei die isotrope Formsteifigkeit der strukturierten Materialbahn erhalten bleibt. Das Ergebnis ist eine hohe Formsteifigkeit der Materialbahn bei minimierter plastischer Verformung. Deshalb lassen sich auf diese Weise auch Materialbahnen mit größeren Wanddicken strukturieren und in die ebene Form richten.Since the buckling folds are rounded in the lateral direction of the material web and are therefore easy can be deformed, they can be applied with little effort and with minimal plasticization of the material are bent into the flat shape. Furthermore, the bulges are parallel to Axis of rotation of the support spiral, i.e. perpendicular to the direction of transport of the material web, shortened. The result is a simple straightening of material webs structured in this way into the plane Shape, whereby the isotropic stiffness of the structured material web is preserved. The The result is high dimensional stability of the material web with minimized plastic Deformation. Therefore, material webs with larger ones can also be used in this way Structuring wall thicknesses and aligning them in the flat shape.

Die so erzeugten, etwa wappenförmigen Beulstrukturen besitzen jedoch noch keine exakt einheitliche Form. Die Ursachen hierfür sind u.a. unvermeidbare Inhomogenitäten des Werkstoffs, die Toleranzen der Wanddicke des Ausgangswerkstoffs und eine nicht exakt gleichmäßige Druckbeaufschlagung der Materialbahn. Eine weitere Ausgestaltung des Verfahrens gemäß der Erfindung besteht deshalb darin, für die optimale Bildung der Beulstruktur möglichst günstige Voraussetzungen zu schaffen. Dies erreicht man dadurch, daß die optimale Faltung bei freier Einstellung zunächst ermittelt wird, und daß Stützelemente so gestaltet werden, daß die dann entstehenden Beulstrukturen, insbesondere die Konturen der Falten, den durch Selbstorganisation gebildeten Geometrien weitgehend entsprechen.However, the approximately crest-shaped bulge structures produced in this way are not yet precise uniform shape. The reasons for this include unavoidable inhomogeneities of the Material, the tolerances of the wall thickness of the starting material and a not exact even pressurization of the material web. Another embodiment of the The method according to the invention is therefore for the optimal formation of the To create dent structure as favorable as possible. This is achieved in that the optimal folding is first determined with free adjustment, and that support elements so be designed so that the resulting buckling structures, especially the contours of the Wrinkles that largely correspond to the geometries formed by self-organization.

Das wesentliche Merkmal der so optimierten Stützelemente besteht darin, daß die lateralen Stützelemente einen gerundeten, beispielsweise S-förmigen Verlauf aufweisen und daß die Stützelemente in den Bereichen, in denen mehrere Stützelemente zusammenlaufen, eine abgeflachte oder nur schwach gewölbte Kontur ergeben. Dabei sind die Radien dieser gerundeten, beispielsweise S-förmigen, lateralen Stützelemente im einzelnen nicht festgelegt. Das Ergebnis ist eine große Variationsbreite etwa wappenförmiger Beulstrukturen, die eine hohe Formsteifigkeit bei geringer plastischer Verformung des Ausgangsmaterials aufweisen. Die verkürzten Beulfalten senkrecht zur Transportrichtung der Materialbahn sollen ebenfalls nur gering plastifiziert werden, und deshalb erhalten die Stützelemente gerundete Konturen.The essential feature of the optimized support elements is that the lateral Support elements have a rounded, for example S-shaped course and that the Support elements in the areas in which several support elements converge, one flattened or only slightly curved contour. The radii are these rounded, for example S-shaped, lateral support elements not specified in detail. The result is a wide range of variations, for example crest-shaped dent structures, one have high stiffness with little plastic deformation of the starting material. The shortened buckling folds perpendicular to the transport direction of the material web should also be are plasticized only slightly, and therefore the support elements receive rounded contours.

Die geometrischen Abmessungen der so optimierten Stützelemente lassen sich mit Hilfe der Gleichung (1) näherungsweise berechnen. Diese Gleichung (1) wurde experimentell für die Selbstorganisation etwa viereckiger Beulstrukturen entwickelt (O.S. 25 57 215), und man kann sie auch für etwa wappenförmige Beulstrukturen näherungsweise anwenden. n = 2,45 • D0,5 h0,333 • d0,2 The geometric dimensions of the support elements optimized in this way can be approximately calculated using equation (1). This equation (1) was developed experimentally for the self-assembly of approximately square dent structures (OS 25 57 215), and it can also be used approximately for approximately crest-shaped dent structures. n = 2.45 • D 0.5 H 0.333 • d 0.2

In Gleichung (1) bedeuten

n
Anzahl der Beulstrukturen in Transportrichtung der Materialbahn bezogen auf einen Abwicklungszyklus der Stützelemente,
D
Durchmesser der Stützelemente in mm,
h
mittlerer Abstand der lateralen Stützelemente zueinander in mm und
s
Dicke der Materialbahn in mm.
Mean in equation (1)
n
Number of buckling structures in the transport direction of the material web in relation to a development cycle of the support elements,
D
Diameter of the support elements in mm,
H
average distance between the lateral support elements in mm and
s
Thickness of the material web in mm.

Mit der geometrischen Beziehung (2) für die Beulzahl n auf dem Umfang der Stützelemente n = D • pib errechnet sich für die Größen etwa quadratischer Beulstrukturen (h = b) die Beziehung (3): h = b = 1,45 • D0.75 • d0,3 With the geometric relationship (2) for the buckling number n on the circumference of the support elements n = D • pi b the relationship (3) is calculated for the sizes of approximately square buckling structures (h = b): h = b = 1.45 • D 0.75 • d 0.3

Diese für etwa quadratische Beulstrukturen gültige Gleichung (3) kann man näherungsweise auch für etwa wappenförmige Beulstrukturen anwenden, wobei für die Größe h der mittlere Abstand der lateralen Stützelemente in mm gewählt wird. Da diese Gleichung (3) für etwa wappenförmige Beulstrukturen nur eine Näherung darstellt, kann man von dieser Vorgabe durch Gleichung (3) etwas abweichen.This equation (3), which is valid for approximately square buckling structures, can be approximated also use for roughly crest-shaped bulge structures, with the middle one for size h The distance between the lateral support elements is selected in mm. Since this equation (3) for about heraldic bulge structures are only an approximation, one can from this requirement deviate somewhat from equation (3).

Aus den Gleichungen (1), (2) und (3) folgt beispielsweise: Je höher die Wanddicke s der zu strukturierenden Materialbahn ist, desto größer wird der Abstand h der Stützelemente zueinander, und desto größer ist der Durchmesser D der Stützelemente zu wählen. Deshalb erhalten Materialbahnen mit höherer Wanddicke s größere Beulstrukturen als dünnwandige Materialbahnen.From equations (1), (2) and (3) it follows, for example: the higher the wall thickness s the structuring material web, the greater the distance h of the support elements to each other, and the larger the diameter D of the support elements is to be selected. Therefore receive material webs with a higher wall thickness s larger buckling structures than thin-walled ones Material webs.

Das Verfahren gemäß der Erfindung gewährleistet eine hohe Formsteifigkeit strukturierter Materialbahnen bei geringer plastischer Verformung des Werkstoffs. Die Plastifizierungsreserven, die noch in der strukturierten Materialbahn stecken, können für sekundäre Umformprozesse genutzt werden. Eine weitere Ausgestaltung des Verfahrens gemäß der Erfindung besteht darin, die nicht ausgeschöpften Plastifizierungsreserven der strukturierten Materialbahn zu nutzen, um die Formsteifigkeit weiter zu verbessern. Dies erreicht man nach dem Verfahren gemäß der Erfindung dadurch, daß man zunächst beispielsweise durch ein elastisches oder hydraulisches Kissen, das gegen die Materialbahn und die Stützelemente gedrückt wird, den beschriebenen Beulprozeß einleitet, und daß man dann das Kissen mit einem größeren Druck gegen die Materialbahn drückt, damit im Bereich der Beulmulden eine Nachverstreckung des Werkstoffs erfolgt. Gleichzeitig wird durch Reibwirkung zwischen der Materialbahn und den Stützelementen der Werkstofffluß der Materialbahn in Richtung der Beulmulde unterbunden oder eingeschränkt, damit der Werkstoff der Materialbahn im Bereich der Stützelemente nicht reißt. Diese Reibwirkung erreicht man durch geometrische Anpassung einer Evolvente an die Stützelemente in Richtung der Beulmulde. Bei der geometrischen Ausgestaltung der Kontur der Stützelemente berücksichtigt man die Mindest-Biegeradien, die u.a. von der Wanddicke und vom Werkstoffverhalten der zu verformenden Materialbahn abhängen.The method according to the invention ensures a high degree of structural rigidity Material webs with little plastic deformation of the material. The Plasticization reserves that are still in the structured material web can be used for secondary forming processes are used. Another embodiment of the process According to the invention, the unused plasticization reserves of the to use structured material web to further improve the dimensional stability. This can be achieved by the method according to the invention in that first for example, by an elastic or hydraulic cushion, which against the material web and the support elements is pressed, initiates the described buckling process, and that one then presses the pillow against the material web with greater pressure, so that in the area of the Buckling troughs a subsequent stretching of the material takes place. At the same time, through Frictional effect between the material web and the support elements of the material flow Material web in the direction of the bulge prevented or restricted, so the material the material web in the area of the support elements does not tear. This friction effect is achieved by geometrically adapting an involute to the support elements in the direction of Beulmulde. Considered in the geometric configuration of the contour of the support elements the minimum bending radii, which include on the wall thickness and the material behavior of the depending on the deforming material web.

Der Erfindungsgedanke wird anschließend beispielhaft erläutert:The idea of the invention is subsequently explained by way of example:

Fig. 1 zeigt den schematischen Aufbau einer Vorrichtung zur Herstellung beulstrukturierter Materialbahnen und/oder Folien mit einer Walze, auf der Stützelemente angeordnet sind, und einer flexiblen Druckwalze (radialer Querschnitt).Fig. 1 shows the schematic structure of a device for producing dent structured Material webs and / or foils with a roller on which support elements are arranged, and a flexible pressure roller (radial cross section).

Fig. 2 zeigt die Aufsicht auf zwei Beulstrukturen, die mit Hilfe einer Vorrichtung hergestellt sind, die mit einer elastischen, eingängigen, schraubenförmigen Stützspirale ausgestattet wurde.Fig. 2 shows the top view of two buckling structures, which are produced with the aid of a device are equipped with an elastic, catchy, helical support spiral has been.

Fig. 3 zeigt die Aufsicht auf eine Beulstruktur, die mit Hilfe einer Vorrichtung hergestellt ist, die mit einer elastischen, mehrgängigen, schraubenförmigen Stützspirale ausgestattet wurde.3 shows the top view of a dent structure which is produced with the aid of a device, which was equipped with an elastic, multi-start, helical support spiral.

Fig. 4 zeigt die Aufsicht auf eine Beulstruktur, die mit Hilfe einer Vorrichtung hergestellt ist, die mit wappenförmig ausgestalteten, starren Stützelementen ausgestattet wurde.4 shows the top view of a dent structure which is produced with the aid of a device, which was equipped with coat of arms-shaped, rigid support elements.

Fig. 5 zeigt den schematischen Aufbau von Stützelementen zur Herstellung wappenförmig beulstrukturierter Materialbahnen in einer Aufsicht auf Stützelemente und in vier Querschnitten durch Stützelemente. Fig. 5 shows the schematic structure of support elements for the production of a coat of arms dent structured material webs in a top view of support elements and in four cross sections through support elements.

Fig. 6 zeigt den schematischen Aufbau von starren Stützelementen zur Herstellung wappenförmig beulstrukturierter Materialbahnen mit Nachverstreckung des Werkstoffs.Fig. 6 shows the schematic structure of rigid support elements for production embossed, dent-structured material webs with post-stretching of the material.

Fig. 7 zeigt beispielhaft den schematischen Aufbau einer Vorrichtung zur Anwendung des Verfahrens gemäß der Erfindung mit einer Walze mit Stützelementen und mit einer flexiblen Druckwalze zur Herstellung wappenförmig beulstrukturierter Dosen.Fig. 7 shows an example of the schematic structure of a device for using the Method according to the invention with a roller with support elements and with a flexible Printing roller for the manufacture of crate-shaped, dent-structured cans.

Fig. 8 zeigt beispielhaft den schematischen Aufbau einer Vorrichtung zur Anwendung des Verfahrens gemäß der Erfindung mit einer Walze mit Stützelementen und mit einem konkaven, flexiblen Druckkissen zur Herstellung beulstrukturierter Dosen.Fig. 8 shows an example of the schematic structure of a device for using the Method according to the invention with a roller with support elements and with a concave, flexible pressure pad for the manufacture of dented cans.

Fig. 9 zeigt die Seitenansicht auf eine wappenförmig beulstrukturierte Dose.Fig. 9 shows the side view of a crest-shaped dent structure.

Die Fig. 1 zeigt den prinzipiellen Aufbau einer Vorrichtung zur Anwendung des Verfahrens gemäß der Erfindung zur Herstellung beulstrukturierter Materialbahnen oder Folien. Die Materialbahn 1 wird um die Walze 2, auf der die Stützelemente 3 angebracht sind, gebogen und durch Andrücken der elastischen Druckwalze 4 mit Druck beaufschlagt. Dadurch entstehen die Beulstrukturen in der Materialbahn.Fig. 1 shows the basic structure of a device for applying the method according to the invention for the production of dent-structured material webs or foils. The Material web 1 is bent around the roller 2 on which the support elements 3 are attached and pressurized by pressing the elastic pressure roller 4. Thereby the buckling structures arise in the material web.

Die Figuren. 2 und 3 zeigen die Aufsicht von abgewickelten, beulstrukturierten Materialbahnen:The figures. 2 and 3 show the supervision of developed, dent structured Webs:

In Fig. 2 und Fig. 3 sind Strukturen dargestellt, die sich ergeben, wenn sich die Beulfalten durch Selbstorganisation frei einstellen. Das geschieht beispielsweise dadurch, daß statt der starren, schraubenförmigen Spirale eine biegsame, schraubenförmige Spirale als Stützelement verwendet wird, die in Druckrichtung nachgibt. Durch freie Einstellung ergeben sich dann wappenförmige Strukturen mit spitz auslaufenden Beulfalten senkrecht zur Transportrichtung der Materialbahn und laterale, etwa S-förmige Beulfalten in Transportrichtung der Materialbahn. In Fig. 2 wurde eine eingängige, schraubenförmige Stützspirale verwendet. In Fig. 2 sind beispielhaft zwei wappenförmige Strukturen schematisch dargestellt, die sich in der Gestalt der lateralen und der spitz auslaufenden Beulfalten unterscheiden. Die lateralen Beulfalten weisen den mittleren Abstand h zueinander auf, und die Beulfalten senkrecht zur Transportrichtung der Materialban weisen den mittleren Abstand b zueinander auf. In Fig. 3 wurde eine mehrgängige, schraubenförmige Stützspirale verwendet. In dieser Weise lassen sich unterschiedliche Winkel zwischen der Anordnung der Beulstrukturen und der Richtung der Materialbahn einstellen. Denn wegen der Richtungsabhängigkeit der Formsteifigkeit kann es sich als vorteilhaft erwiesen, die Beulstrukturierung nicht durch Stützelemente zu erzeugen, die in Richtung oder quer zur Transportbewegung der Materialbahn angeordnet sind, sondern die sich in einem einstellbaren Winkel dazu befinden.Structures are shown in FIGS. 2 and 3 that result when the bulges fold adjust freely through self-organization. This happens, for example, that instead of rigid, helical spiral a flexible, helical spiral as a supporting element is used, which yields in the printing direction. Free adjustment then results heraldic structures with pointed bulges perpendicular to the direction of transport the material web and lateral, approximately S-shaped bulges in the transport direction of the Web. In Fig. 2 a catchy, helical support spiral was used. In 2 schematically shows two coat of arms structures, which are located in the Distinguish the shape of the lateral and tapered bulges. The lateral Buckling pleats have the mean distance h from one another, and the buckling pleats perpendicular to The direction of transport of the material ban is at an average distance b from one another. 3 a multi-start, helical support spiral was used. In this way you can different angles between the arrangement of the dent structures and the direction of the Adjust material web. Because due to the directional dependence of the stiffness, it can proved to be advantageous not to generate the dent structure by means of support elements which are arranged in the direction or transverse to the transport movement of the material web, but the are at an adjustable angle.

Fig. 4 zeigt die Aufsicht auf eine Beulstruktur, die mit Hilfe einer Vorrichtung hergestellt ist, die mit wappenförmigen, starren Stützelementen ausgestattet wurde. Die Gestalt und die Kontur dieser starren Stützelemente entsprechen weitgehend den sich durch Selbstorganisation einstellenden wappenförmigen Beulfalten. Da die Radien der gerundeten, beispielsweise S-förmigen Stützelemente im einzelnen nicht festgelegt sind, existiert eine große Variationsbreite etwa wappenförmiger Beulstrukturen.4 shows the top view of a dent structure which is produced with the aid of a device, which was equipped with coat-of-arms, rigid support elements. The shape and the Contour of these rigid support elements largely correspond to those resulting from self-organization adjusting crest-shaped bulges. Because the radii of the rounded, for example S-shaped Support elements are not specified in detail, there is a wide range of variation about heraldic bulge structures.

Die Fig. 5 zeigt den schematischen Aufbau von starren Stützelementen zur Herstellung wappenförmig beulstrukturierter Materialbahnen in einer Aufsicht und in vier Querschnitten. In der Aufsicht sind die Bereiche der Stützelemente durch unterbrochene Linien markiert, für die die Konturen der Stützelemente im Querschnitt dargestellt sind. Die Markierung 1.....1 stellt den Querschnitt eines Stützelementes im Bereich der lateralen, etwa S-förmigen Beulfalte dar. Bei der Ausgestaltung der gerundeten Kontur des Stützelementes ist der Mindest-Biegeradius der zu verformenden Materialbahn zu berücksichtigen. Die Markierung 2.....2 stellt den Querschnitt eines Stützelementes im Bereich der Beulfalte senkrecht zur Transportrichtung der Materialbahn dar. Die Kontur dieses Stützelementes ist ebenfalls gerundet. Die Markierung 3....3 und die Markierung 4.....4 stellen beispielhaft zwei Querschnitte eines gerundeten Sattels mehrerer aufeinander zulaufenden Stützelementen dar. Dieser Sattel erhält auf diese Weise im Querschnitt sanft abgerundete Konturen, obwohl die Stützelemente in der Aufsicht eine spitz auslaufende Gestalt aufweisen.5 shows the schematic structure of rigid support elements for production Crest-like bulged material webs in a top view and in four cross sections. In The areas of the support elements are marked by broken lines for the supervision the contours of the support elements are shown in cross section. The mark 1 ..... 1 represents the cross section of a support element in the region of the lateral, approximately S-shaped bulge folds. When designing the rounded contour of the support element, the minimum bending radius is the material web to be deformed. The mark 2 ..... 2 represents the Cross section of a support element in the area of the bulging folds perpendicular to the transport direction of the Material contour. The contour of this support element is also rounded. The mark 3 .... 3 and the marking 4 ..... 4 represent two cross-sections of a rounded saddle several converging support elements. This saddle receives in this way in Cross-section of gently rounded contours, although the support elements in the top view are pointed have a tapering shape.

Die Fig. 6 zeigt in einem vergrößerten Querschnitt den schematischen Aufbau von starren Stützelementen zur Herstellung wappenförmig beulstrukturierter Materialbahnen mit Nachverstreckung des Werkstoffs, um die Formsteifigkeit weiter zu verbessern. Das elastische oder hydraulische Kissen 5 drückt gegen die Materialbahn 1 und das Stützelement 3 und löst so den Beulprozeß aus. Die Beulmulden der Materialbahn 6 bilden sich dabei zunächst frei aus, und sie besitzen noch große Plastifizierungsreserven. Wenn man dann das Kissen 5 mit einem größeren Druck gegen die Materialbahn drückt, ergibt sich eine Nachverstreckung des Werkstoffs im Bereich der Beulmulden 7. Durch Reibwirkung zwischen der Materialbahn 1 und dem Stützelement 3 wird der Werkstofffluß der Materialbahn 1 in Richtung der Beulmulde unterbunden oder eingeschränkt, damit der Werkstoff der Materialbahn 1 im Bereich der oberen, gerundeten Kontur des Stützelementes 3 nicht reißt. Diese Reibwirkung erreicht man durch geometrische Anpassung einer Evolvente 8 an die Stützelemente 3. Fig. 6 shows in an enlarged cross section the schematic structure of rigid Support elements for the production of material webs with a crest-like structure Post-stretching of the material to further improve the dimensional stability. The elastic or hydraulic cushion 5 presses against the material web 1 and the support element 3 and releases so the dent process. The bulges of the material web 6 initially form freely, and they still have large plasticization reserves. If you then the pillow 5 with a presses greater pressure against the material web, there is a subsequent stretching of the Material in the area of the buckling troughs 7. By friction between the material web 1 and the support element 3 becomes the material flow of the material web 1 in the direction of the bulge prevented or restricted so that the material of the material web 1 in the area of upper, rounded contour of the support element 3 does not tear. This friction effect is achieved by geometrically adapting an involute 8 to the support elements 3.

Die Fig. 7 zeigt den prinzipiellen Aufbau einer Vorrichtung zur Anwendung des erfindungsgemäßen Verfahrens zur Herstellung einer strukturierten Dose 9 mittels einer Stützelement-Walze 10 und einer flexiblen Druckwalze 11 ( im Querschnitt und im Längsschnitt).Fig. 7 shows the basic structure of a device for using the Method according to the invention for producing a structured can 9 by means of a Support element roller 10 and a flexible pressure roller 11 (in cross section and in Longitudinal section).

Die Fig. 8 zeigt den prinzipiellen Aufbau einer weiteren Vorrichtung zur Anwendung des erfindungsgemäßen Verfahrens zur Herstellung strukturierter Dosen. Statt der flexiblen Druckwalze drückt ein konkav geformtes, flexibles Kissen 12 gegen den Dosenrumpf 13, das sich eng an den Dosenrumpf anschmiegt und eine gleichmäßige Druckverteilung auf den Dosenrumpf und die Stützelement-Walze 14 gewährleistet.8 shows the basic structure of a further device for using the Process according to the invention for the production of structured cans. Instead of flexible Pressure roller presses a concave, flexible cushion 12 against the can body 13, the hugs the can body closely and distributes pressure evenly over the can Can body and the support element roller 14 guaranteed.

Die Fig. 9 zeigt die Seitenansicht einer wappenförmig strukturierten Dose mit spitz auslaufenden Beulfalten in axialer Richtung.Fig. 9 shows the side view of a crest-shaped structured box with pointed leaking bumps in the axial direction.

Claims (21)

  1. Process for vault-structuring, in which curved material sheets are supported on supporting elements arranged at distances from each other and in which a forming pressure (in particular pneumatic, hydraulic, or by means of an elastomer) is applied on the oppositc side in such a way that the wall is profiled with vault folds in a self-organizing manner, characterized by the fact that supporting elements (3) subside towards the inside.
  2. Process according to first claim, characterized by the fact that the supporting folds support each other.
  3. Process according to claim I or 2, characterized by the fact that spade-shaped or drop-shaped vault structures form in horizontal projection.
  4. Process according to one or several of claims 1 to 3, characterized by the fact that the vault structures have rounded or tapered folds.
  5. Process according to one or several of claims 1 to 4, characterized by the fact that the vault folds are rounded everywhere in the cross section of the fold.
  6. Process according to one or several of claims 1 to 5, characterized by the fact that a single-thread or multi-thread and/or helical, flexible spiral is used.
  7. Process according to one or several of claims 1 to 6, characterized by the fact that shortened vault folds form perpendicular to the direction of feed of the material sheet (1).
  8. Process according to one or several of claims 1 to 7, characterized by the fact that exclusively rounded vault folds are produced in lateral direction of the material sheet (1).
  9. Process according to claim 8, characterized by the fact that the vault folds in lateral direction of the material sheet are S-shaped.
  10. Process according to one or several of claims 1 to 9, characterized by the fact that the converging vault folds form flattened material saddles.
  11. Process according to one or several of claims 1 to 10, characterized by the fact that first those dimensions of the vault folds of a material sheet are determined that adjust by self-organization, and then the supporting elements (3) arc adjusted to the dimensions of the vault folds; the supporting elements (3) may be rigid.
  12. Process according to one or several of claims 1 to 11, characterized by re-elongation of the vaults.
  13. Process according to claim 12, characterized by vault-structuring in two stages, with a pressure initiating the vaults and a re-elongating increase of pressure.
  14. Process according to claim 12 or 13, characterized by frictional locking between the material sheet (1) and the supporting elements during re-elongation.
  15. Process according to one or several of claims 12 to 14, charactcrized by the fact that supporting elements (3) with geometrical adjustment of an involute to the supporting elements (3) in the direction of the vault trough arc used.
  16. Process according to one or several of claims I to 15, characterized by the fact that the angle between the supporting elements (3) and the direction of feed of the material sheet (1) is adjusted.
  17. Process according to claim 16, characterized by the fact that modification of the angle optimizes the inherent stability of the material sheet (1).
  18. Process according to one or several of claims 1 to 16, characterized by the fact that the depth of the vault folds is adjusted in the direction of and/or perpendicular to the direction of feed of the material sheet (1).
  19. Process according to one or several of claims 16 to 18, characterized by the fact that rolled, smooth, anisotropic material sheets (1) are provided with isotropic properties by modification of the angle of the supporting elements and vault structures and of the depth of the structure.
  20. Process according to one or several of claims 1 to 19, characterized by the fact that a flexible pressure roller (4) or a concave-shaped cushion (12) is used to apply pressure.
  21. Process according to one or several of claims 1 to 20, characterized by the fact that the geometrical dimensions of the supporting elements and the vaults are determined by the following equations: n = 2,45 * D0.5 h0.333 * s0.2    n = D * πb h= b = 1.45 * D0.75 * s0.3 where
    a) n is the number of vault structures in the direction of feed of the material sheet referred to one turning cycle of the supporting elements
    b) D is the diameter in mm of the supporting elements
    c) h is the mean distance in mm of the lateral supporting elements from each other
    d) s is the thickness in mm of the material sheets
    e) b is the distance in mm of the vault folds perpendicular to the direction of feed of the material sheet
    f) π is the number pi (3.14).
EP97916376A 1996-03-23 1997-03-22 Process for producing an embossed structure in thin material webs Expired - Lifetime EP0888208B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19611478A DE19611478A1 (en) 1996-03-23 1996-03-23 Process for increasing the dimensional stability of thin material webs
DE19611478 1996-03-23
PCT/EP1997/001465 WO1997035705A1 (en) 1996-03-23 1997-03-22 Process for producing an embossed structure in thin material webs

Publications (2)

Publication Number Publication Date
EP0888208A1 EP0888208A1 (en) 1999-01-07
EP0888208B1 true EP0888208B1 (en) 2002-02-06

Family

ID=7789170

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97916376A Expired - Lifetime EP0888208B1 (en) 1996-03-23 1997-03-22 Process for producing an embossed structure in thin material webs

Country Status (7)

Country Link
US (1) US6217811B1 (en)
EP (1) EP0888208B1 (en)
JP (1) JP4153994B2 (en)
AT (1) ATE212899T1 (en)
DE (2) DE19611478A1 (en)
ES (1) ES2172779T3 (en)
WO (1) WO1997035705A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004044509B4 (en) * 2004-09-15 2007-10-04 Dr. Mirtsch Gmbh Method for joining and stabilizing thermally and mechanically loaded, thin walls with a flat frame
DE102006002669B4 (en) * 2006-01-19 2010-04-01 Dr. Mirtsch Gmbh Multi-dimensionally structured sliding and skateboard
DE102008056500A1 (en) 2008-11-08 2010-05-12 Innova-Paper-Form Gmbh Material sheet e.g. web material, structuring method for calender, involves bringing material sheet into horizontal shape by breaker rollers after leaving structured roller gap, which is formed by stamping and counter-pressure rollers
DE102009051603A1 (en) 2009-11-02 2011-06-16 Dr. Mirtsch Gmbh Method for producing multi-dimensionally structured pipe that is utilized as e.g. air-conditioning pipe in aircraft, involves forming multi-dimensional structures in wall with locally or nearly constant wall thickness
DE102009058098A1 (en) 2009-12-12 2011-06-16 Dr. Mirtsch Gmbh Structured belt conveyor for use in e.g. pharmaceutical industry, has conveyor belt, where slit-shaped space is formed between belt and tabletop and has breadth corresponding to height of structures of thin-wall material layer
EP2418028A1 (en) 2010-08-12 2012-02-15 Dr. Mirtsch GmbH Method for multi-dimensional structuring of a flat sheet of material and use of the same
DE102011111845A1 (en) 2011-08-27 2013-02-28 Bernd Späth Hand-guided or hand-operated tool i.e. snow shovel, for use in snow cleaning device, has tool handle, and base or primary structure comprising structural elements with different sizes, where structural elements are formed from projections
DE102013017644A1 (en) 2012-10-25 2014-04-30 Dr. Mirtsch Gmbh Method for manufacturing multi-dimensional low-structured material web, involves producing partial folding in web that is pressed transverse to running direction of web having specific ratio of bending stiffness and stretch-elasticity
DE102013003094A1 (en) 2013-02-25 2014-08-28 Bernd Späth Handheld snow removal tool e.g. snow shovel has shovel blade that is comprised of hexagonal primary patterning structure and provided with reinforcing ribs, where material thickness of blade and ribs are different from each other
DE102014000083A1 (en) * 2014-01-02 2015-07-02 Dr. Mirtsch Gmbh Method for partially three-dimensional structuring of a material web and for secondary forming of the material web, three-dimensionally structured material web with planar partial regions, use of the same and an apparatus for producing the same

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19858432B4 (en) * 1998-12-17 2008-04-10 Dr. Mirtsch Gmbh Energy absorbing deformation element
DE10021456C2 (en) * 2000-05-03 2003-03-27 Miele & Cie Method for embossing arch structures in a hollow cylinder and device for carrying out the method
DE50015941D1 (en) 2000-11-28 2010-07-29 Siteco Beleuchtungstech Gmbh Outdoor light with improved radiation characteristics
EP1515809B1 (en) * 2002-06-21 2006-07-12 Crown Packaging Technology, Inc Reform rollers
DE10236350A1 (en) * 2002-08-08 2004-02-19 Basf Coatings Ag Bismuth compound-containing electrophoretic coating composition comprises a crosslinking binding agent having (potential) cationic or anionic groups and bismuth sub-salicylate
DE102006014049B4 (en) * 2006-03-27 2009-06-04 Dr. Mirtsch Gmbh Process for producing a structured plastic component
DE102006055657A1 (en) 2006-11-23 2008-05-29 Behrens, Arno, W. Dr.-Ing. Component of a flat material and method for its production
DE102006062189B4 (en) 2006-12-22 2009-03-19 Dr. Mirtsch Gmbh Method for producing a structured material web for the passage of fluid media, structured material web and use thereof
DE102009049573B4 (en) 2009-10-15 2013-03-14 Dr. Mirtsch Gmbh Method for producing a structured material web with bevelled partial areas, bent-off, structured material web produced according to the method and use thereof
DE102011109123B3 (en) * 2011-08-02 2012-08-02 Dr. Mirtsch Gmbh Method for producing sound absorbing component for door used in building, involves moving concave curved shell regions against supporting element tool so as to create pressure membrane stresses in shell
DE102013002213B4 (en) 2013-02-07 2016-06-02 Dr. Mirtsch Gmbh Method for producing a structured material web from knitted, knitted or woven threads and use of the same
DE102014006096B4 (en) 2014-04-29 2018-01-25 Dr. Mirtsch Gmbh Method for producing a multi-dimensionally structured material web for thin-walled planar wall elements and use thereof
GB2528289A (en) 2014-07-16 2016-01-20 Kraft Foods R&D Inc A die-cut lid and associated container and method

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3130412A (en) * 1959-07-31 1964-04-21 Scott Paper Co Process of and apparatus for treating sheet materials and product
AT269628B (en) * 1965-11-15 1969-03-25 Karl Dipl Ing Dr Mont Hanke Method and device for three-dimensional shaping of flat fibrous webs that are wet during production
FR1463640A (en) * 1966-01-14 1966-06-03 Improvements in the manufacture of forms for pleating textile materials
AT285290B (en) * 1969-03-03 1970-10-27 Gernot Dr Zippe Method and device for producing beads in thin-walled, hard metal sheets
DE2023775B2 (en) * 1970-05-15 1972-01-13 Deutsche Tafelglas AG Detag, 851OFürth Folded products from fibre reinforced resin laminates - - using mould consisting of angular plates
DE2318680A1 (en) * 1973-04-13 1974-10-31 Baier Kg Maschinenfabrik Geb Plastics sheet applied hot by rolling - onto articles of varying shapes and thickness at uniform speed
US4027517A (en) * 1974-01-07 1977-06-07 Bodnar Ernest R Method and apparatus for embossing sheet metal strip and sheet metal panel
CA1029580A (en) * 1975-08-29 1978-04-18 B And K Machinery International Limited Rotary embosser and process of embossing strip sheet metal
JPS58131036A (en) * 1982-01-29 1983-08-04 Toshiba Corp Molding method of bellows
JPS60143926A (en) * 1983-12-30 1985-07-30 Nippon Petrochem Co Ltd Method and apparatus for forming rugged sheet
US4576669A (en) * 1984-11-09 1986-03-18 Caputo Garry L "On demand" apparatus and method for producing air-cushioning product
US4842794A (en) * 1987-07-30 1989-06-27 Applied Extrusion Technologies, Inc. Method of making apertured films and net like fabrics
FR2665119A1 (en) * 1990-07-30 1992-01-31 Cebal Method of obtaining recessed marks or outlines on a plastic or metal-plastic tubular sheet or part and its use in the manufacture of a flexible tube
GB9201880D0 (en) * 1992-01-29 1992-03-18 Rasmussen O B Laminated films
US5887470A (en) * 1993-04-06 1999-03-30 Mirtsch; Frank Method and apparatus for dent profiling
DE4311978C1 (en) * 1993-04-06 1994-04-21 Frank Prof Dr Mirtsch Forming dimples in thin sheet - by winding sheet on shaped support and deforming by fluid pressure
DE4401974A1 (en) * 1993-04-06 1995-07-27 Frank Prof Dr Mirtsch Buckling method and apparatus
DE4437986A1 (en) * 1994-10-24 1996-04-25 Frank Dr Mirtsch Structuring a material surface with bulges

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004044509B4 (en) * 2004-09-15 2007-10-04 Dr. Mirtsch Gmbh Method for joining and stabilizing thermally and mechanically loaded, thin walls with a flat frame
DE102006002669B4 (en) * 2006-01-19 2010-04-01 Dr. Mirtsch Gmbh Multi-dimensionally structured sliding and skateboard
DE102008056500A1 (en) 2008-11-08 2010-05-12 Innova-Paper-Form Gmbh Material sheet e.g. web material, structuring method for calender, involves bringing material sheet into horizontal shape by breaker rollers after leaving structured roller gap, which is formed by stamping and counter-pressure rollers
DE102009051603A1 (en) 2009-11-02 2011-06-16 Dr. Mirtsch Gmbh Method for producing multi-dimensionally structured pipe that is utilized as e.g. air-conditioning pipe in aircraft, involves forming multi-dimensional structures in wall with locally or nearly constant wall thickness
DE102009051603B4 (en) * 2009-11-02 2011-09-22 Dr. Mirtsch Gmbh A method of producing a structured pipe, structured product produced by the method and use thereof
DE102009058098B4 (en) * 2009-12-12 2012-08-16 Dr. Mirtsch Gmbh Structured belt conveyor
DE102009058098A1 (en) 2009-12-12 2011-06-16 Dr. Mirtsch Gmbh Structured belt conveyor for use in e.g. pharmaceutical industry, has conveyor belt, where slit-shaped space is formed between belt and tabletop and has breadth corresponding to height of structures of thin-wall material layer
EP2418028A1 (en) 2010-08-12 2012-02-15 Dr. Mirtsch GmbH Method for multi-dimensional structuring of a flat sheet of material and use of the same
DE102011111845A1 (en) 2011-08-27 2013-02-28 Bernd Späth Hand-guided or hand-operated tool i.e. snow shovel, for use in snow cleaning device, has tool handle, and base or primary structure comprising structural elements with different sizes, where structural elements are formed from projections
DE102013017644A1 (en) 2012-10-25 2014-04-30 Dr. Mirtsch Gmbh Method for manufacturing multi-dimensional low-structured material web, involves producing partial folding in web that is pressed transverse to running direction of web having specific ratio of bending stiffness and stretch-elasticity
DE102013017644B4 (en) * 2012-10-25 2017-09-21 Dr. Mirtsch Gmbh Method for producing a multi-dimensionally structured material web and use thereof
DE102013003094A1 (en) 2013-02-25 2014-08-28 Bernd Späth Handheld snow removal tool e.g. snow shovel has shovel blade that is comprised of hexagonal primary patterning structure and provided with reinforcing ribs, where material thickness of blade and ribs are different from each other
DE102014000083A1 (en) * 2014-01-02 2015-07-02 Dr. Mirtsch Gmbh Method for partially three-dimensional structuring of a material web and for secondary forming of the material web, three-dimensionally structured material web with planar partial regions, use of the same and an apparatus for producing the same
DE102014000083B4 (en) * 2014-01-02 2017-12-07 Dr. Mirtsch Gmbh Method for producing a partially three-dimensional vault-shaped structured material web, partially three-dimensional vault-shaped structured material web, use of the same and a device for producing the same

Also Published As

Publication number Publication date
EP0888208A1 (en) 1999-01-07
US6217811B1 (en) 2001-04-17
ATE212899T1 (en) 2002-02-15
WO1997035705A1 (en) 1997-10-02
ES2172779T3 (en) 2002-10-01
DE59706310D1 (en) 2002-03-21
DE19611478A1 (en) 1997-09-25
JP4153994B2 (en) 2008-09-24
JP2000507888A (en) 2000-06-27

Similar Documents

Publication Publication Date Title
EP0888208B1 (en) Process for producing an embossed structure in thin material webs
EP0900131B1 (en) Structuring process that stiffens and embellishes the surface of thin material webs
EP0693008B1 (en) Stiffening bulging
DE2633039C3 (en) V-belt pulley formed from a cup-shaped sheet metal part and process for its manufacture
DE4437986A1 (en) Structuring a material surface with bulges
WO1994022612A9 (en) Stiffening bulging
EP2260956B1 (en) Device for producing helix-shaped corrugated pipe
DE19651937A1 (en) Embossing of thin sheet material to produce e.g. reinforced sections, reflectors, etc.
EP2418028B1 (en) Method for multi-dimensional structuring of a flat sheet of material
WO2003045606A1 (en) Device and method for flaring and shaping can bodies
DE102005025620A1 (en) Structured material sheet for light engineering has rough structuring adjoined by section with smaller dimensioned fine structured elements
WO1997039846A1 (en) Structuring process that stiffens and protects the surface of thin material webs
EP3124132B1 (en) Method for rolling lamellae carriers or the like and a profile roller set for use in the method
DE102013017644B4 (en) Method for producing a multi-dimensionally structured material web and use thereof
DE19634244A1 (en) Stiffening of sheet material with bulges
DE102008056521B3 (en) Coarse-structured material web e.g. bulge-or arch structured material web, producing method for e.g. receiving sound absorbing layer, involves forming fine structure in inner boundary region, and forming flat or virtual flat edge
DE2624872C3 (en) Process for producing undivided rims
DE102012107842B4 (en) Device for producing a 3D structuring component having an edge region
DE10218144B4 (en) Textured container
DE102011109123B3 (en) Method for producing sound absorbing component for door used in building, involves moving concave curved shell regions against supporting element tool so as to create pressure membrane stresses in shell
DE19847902B4 (en) Process for forming thin, beulstrukturierter material webs
DE102006028099A1 (en) Method for partial forming of work piece for interior high pressure form, comprises carrying out the forming process via tool though which a discharge geometry of the work piece is approximated in a sub region of a work piece cross section
EP1760216A2 (en) Structured material web made from a web material and method of making
DE19750576A1 (en) Forming humps in a thin strip material to give a stiffer structured appearance
DE102013109229A1 (en) Device for manufacturing body component from preformed sheet metal in vehicle, has first tool element moved relative to second and third elements such that edge area of product is pressed against edge surface of second element

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19981002

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 19990429

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020206

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020206

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020206

REF Corresponds to:

Ref document number: 212899

Country of ref document: AT

Date of ref document: 20020215

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59706310

Country of ref document: DE

Date of ref document: 20020321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020322

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020506

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020506

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020506

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: LUCHS & PARTNER PATENTANWAELTE

ET Fr: translation filed
BERE Be: lapsed

Owner name: *MIRTSCH FRANK

Effective date: 20020331

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2172779

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20021107

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20160323

Year of fee payment: 20

Ref country code: NL

Payment date: 20160321

Year of fee payment: 20

Ref country code: ES

Payment date: 20160322

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20160322

Year of fee payment: 20

Ref country code: GB

Payment date: 20160322

Year of fee payment: 20

Ref country code: FR

Payment date: 20160322

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160331

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160318

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59706310

Country of ref document: DE

Ref country code: NL

Ref legal event code: MK

Effective date: 20170321

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20170321

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 212899

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20170321

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20170629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20170323