JP4153650B2 - Manufacturing method of high weldability rail - Google Patents

Manufacturing method of high weldability rail Download PDF

Info

Publication number
JP4153650B2
JP4153650B2 JP2000212288A JP2000212288A JP4153650B2 JP 4153650 B2 JP4153650 B2 JP 4153650B2 JP 2000212288 A JP2000212288 A JP 2000212288A JP 2000212288 A JP2000212288 A JP 2000212288A JP 4153650 B2 JP4153650 B2 JP 4153650B2
Authority
JP
Japan
Prior art keywords
rail
hardness
pearlite
ceq
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000212288A
Other languages
Japanese (ja)
Other versions
JP2002030341A (en
Inventor
耕一 内野
玲 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000212288A priority Critical patent/JP4153650B2/en
Publication of JP2002030341A publication Critical patent/JP2002030341A/en
Application granted granted Critical
Publication of JP4153650B2 publication Critical patent/JP4153650B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)
  • Heat Treatment Of Articles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、主にフラッシュバット溶接により長尺レールとして用いられる鉄道用の高溶接性パーライト系レールに関するものである。
【0002】
【従来の技術】
近年、鉄道用レールは軌道の保守・点検の簡略化、騒音・振動の抑制、乗り心地の向上の観点から、溶接によるロングレール化が進められている。用いられる溶接法にはフラッシュバット溶接、ガス圧接、エンクローズアーク溶接およびテルミット溶接などがある。
【0003】
これらの溶接方法の中で、フラッシュバットやガス圧接は文献(鉄と鋼、Vol.70,No.10,1984)にも示されているように、レールのロング化には必須の技術となっている。これらの接合の場合、レール同士が接合され、溶接により新たな熱履歴を受けるため、溶接部の硬さは母材レールのそれと異なる結果となり、溶接部に大きな硬さの不連続が生じ、列車通過トン数が重なるに従い摩耗の不均一が生じ、騒音や振動の原因となる。これに対し近年、研削により不均一形状を削正する方法がとられているが、この場合、研削機の導入や維持等に多大の費用を要するという問題がある。
【0004】
【発明が解決しようとする課題】
ロングレール化は、軌道メンテナンスの軽減や列車高速化における安全性の確保の観点から重要な技術であり、このなかで、汎用的に用いられるフラッシュバット溶接部の硬さの均一性を保つことは特に重要である。一般に汎用レールとしては硬さがHB220〜300のパーライト鋼が用いられ、その製造方法としては、高価な合金添加量を抑制し、また熱処理を行わず圧延ままとすることでコストを低減している。すなわちこのような汎用レールの硬さは、レール断面の大きさによって決まる放冷ままでの冷却速度(0.5℃/s以下)と鋼成分で決まる。
【0005】
一方、フラッシュバット溶接部は溶接後、1〜2.5℃/sの冷却速度となる。したがって、レールの製造工程で得られた硬さと溶接後の溶接部硬さには硬さの差が生ずる。
本発明の課題は、母材レールの硬さとそのフラッシュバット溶接後の硬さを類似のものとし、溶接ロングレールの硬さの不均一を防止できるレールを提供することにある。
【0006】
【課題を解決するための手段】
本発明は母材レールの硬さとそのフラッシュバット溶接後の溶接部の硬さを類似のものとし、溶接ロングレールの硬さの不均一を防止できるレールであり、その要旨とするところは、質量%で
C :0.60〜0.95%、 Si:0.10〜1.20%、
Mn:0.20〜1.50%を含有し、さらに
Cr:0.01〜0.50%、 Mo:0.01〜0.20%、
Co:0.1〜2.0%、 Cu:0.05〜1.00%、
Ni:0.05〜1.00%、 V :0.005〜0.20%、
Nb:0.005〜0.05%、 Ti:0.005〜0.05%
の1種または2種以上を含有し、
Ceq=C+Si/10+Mn/6+Cr/5+Mo/4+Co/5で示す式に当てはめて得られるCeqが0.6〜1.0を満足し、残部が鉄および不可避的不純なり、且つ成品圧延後、800〜500℃間で1〜2.5℃/sの加速冷却を受け、かつ硬さがHB220〜300であることを特徴とする高溶接性レールの製造方法である。
【0007】
【発明の実施の形態】
以下に本発明を詳細に説明する。まず含有成分の限定理由について説明する。Cはレールの具備すべき強度を満足し、且つパーライト組織を安定に得るための必要な元素である。Cはパーライトを生成させて耐摩耗性を確保する有効な成分として、0.60%以上の含有が必要である。しかし、0.95%を超える高い含有量では、冷却速度2.5℃/s以下ではセメンタイト組織を多く析出して延性が著しく低下する。そのため含有範囲を0.60〜0.95%とした。
【0008】
Siは脱酸剤として鋼の清浄化のために投入されるほか、パーライト組織中のフェライト相への固溶体硬化によりレール頭部の硬度(強度)を上昇させる元素であるが、0.10%未満ではその効果が十分に期待できず、また1.20%を超えると、熱間圧延時に表面疵が多く生成することや、酸化物の生成により溶接性が低下するため、Si量を0.10〜1.20%に限定した。
【0009】
Mnは、パーライト変態温度を低下させ、焼き入れ性を高めることによって高強度化に寄与し、さらに、初析セメンタイト組織の生成を抑制する元素であるが、0.20%未満の含有量ではその効果が小さく、レール頭部に必要とされる硬さの確保が困難となる。また1.50%を超えると、焼入性が著しく増加し、マルテンサイト組織が生成し易くなることや、偏析が助長され、偏析部にレールの靭性に有害な初析セメンタイト組織が生成し易くなるため、Mn量を0.20〜1.50%に限定した。
【0010】
またさらにパーライトの強化元素として、Cr、Mo、Coのうち1種または2種以上を以下に示す範囲で添加できる。
Crは、パーライトの平衡変態点を上昇させ、結果としてパーライト組織を微細にして高強度化に寄与すると同時に、パーライト組織中のセメンタイト相を強化することによって耐摩耗性を向上させる元素であるが、0.01%未満ではその効果が小さく、0.50%を超える過剰な添加を行うと、マルテンサイト組織が多量に生成し、レールの靱性を低下させるため、Cr量を0.01〜0.50%に限定した。
【0011】
Moは、Cr同様パーライトの平衡変態点を上昇させ、結果としてパーライト組織を微細にすることにより高強度化に寄与し、耐摩耗性を向上させる元素であるが、0.01%未満ではその効果が小さく、0.20%を超える過剰な添加を行うと偏析が助長され、さらにパーライト変態速度が低下し、偏析部にマルテンサイト組織が生成し、レールの靱性が低下するため、Mo量を0.01〜0.20%に限定した。
【0012】
Coは、パーライトの変態エネルギーを増加させて、パーライト組織を微細にすることにより強度を向上させる元素であるが、0.1%未満ではその効果が期待できず、また2.0%を超える過剰な添加を行ってもその効果が飽和域に達してしまうため、Co量を0.1〜2.0%に限定した。
【0013】
また、延靭性を損なわずに強度を向上させる目的で、Cu、Niのいずれかもしくは両方を、以下に示す範囲で添加できる。
Cuは、パーライト鋼の靭性を損なわず強度を向上させる元素であり、その効果は0.05〜1.00%の範囲で最も大きく、また1.00%を超えると赤熱脆化を生じやすくなることから、Cu量を0.05〜1.00%に限定した。
【0014】
Niは、パーライト鋼の延性と靭性を向上させ、同時に、固溶強化によりパーライト鋼の高強度化を図る元素であるが、0.05%未満ではその効果が著しく小さく、また1.00%を超える過剰な添加を行ってもそれ以上の効果が期待できない。したがって、Ni量を0.05〜1.00%に限定した。
【0015】
また、析出効果による強度向上元素として、V、Nb、Tiのうち1種または2種以上を、以下に示す範囲で添加できる。
Vはレール頭部の熱処理において、レール頭表部と比較して冷却速度の遅いレール頭部内部で炭化物や窒化物を形成し、パーライト組織中のフェライト地に析出することにより、頭部内部の硬度を向上させる元素であるが、0.005%未満では、炭化物や窒化物の形成が困難となり、レール頭部内部のパーライト組織の析出硬化が困難となる。また、0.20%を超えて添加してもそれ以上の効果が期待できないため、V量を0.005〜0.20%に限定した。
【0016】
NbはVと同様にNb炭化物、Nb窒化物による析出硬化で強度を高め、さらに、高温度に加熱する熱処理が行われる際に、結晶粒の成長を抑制する作用によりオーステナイト粒を微細化させ、そのオーステナイト粒成長抑制効果はVよりも高温度域(1200℃近傍)まで作用し、パーライト組織の延性と靭性を改善する。その効果は、0.005%未満では期待できず、また0.05%を超える過剰な添加を行ってもそれ以上の効果が期待できない。従って、Nb量を0.005〜0.05%に限定した。
【0017】
Tiは、レール圧延時の再加熱において、析出したTi炭化物、Ti窒化物が溶解しないことを利用して、圧延加熱時のオーステナイト結晶粒の微細化を図り、パーライト組織の延性や靭性を向上させるのに有効な成分である。しかし、0.005%未満ではその効果が少なく、0.05%を超えて添加すると、粗大なTi炭化物、Ti窒化物が生成して、レール使用中の疲労損傷の起点となり、き裂を発生させるため、Ti量を0.005〜0.050%に限定した。
【0018】
なお、Ceq=C+Si/10+Mn/6+Cr/5+Mo/4+Co/5は、硬さと成分の関係から経験的に得られた炭素当量の式である。
最終の熱履歴となるフラッシュバット溶接後の冷却速度800〜500℃間で1〜2.5℃/sとなるため、母材レールのパーライト変態時の冷却速度は同一冷却速度とすることが肝要で、その際、母材レールおよび溶接部ともにHB220〜300の硬さを確保するためには、Ceqの値が1.0以下となることが必要である。一方、耐摩耗性確保の観点からCが0.60%以上必要であり、Ceqも下限を0.6とする。
【0019】
【実施例】
以下に実施例により本発明の効果を具体的に示す。
表1に示す化学成分からなる、金属組織がパーライトを呈する供試鋼を用いて、表2に示す母材加速冷却速度と母材硬さからなるレールを製造し、フラッシュバット溶接を行い、溶接後の溶接部硬さと母材の硬さとの差を比較した。
本発明の条件に合致する符号1〜5のレールは、いずれも溶接後硬さと母材硬さとの差がないレールとすることができた。一方、本発明の冷却条件を外れる符号6、7、9では、溶接後硬さと母材硬さとの差(ΔHB)が大きくなった。また、成分条件の外れる鋼Dを用いた符号8では、硬度差は小さかったが、母材硬度が本発明の範囲外となった。
【0020】
【表1】

Figure 0004153650
【0021】
【表2】
Figure 0004153650
【0022】
【発明の効果】
以上述べたように本発明によれば、ロングレール化に必要なフラッシュバット溶接部の硬さが母材レールと同等の値を示して不連続性をなくし、使用中の摩耗が均一となり、騒音、振動などの問題を解決できる低強度レールを提供することができるので、産業上の効果は大きい。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high weldability pearlite rail for railways that is used as a long rail mainly by flash butt welding.
[0002]
[Prior art]
In recent years, railway rails have been made longer by welding from the viewpoints of simplifying track maintenance and inspection, suppressing noise and vibration, and improving riding comfort. The welding methods used include flash butt welding, gas pressure welding, enclosed arc welding, and thermite welding.
[0003]
Among these welding methods, flash butt and gas pressure welding are indispensable techniques for lengthening the rail, as shown in the literature (iron and steel, Vol. 70, No. 10, 1984). ing. In the case of these joints, the rails are joined to each other and a new thermal history is received by welding. Therefore, the hardness of the welded part is different from that of the base metal rail, resulting in a large discontinuity in the welded part. As the passing tonnage overlaps, uneven wear occurs, causing noise and vibration. On the other hand, in recent years, a method of correcting a non-uniform shape by grinding has been employed. However, in this case, there is a problem that a great amount of cost is required for introduction and maintenance of a grinding machine.
[0004]
[Problems to be solved by the invention]
Long railing is an important technology from the viewpoint of reducing track maintenance and ensuring safety in high-speed trains. Among them, maintaining the uniformity of the hardness of flash butt welds used for general purposes Of particular importance. In general, pearlite steel having a hardness of HB220 to 300 is used as a general-purpose rail, and the production method thereof is reduced in cost by suppressing the amount of expensive alloy added and keeping the rolling without heat treatment. . That is, the hardness of such a general-purpose rail is determined by the cooling rate (0.5 ° C./s or less) and the steel component as it is allowed to cool as determined by the size of the rail cross section.
[0005]
On the other hand, the flash butt weld has a cooling rate of 1 to 2.5 ° C / s after welding. Accordingly, there is a difference in hardness between the hardness obtained in the rail manufacturing process and the welded portion hardness after welding.
An object of the present invention is to provide a rail in which the hardness of a base metal rail and the hardness after flash butt welding are similar, and unevenness in the hardness of a welded long rail can be prevented.
[0006]
[Means for Solving the Problems]
The present invention is similar to the hardness of the base rail and the hardness of the welded portion after flash butt welding, and can prevent unevenness of the hardness of the welded long rail. %: C: 0.60 to 0.95%, Si: 0.10 to 1.20%,
Mn: 0.20 to 1.50%, Cr: 0.01 to 0.50%, Mo: 0.01 to 0.20%,
Co: 0.1 to 2.0%, Cu: 0.05 to 1.00%,
Ni: 0.05-1.00%, V: 0.005-0.20%,
Nb: 0.005-0.05%, Ti: 0.005-0.05%
Containing one or more of
Ceq = C + Si / 10 + Mn / 6 + Cr / 5 + Mo / 4 + Co / 5 Ceq obtained by satisfying 0.6 to 1.0, the balance being iron and inevitable impure, and after product rolling, 800 to It is a manufacturing method of a high weldability rail characterized by receiving accelerated cooling of 1 to 2.5 ° C./s between 500 ° C. and having a hardness of HB220 to 300.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below. First, the reasons for limiting the content components will be described. C is an element necessary for satisfying the strength that the rail should have and for obtaining a pearlite structure stably. C is required to be contained in an amount of 0.60% or more as an effective component for generating pearlite and ensuring wear resistance. However, at a high content exceeding 0.95%, a large cementite structure is precipitated at a cooling rate of 2.5 ° C./s or less, and the ductility is significantly reduced. Therefore, the content range is set to 0.60 to 0.95%.
[0008]
Si is an element that increases the hardness (strength) of the rail head by hardening a solid solution to the ferrite phase in the pearlite structure in addition to being added as a deoxidizer to clean steel, but less than 0.10% However, the effect cannot be expected sufficiently, and if it exceeds 1.20%, a lot of surface flaws are generated during hot rolling, and weldability is lowered due to the generation of oxides. Limited to -1.20%.
[0009]
Mn is an element that contributes to increasing the strength by lowering the pearlite transformation temperature and increasing the hardenability, and further suppresses the formation of proeutectoid cementite structure, but with a content of less than 0.20%, The effect is small, and it is difficult to secure the hardness required for the rail head. On the other hand, if it exceeds 1.50%, the hardenability is remarkably increased, the martensite structure is easily formed, segregation is promoted, and a pro-eutectoid cementite structure that is harmful to the toughness of the rail is easily formed in the segregated part. Therefore, the amount of Mn was limited to 0.20 to 1.50%.
[0010]
Further, one or more of Cr, Mo, and Co can be added as a strengthening element of pearlite within the range shown below.
Cr is an element that raises the equilibrium transformation point of pearlite and, as a result, refines the pearlite structure and contributes to increasing the strength, and at the same time improves the wear resistance by strengthening the cementite phase in the pearlite structure. If the amount is less than 0.01%, the effect is small. If excessive addition exceeding 0.50% is performed, a large amount of martensite structure is generated and the toughness of the rail is lowered. Limited to 50%.
[0011]
Mo, like Cr, is an element that increases the equilibrium transformation point of pearlite and, as a result, refines the pearlite structure, contributes to higher strength and improves wear resistance. When the excessive addition exceeds 0.20%, segregation is promoted, the pearlite transformation rate is further reduced, a martensite structure is formed in the segregated portion, and the toughness of the rail is reduced. It was limited to 0.01 to 0.20%.
[0012]
Co is an element that improves the strength by increasing the transformation energy of pearlite and making the pearlite structure fine, but if it is less than 0.1%, the effect cannot be expected, and an excess exceeding 2.0% Even if this addition is performed, the effect reaches the saturation region, so the Co content is limited to 0.1 to 2.0%.
[0013]
Further, for the purpose of improving the strength without impairing the ductility, either or both of Cu and Ni can be added within the range shown below.
Cu is an element that improves the strength without impairing the toughness of pearlite steel, and the effect is the largest in the range of 0.05 to 1.00%, and when it exceeds 1.00%, red heat embrittlement tends to occur. Therefore, the amount of Cu was limited to 0.05 to 1.00%.
[0014]
Ni is an element that improves the ductility and toughness of pearlite steel and at the same time increases the strength of pearlite steel by solid solution strengthening. However, if it is less than 0.05%, its effect is remarkably small, and 1.00% No further effect can be expected even if excessive addition is performed. Therefore, the amount of Ni is limited to 0.05 to 1.00%.
[0015]
Moreover, 1 type (s) or 2 or more types can be added in the range shown below as an intensity | strength improvement element by a precipitation effect among V, Nb, and Ti.
In the heat treatment of the rail head, V forms carbides and nitrides inside the rail head, which has a cooling rate slower than that of the rail head surface portion, and precipitates on the ferrite ground in the pearlite structure. Although it is an element that improves the hardness, if it is less than 0.005%, it becomes difficult to form carbide or nitride, and precipitation hardening of the pearlite structure inside the rail head becomes difficult. Moreover, since the effect beyond it cannot be expected even if it adds exceeding 0.20%, V amount was limited to 0.005-0.20%.
[0016]
Nb increases the strength by precipitation hardening with Nb carbide and Nb nitride like V, and further refines austenite grains by the action of suppressing the growth of crystal grains when heat treatment is performed at a high temperature. The austenite grain growth suppressing effect acts up to a temperature range higher than V (around 1200 ° C.), and improves the ductility and toughness of the pearlite structure. The effect cannot be expected if it is less than 0.005%, and no further effect can be expected even if excessive addition exceeding 0.05% is performed. Therefore, the Nb content is limited to 0.005 to 0.05%.
[0017]
Ti makes use of the fact that precipitated Ti carbide and Ti nitride do not dissolve during reheating during rail rolling, thereby reducing the austenite crystal grain size during rolling heating and improving the ductility and toughness of the pearlite structure. It is an effective ingredient. However, if the amount is less than 0.005%, the effect is small, and if added over 0.05%, coarse Ti carbide and Ti nitride are generated, which becomes the starting point of fatigue damage during use of the rail and generates cracks. Therefore, the Ti content is limited to 0.005 to 0.050%.
[0018]
Note that Ceq = C + Si / 10 + Mn / 6 + Cr / 5 + Mo / 4 + Co / 5 is an equation of carbon equivalent obtained empirically from the relationship between hardness and components.
Since the cooling rate after flash butt welding, which is the final heat history, is 1 to 2.5 ° C / s between 800 to 500 ° C, it is important that the cooling rate at the pearlite transformation of the base metal rail is the same cooling rate. At that time, in order to ensure the hardness of HB 220 to 300 for both the base metal rail and the welded portion, the value of Ceq needs to be 1.0 or less. On the other hand, C is required to be 0.60% or more from the viewpoint of ensuring wear resistance, and Ceq is also set to a lower limit of 0.6.
[0019]
【Example】
The effects of the present invention are specifically shown below by examples.
Using a test steel consisting of the chemical components shown in Table 1 and having a pearlite metal structure, a rail consisting of the base material accelerated cooling rate and base material hardness shown in Table 2 is manufactured, and flash butt welding is performed. The difference between the hardness of the later welded portion and the hardness of the base material was compared.
The rails 1 to 5 that meet the conditions of the present invention could all be rails having no difference between post-weld hardness and base metal hardness. On the other hand, in reference numerals 6, 7, and 9 that deviate from the cooling condition of the present invention, the difference (ΔHB) between the post-weld hardness and the base metal hardness was large. Moreover, in the code | symbol 8 using the steel D from which component conditions remove | deviated, although the hardness difference was small, base material hardness was out of the range of this invention.
[0020]
[Table 1]
Figure 0004153650
[0021]
[Table 2]
Figure 0004153650
[0022]
【The invention's effect】
As described above, according to the present invention, the hardness of the flash butt weld necessary for the long rail shows the same value as the base metal rail, eliminating discontinuity, uniform wear during use, noise Since a low-strength rail that can solve problems such as vibration can be provided, the industrial effect is great.

Claims (4)

質量%で、
C :0.60〜0.95%、
Si:0.10〜1.20%、
Mn:0.20〜1.50%を含有し、
Ceq=C+Si/10+Mn/6の式で示されるCeqが0.6〜1.0を満足し、残部が鉄および不可避的不純物からなり、成品圧延後、800〜500℃間で1〜2.5℃/sの加速冷却を受け、且つ硬さがHB220〜300であることを特徴とする高溶接性レールの製造方法。
% By mass
C: 0.60 to 0.95%,
Si: 0.10 to 1.20%,
Mn: 0.20 to 1.50% is contained,
Ceq represented by the formula of Ceq = C + Si / 10 + Mn / 6 satisfies 0.6 to 1.0, and the balance consists of iron and inevitable impurities, and after product rolling, 1 to 2.5 between 800 and 500 ° C. A method for producing a highly weldable rail, which is subjected to accelerated cooling at a temperature of ° C / s and has a hardness of HB220 to 300.
質量%で、
C :0.60〜0.95%、
Si:0.10〜1.20%、
Mn:0.20〜1.50%
を含有し、さらに、
Cr:0.01〜0.50%、
Mo:0.01〜0.20%、
Co:0.1〜2.0%
の1種または2種以上を含有し、
Ceq=C+Si/10+Mn/6+Cr/5+Mo/4+Co/5の式で示されるCeqが0.6〜1.0を満足し、残部が鉄および不可避的不純物からなり、且つ成品圧延後、800〜500℃間で1〜2.5℃/sの加速冷却を受け、且つ硬さがHB220〜300であることを特徴とする高溶接性レールの製造方法。
% By mass
C: 0.60 to 0.95%,
Si: 0.10 to 1.20%,
Mn: 0.20 to 1.50%
In addition,
Cr: 0.01 to 0.50%,
Mo: 0.01-0.20%,
Co: 0.1 to 2.0%
Containing one or more of
Ceq represented by the formula Ceq = C + Si / 10 + Mn / 6 + Cr / 5 + Mo / 4 + Co / 5 satisfies 0.6 to 1.0, the balance is made of iron and inevitable impurities, and after product rolling, 800 to 500 ° C. A method for producing a high-weldability rail, characterized by receiving accelerated cooling of 1 to 2.5 ° C./s between and a hardness of HB220 to 300.
質量%で、さらに
Cu:0.05〜1.00%、
Ni:0.05〜1.00%
の1種または2種を含有することを特徴とする請求項1もしくは2に記載の高溶接性レールの製造方法。
% By mass, further Cu: 0.05-1.00%,
Ni: 0.05-1.00%
1 or 2 types of these are contained, The manufacturing method of the highly weldable rail of Claim 1 or 2 characterized by the above-mentioned.
質量%で、さらに
V :0.005〜0.20%、
Nb:0.005〜0.05%、
Ti:0.005〜0.05%
の1種または2種以上を含有することを特徴とする請求項1乃至3のいずれか1項に記載の高溶接性レールの製造方法。
% By mass, further V: 0.005 to 0.20%,
Nb: 0.005 to 0.05%,
Ti: 0.005 to 0.05%
One type or two types or more of these are contained, The manufacturing method of the high weldability rail of any one of Claim 1 thru | or 3 characterized by the above-mentioned.
JP2000212288A 2000-07-13 2000-07-13 Manufacturing method of high weldability rail Expired - Fee Related JP4153650B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000212288A JP4153650B2 (en) 2000-07-13 2000-07-13 Manufacturing method of high weldability rail

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000212288A JP4153650B2 (en) 2000-07-13 2000-07-13 Manufacturing method of high weldability rail

Publications (2)

Publication Number Publication Date
JP2002030341A JP2002030341A (en) 2002-01-31
JP4153650B2 true JP4153650B2 (en) 2008-09-24

Family

ID=18708229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000212288A Expired - Fee Related JP4153650B2 (en) 2000-07-13 2000-07-13 Manufacturing method of high weldability rail

Country Status (1)

Country Link
JP (1) JP4153650B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5053190B2 (en) * 2008-07-10 2012-10-17 新日本製鐵株式会社 Perlite rail with excellent wear resistance and ductility
CN102220545B (en) * 2010-04-16 2013-02-27 攀钢集团有限公司 High-carbon and high-strength heat-treated steel rail with high wear resistance and plasticity and manufacturing method thereof
US9670570B2 (en) 2014-04-17 2017-06-06 Evraz Inc. Na Canada High carbon steel rail with enhanced ductility
JP5947413B1 (en) * 2015-02-13 2016-07-06 Jx金属株式会社 Sputtering target and manufacturing method thereof
JP6822612B1 (en) * 2019-02-19 2021-01-27 Jfeスチール株式会社 Rail manufacturing method
CN111926249A (en) * 2020-07-16 2020-11-13 舞阳钢铁有限责任公司 HB hardness 600 grade steel plate and production method thereof
CN111876693A (en) * 2020-07-16 2020-11-03 舞阳钢铁有限责任公司 Steel for steel rail and production method thereof
CN113981325A (en) * 2021-11-03 2022-01-28 攀钢集团攀枝花钢铁研究院有限公司 Medium-strength steel rail and production method thereof

Also Published As

Publication number Publication date
JP2002030341A (en) 2002-01-31

Similar Documents

Publication Publication Date Title
JP4644105B2 (en) Heat treatment method for bainite steel rail
CA2222281C (en) Low-alloy heat-treated pearlitic steel rail excellent in wear resistance and weldability and process for producing the same
JPS6323244B2 (en)
JP3445619B2 (en) Rail with excellent wear resistance and internal damage resistance, and method of manufacturing the same
JPH08246100A (en) Pearlitic rail excellent in wear resistance and its production
JP5267306B2 (en) High carbon steel rail manufacturing method
JP4153650B2 (en) Manufacturing method of high weldability rail
JPH06316728A (en) Production of bainitic steel rail excellent in surface damage resistance
JPH09111352A (en) Production of pearlitic rail excellent in wear resistance
JP3631712B2 (en) Heat-treated pearlitic rail with excellent surface damage resistance and toughness, and its manufacturing method
JP3649872B2 (en) Bainite steel rail with excellent weldability
JP2007291418A (en) Method of manufacturing pearlitic rail excellent in toughness
JPS5919173B2 (en) Manufacturing method of weldable low-alloy heat-treated hard-headed rail
JP4795004B2 (en) Bainite rail
JP3522613B2 (en) Bainitic rails with excellent rolling fatigue damage resistance, internal fatigue damage resistance, and welded joint characteristics, and manufacturing methods thereof
JP3117916B2 (en) Manufacturing method of pearlitic rail with excellent wear resistance
JPH06248347A (en) Production of high strength rail having bainitic structure and excellent in surface damaging resistance
JP4267267B2 (en) Heat treatment method for pearlitic rails with excellent wear resistance and internal fatigue damage resistance
JP3117915B2 (en) Manufacturing method of high wear resistant pearlite rail
JP3950212B2 (en) Manufacturing method of high-strength pearlitic rail with excellent wear resistance
JPH0734132A (en) Production of high-strength and high-toughness bainite rail having excellent surface damage resistance
JPH1192867A (en) Low segregation pearlitic rail excellent in wear resistance and weldability and its production
JP2006057128A (en) Method for producing pearlite-series rail excellent in breakage resistance against drop-weight
JP2004043865A (en) Pearlitic high strength rail having excellent ductility and toughness and method of producing the same
JPS6256523A (en) Manufacture of high strength rail providing weldability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080704

R151 Written notification of patent or utility model registration

Ref document number: 4153650

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees