JP4153685B2 - Microorganism, microorganism-containing composition, and method for producing organic fertilizer using the microorganism - Google Patents

Microorganism, microorganism-containing composition, and method for producing organic fertilizer using the microorganism Download PDF

Info

Publication number
JP4153685B2
JP4153685B2 JP2001280749A JP2001280749A JP4153685B2 JP 4153685 B2 JP4153685 B2 JP 4153685B2 JP 2001280749 A JP2001280749 A JP 2001280749A JP 2001280749 A JP2001280749 A JP 2001280749A JP 4153685 B2 JP4153685 B2 JP 4153685B2
Authority
JP
Japan
Prior art keywords
microorganism
shimose
storage chamber
organic waste
culture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001280749A
Other languages
Japanese (ja)
Other versions
JP2003088361A (en
Inventor
眞一 下瀬
Original Assignee
眞一 下瀬
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 眞一 下瀬 filed Critical 眞一 下瀬
Priority to JP2001280749A priority Critical patent/JP4153685B2/en
Publication of JP2003088361A publication Critical patent/JP2003088361A/en
Application granted granted Critical
Publication of JP4153685B2 publication Critical patent/JP4153685B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/40Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • Fertilizers (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、牛糞等の畜糞や下水汚泥等の有機廃棄物を発酵・分解等する処理に有用な微生物、及び該微生物含有組成物に関する。
【0002】
さらに、この発明は、該微生物を用いて有機廃棄物から有機肥料を製造する方法に関する。
【0003】
【従来の技術】
一般的に、牛糞等の畜糞や下水汚泥等の水分を含んだ有機廃棄物を処理するか、さらには有機廃棄物を処理して有機肥料を製造する場合、有機廃棄物と乾燥材と微生物(土着菌等の発酵菌)とを中空のドラムからなる収容室内に投入し、該収容室の回転等によりこれら混合物を攪拌混合しながら高温状態に維持して発酵させて有機肥料を製造する。
【0004】
この発酵過程においては、混合物全体に含有される水分率が概ね60〜65重量%となるように乾燥基材を大量に添加して水分調整を行い通気性を良くする必要がある。このように水分調整が必要となるのは、混合物内の水分を減少させて有機肥料の腐食等を防止するとともに、発酵菌を着床させる有機廃棄物側の表面積をできるだけ多くして有機質の分解(発酵)を促進するためである。
【0005】
【発明が解決しようとする課題】
しかしながら、従来の有機廃棄物の処理に用いられていた発酵菌は、塩分が高濃度で含有されている土壌や処理物中では十分に生息できないという問題があった。すなわち、海岸地方ある土壌や、海水による灌漑がなされた土壌等、塩分濃度が高まった土壌や処理物中においても十分に生息できるような塩に耐性を有する微生物の提供が望まれていた。
【0006】
また、従来用いられていた発酵菌では、水分調整するために混合物に大量の乾燥基材を添加する必要があり、このために有機廃棄物の醗酵処理に時間がかかっていた。
【0007】
そこで、本発明は、塩への耐性を有する新規な微生物及び該微生物含有組成物を提供することを目的とする。
【0008】
さらに、本発明は、前記微生物を用いて、有機廃棄物から短期間で良質な有機肥料を製造する方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明は、鋭意実験の結果、特定の微生物が塩に耐性を有することを知見し、これに鑑みてなされたものである。
【0010】
本発明に係る微生物は、塩に耐性を有するピチア ブルトニ(Pichia burtonii)に属する微生物である。該微生物は、特に、FERM BP−7504(経済産業省産業技術総合研究所生命工学工業技術研究所特許微生物寄託センター 日本国茨城県つくば市東1丁目1−3に2001年3月14日に国際寄託されたもの。以下、「Shimose1」と称する)であることが好ましい。
【0011】
本発明に係る別の微生物は、塩に耐性を有するピチア ファリノサ(Pichia farinosa)に属する微生物である。該微生物は、特に、FERM BP−7505(Shimose1と同様に国際寄託されたもの。以下、「Shimose2」と称する)であることが好ましい。
【0012】
本発明に係る別の微生物は、塩に耐性を有するスタフィロコッカス(Staphylococcus)に属する微生物である。該微生物は、特に、FERM BP−7506(Shimose1と同様に国際寄託されたもの。以下、「Shimose3」と称する)であることが好ましい。
【0013】
本発明に係る別の微生物は、ピチア ブルトニ(Pichia burtonii)と、ピチア ファリノサ(Pichia farinosa)と、及びスタフィロコッカス(Staphylococcus)とが共生して構成される微生物である。特に、該微生物は、FERM BP−7504(Shimose1)と、FERM BP−7505(Shimose2)と、FERM BP−7506(Shimose3)とが共生して構成される共生微生物(FERM BP−7728;Shimose1と同様に国際寄託されたもの。以下、「Shimose」と称することがある)であることが好ましい。該微生物は、塩に耐性を有するものであることが好ましい。
【0014】
上記において塩に耐性を有するとは、該微生物が添加される系(例えば培地)内の塩濃度が高濃度であっても該微生物が生育可能であるという意味である。
【0015】
本発明においては、上記微生物は、これが添加される系(例えば培地)内の塩濃度が5重量%以上であっても生育可能であることが好ましく、さらには、系内の塩濃度が10重量%以上であっても生育可能であることがより好ましい。
【0016】
本発明の微生物含有組成物は、上記の微生物又はこれらの処理物を含むことを特徴とする。この微生物含有組成物は、土壌改良剤として用いることができる。
【0017】
本発明の有機廃棄物の処理に適した微生物の製造装置は、被培養物及びその培養を補助する物質を収容する収容室と、該収容室内を攪拌する攪拌手段と、該収容室を加熱する加熱手段と、該収容室内を減圧させる減圧手段と、を備えることを特徴とする。
【0018】
本発明の有機廃棄物の処理に適した微生物を得る方法は、収容室内に、被培養物と、その培養を補助する物質とを収容し、これら混合物を培養する工程と、収容室内に有機廃棄物と含塩水とをさらに加え、これら混合物を培養する工程と、を有することを特徴とする。
【0019】
含塩水としては、海水が好ましい。
【0020】
また、本発明の有機廃棄物の処理に適した微生物を得る方法は、上記製造装置を用い、前記収容室内に、被培養物(例えば、腐葉土、土、芝等)と、炭水化物系有機物(例えば、米糠等)と、培養液とを収容する工程と、前記攪拌手段を駆動させ収容室内の混合物を攪拌するとともに、該収容室内の水の沸点が50℃以上、70℃以下となるように前記減圧手段を駆動させる工程と、さらに収容室内に有機廃棄物と含塩水(例えば、海水等)とを加える工程と、前記攪拌手段を駆動させ収容室内の混合物を攪拌するとともに、該収容室内の水の沸点が50℃以上、70℃以下となるように前記減圧手段を駆動させる工程と、を有する。
【0021】
上記方法においては、前記収容室内の醗酵温度が60℃以上、80℃以下となるように前記加熱手段を駆動させることを特徴とする。
【0022】
上記の微生物を得る方法においては、前記微生物は、有機廃棄物の処理に適した複数の微生物の共生体として得られることが好ましい。
【0023】
本発明の有機肥料の製造方法は、有機廃棄物と、上記の微生物とを混合する工程を有することを特徴とする。本方法によれば、水分を含んだ有機廃棄物を効果的に処理することができる。
【0024】
また、本発明の有機肥料の製造方法は、有機廃棄物と、微生物とを混合する工程と、これを醗酵させる工程と、これに有機廃棄物を加えた後、醗酵させる工程を少なくとも1回と、を有することを特徴とする。
【0025】
また、本発明の有機肥料の製造方法は、有機廃棄物と、微生物とを混合する工程と、これを1〜3時間醗酵させた後、0.5〜1時間乾燥させる工程と、これに有機廃棄物を加えた後、1〜3時間醗酵させ、次いで0.5〜1時間乾燥させる工程と、さらに、これに有機廃棄物を加えた後、1〜3時間醗酵させ、次いで0.5〜1時間乾燥させる工程と、を有することを特徴とする。特に、それぞれ醗酵時間を1.5時間とし乾燥時間を0.5時間とすることが特に好ましい。
【0026】
本発明の有機肥料は、上記の方法により製造される。
【0027】
本発明の有機肥料は、農薬により処理された有機廃棄物に施用され、該有機廃棄物に含まれる残留農薬を分解することを特徴とする。
【0028】
また、本発明の有機肥料は、被生育物を生育させる土壌に施用され、該生育物に含まれる硝酸の量を低減させることを特徴とする。
【0029】
また、本発明の有機肥料は、被生育物を生育させる土壌に施用され、該生育物に含まれるシュウ酸の量を低減させることを特徴とする。
【0030】
【発明の実施の形態】
以下に、本発明に係る微生物の好ましい作出例、及び得られた微生物を用いた有機肥料の製造方法の好ましい例について説明する。
【0031】
(微生物の作出)
本発明に係る微生物の作出は、基本原菌を得る工程と、この基本原菌を有機廃棄物の処理に適した微生物(ぼかし)に変化させる工程とを経て行われる。
【0032】
先ず、基本原菌を得る工程について説明する。この工程では、収容室に、竹藪等の腐葉土中に存在する土着菌と、その培養に適した有機培養基材とを混合したものを入れ、減圧・加熱条件下にて土着菌を培養する。減圧条件は、水の沸点が50℃以上、70℃以下になるような範囲が好ましい。具体的には、収容室内の圧力を4.0×10Pa以上、5.3×10Pa以下とすることが好ましい。加熱条件は、混合物の醗酵温度が60℃以上、80℃以下となるようにすることが好ましい。培養時間は、約1.5時間以上、4時間以下が好ましい。
【0033】
具体的には、収容室に、腐葉土と、米糠とを入れ、さらに所定の培養液(有機培養基材)を加える。このような培養液としては、草花の成長点を黒砂糖に漬けて採ったエキス:天然緑汁)がある。草花としては、キリン草やブタ草等の生育力が強く、厳しい環境で生育しているものが好ましい。厳しい環境とは、海岸の近く、温度が他より高いあるいは低い等気候状態が他の領域よりも厳しい部分をいう。
【0034】
次に、収容室内の水の沸点が60℃となるように真空度を調整した状態を約1.5〜3時間維持し、菌を培養(発酵)させる。次いで、収容室内の培養物の一部(0.1〜10重量%)を収容室に残し、上記同様の培養液を加える。これを数日間繰り返し行って、基本原菌を得る。
【0035】
次に、基本原菌を有機廃棄物の処理に適した微生物(ぼかし)に変化させる工程を行う。本工程では、収容室内の得られた培養物に、米糠と、有機廃棄物と、30〜1重量%の海水とを加える。この有機廃棄物としては、魚介類、青果物、肉類、残飯、牛等の家畜糞、稲藁、落ち葉等を用いる。有機廃棄物として牛糞に残飯を加える等複数の原料を混ぜたものを用いてもよい。
【0036】
そして、上記同様の減圧・温度条件下に約1.5〜3時間維持して、培養/発酵を継続する。その後、収容室内の培養物の一部(30〜0.1重量%)を収容室に残して、さらに米糠と有機廃棄物を加えて同様な条件の培養を行う。これを数日間繰り返す。
【0037】
この結果得られるのが、有機廃棄物の分解/発酵処理に適した微生物(ぼかし)である。得られた微生物は、有機廃棄物の分解・醗酵等の処理に適した複数の菌の組合せである。収容室に海水を加えて培養するため、収容室内での菌の継代培養の途中で塩に対して抵抗性を有する菌が生き残る。このため、得られる微生物は塩に耐性を有する。
【0038】
(微生物の製造装置)
図19は、微生物の製造装置を示す図であり、本製造装置は、円筒状のドラムからなる収容室3を備えた本体1と、収容室3を加熱するためのボイラ2と、収容室3内の気圧を減圧させるための真空ポンプ4と、本体1から排出される水蒸気を凝縮させるための凝縮部6と、該凝縮部6により発生した水分(液体)を循環処理させるための循環部7とから構成されている。凝縮部6は、上下方向の複数のパイプからなる水蒸気経路13と、この水蒸気経路13と熱交換が可能な冷却水経路14とを備えている。水蒸気経路13は、案内部12を介して収容室3と連結されている。循環部7は、内部を通過する液体を冷却するためのクーリングタワー16と、脱臭装置18とを備える。脱臭装置18は、オゾン発生機19と、混合機21とから構成される。
【0039】
培養過程においては、収容室3内に水蒸気が発生する。この発生した水蒸気を真空ポンプ4を駆動させることによって、案内部12を介して凝縮部6に導入し、凝縮部6内の水蒸気経路13を通過させながら冷却水経路14内を通過する冷却水と熱交換させることで、この水蒸気を液化させる。液化された水は、クーリングタワー16へ導かれた後、冷却水の一部として凝縮部6と循環部7との間で循環される。クーリングタワー16から凝縮部6に供給された冷却水は、水蒸気との熱交換により加温された後、混合機21を介してクーリングタワー16へ戻される。そして、クーリングタワー16内において液体は冷却される。クーリングタワー16からは冷却水の一部が蒸発して放出される。冷却水の循環経路内には冷却水の悪臭を取り除く脱臭装置18が設けられており、オゾン発生機19からオゾンを供給してオゾン水化して脱臭する。
【0040】
このように、発生する凝縮水を冷却水としてフィードバックして使用することで、凝縮水を液体のまま外部に排出することがなく、クリーンなシステムとすることができる。
【0041】
(実施例)
〔微生物の作出〕
図19に示す製造装置を用いて、微生物を作出した。
【0042】
収容室3に、鹿児島県大島郡の竹藪から採取した腐葉土100kgと、米糠500kgと、同地方にあるキリン草50%と黒砂糖50%を混合し冷暗所に1週間保存して得られたエキスからなる培養液1kgとを入れ、密閉状態にて、収容室3内の周壁側及び攪拌部9をボイラ2により約120〜140℃のスチームで加熱し、収容室内の醗酵温度が60℃、圧力が4×10Paとなるようにして、攪拌しながら1.5時間培養した。
【0043】
次に、収容室3内の水の沸点が60℃となるように温度・圧力条件を調整して攪拌しながら1.5時間維持し、菌を培養した。次いで、収容室内の培養物の一部(10重量%)を収容室3に残し、これに前記培養液を1kg加え、前記同様の温度・圧力条件下にて攪拌しながら1.5時間培養する工程を4回繰り返し行った。
【0044】
次に、収容室3内の得られた培養物に、米糠500kgと、同地方で飼育されている家畜牛の牛糞100kgと、同地方にある海水180kgとを添加した。これを、上記同様の温度・圧力条件下にて攪拌しながら1.5時間維持し、培養を継続した。次いで、収容室内の培養物の一部(10重量%)を収容室3に残し、これに前記培養液を1kg加え、前記同様の温度圧力条件下にて攪拌しながら1.5時間培養する工程を4回繰り返し行った。
【0045】
本実施例においては、微生物を培養する際に、収容室内の水の沸点が60℃となるように減圧する。培養物が醗酵する際には約70℃となるので、培養物内に含まれる水分が常に水蒸気化し、収容室内の湿度は飽和状態となる。水分が水蒸気化するとその容積が数倍から数十倍にまで拡大する。これに伴い、培養物に含まれている空気も水蒸気の分圧効果により数倍から数十倍に拡大する。このように、培養物内に含まれている溶存空気の容積を拡大させることにより、これを有効に利用して、微生物(好気性微生物又は通性嫌気性微生物)に効率良く空気を供給することができる。溶存空気を利用するために、酸素(空気)を積極的に導入する必要もなく、非常に短時間で培養を行うことができる。効率良く空気を供給できるので通性嫌気性微生物だけでなく好気性微生物であっても十分に培養を進行させることができる。
【0046】
さらに、水蒸気や溶存空気は培養物の表面だけでなく、培養物の内部においても拡大する。微生物は培養物の内部の無数の空間を捕食しながら移動するので、極めて効率的に培養を進行させることができる。このように、培養物の内部に生育環境を形成することができるので、収容室内の水分の影響をほとんど受けない。したがって、従来のように収容室内の水分量を調整するためにおがこ等を大量に添加する必要もなく、極めて効率的かつ経済的である。
【0047】
上記の実験の結果、得られた菌は、放線菌に属するものであった。
【0048】
得られた菌を、前記の菌学的性質及び分類方法に従って分析したところ、ピチア ブルトニ(Pichia burtonii)(FERM BP−7504)(Shimose1)と、ピチア ファリノサ(Pichia farinosa)(FERM BP−7505)(Shimose2)と、及びスタフィロコッカス(Staphylococcus)(FERM BP−7506)(Shimose3)とが共生して構成される微生物(FERM BP−7728)(Shimose)であることが判った。
【0049】
Shimose1の培地は、標準寒天培地(日本製薬)である。培地の組成は、精製水1000mlと、肉エキス5.0gと、ペプトン10.0gと、塩化ナトリウム5.0gと、寒天15.0gとからなる。培養温度は30℃で培養時間は3日間である。培地のpHは7.0である。培地の殺菌条件は121℃で15分である。Shimose1は、凍結乾燥法(5℃)で保存できる。
【0050】
Shimose2の培地は、YM寒天培地(DIFCO)である。培地の組成は、精製水1000mlと、肉エキス3.0gと、麦芽エキス3.0gと、ペプトン5.0gと、ブドウ糖10.0gと、寒天20.0gとからなる。培養温度は28℃で培養期間は3日間である。培地のpHは6.2である。培地の殺菌条件は121℃で15分である。Shimose2は、凍結乾燥法(5℃)で保存できる。
【0051】
Shimose3の培地は、標準寒天培地(日本製薬)である。培地の組成は、精製水1000mlと、肉エキス5.0gと、ペプトン10.0gと、塩化ナトリウム5.0gと、寒天15.0gとからなる。培養温度は30℃で培養時間は3日間である。培地のpHは7.0である。培地の殺菌条件は121℃で15分である。Shimose1は、凍結乾燥法(5℃)で保存できる。
【0052】
Shimose(Shimose1、Shimose2、Shimose3の共生微生物)は、YM寒天倍地(DIFCO)上で生育するが、コロニー形態の相違によりそれぞれを区別することができる。コロニー形態を観察したところ、Shimose1は平坦で大きく、Shimose2はやや突状をなしており、Shimose3は約5mm以下の小さなコロニーであった。
【0053】
〔塩への耐性試験〕
得られた共生微生物におけるShimose1、Shimose2、Shimose3のそれぞれについて、以下の方法により塩への耐性を調べた。
【0054】
まず、培地にNaClを添加し、塩濃度が3重量%、5重量%、10重量%、15重量%、20重量%、25重量%、30重量%の各培地の系列を作製した。Shimose1及びShimose2はYM寒天培地(DIFCO)で、Shimose3は標準寒天培地(日本製薬)でそれぞれ28℃の温度条件で培養した。培地上のコロニーの生育を確認した後に、それぞれの生育状況を観察した。各検体の生育結果を表1に示す。また、巨視的観察像を図1〜17に示す。
【0055】
【表1】

Figure 0004153685
表1及び図1〜17に示すように、Shimose1、Shimose2、Shimose3においては、培地における塩濃度が15重量%であってもそれぞれコロニーの生育が認められ、塩濃度が15重量%まで耐性を有することが判った。すなわち、Shimose1、Shimose2、Shimose3は、いずれも浸透圧が数百から1000mOsm/Lという極めて高い環境下においても生育可能であることが判った。
【0056】
また、Shimose3においては、培地における塩濃度が30重量%であっても生育が認められた。これは、極めて高い塩濃度のために培地中でNaClがコロイド状になり塩濃度が不均一になり、塩濃度の低い部分にShimose3が生育したものと考えられる。
【0057】
さらに、Shimose1、Shimose2、Shimose3が共生した共生微生物(Shimose)の塩への耐性を調べた。共生微生物にNaClを15重量%添加して観察した状態の巨視的観察像を図18に示す。図18に示すように、NaClが系内に15重量%存在している環境下においても、共生微生物を構成するShimose1、Shimose2、Shimose3の全てが動いていることが確認された。なお、図18において、矢印はShimose3を指している。これより、共生微生物が、浸透圧が数百から1000mOsm/Lという極めて高い環境下においても生育可能であることが判った。
【0058】
〔微生物の菌学的性質〕
FERM BP−7504(Shimose1)の菌学的性質を以下に示す。
【0059】
【表2】
Figure 0004153685
以上の菌学的性質を総括すると、Shimose1は子嚢菌系酵母に属し、Pichia burtonii[アナモルフ:Candida variabilis (Linener)Berkhout]であると判定した。
【0060】
なお、菌学的性質及び分類方法は、Barnett, J. A., Payne, R. W., and Yarrow, D. 2000. Yeasts: Characteristics and identification, 3rd edn. Cambridge University Press, Cambridge, UK, 1139pp. Kurtzman, C. P. and Fell, J. W. 1998. The Yeasts, a taxonomic study, 4th edn. Elsevier, Amsterdam, Netherlands, 1055 pp. に準じて行った(以下同様)。
【0061】
FERM BP−7505(Shimose2)の菌学的性質を以下に示す。
【0062】
【表3】
Figure 0004153685
以上の菌学的性質を総括すると、Shimose2は子嚢菌系酵母に属し、Pichia farinosa[アナモルフ:Candida cacaoi H. R. Buckley & van Uden]であると判定した。
【0063】
FERM BP−7506(Shimose3)の菌学的性質を以下に示す。
【0064】
【表4】
Figure 0004153685
以上の菌学的性質を総括すると、Shimose3は非運動性グラム陽性球菌でカタラーゼ陽性、オキシダーゼ陰性、ブドウ糖を発酵的に分解し、フラゾリドン感受性を示すことからStaphylococcusであると判定した。
【0065】
〔微生物の塩基配列〕
Shimose1、Shimose2のそれぞれについて、以下の方法で塩基配列を得た。
【0066】
検体を、YM寒天培地(DIFCO)プレートで培養し、集菌、ISOPLANT2(ニッポンジーン)にてDNA分離を行った。Ready-To-Go PCR Beads(Amersham-Pharmacia Biotech)とプライマーNL1,NL4(O’ Donnell, 1993. Fusarium and its near relatives. In Reynolds, D.R. and Taylor, J. W. (Eds.) The Fungal Holomorph: Mitotic, Meiotic and Pleomorphic Speciation in Fungal Systematics, CAB International, Wallingford, pp. 225-233.)を用いてPCR法により28S rDNA D1/D2領域DNA断片の増幅を行った。このDNA断片を精製後、プライマーNL1、NL2、NL3、NL4(O’ Donnell, 1993)と、ABI Prism BigDye Terminator Ready Reaction Kit(Applied Biosystems)とを用いてサイクルシークエンシング反応を行った。得られた配列はAutoAssembler(Applied Biosystems)にて結合し、目的塩基配列を得た。DNAデータバンク(GenBank)登録DNA配列から相同スコアが高いものを検索するため、BLAST(Altschul, S. F., Madden, T. F., Schaffer, A. A., Zhang, J., Zhang Z., Miller,W., Lipman, D. J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25:3389-3402.)を用いて検索を行った。
【0067】
Shimose1の塩基配列を配列番号1に示す。ホモロジー検索の結果、524ポジションの全て(100%)がPichia burtonii U45712と一致したことから、Shimose1の帰属分類群はPichia burtoniiであると同定された。
【0068】
Shimose2の塩基配列を配列番号2に示す。ホモロジー検索の結果、572ポジションのうち570ポジション(99%)がPichia farinosa U45739と一致したことから、Shimose2の帰属分類群はPichia farinosaであると同定された。なお、Shimose2とU45739とは2ポジションの相違が認められるが、本結果と上記の菌学的性質とを考慮するとShimose2はPichia farinosaと同定される。
【0069】
次に、Shimose3について、以下の方法で塩基配列を得た。
【0070】
分離株Shimose3を普通寒天培地(日本製薬)に植菌し、30℃での培養物を供試菌体とした。DNA抽出、PCR、PCR産物の精製、サイクルシークエンスはMicroSeqTM 500 16S rDNA Bacterial Sequencing Kit(Applied Biosystems社)を用い、操作はApplied Biosystems社のプロトコールに従った。DNA解析はABI PRISMTM 377 DNA Sequencer (Applied Biosystems社)を用い、MicroSeqTMのデータベースにより照合検索を行った。
分離株Shimose3の16S rRNA遺伝子について、塩基配列を解析した結果を配列番号3に示す。この結果をMicroSeqのデータベースと照合したところ、相同率100%でStaphylococcus warneriと一致したことから、Shimose3の帰属分類群はStaphylococcus warneriと同定された。
【0071】
〔有機肥料の製造例1〕
図19に示す製造装置を用いて、有機肥料を製造した。なお、図19の装置は、微生物の製造装置としても、有機肥料の製造装置としても、いずれにおいても使用可能なものである。
【0072】
まず、収容室3に、鹿児島県大島郡で飼育されている家畜牛の牛糞からなる有機廃棄物を投入し、密閉状態にて、収容室3の周壁側及び攪拌部9をボイラ2により約115〜120℃のスチームで加熱し、収容室内の醗酵温度が60〜80℃となるようにした。これにより、有機廃棄物に含まれる腐敗菌や病原菌がおおむね死滅した。
【0073】
次に、真空ポンプ4を作動させ、収容室3内の気圧を減圧させ約300〜400mmHg(4.0×10Pa〜5.3×10Pa)とし、収容室3内の水の沸点を50〜70℃にした。これにより、有機廃棄物に含まれている水分が水蒸気となり、これが真空ポンプ4のバキューム作用によりエアとともに凝縮部6へ導かれた。また、この減圧により有機廃棄物の収縮が開始された。有機廃棄物に含まれる水分率が65%程度となつたところで、上記減圧を解除し、収容室3内の気圧を1気圧(約760mmHg)に戻した。これにより、収縮されていた有機廃棄物が膨張し、有機廃棄物内に溶存酸素が十分に取り込まれた。
【0074】
次に、有機廃棄物に対して重量比が有機廃棄物:共生微生物=99:1となるように、前記得られた共生微生物を収容室3に添加した。そして、収容室3を密閉して真空ポンプ4を駆動し、収容室3内の気圧を減圧せしめ、約300〜400mmHg(4.0×10Pa〜5.3×10Pa)とすることで、収容室3内の水の沸点を50〜70℃とした。この状態を2時間維持しながら、攪拌部9を回転させて攪拌した。減圧することにより、有機廃棄物に含まれる水分が効率良く水蒸気となって凝縮部6へ導かれた。また、減圧解除し攪拌することにより、有機廃棄物内により多くの溶存酸素を供給することができた。
【0075】
水蒸気経路13と冷却水経路14とを熱交換することにより、収容室3から案内部12を介して水蒸気経路13に導かれた水蒸気は、液化して水分となった。この水分は、真空ポンプ4によって、混合機21を経由してクーリングタワー16内に導かれる。混合機21内に導かれた水分は、オゾン発生機19で発生されたオゾンと反応して、オゾン水化することにより、脱臭された。
【0076】
そして、収容室3内の混合物を乾燥させ、有機肥料を得た。このようにして得られた有機肥料を分析したところ、次の成分を有していた。
【0077】
【表5】
Figure 0004153685
表5に示すように、牛糞(おがこ混じり)を有機廃棄物として用いた場合においては、醗酵処理前から醗酵処理後にかけての窒素分解率は(52−19)÷52×100=63.5%であった。このように、2時間の処理時間によって60%以上の窒素分解率を得ることができた。また、C/N値についても、醗酵処理後は醗酵処理前の1.5倍以上になっていた。
【0078】
同様に、牛糞(おがこ無し)、澱粉カス、スカムについても同様の醗酵処理、分析試験を行った。この結果についても表5に示した。
【0079】
表5から分かるように、本発明に係る微生物を用いることにより、2時間という短い処理時間でありながら、いずれも窒素分解率が40%以上という結果が得られた。従来の醗酵菌では有機廃棄物の処理に1ヶ月以上を要していたが、本発明によれば2時間程度で醗酵処理を完了することができ、短期間で良質な有機肥料を得ることができた。
〔有機肥料の製造例2〕
宮古島で飼育されている家畜牛の牛糞2トンと、醗酵促進のための副資材650kgとを、大福農事法人組合設置のNS−500型真空醗酵装置内へ投入した。副資材650kgの内訳は、バカス2m、糖蜜40L、アミノ酸200g、水250L、ぼかし(上記実施例で得られた共生微生物)20kg(米糠1トン、元菌40kg、糖蜜40L、水300Lを混合して、前日に醗酵装置にて前培養したもの)である。そして、真空醗酵を1.5時間行い、次いで真空乾燥を0.5時間行った。この投入、真空醗酵、真空乾燥を1サイクルとして、3サイクルを行い、堆肥を得た。
【0080】
次に、NS−500型真空醗酵装置内へ、前記ぼかし(水分41%)100kgと、前記堆肥(水分75%)100kgと、宮古島で飼育されている家畜牛の尿(水分(100%)107kgとの混合物を投入し、3時間処理した。この処理の過程において、混合物の水分含有率(重量%)を測定し、その推移を観察した。この結果を図20に示す。図20に示すように、上記ぼかしを用いて処理することにより、混合物中の水分を1時間当たり約6〜7重量%除去することができた。
【0081】
さらに、得られた前記の堆肥をNS−500型真空醗酵装置から取り出し、堆積し、堆肥中の水分含有率(重量%)と堆肥内深さ30cmにおける温度を測定し、その推移を観察した。この結果を図21に示す。図21に示すように、堆肥内温度は堆積して数週間後においても60℃前後の値を示し、堆肥が2次醗酵していることが確認された。また、図21において数週間経過後には堆肥中の水分含有率が低下したにもかかわらず、十分2次醗酵していることが分かった。
【0082】
〔有機肥料の製造例3〕
奈良県のゴルフ場のシバ(農薬を散布された芝)を刈り取ったものを500kgと、副資材として土着微生物を20kgを、大福農事法人組合設置のNS−500型真空醗酵装置内へ投入した。副資材は上記製造例2と同一のものを用いた。醗酵条件温度60℃にて1.5時間醗酵を行った。水分が少なかったため、全重量に対して約30%の水を加えた。その後、30分間乾燥させた。
【0083】
上記のようにして醗酵処理したシバをハンマー式粉砕機にて粉砕して得られた肥料について、農林水産省農業環境技術研究所「肥料分析法」に従い分析するとともに、残留農薬の量を分析した。これらの結果を表6に示す。
【0084】
【表6】
Figure 0004153685
表6に示すように、得られた肥料は優れた特性を有していた。また、残留農薬はほとんど検出されず(全ての項目において0.02ppm以下)、残留農薬が分解されたことが判った。
【0085】
〔栽培試験〕
上記の有機肥料の製造例2で得られた堆肥を用いて、平成12年に北海道紋別市の木原牧場においてホウレン草の栽培試験を行った。具体的には、堆肥(ウロ主体)10kg、硫安2kg、ブラックシリカ0.6kgを混合したものを肥料として用いた。栽培条件は、品種がデンマーク産オーライ、播種日が2001年9月29日、面積37.5mのハウス内で行い、肥料を1m当たり336g(堆肥265g、硫安55g、ブラックシリカ16g)とした。
【0086】
栽培の結果、本肥料を散布したところ、通常収穫まで1ヶ月半かかるところ、約1ヶ月で収穫することができ、生育期間が短縮された。また、生育されたホウレン草は、従来のものに比べて葉が厚く、味もアクが少なく甘味を有していた。
【0087】
収穫されたホウレン草について、ビタミンC含有量、シュウ酸含有量、硝酸含有量をそれぞれ測定した。まず、メタリン酸抽出後にHPLC法を施すことにより、ビタミンCの含有量を分析したところ、平均で53mg/100gであり、基準値(30mg/100g)を上回っており良好であった。また、アクの成分であるシュウ酸の含有量に関して、熱水にて2回抽出した後HPLC法を施すことにより分析したところ、平均で480mg/100gであり、非常に少量であった。さらに、簡易分析器RQフレックスを用いて硝酸の含有量を分析したところ、平均で101mg/100gであり、基準値(300mg/100g)を大きく下回っており良好であった。
【0088】
肥料の施用量を変化させた場合の、硝酸含有量とシュウ酸含有量を測定した。この結果を図22に示す。図22に示すように、肥料の施用量を増加させると硝酸含有量及びシュウ酸含有量がより低減された。また、肥料施用量が2t/10aと比較的少量であっても硝酸含有量及びシュウ酸含有量を効果的に低減させ得ることが判った。
【0089】
比較例として、各産地において通常の肥料を用いてホウレン草を栽培した場合の硝酸含有量及びシュウ酸含有量についても分析した。この結果を図23に示す。図23に示すように、上記の本発明に係る肥料を用いた木原産のものは、硝酸含有量及びシュウ産含有量のいずれも顕著に低減され、良好であることが判る。特に、硝酸態窒素を多量に摂取すると体内で発ガン性物質に変化したり中毒症状を引き起こすおそれがあるため、本発明に係る肥料は極めて有用なものである。
【0090】
【発明の効果】
以上のように構成される本発明に係る微生物は、塩の耐性に極めて優れており、高濃度の塩分を含んだ有機廃棄物の処理や土壌改良に有用である。
【0091】
また、該微生物又はその処理物を含む微生物含有組成物は、高濃度の塩分を含んだ土壌の改良剤や、有機廃棄物の処理剤として有用である。
【0092】
さらに、本発明の有機肥料の製造方法によれば、短期間で良質な有機肥料を製造することができる。
【図面の簡単な説明】
【図1】 Shimose1の生育結果を示す巨視的観察像である。
【図2】 Shimose1の生育結果を示す巨視的観察像である。
【図3】 Shimose1の生育結果を示す巨視的観察像である。
【図4】 Shimose1の生育結果を示す巨視的観察像である。
【図5】 Shimose1の生育結果を示す巨視的観察像である。
【図6】 Shimose2の生育結果を示す巨視的観察像である。
【図7】 Shimose2の生育結果を示す巨視的観察像である。
【図8】 Shimose2の生育結果を示す巨視的観察像である。
【図9】 Shimose2の生育結果を示す巨視的観察像である。
【図10】 Shimose2の生育結果を示す巨視的観察像である。
【図11】 Shimose3の生育結果を示す巨視的観察像である。
【図12】 Shimose3の生育結果を示す巨視的観察像である。
【図13】 Shimose3の生育結果を示す巨視的観察像である。
【図14】 Shimose3の生育結果を示す巨視的観察像である。
【図15】 Shimose3の生育結果を示す巨視的観察像である。
【図16】 Shimose3の生育結果を示す巨視的観察像である。
【図17】 Shimose3の生育結果を示す巨視的観察像である。
【図18】 共生微生物の生育結果を示す巨視的観察像である。
【図19】 有機肥料製造装置を示す図である。
【図20】 混合物の水分含有率の推移を示す図である。
【図21】 堆肥の水分含有率及び温度変化を示す図である。
【図22】 肥料の施用量を変化させた場合のホウレン草における硝酸含有量とシュウ酸含有量の測定結果を示す図である。
【図23】 本発明に係る肥料及び従来の肥料を施用した際の硝酸含有量及びシュウ酸含有量を測定した結果を示す図である。
【符号の説明】
2 ボイラ
3 収容室
4 真空ポンプ
6 凝縮部
9 撹拌部
12 案内部
13 水蒸気流通経路
14 冷却水流通経路
16 クーリングタワー
【配列表】
Figure 0004153685
Figure 0004153685
Figure 0004153685
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a microorganism useful for a treatment for fermenting and decomposing organic waste such as cattle manure and sewage sludge, and the microorganism-containing composition.
[0002]
Furthermore, this invention relates to the method of manufacturing organic fertilizer from organic waste using this microorganism.
[0003]
[Prior art]
In general, when organic waste containing water such as cattle manure and sewage sludge is processed, or organic waste is processed to produce organic fertilizer, organic waste, desiccant and microorganisms ( Fermented bacteria such as indigenous bacteria) are put into a storage chamber composed of a hollow drum, and these mixtures are fermented while being stirred and mixed at a high temperature by rotation of the storage chamber to produce an organic fertilizer.
[0004]
In this fermentation process, it is necessary to add a large amount of dry base material so that the moisture content contained in the entire mixture is approximately 60 to 65% by weight to adjust the moisture and improve the air permeability. In this way, moisture adjustment is necessary to reduce the moisture in the mixture to prevent organic fertilizer corrosion, etc., and to increase the surface area on the organic waste side where the fermenting bacteria are deposited as much as possible to decompose organic matter. This is to promote (fermentation).
[0005]
[Problems to be solved by the invention]
However, the fermenting bacteria used for the treatment of conventional organic wastes have a problem that they cannot sufficiently inhabit in soil or treated products containing a high concentration of salt. In other words, it has been desired to provide microorganisms that are resistant to salt so that they can sufficiently inhabit in soil with a high salinity concentration, such as soil in a coastal region or soil that has been irrigated with seawater, and processed materials.
[0006]
Moreover, in the conventionally used fermenting bacteria, in order to adjust moisture, it is necessary to add a large amount of dry base materials to the mixture. For this reason, it took time to ferment the organic waste.
[0007]
Then, an object of this invention is to provide the novel microorganisms which have tolerance to a salt, and this microorganism-containing composition.
[0008]
Furthermore, an object of the present invention is to provide a method for producing a high-quality organic fertilizer from organic waste in a short period of time using the microorganism.
[0009]
[Means for Solving the Problems]
As a result of intensive experiments, the present invention has been made in view of the fact that a specific microorganism has resistance to salt.
[0010]
The microorganism according to the present invention is a microorganism belonging to Pichia burtonii having resistance to salt. The microorganism is, in particular, deposited at FERM BP-7504 (Ministry of Economy, Trade and Industry, National Institute of Advanced Industrial Science and Technology, Biotechnology Institute of Technology, Patent Microorganism Deposit Center, East 1-3, Tsukuba City, Ibaraki, Japan on March 14, 2001. (Hereinafter referred to as “Shimose 1”).
[0011]
Another microorganism according to the present invention is a microorganism belonging to Pichia farinosa that is resistant to salt. The microorganism is particularly preferably FERM BP-7505 (Internationally deposited like Shimose 1; hereinafter referred to as “Shimose 2”).
[0012]
Another microorganism according to the present invention is a microorganism belonging to Staphylococcus that is resistant to salt. The microorganism is particularly preferably FERM BP-7506 (which has been deposited internationally in the same manner as Shimose 1; hereinafter referred to as “Shimose 3”).
[0013]
Another microorganism according to the present invention is a microorganism constituted by symbiosis of Pichia burtonii, Pichia farinosa, and Staphylococcus. In particular, the microorganism is a symbiotic microorganism composed of FERM BP-7504 (Shimose 1), FERM BP-7505 (Shimose 2), and FERM BP-7506 (Shimose 3) (similar to FERM BP-7728; Shimose 1). (Hereinafter referred to as “Shimose”). The microorganism is preferably one having resistance to salt.
[0014]
In the above, having tolerance to salt means that the microorganism can grow even if the salt concentration in the system (for example, medium) to which the microorganism is added is high.
[0015]
In the present invention, the microorganism is preferably able to grow even if the salt concentration in the system (for example, medium) to which it is added is 5% by weight or more, and further, the salt concentration in the system is 10% by weight. It is more preferable that it can grow even if it is at least%.
[0016]
The microorganism-containing composition of the present invention is characterized by containing the above-mentioned microorganism or a processed product thereof. This microorganism-containing composition can be used as a soil conditioner.
[0017]
The apparatus for producing microorganisms suitable for the treatment of organic waste according to the present invention includes a storage chamber for storing a culture object and a substance assisting the culture, a stirring means for stirring the storage chamber, and heating the storage chamber. It is characterized by comprising heating means and decompression means for decompressing the accommodation chamber.
[0018]
The method for obtaining a microorganism suitable for the treatment of organic waste according to the present invention includes a step of accommodating a culture object and a substance assisting the cultivation in a storage chamber, culturing the mixture, and organic waste in the storage chamber. And a step of further culturing the mixture.
[0019]
As salt-containing water, seawater is preferable.
[0020]
In addition, the method for obtaining a microorganism suitable for the treatment of organic waste of the present invention uses the above-described production apparatus, and a culture object (for example, humus, soil, turf, etc.) and a carbohydrate-based organic substance (for example, humus) , Rice bran, etc.) and the culture solution, the stirring means is driven to stir the mixture in the storage chamber, and the boiling point of water in the storage chamber is 50 ° C. or higher and 70 ° C. or lower. A step of driving the decompression means, a step of adding organic waste and salt-containing water (for example, seawater) into the storage chamber, agitating the mixture in the storage chamber by driving the stirring means, and water in the storage chamber And the step of driving the pressure reducing means so that the boiling point of the liquid crystal becomes 50 ° C. or higher and 70 ° C. or lower.
[0021]
In the said method, the said heating means is driven so that the fermentation temperature in the said storage chamber may be 60 degreeC or more and 80 degrees C or less.
[0022]
In the above method for obtaining a microorganism, the microorganism is preferably obtained as a symbiosis of a plurality of microorganisms suitable for the treatment of organic waste.
[0023]
The manufacturing method of the organic fertilizer of this invention has the process of mixing an organic waste and said microorganisms. According to this method, the organic waste containing water can be treated effectively.
[0024]
Moreover, the manufacturing method of the organic fertilizer of this invention is the process of mixing an organic waste and a microorganism, the process of fermenting this, and the process of fermenting at least once after adding an organic waste to this. It is characterized by having.
[0025]
Moreover, the manufacturing method of the organic fertilizer of this invention is the process which mixes an organic waste and microorganisms, the process of making this ferment for 1-3 hours, and drying for 0.5 to 1 hour, and this. After adding waste, it is fermented for 1 to 3 hours and then dried for 0.5 to 1 hour. Further, after adding organic waste to this, it is fermented for 1 to 3 hours, and then 0.5 to 1 hour. And drying for 1 hour. In particular, it is particularly preferable that the fermentation time is 1.5 hours and the drying time is 0.5 hours.
[0026]
The organic fertilizer of this invention is manufactured by said method.
[0027]
The organic fertilizer of the present invention is applied to organic waste treated with agricultural chemicals, and decomposes residual agricultural chemicals contained in the organic waste.
[0028]
Moreover, the organic fertilizer of this invention is applied to the soil which grows a to-be-grown material, and reduces the quantity of nitric acid contained in this grown material.
[0029]
Moreover, the organic fertilizer of this invention is applied to the soil which grows a to-be-grown material, and reduces the quantity of the oxalic acid contained in this grown material.
[0030]
DETAILED DESCRIPTION OF THE INVENTION
Below, the preferable production example of the microorganisms which concern on this invention, and the preferable example of the manufacturing method of the organic fertilizer using the obtained microorganisms are demonstrated.
[0031]
(Production of microorganisms)
Production of the microorganism according to the present invention is performed through a step of obtaining a basic bacterium and a step of changing the basic bacterium to a microorganism (blurring) suitable for the treatment of organic waste.
[0032]
First, the process for obtaining the basic bacterium is described. In this process, the inoculum is mixed with indigenous bacteria present in mulch such as bamboo shoots and an organic culture substrate suitable for the cultivation, and the indigenous bacteria are cultured under reduced pressure and heating conditions. . The pressure reducing condition is preferably in a range where the boiling point of water is 50 ° C. or higher and 70 ° C. or lower. Specifically, the pressure in the storage chamber is 4.0 × 10. 4 Pa or more, 5.3 × 10 4 It is preferable to set it to Pa or less. The heating condition is preferably such that the fermentation temperature of the mixture is 60 ° C. or higher and 80 ° C. or lower. The culture time is preferably about 1.5 hours or more and 4 hours or less.
[0033]
Specifically, humus and rice bran are put in a storage chamber, and a predetermined culture solution (organic culture substrate) is added. As such a culture solution, there is an extract (natural green juice) obtained by immersing the growing point of a flower in brown sugar. As the flowers, those having strong viability such as giraffe grass and pig grass and growing in a harsh environment are preferable. The harsh environment refers to a portion near the coast where the climatic conditions are higher or lower than other areas and are more severe than other areas.
[0034]
Next, the state in which the degree of vacuum is adjusted so that the boiling point of water in the storage chamber is 60 ° C. is maintained for about 1.5 to 3 hours, and the bacteria are cultured (fermented). Next, a part of the culture in the storage chamber (0.1 to 10% by weight) is left in the storage chamber, and the same culture solution as above is added. This is repeated for several days to obtain a basic bacterium.
[0035]
Next, a process of changing the basic bacterium to a microorganism (blur) suitable for the treatment of organic waste is performed. In this step, rice bran, organic waste, and 30 to 1% by weight seawater are added to the obtained culture in the storage chamber. As this organic waste, fish and shellfish, fruits and vegetables, meat, leftovers, livestock excrement such as cows, rice straw, and fallen leaves are used. You may use what mixed several raw materials, such as adding leftover to cow dung as organic waste.
[0036]
Then, the culture / fermentation is continued for about 1.5 to 3 hours under the same reduced pressure and temperature conditions as described above. Thereafter, a part of the culture in the storage chamber (30 to 0.1% by weight) is left in the storage chamber, and rice bran and organic waste are further added to carry out the culture under the same conditions. Repeat this for several days.
[0037]
The result is a microorganism (blurring) suitable for organic waste decomposition / fermentation treatment. The obtained microorganism is a combination of a plurality of bacteria suitable for treatment such as decomposition and fermentation of organic waste. Since seawater is added to the accommodation chamber and cultured, the bacteria having resistance to salt survive during the subculture of the bacteria in the accommodation room. For this reason, the microorganisms obtained are resistant to salt.
[0038]
(Microbe production equipment)
FIG. 19 is a diagram showing a microorganism production apparatus. This production apparatus includes a main body 1 having a storage chamber 3 made of a cylindrical drum, a boiler 2 for heating the storage chamber 3, and a storage chamber 3. A vacuum pump 4 for reducing the internal pressure, a condensing part 6 for condensing water vapor discharged from the main body 1, and a circulating part 7 for circulating water (liquid) generated by the condensing part 6 It consists of and. The condensing unit 6 includes a water vapor path 13 composed of a plurality of pipes in the vertical direction, and a cooling water path 14 that can exchange heat with the water vapor path 13. The water vapor path 13 is connected to the storage chamber 3 through the guide portion 12. The circulation unit 7 includes a cooling tower 16 for cooling the liquid passing through the inside and a deodorizing device 18. The deodorizing device 18 includes an ozone generator 19 and a mixer 21.
[0039]
During the culturing process, water vapor is generated in the storage chamber 3. The generated water vapor is introduced into the condensing unit 6 via the guide unit 12 by driving the vacuum pump 4, and the cooling water passing through the cooling water channel 14 while passing through the water vapor channel 13 in the condensing unit 6 This water vapor is liquefied by heat exchange. The liquefied water is guided to the cooling tower 16 and then circulated between the condensing unit 6 and the circulating unit 7 as a part of the cooling water. The cooling water supplied from the cooling tower 16 to the condensing unit 6 is heated by heat exchange with steam and then returned to the cooling tower 16 via the mixer 21. Then, the liquid is cooled in the cooling tower 16. A part of the cooling water is evaporated and discharged from the cooling tower 16. A deodorizing device 18 that removes the bad odor of cooling water is provided in the cooling water circulation path, and ozone is supplied from an ozone generator 19 to turn it into ozone water for deodorization.
[0040]
Thus, by using the generated condensed water as feedback as cooling water, the condensed water is not discharged to the outside as a liquid, and a clean system can be obtained.
[0041]
(Example)
[Production of microorganisms]
Microorganisms were produced using the production apparatus shown in FIG.
[0042]
An extract obtained by mixing 100 kg of humus soil collected from bamboo shoots in Oshima-gun, Kagoshima Prefecture, 500 kg of rice bran, 50% giraffe grass and 50% brown sugar in the same region, and storing it in a cool and dark place for one week. 1 kg of the culture broth was added, and in a sealed state, the peripheral wall side in the storage chamber 3 and the stirring unit 9 were heated by the boiler 2 with steam of about 120 to 140 ° C., and the fermentation temperature in the storage chamber was 60 ° C., pressure Is 4 × 10 4 The mixture was cultured for 1.5 hours with stirring so as to be Pa.
[0043]
Next, the temperature and pressure conditions were adjusted so that the boiling point of water in the storage chamber 3 would be 60 ° C. and maintained for 1.5 hours with stirring to culture the bacteria. Next, a part (10% by weight) of the culture in the storage chamber is left in the storage chamber 3, 1 kg of the culture solution is added thereto, and the mixture is cultured for 1.5 hours with stirring under the same temperature and pressure conditions as described above. The process was repeated 4 times.
[0044]
Next, 500 kg of rice bran, 100 kg of cattle dung of domestic cattle bred in the same region, and 180 kg of seawater in the same region were added to the obtained culture in the storage chamber 3. This was maintained for 1.5 hours with stirring under the same temperature and pressure conditions as described above, and the culture was continued. Next, a part (10% by weight) of the culture in the storage chamber is left in the storage chamber 3, 1 kg of the culture solution is added thereto, and the mixture is cultured for 1.5 hours with stirring under the same temperature and pressure conditions as described above. Was repeated four times.
[0045]
In this embodiment, when culturing microorganisms, the pressure is reduced so that the boiling point of water in the storage chamber is 60 ° C. When the culture is fermented, the temperature is about 70 ° C., so that the moisture contained in the culture is always steamed and the humidity in the storage chamber becomes saturated. When water is steamed, its volume increases from several times to several tens of times. Along with this, the air contained in the culture also expands from several times to several tens of times due to the partial pressure effect of water vapor. In this way, by effectively increasing the volume of dissolved air contained in the culture, this can be used effectively to efficiently supply air to microorganisms (aerobic microorganisms or facultative anaerobic microorganisms). Can do. In order to use dissolved air, it is not necessary to actively introduce oxygen (air), and culture can be performed in a very short time. Since air can be supplied efficiently, not only facultative anaerobic microorganisms but also aerobic microorganisms can be cultured sufficiently.
[0046]
Furthermore, water vapor and dissolved air expand not only on the surface of the culture but also inside the culture. Since microorganisms move while preying on innumerable spaces inside the culture, the culture can proceed very efficiently. Thus, since a growth environment can be formed inside the culture, it is hardly affected by moisture in the storage chamber. Therefore, it is not necessary to add a large amount of sawdust or the like in order to adjust the amount of water in the accommodation chamber as in the conventional case, and it is extremely efficient and economical.
[0047]
As a result of the above experiment, the obtained bacteria belonged to actinomycetes.
[0048]
The obtained bacteria were analyzed according to the above-mentioned mycological properties and classification methods. As a result, Pichia burtonii (FERM BP-7504) (Shimose 1) and Pichia farinosa (FERM BP-7505) ( It was found to be a microorganism (FERM BP-7728) (Shimose) composed of Shimose 2) and Staphylococcus (FERM BP-7506) (Shimose 3).
[0049]
Shimose 1 is a standard agar medium (Nippon Pharmaceutical). The composition of the medium consists of 1000 ml of purified water, 5.0 g of meat extract, 10.0 g of peptone, 5.0 g of sodium chloride, and 15.0 g of agar. The culture temperature is 30 ° C. and the culture time is 3 days. The pH of the medium is 7.0. The sterilization condition of the medium is 15 minutes at 121 ° C. Shimose 1 can be stored by freeze-drying (5 ° C.).
[0050]
Shimose 2 medium is YM agar medium (DIFCO). The composition of the medium consists of 1000 ml of purified water, 3.0 g of meat extract, 3.0 g of malt extract, 5.0 g of peptone, 10.0 g of glucose and 20.0 g of agar. The culture temperature is 28 ° C., and the culture period is 3 days. The pH of the medium is 6.2. The sterilization condition of the medium is 15 minutes at 121 ° C. Shimose 2 can be stored by freeze-drying (5 ° C.).
[0051]
Shimose 3 is a standard agar medium (Nippon Pharmaceutical). The composition of the medium consists of 1000 ml of purified water, 5.0 g of meat extract, 10.0 g of peptone, 5.0 g of sodium chloride, and 15.0 g of agar. The culture temperature is 30 ° C. and the culture time is 3 days. The pH of the medium is 7.0. The sterilization condition of the medium is 15 minutes at 121 ° C. Shimose 1 can be stored by freeze-drying (5 ° C.).
[0052]
Shimose (symbiotic microorganisms of Shimose 1, Shimose 2, and Shimose 3) grows on YM agar medium (DIFCO), but can be distinguished from each other by the difference in colony morphology. When the colony morphology was observed, Shimose 1 was flat and large, Shimose 2 was slightly protruding, and Shimose 3 was a small colony of about 5 mm or less.
[0053]
[Salt tolerance test]
For each of Shimose 1, Shimose 2 and Shimose 3 in the obtained symbiotic microorganism, resistance to salt was examined by the following method.
[0054]
First, NaCl was added to the medium to prepare a series of mediums having a salt concentration of 3% by weight, 5% by weight, 10% by weight, 15% by weight, 20% by weight, 25% by weight, and 30% by weight. Shimose 1 and Shimose 2 were cultured on a YM agar medium (DIFCO), and Shimose 3 was cultured on a standard agar medium (Nippon Pharmaceutical Co., Ltd.) at a temperature of 28 ° C. After confirming the growth of colonies on the medium, each growth state was observed. The growth results of each specimen are shown in Table 1. Macroscopic observation images are shown in FIGS.
[0055]
[Table 1]
Figure 0004153685
As shown in Table 1 and FIGS. 1 to 17, in Shimose 1, Shimose 2, and Shimose 3, even when the salt concentration in the medium is 15 wt%, colony growth is observed, and the salt concentration is resistant to 15 wt%. I found out. That is, it was found that Shimose 1, Shimose 2 and Shimose 3 can all grow under an extremely high osmotic pressure of several hundred to 1000 mOsm / L.
[0056]
In addition, in Shimose 3, growth was observed even when the salt concentration in the medium was 30% by weight. This is presumably because NaCl became colloidal in the medium due to the extremely high salt concentration, the salt concentration became non-uniform, and Shimose 3 grew in a portion where the salt concentration was low.
[0057]
Furthermore, the resistance to the salt of the symbiotic microorganisms (Shimose) in which Shimose 1, Shimose 2, and Shimose 3 coexisted was examined. FIG. 18 shows a macroscopic observation image obtained by adding 15% by weight of NaCl to the symbiotic microorganism. As shown in FIG. 18, it was confirmed that all of Shimose 1, Shimose 2, and Shimose 3 constituting the symbiotic microorganisms were moving even in an environment where NaCl was present at 15% by weight in the system. In FIG. 18, the arrow points to Shimose 3. From this, it was found that the symbiotic microorganisms can grow even in an extremely high environment having an osmotic pressure of several hundred to 1000 mOsm / L.
[0058]
[Microbiological properties of microorganisms]
The mycological properties of FERM BP-7504 (Shimose 1) are shown below.
[0059]
[Table 2]
Figure 0004153685
Summarizing the above bacteriological properties, it was determined that Shimose 1 belongs to the Ascomycetous yeast and is Pichia burtonii [anamorph: Candida variabilis (Linener) Berkhout].
[0060]
Bacteriological properties and classification methods are described in Barnett, JA, Payne, RW, and Yarrow, D. 2000. Yeasts: Characteristics and identification, 3 rd edn. Cambridge University Press, Cambridge, UK, 1139pp. Kurtzman, CP and Fell, JW 1998. The Yeasts, a taxonomic study, 4 th edn. Elsevier, Amsterdam, Netherlands, 1055 pp.
[0061]
The mycological properties of FERM BP-7505 (Shimose 2) are shown below.
[0062]
[Table 3]
Figure 0004153685
Summarizing the above bacteriological properties, it was determined that Shimose 2 belongs to the Ascomycetous yeast and is Pichia farinosa [anamorph: Candida cacaoi HR Buckley & van Uden].
[0063]
The mycological properties of FERM BP-7506 (Shimose 3) are shown below.
[0064]
[Table 4]
Figure 0004153685
Summarizing the above bacteriological properties, Shimose 3 was determined to be Staphylococcus because it is a non-motile Gram-positive cocci, catalase positive, oxidase negative, fermentatively degrades glucose, and shows sensitivity to furazolidone.
[0065]
[Base sequence of microorganism]
For each of Shimose 1 and Shimose 2, base sequences were obtained by the following method.
[0066]
The specimen was cultured on a YM agar medium (DIFCO) plate, and DNA separation was performed using the collected bacteria and ISOPLANT2 (Nippon Gene). Ready-To-Go PCR Beads (Amersham-Pharmacia Biotech) and primers NL1, NL4 (O 'Donnell, 1993. Fusarium and its near relatives. and Pleomorphic Speciation in Fungal Systematics, CAB International, Wallingford, pp. 225-233.) The 28S rDNA D1 / D2 region DNA fragment was amplified by PCR. After purification of this DNA fragment, a cycle sequencing reaction was performed using primers NL1, NL2, NL3, NL4 (O 'Donnell, 1993) and ABI Prism BigDye Terminator Ready Reaction Kit (Applied Biosystems). The obtained sequences were linked by AutoAssembler (Applied Biosystems) to obtain the target base sequence. BLAST (Altschul, SF, Madden, TF, Schaffer, AA, Zhang, J., Zhang Z., Miller, W., Lipman, DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402.
[0067]
The base sequence of Shimose 1 is shown in SEQ ID NO: 1. As a result of the homology search, all of the 524 positions (100%) matched with Pichia burtonii U45712, so that the belonging taxon of Shimosose 1 was identified as Pichia burtonii.
[0068]
The base sequence of Shimose 2 is shown in SEQ ID NO: 2. As a result of the homology search, 570 positions (99%) out of 572 positions coincided with Pichia farinosa U45739. Therefore, the belonging taxon of Shimose 2 was identified as Pichia farinosa. In addition, although the difference of two positions is recognized between Shimose2 and U45739, considering this result and the above bacteriological properties, Shimose2 is identified as Pichia farinosa.
[0069]
Next, the base sequence of Shimose 3 was obtained by the following method.
[0070]
The isolate Shimose 3 was inoculated into a normal agar medium (Nippon Pharmaceutical Co., Ltd.), and a culture at 30 ° C. was used as a test cell. MicroSeq for DNA extraction, PCR, PCR product purification and cycle sequencing TM 500 16S rDNA Bacterial Sequencing Kit (Applied Biosystems) was used, and the operation was performed according to the protocol of Applied Biosystems. DNA analysis is ABI PRISM TM MicroSeq using 377 DNA Sequencer (Applied Biosystems) TM We performed a collation search using the database.
The result of analyzing the nucleotide sequence of the 16S rRNA gene of the isolate Shimose 3 is shown in SEQ ID NO: 3. When this result was collated with the database of MicroSeq and it was in agreement with Staphylococcus warneri at a homology rate of 100%, the belonging taxon of Shimose 3 was identified as Staphylococcus warneri.
[0071]
[Production example 1 of organic fertilizer]
The organic fertilizer was manufactured using the manufacturing apparatus shown in FIG. The apparatus shown in FIG. 19 can be used both as a microorganism production apparatus and as an organic fertilizer production apparatus.
[0072]
First, organic waste made of cattle dung from livestock cattle bred in Oshima-gun, Kagoshima Prefecture is introduced into the containment chamber 3, and the peripheral wall side of the containment chamber 3 and the stirring unit 9 are sealed by the boiler 2 in a sealed state. It heated with -120 degreeC steam so that the fermentation temperature in a storage chamber might be set to 60-80 degreeC. As a result, the spoilage bacteria and pathogenic bacteria contained in the organic waste were generally killed.
[0073]
Next, the vacuum pump 4 is operated to reduce the atmospheric pressure in the storage chamber 3 to about 300 to 400 mmHg (4.0 × 10 4 Pa to 5.3 × 10 4 Pa), and the boiling point of water in the storage chamber 3 was 50 to 70 ° C. Thereby, the water | moisture content contained in the organic waste became water vapor | steam, and this was guide | induced to the condensation part 6 with the air by the vacuum action of the vacuum pump 4. FIG. Moreover, the contraction of the organic waste was started by this decompression. When the moisture content contained in the organic waste reached about 65%, the above decompression was released and the pressure inside the storage chamber 3 was returned to 1 atmosphere (about 760 mmHg). Thereby, the organic waste which was shrunk expanded, and dissolved oxygen was fully taken in into the organic waste.
[0074]
Next, the obtained symbiotic microorganism was added to the storage chamber 3 so that the weight ratio with respect to the organic waste was organic waste: symbiotic microorganisms = 99: 1. Then, the storage chamber 3 is sealed and the vacuum pump 4 is driven to reduce the pressure in the storage chamber 3 to about 300 to 400 mmHg (4.0 × 10 × 10). 4 Pa to 5.3 × 10 4 Pa), the boiling point of water in the storage chamber 3 was set to 50 to 70 ° C. While maintaining this state for 2 hours, the stirring unit 9 was rotated and stirred. By reducing the pressure, the water contained in the organic waste was efficiently converted into water vapor and led to the condensation unit 6. Moreover, more dissolved oxygen could be supplied into the organic waste by releasing the pressure and stirring.
[0075]
By exchanging heat between the water vapor path 13 and the cooling water path 14, the water vapor introduced from the storage chamber 3 to the water vapor path 13 via the guide portion 12 was liquefied to become moisture. This moisture is introduced into the cooling tower 16 via the mixer 21 by the vacuum pump 4. The moisture introduced into the mixer 21 was deodorized by reacting with the ozone generated by the ozone generator 19 to turn into ozone water.
[0076]
And the mixture in the storage chamber 3 was dried and the organic fertilizer was obtained. When the organic fertilizer thus obtained was analyzed, it had the following components.
[0077]
[Table 5]
Figure 0004153685
As shown in Table 5, when cow dung (mixed with sawdust) is used as organic waste, the nitrogen decomposition rate before the fermentation treatment and after the fermentation treatment is (52-19) ÷ 52 × 100 = 63. It was 5%. Thus, it was possible to obtain a nitrogen decomposition rate of 60% or more with a treatment time of 2 hours. Moreover, also about C / N value, it became 1.5 times or more after a fermentation process before a fermentation process.
[0078]
Similarly, the same fermentation treatment and analytical test were performed on cow dung (without saw), starch residue and scum. This result is also shown in Table 5.
[0079]
As can be seen from Table 5, by using the microorganisms according to the present invention, a result of a nitrogen decomposition rate of 40% or more was obtained in all of the treatment times as short as 2 hours. In conventional fermentation bacteria, it took more than a month to treat organic waste. However, according to the present invention, fermentation treatment can be completed in about 2 hours, and high-quality organic fertilizer can be obtained in a short period of time. did it.
[Production example 2 of organic fertilizer]
Two tons of cattle dung from livestock cattle bred in Miyakojima and 650 kg of auxiliary materials for promoting fermentation were introduced into NS-500 type vacuum fermentation equipment installed by Daifuku Agricultural Corporation. The breakdown of the auxiliary material 650kg is Bacchus 2m 3 , Molasses 40L, amino acid 200g, water 250L, blur (symbiotic microorganism obtained in the above examples) 20kg (1 ton of rice bran, 40 kg of original fungus, molasses 40L, water 300L) Is). Then, vacuum fermentation was performed for 1.5 hours, and then vacuum drying was performed for 0.5 hours. This charging, vacuum fermentation, and vacuum drying were taken as one cycle, and three cycles were performed to obtain compost.
[0080]
Next, into the NS-500 type vacuum fermentation apparatus, 100 kg of the above blur (41% moisture), 100 kg of the compost (75% moisture), and 107 kg of urine from livestock cattle bred on Miyakojima (moisture (100%)) In the course of this treatment, the moisture content (% by weight) of the mixture was measured and its transition was observed, and the results are shown in Fig. 20. As shown in Fig. 20. In addition, it was possible to remove about 6 to 7% by weight of water per hour by treating with the above blur.
[0081]
Furthermore, the obtained compost was taken out from the NS-500 type vacuum fermenter and deposited, and the moisture content (% by weight) in the compost and the temperature at a compost depth of 30 cm were measured, and the transition was observed. The result is shown in FIG. As shown in FIG. 21, the temperature in the compost showed a value of around 60 ° C. even after several weeks from the deposition, and it was confirmed that the compost was subjected to secondary fermentation. Moreover, it turned out that secondary fermentation is fully carried out in FIG. 21, although the water content rate in compost fell after several weeks progress.
[0082]
[Production example 3 of organic fertilizer]
500 kg of shiba (turf sprayed with agricultural chemicals) from Nara Prefecture's golf course and 20 kg of indigenous microorganisms as auxiliary materials were put into the NS-500 type vacuum fermentation apparatus installed by Daifuku Agricultural Corporation. The same auxiliary material as in Production Example 2 was used. Fermentation was performed at a fermentation temperature of 60 ° C. for 1.5 hours. Since there was little moisture, about 30% water was added to the total weight. Then, it was dried for 30 minutes.
[0083]
The fertilizer obtained by pulverizing the fern fermented as described above with a hammer-type pulverizer was analyzed in accordance with the “Fertilizer Analysis Method” of the Ministry of Agriculture, Forestry and Fisheries, and the amount of pesticide residue was analyzed. . These results are shown in Table 6.
[0084]
[Table 6]
Figure 0004153685
As shown in Table 6, the obtained fertilizer had excellent characteristics. Moreover, almost no pesticide residue was detected (0.02 ppm or less in all items), indicating that the pesticide residue was decomposed.
[0085]
[Cultivation test]
Using the compost obtained in Production Example 2 of the above organic fertilizer, a spinach cultivation test was conducted in 2000 at Kihara Farm, Monbetsu City, Hokkaido. Specifically, a mixture of 10 kg compost (mainly uro), 2 kg ammonium sulfate, and 0.6 kg black silica was used as a fertilizer. Cultivation conditions are: Danish Allai, sowing date: September 29, 2001, area: 37.5m 2 1m in the house 2 336 g (compost 265 g, ammonium sulfate 55 g, black silica 16 g).
[0086]
As a result of cultivation, when this fertilizer was sprayed, it took about a month and a half until normal harvesting, but it could be harvested in about one month, and the growth period was shortened. In addition, the grown spinach had thicker leaves than the conventional ones, had less sweetness, and had sweetness.
[0087]
The harvested spinach was measured for vitamin C content, oxalic acid content, and nitric acid content. First, when the content of vitamin C was analyzed by performing an HPLC method after extraction with metaphosphoric acid, it was 53 mg / 100 g on average, exceeding the reference value (30 mg / 100 g), which was good. Further, the content of oxalic acid, which is a component of aqua, was analyzed by performing HPLC method after extracting twice with hot water. Furthermore, when the content of nitric acid was analyzed using a simple analyzer RQ flex, the average was 101 mg / 100 g, which was well below the reference value (300 mg / 100 g) and was good.
[0088]
The nitric acid content and the oxalic acid content when the fertilizer application rate was changed were measured. The result is shown in FIG. As shown in FIG. 22, when the fertilizer application rate was increased, the nitric acid content and the oxalic acid content were further reduced. Further, it has been found that the nitric acid content and the oxalic acid content can be effectively reduced even if the fertilizer application amount is relatively small as 2t / 10a.
[0089]
As a comparative example, the nitric acid content and oxalic acid content when spinach was cultivated using normal fertilizers in each production area were also analyzed. The result is shown in FIG. As shown in FIG. 23, it can be seen that the product of Kihara using the fertilizer according to the present invention is remarkably reduced in both the nitric acid content and the Shu product content. In particular, if a large amount of nitrate nitrogen is ingested, the fertilizer according to the present invention is extremely useful because it may change into a carcinogen or cause poisoning in the body.
[0090]
【The invention's effect】
The microorganism according to the present invention configured as described above is extremely excellent in salt tolerance, and is useful for treatment of organic waste containing a high concentration of salt and soil improvement.
[0091]
In addition, the microorganism-containing composition containing the microorganism or a treated product thereof is useful as a soil improving agent containing a high concentration of salt or a treating agent for organic waste.
[0092]
Furthermore, according to the method for producing an organic fertilizer of the present invention, a high-quality organic fertilizer can be produced in a short period of time.
[Brief description of the drawings]
FIG. 1 is a macroscopic observation image showing the growth results of Shimose1.
FIG. 2 is a macroscopic observation image showing the growth results of Shimose1.
FIG. 3 is a macroscopic observation image showing the growth results of Shimose1.
FIG. 4 is a macroscopic observation image showing the growth results of Shimose1.
FIG. 5 is a macroscopic observation image showing the growth results of Shimose1.
FIG. 6 is a macroscopic observation image showing the growth result of Shimose2.
FIG. 7 is a macroscopic observation image showing the growth results of Shimose2.
FIG. 8 is a macroscopic observation image showing the growth result of Shimose2.
FIG. 9 is a macroscopic observation image showing the growth results of Shimose2.
FIG. 10 is a macroscopic observation image showing the growth results of Shimose2.
FIG. 11 is a macroscopic observation image showing the growth results of Shimose3.
FIG. 12 is a macroscopic observation image showing the growth results of Shimose3.
FIG. 13 is a macroscopic observation image showing the growth result of Shimose3.
FIG. 14 is a macroscopic observation image showing the growth results of Shimose3.
FIG. 15 is a macroscopic observation image showing the growth results of Shimose3.
FIG. 16 is a macroscopic observation image showing the growth results of Shimose3.
FIG. 17 is a macroscopic observation image showing the growth results of Shimose3.
FIG. 18 is a macroscopic observation image showing the growth results of symbiotic microorganisms.
FIG. 19 is a diagram showing an organic fertilizer manufacturing apparatus.
FIG. 20 is a graph showing the transition of the moisture content of a mixture.
FIG. 21 is a diagram showing the moisture content of compost and changes in temperature.
FIG. 22 is a diagram showing measurement results of nitric acid content and oxalic acid content in spinach when the fertilizer application rate is changed.
FIG. 23 is a diagram showing the results of measuring the nitric acid content and the oxalic acid content when applying the fertilizer according to the present invention and a conventional fertilizer.
[Explanation of symbols]
2 Boiler
3 containment rooms
4 Vacuum pump
6 Condensing part
9 Stirrer
12 Guide
13 Steam flow path
14 Cooling water distribution route
16 Cooling tower
[Sequence Listing]
Figure 0004153685
Figure 0004153685
Figure 0004153685

Claims (1)

塩に耐性を有するピチア ブルトニ(Pichia burtonii)に属する微生物、塩に耐性を有するピチア ファリノサ(Pichia farinosa)に属する微生物、および塩に耐性を有するスタフィロコッカス(Staphylococcus)に属する微生物が共生して構成される微生物共生体であって、上記ピチア ブルトニはFERM BP−7504であり、ピチア ファリノサはFERM BP−7505であり、スタフィロコッカスはFERM BP−7506である微生物共生体Consistently composed of microorganisms belonging to Pichia burtonii resistant to salt, microorganisms belonging to Pichia farinosa resistant to salt, and microorganisms belonging to Staphylococcus resistant to salt Microbial symbiosis , wherein the Pichia BT is FERM BP-7504, Pichia Farinosa is FERM BP-7505, Staphylococcus is FERM A microbial symbiosis that is BP-7506 .
JP2001280749A 2001-09-14 2001-09-14 Microorganism, microorganism-containing composition, and method for producing organic fertilizer using the microorganism Expired - Lifetime JP4153685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001280749A JP4153685B2 (en) 2001-09-14 2001-09-14 Microorganism, microorganism-containing composition, and method for producing organic fertilizer using the microorganism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001280749A JP4153685B2 (en) 2001-09-14 2001-09-14 Microorganism, microorganism-containing composition, and method for producing organic fertilizer using the microorganism

Publications (2)

Publication Number Publication Date
JP2003088361A JP2003088361A (en) 2003-03-25
JP4153685B2 true JP4153685B2 (en) 2008-09-24

Family

ID=19104688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001280749A Expired - Lifetime JP4153685B2 (en) 2001-09-14 2001-09-14 Microorganism, microorganism-containing composition, and method for producing organic fertilizer using the microorganism

Country Status (1)

Country Link
JP (1) JP4153685B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108275841A (en) * 2018-02-24 2018-07-13 昆明滇俊环保除臭技术有限公司 A kind of fertile technique of traditional Chinese medicine wastewater recycling system
DE112020002767T5 (en) 2019-05-27 2022-02-24 Shimose Microbes Laboratory Corporation Boiler equipment and organic waste treatment system with this plant
US11618704B2 (en) 2018-10-25 2023-04-04 Shimose Microbes Laboratory Corporation System and method for treating excrement of livestock
US11753325B2 (en) 2019-05-31 2023-09-12 Shimose Microbes Laboratory Corporation System and method for treating oil sludge

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008075678A1 (en) * 2006-12-18 2008-06-26 Biogenkoji Research Institute Method for treatment of oil-and-fat-containing wastewater using yeast, and novel yeast
CN102795944B (en) * 2012-09-04 2014-01-29 德州市元和农业科技开发有限责任公司 Soil-improving bio-fertilizer and preparation method thereof
KR102072900B1 (en) * 2018-01-31 2020-03-02 전일조경주식회사 manufacturing method of compost for salt removal
CN112408607B (en) * 2020-12-07 2021-08-13 山东卓苒生物科技有限公司 Application of staphylococcus nepalensis in degradation of residual sugar in fermentation industrial organic wastewater

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108275841A (en) * 2018-02-24 2018-07-13 昆明滇俊环保除臭技术有限公司 A kind of fertile technique of traditional Chinese medicine wastewater recycling system
CN108275841B (en) * 2018-02-24 2020-01-17 昆明滇俊环保除臭技术有限公司 Process for recycling Chinese medicine wastewater to prepare fertilizer
US11618704B2 (en) 2018-10-25 2023-04-04 Shimose Microbes Laboratory Corporation System and method for treating excrement of livestock
DE112020002767T5 (en) 2019-05-27 2022-02-24 Shimose Microbes Laboratory Corporation Boiler equipment and organic waste treatment system with this plant
US11753325B2 (en) 2019-05-31 2023-09-12 Shimose Microbes Laboratory Corporation System and method for treating oil sludge

Also Published As

Publication number Publication date
JP2003088361A (en) 2003-03-25

Similar Documents

Publication Publication Date Title
TW587069B (en) A manufacturing method for organic fertilizer and an apparatus for the same
CN104293694B (en) A kind of preparation method of sludge aerobic compost composite bacteria agent
CN103232944B (en) Microorganism bacterium agent for straw and excrement mixed composting
CN107177533B (en) Thermophilic bacterium compound microbial inoculum and preparation method and application thereof
CN109810924B (en) Method for improving severe saline-alkali soil
CN109022327B (en) Preparation method of microbial mixed inoculant and application of microbial mixed inoculant in high-temperature composting
CN102583771A (en) Biological treatment method and waste-water treatment agent for refractory wastewater
CN112375720B (en) Bacillus subtilis and application thereof
CN103695317B (en) There is the production method of the efficient phosphate-solubilizing penicillium oxalicum microbial inoculum of heavy metal tolerance characteristic
CN110129235A (en) A kind of heat-resisting plant lactobacillus and its application in agricultural production
CN108070540B (en) Surfactant-producing microorganism and application thereof in compost
JP2019037192A (en) Isolation method of genus raoultella microbe, production method of vegetable waste treatment agent and vegetable waste treatment method
JP4153685B2 (en) Microorganism, microorganism-containing composition, and method for producing organic fertilizer using the microorganism
CN108947679A (en) A kind of microbial organic fertilizer and preparation method thereof
CN109294951A (en) The application of one plant of false Xanthomonas campestris and its microorganism formulation in terms of biological compost
CN104988095A (en) Thermophilic carbon monoxide streptomycete low-temperature subspecies Dstr3-3 and application thereof
CN114437998B (en) Microbacterium rubrum for promoting growth of rice and improving cold resistance of seedlings and application thereof
CN114933983A (en) Microbial agent for synergistic emission reduction of livestock and poultry manure compost ammonia gas and greenhouse gas and preparation and application thereof
CN110484463B (en) Bacillus mojavensis B282 and application thereof
AU2014229409B2 (en) Extraction of nitrogen from organic materials through ammonification by mixed bacterial populations
da Silva Gaspar et al. Diversity and enzymatic activity of the microbiota isolated from compost based on restaurant waste and yard trimmings
JPH07246381A (en) Treatment of organic waste
JP2003095773A (en) Fertilizer utilizing waste molasses and method of producing the same
KR102551904B1 (en) Bacillus licheniformis BS and composition for reducing oder containing the same
JP2006335606A (en) Method of composting organic waste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061201

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061128

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20070911

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20071003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080624

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080704

R150 Certificate of patent or registration of utility model

Ref document number: 4153685

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

S303 Written request for registration of pledge or change of pledge

Free format text: JAPANESE INTERMEDIATE CODE: R316304

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

S631 Written request for registration of reclamation of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R316631

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

S343 Written request for registration of root pledge or change of root pledge

Free format text: JAPANESE INTERMEDIATE CODE: R316350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

S343 Written request for registration of root pledge or change of root pledge

Free format text: JAPANESE INTERMEDIATE CODE: R316350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20220711

Year of fee payment: 14

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S343 Written request for registration of root pledge or change of root pledge

Free format text: JAPANESE INTERMEDIATE CODE: R316341

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

EXPY Cancellation because of completion of term