JP4153570B2 - Method for producing non-oriented electrical steel sheet with high magnetic flux density and low iron loss - Google Patents

Method for producing non-oriented electrical steel sheet with high magnetic flux density and low iron loss Download PDF

Info

Publication number
JP4153570B2
JP4153570B2 JP10293697A JP10293697A JP4153570B2 JP 4153570 B2 JP4153570 B2 JP 4153570B2 JP 10293697 A JP10293697 A JP 10293697A JP 10293697 A JP10293697 A JP 10293697A JP 4153570 B2 JP4153570 B2 JP 4153570B2
Authority
JP
Japan
Prior art keywords
lubricating oil
hot rolling
hot
annealing
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10293697A
Other languages
Japanese (ja)
Other versions
JPH10298650A (en
Inventor
竜太郎 川又
猛 久保田
武秀 瀬沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP10293697A priority Critical patent/JP4153570B2/en
Publication of JPH10298650A publication Critical patent/JPH10298650A/en
Application granted granted Critical
Publication of JP4153570B2 publication Critical patent/JP4153570B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電気機器の鉄心材料として用いられる、磁束密度が高い無方向性電磁鋼板の製造方法に関するものである。
【0002】
【従来の技術】
近年、電気機器、特に無方向性電磁鋼板がその鉄心材料として使用される回転機および中、小型変圧器等の分野においては、世界的な電力、エネルギー節減、さらにはフロンガス規制等の地球環境保全の動きの中で、高効率化の動きが急速に広まりつつある。このため使用時のエネルギーロスである鉄損を少しでも低くして高効率化を図るため、需要家の低鉄損電磁鋼板への要求は増してきている。 一方で、回転機では鉄心を小型化して同一出力を得るためには動作磁束密度を高める必要があり、このためには高磁束密度の無方向性電磁鋼板が求められている。このように回転機の小型化はそれ自身が架装される移動体である自動車、電車等の軽量化につながるため、それら自身が消費するエネルギーの節約にもつながるという利点がある。このため昨今では需要家から低鉄損かつ磁束密度の高い無方向性電磁鋼板が強く求められるようになっている。
また、世界的な大競争時代に突入している現代にあって、無方向性電磁鋼板への需要家のコストダウンの要求は厳しく、先述の電気機器の高効率化のすう勢と相まって、価格が同一であれは磁気特性が少しでも優れた無方向性電磁鋼板が需要家に選択されるのが実情である。
【0003】
ところで、無方向性電磁鋼板においては、従来、低鉄損化の手段として一般に、電気抵抗増大による渦電流損低減の観点からSiあるいはAl等の含有量を高める方法がとられてきた。しかし、この方法では反面、磁束密度の低下は避け得ないという問題点があった。このような問題点の克服のために、熱延板結晶粒径を粗大化することで主として磁束密度を改善させる方法が行われてきた。
【0004】
従来、Si含有量が高い無方向性電磁鋼板においては、仕上熱延後の結晶組織の成長が不十分であり、高磁束密度低鉄損の材料を提供するためには、仕上熱延終了後、何らかの方法で熱延板焼鈍を施し、結晶組織の粗大化を図ることが必須とされてきた。しかしながら熱延板焼鈍を施すことによって、多少の製品の磁気特性改善が可能となったとしても、前記の高磁束密度低鉄損材に対する需要家の要求に応えるには不十分であった。
【0005】
このような問題点に鑑み、高Si系無方向性電磁鋼板の磁気特性を改善する手段として、特開昭59−74224号公報にはSi含有量が2.5%〜4.0%である鋼において、一回冷延法において不純物であるS≦15ppm、O≦20ppm、N≦25ppmに制限する規定に加えて熱延板焼鈍条件を規定しかつ冷間圧延率を65%以上に規定する技術が、特開昭59−74225号公報には二回冷延法においてS≦15ppm、O≦20ppm、N≦25ppmの規定に加えて中間焼鈍条件を規定しかつ二回目の冷間圧延率を70%以上に規定する技術がそれぞれ開示されている。
しかしながらこれらの方法のように、鋼の高純化を中心とする技術では、鉄損が改善されても磁束密度の向上が十分でないという高Si系無方向性電磁鋼板特有の問題の解決に至らなかった。
【0006】
また、特開昭54−76422号公報には、無方向性電磁鋼板の冷延前結晶組織を安価に粗大化し磁束密度を高める技術として、仕上熱延後の熱延板を700℃から1000℃の高温で巻取り、これをコイルの保有熱で焼鈍する自己焼鈍法が、また、特公昭62−61644号公報には、熱延終了温度を1000℃以上の高温として無注水時間を設定し、いわゆるランアウトテーブル上で巻取前に熱延組織を再結晶・粒成長を図る方法が開示されている。
しかしながらこの技術によって、熱延組織の結晶粒成長をはかっても、やはり磁束密度の向上が十分でないという高Si系無方向性電磁鋼板特有の問題は解決に至らなかった。
【0007】
また、再結晶および粒成長の進行の緩慢な高Si系成分のハイグレード無方向性電磁鋼板の磁気特性を制御熱延により改善する技術として、特開昭59−74222号公報には、仕上熱延最終スタンドの圧下率を20%以上として、熱延板の巻取温度を700℃以上とする技術が開示されている。この先願においては、最終スタンド圧下率を高めて巻取温度を上昇させることにより熱延終了後の熱延組織の再結晶および粒成長を促進し、結果として磁気特性を改善することを狙っている。しかしながら鋼板中のSi含有量が高い場合、その後の粒成長が不十分であり、やはり磁束密度の向上が十分でないという高Si系無方向性電磁鋼板特有の問題は解決に至らなかった。
【0008】
一方で、特開昭56−38420号広報には、変態を有するローグレード無方向性電磁鋼板の磁気特性改善を目的として、αγ2相域の中間温度以下かつ750℃以上の温度で仕上げ熱延を終了する制御熱延技術が公開されている。しかしながら、熱延終了温度を高めるだけでは需要家の要求する高磁束密度無方向性電磁鋼板を供給するに至らないのが現状であった。
【0009】
【発明が解決しようとする課題】
上述したように、従来技術では、Si含有量の低いローグレード、およびSi含有量の高いハイグレード無方向性電磁鋼板の何れもにおいて磁束密度が十分に高くかつ鉄損が低い無方向性電磁鋼板を製造できるには至らず、無方向性電磁鋼板に対する前記の需要家の要請に応えることは出来なかった。
本発明は、磁束密度が十分に高く、鉄損が低い無方向性電磁鋼板を製造する方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明は、以下の通りである。
(1)質量%で、
0.10%<Si≦3.09%
0.10%≦Mn≦1.50%
を含有し、残部がFeおよび不可避的不純物からなるスラブを用い、熱間圧延し熱延板とし、そのまま製品として使用するか、あるいは一回もしくは中間焼鈍をはさむ二回以上の冷間圧延を施し次いで仕上焼鈍を施し、絶縁皮膜を施すか、あるいは施さずに最終製品とする無方向性電磁鋼板の製造方法において、仕上熱間圧延時に使用する潤滑油が下記の式(1)を満たすと共に、前記潤滑油をロール冷却水中に式(2)を満たすように混合して仕上熱間圧延の潤滑に供することを特徴とする無方向性電磁鋼板の製造方法。
200≦ρ≦800 ・・・式(1)
1.0≦v≦10.0・・・式(2)
但し、ρ:潤滑油の動粘度(cSt:センチストークス)
v:ロール冷却水中に混合された潤滑油の体積分率(%)
【0011】
削除
【0012】
削除
【0013】
削除
【0014】
質量%で、更に0.10%≦Al≦1.00%を含有することを特徴とする前記(1)に記載の無方向性電磁鋼板の製造方法。
【0015】
削除
【0016】
削除
【0017】
削除
【0018】
削除
【0019】
削除
【0020】
【発明の実施の形態】
本発明は、従来技術で行われてきた制御熱延に見られるような、熱延終了温度、パススケジュール管理の観点のみならず、従来、圧延反力を軽減し仕上熱延機のワークロールの寿命を延長することを目的として使用されてきた潤滑油の特性に注目し、これを適切に制御することで、無方向性電磁鋼板製品の磁束密度を高めるものである。
【0021】
そして、本発明のように仕上熱延の潤滑油の特性を制御する場合、粗圧延後のシートバーを仕上熱延前に先行するシートバーに接合し、当該シートバーを連続して仕上熱延に供することで、より高動粘度の潤滑油を用いた場合においても仕上熱延を安定して行うことができる。
【0022】
以下に、本発明を詳細に説明する。
まず、成分について説明すると、Siは鋼板の固有抵抗を増大させ渦流損を低減させ、鉄損値を改善するために添加される。Si含有量が0.10%以下であると固有抵抗が十分に得られないので0.10%を超える量を添加する必要がある。一方、Si含有量が3.09%を超えると圧延時の耳割れが著しく増加し、圧延が困難になるとともにコスト増ともなるので3.09%以下とする必要がある。
【0023】
Alも、Siと同様に、鋼板の固有抵抗を増大させ渦電流損を低減させる効果を有するので必要に応じて添加する。Alの添加によって鉄損値を改善する場合には、Alを0.10%以上添加する。一方、Al含有量が1.00%を超えると、磁束密度が低下し、コスト高ともなるので1.00%以下とする。なお、鋼中のAl含有量が0.10%未満であっても本発明の効果はなんら損なわれるものではないが、この場合にはAl添加による鉄損値向上効果は期待できない。
【0024】
Mnは、Al、Siと同様に鋼板の固有抵抗を増大させ渦電流損を低減させる効果を有する。この目的のため、Mn含有量は0.10%以上とする。一方、Mn含有量が1.50%を超えると熱延時の変形抵抗が増加し熱延が困難となるとともに、熱延後の結晶組織が微細化しやすくなり、磁気特性が悪化するので、Mn含有量は1.50%以下とする必要がある。
また、Mn添加量は仕上げ熱延前の高温のシートバー接合部の強度確保の点からもきわめて重要である。低融点の硫化物が結晶粒界に存在することにより、シートバー接合部の熱間脆化を防止するためである。このため、MnとSとの重量濃度の比であるMn/Sの値を20以上とすることが好ましい。これにより、低融点の硫化物は粗大化し、シートバー接合部の破断を防止することが可能となる。
【0025】
また、製品の機械的特性の向上、磁気的特性、耐錆性の向上あるいはその他の目的のために、P、B、Ni、Cr、Sb、Sn、Cuの1種または2種以上を鋼中に含有させても本発明の効果は損なわれない。
【0026】
Cの含有量については特に限定しないが、使用中の磁気時効を防止して良好な鉄損を維持し続けるためにはC含有量が0.0050%以下、さらに好ましくは0.0020%以下であることが好ましい。逆に、使用中の磁気時効による鉄損の増大が問題にならない用途では、この値を超えても構わない。さらに、打ち抜き時の硬度を確保し、需要家での打ち抜き性を良好にするために100〜300ppmの範囲にC含有量を調整しても良い。
【0027】
S、Nの含有量についても特に限定しないが、これらの元素は熱間圧延工程におけるスラブ加熱中に一部再固溶し、熱間圧延中にMnS等の硫化物、AlN等の窒化物を形成する。これらが存在することにより熱延組織の粒成長を妨げ鉄損が悪化するのでSは0.0050%、より好ましくは0.0020%以下、Nは0.0050%以下、より好ましくは0.0020%以下にするとよい。
特にS含有量はシートバー接合部の強度確保のために、MnとSとの重量濃度の比であるMn/Sの値を20以上とすることが好ましいことは先に述べたとおりである。
【0028】
次に本発明のプロセス条件について説明する。
前記成分からなる鋼スラブは、転炉で溶製され連続鋳造あるいは造塊−分塊圧延により製造される。鋼スラブは公知の方法にて加熱される。このスラブに粗圧延を施してシートバーとし、続いて仕上熱延に供して熱延板とする。
【0029】
本発明は、この仕上熱間圧延の際に使用する潤滑油の動粘度が下記の式(1)を満たすと共に、前記潤滑油をロール冷却水中に式(2)を満たすように混合して仕上熱間圧延の潤滑に供することを特徴とする。
200≦ρ≦800 ・・・式(1)
1.0≦v≦10.0・・・式(2)
但し、ρ:潤滑油の動粘度(cSt:センチストークス)
v:ロール冷却水中に混合された潤滑油の体積分率(%)
【0030】
この際、潤滑油の動粘度は温度上昇に対して指数関数的に減少するため、潤滑油そのものの温度のみならずロール冷却水の温度をも適切に制御する必要がある。本発明ではロール冷却水と混合され、実際に潤滑に供される時点での潤滑油の動粘度が式(1)もしくは式(3)の値を満たすことが重要である。また、vは実際に仕上熱間圧延の潤滑に供されるロール冷却水と潤滑油との混合液における潤滑油の体積分率をいう。
【0031】
ここで、本発明で用いる潤滑油について説明する。
仕上熱間圧延で使用される潤滑油は、通常、主要な成分として基油、極圧添加剤、付着向上剤、油性剤等の成分から構成される。基油としては通常精製鉱油が用いられる。
【0032】
油性剤は、非極性炭化水素基と極性基からなり、炭化水素基は潤滑油の主要成分である基油分子との親和性を担っている。一方、油性剤の極性基は、被圧延材である金属や水分子との親和性を有するため、油性剤は金属や水に吸着して金属表面に吸着膜を形成する。この吸着膜によって低荷重の場合に鋼板とワークロールとの間の摩擦及び摩耗を抑制する。油性剤としては、オレイン酸などの長鎖脂肪酸に代表される各種油脂、各種合成油等が使用される。
【0033】
極圧添加剤は荷重が増大した際に作用する。荷重が増大すると一部の金属が吸着膜を突き破ってロールと直接接触し、摩擦熱による発熱でロール温度が上昇して吸着膜のさらなる破壊を進行させ、焼き付きやスカッフィングを生じる状態となる。極圧添加剤はこのような潤滑状態での金属表面の摩耗を防止して潤滑を可能とすることを目的として添加するものであり、りん酸エステル系高分子、金属ジチオホスフェート塩、有機硫黄化合物、有機ハロゲン化合物等が使用される。
【0034】
付着向上剤は、潤滑油のワークロール表面、熱延鋼片表面への付着性向上を目的として添加するものであり、通常、炭化水素系ポリマー等が使用される。
【0035】
また最近では、潤滑油の粘度を上げロール寿命を向上させるために、極圧添加剤の粘度を高め、油性剤を省略した成分系からなる潤滑油も使用されている。
【0036】
以上に成分系を説明した潤滑油の例として、キュードール5149、キュードール0B068、キュードール4B313(いずれも共同油脂(株)商品名)が挙げられる。
【0037】
但し、本発明では仕上熱延時に使用される潤滑油の動粘度とそのロール冷却水中の濃度とを適切に制御することによって、無方向性電磁鋼板の製品の磁束密度を向上させているものである。したがって、本発明を実施する際に用いられる潤滑油は上述した成分系により構成されるものに限られるものではない。
【0038】
本発明のごとき動粘度の高い潤滑油を使用して仕上げ熱延を行う際、単一のスラブを一本のシートバーに粗圧延し、これを一本毎に圧延する場合には、個々のシートバーの噛み込み不良が生じやすくなる。この問題を解決するには、シートバー噛み混み時の速度を落としてやる方法があるが、生産性を著しく損なう。発明者らはこの課題の解決のために鋭意検討を行った結果、スラブを粗圧延して得られたシートバーの先端部を先行するシートバーの後端部と接合して複数のシートバーを一体とし、この一体とした複数のシートバーを連続的に仕上げ熱延に供することが特に有効であることも見いだした。すなわち、連続熱延により噛み込み不良を防止し、仕上熱延を安定して行うことが可能になった。
【0039】
先行シートバーと後行シートバーを接合する方法としては、先行シートバーの後端部と後行シートバーの先端とを突き合わせ、突合せ部を溶接する方法や、突合せ部に押圧力を加えて圧接する方法や、突合せ部を溶接した後に圧接する方法等がある。また、突合せ部に押圧力を加えつつ溶接するようにしてもよい。なお、突合せ部を溶接する方法としては、例えばレーザ溶接法、誘導加熱による方法等があげられる。
【0040】
仕上熱延で連続的に製造される熱延板は、巻取の際にピンチロールをコイラの前に複数設置しその間で高速剪断を行い、順番にコイルを巻き取ってゆくことで、仕上げ熱延中の熱延板に負荷される張力の変動を最小限に抑制し、良好な形状で巻き取ることができる。
【0041】
得られた熱延板は、特に低コストを重視する需要家に対しては冷間圧延を省略してそのままで製品とするか、あるいは酸洗を行って製品としても良いし、さらに酸洗後そのまま、あるいは軽圧下を行って表面性状を改善した後、絶縁皮膜を塗布するか、あるいは塗布せず製品としてもよい。このような、いわゆるホットファイナル工程で無方向性電磁鋼板を製造する場合、成分系がαγ変態点を有するときには、仕上熱延終了温度を800℃以上((3×Ar+2×Ar)/5)℃以下とし、600℃以上850℃以下の温度域で熱延板の巻き取りを行うことが好ましい。
【0042】
αγ変態点を有する成分系のホットファイナル無方向性電磁鋼板の場合、仕上熱延の終了温度が800℃未満であると本発明が意図する高磁束密度が得られないので、仕上熱延の終了温度は800℃以上が好ましい。一方、仕上熱延の終了温度が((3×Ar+2×Ar)/5)℃を超えると熱延終了後に鋼板内に存在するγ相が、冷却の際に微細なα相へ変態し、熱延板の結晶組織が微細化して大幅に磁気特性が悪化するので、仕上熱延終了温度は((3×Ar+2×Ar)/5)℃以下であることが好ましい。また、巻取温度については、600℃未満であると本発明が意図する高磁束密度一方向性電磁鋼板が得られないので600℃以上であることが好ましい。一方、巻取温度が850℃を超えると、巻き取った熱延板の表面の酸化層が増大し、酸洗コストが増すので、850℃以下の温度域にて巻き取ることが好ましい。
【0043】
一方、αγ変態点を有しない成分系のホットファイナル無方向性電磁鋼板の場合、仕上熱延の終了温度が800℃未満であると、本発明が意図する高磁束密度が得られないので仕上熱延の終了温度は800℃以上であることが好ましい。一方、仕上熱延の終了温度が1100℃を超えると鋼板の巻き取りが著しく困難になり、コイルの巻きずれや、形状不良が生じやすくなるので、仕上熱延終了温度は1100℃以下であることが好ましい。また、巻取温度については、600℃未満であると本発明が意図する高磁束密度一方向性電磁鋼板が得られないので600℃以上であることが好ましい。一方、巻取温度が850℃を超えると、巻き取った熱延板の表面の酸化層が増大し、酸洗コストが増すので、850℃以下の温度域にて巻き取ることが好ましい。
【0044】
また、本発明の仕上熱延により得られた熱延板は、一回もしくは中間焼鈍をはさむ二回以上の冷間圧延を施し次いで仕上焼鈍を施すか、またはさらなる磁気特性の改善を図ることを目的に、最初の冷間圧延前に連続焼鈍もしくは箱焼鈍により熱延板焼鈍を施すか、あるいは高温でコイルを巻取りその保有熱で自己焼鈍を行うか、高温で仕上げ熱延を終了し一定以上の無注水時間を設定し、その後冷却し巻き取り、冷間圧延に供するなどの方法によって製品としてもよい。
【0045】
以上の工程により得られた熱延板は、1回の冷間圧延工程を施し次いで仕上げ焼鈍を施すか、その後さらにスキンパス圧延工程を施して製品としてもよい。スキンパス圧延率は2%未満ではその効果が得られず、20%超では磁気特性が悪化するため2%から20%とする。
また、仕上焼鈍は連続焼鈍により施すが、その際に特開昭61−231120号公報に開示されているごとく、前段で950℃〜1100℃の温度範囲で5秒〜1分間の短時間焼鈍し、後段で800℃〜950℃で10秒〜2分間保定するなどの方法により仕上げ焼鈍を行ってもよい。
【0046】
冷間圧延後の鋼板には、絶縁皮膜を施すか、あるいは施さずに最終製品とする。
【0047】
以下に、本発明が規定する各プロセスの規定理由について説明する。
まず、熱延板焼鈍を省略する場合の本発明のプロセス条件について説明する。 仕上熱間圧延時に、潤滑油の動粘度とロール冷却水中の潤滑油の濃度が成品磁束密度に与える影響を調査するため下記の様な実験を行った。表1に示す成分の鋼を溶製しスラブとし、粗熱延を行ってシートバーとした後、仕上げ熱延を実施した。
【0048】
【表1】

Figure 0004153570
【0049】
仕上熱間圧延時に、実際にロールに噴霧される際の潤滑油の動粘度、およびロール冷却水中に占める体積分率を変更して試験を行い、製品磁束密度との関係を詳細に調査した。αγ変態点を有する成分系の鋼AのAr点は904℃であり、Ar点は870℃である。このため、鋼Aの熱延仕上げ温度は(Ar+Ar)/2以下かつ700℃以上である860℃とした。一方、αγ変態点を有しない成分系の鋼Bは熱延終了温度を880℃とした。鋼A,Bともに2.5mm厚の熱延板に仕上げた後、水冷して550℃で巻き取った。
【0050】
次いで、これらの熱延板を酸洗、冷延して0.50mm厚とし、脱脂した後、鋼Aは750℃、30秒焼鈍しエプスタイン試料を切断して磁気特性を測定した。また、鋼Bは酸洗、冷延し0.50mm厚とし、脱脂した後、950℃、30秒焼鈍し、エプスタイン試料を切断して磁気特性を測定した。
【0051】
鋼Aの実験結果による仕上熱延時の潤滑油の動粘度とロール冷却水中の潤滑油の濃度と成品磁束密度との関係を図1に、同じく鋼Bの実験結果を図2に示す。図1、図2によれば潤滑油のロール冷却水に対する体積分率が1.0%以上10%以下であり、かつ潤滑油の動粘度を200cSt以上とすることで、鋼A、鋼Bとも成品磁束密度が上昇することが分かる。
【0052】
図1、および図2にも示されるとおり、潤滑油の動粘度が200cSt未満では製品の磁束密度向上効果が不十分である。また、潤滑油の動粘度が800cStを超えると、その効果が飽和するとともに動粘度の高い潤滑油を搬送する配管系で詰まりが生じやすくなり、また冷えた潤滑油がスタンドやロールに付着してその除去のために操業を頻繁に停止しなければならなくなるので、潤滑油の動粘度は800cSt以下とする。
【0053】
また、潤滑油のロール冷却水に対する体積分率が1.0%未満では磁束密度改善効果が無く、10%を超えるとその効果が飽和して不経済であるので、ロール冷却水中の潤滑油濃度は体積分率で1.0%以上10%以下とする。
【0054】
以上の実験から示されるように、仕上熱延において、ワークロールに噴射される潤滑油の動粘度が式(1)を満たし、かつロール冷却水中の潤滑油濃度を式(2)の規定する範囲内とすることによって、成品磁束密度が上昇することがわかる。
【0055】
次に、冷間圧延前に熱延板焼鈍を施す場合において、仕上熱間圧延時の潤滑油の動粘度およびロール冷却水中の潤滑油の濃度の成品磁気特性に対する影響を調査するため下記の様な実験を行った。表2に示す成分の鋼を溶製し仕上げ熱延を実施した。
仕上熱間圧延時に、実際にロールに噴霧される際の潤滑油の動粘度、およびロール冷却水中に占める体積分率を変更して試験を行い、製品磁束密度との関係を詳細に調査した。熱延板は仕上熱延終了温度を900℃とし、2.5mm厚に仕上げ水冷して550℃で巻き取った。
【0056】
この熱延コイルを連続焼鈍炉で鋼Cを950℃で90秒の焼鈍を行った。これを酸洗、冷延し0.35mm厚とし、脱脂した後、950℃30秒焼鈍しエプスタイン試料を切り出して磁気特性を測定した。
【0057】
鋼Cの仕上熱間圧延時の潤滑油の動粘度およびロール冷却水中の潤滑油の濃度と成品磁束密度の関係を図3に示す。図3によれば潤滑油のロール冷却水に対する体積分率が1.0%以上10%以下でありかつ、潤滑油の動粘度が200cSt以上において鋼Cの成品磁束密度が上昇することがわかる。
以上の実験から示されるように、仕上熱延において、ワークロールに噴射される潤滑油の動粘度が式(1)を満たし、かつ式(2)で規定されるようにロール冷却水中の潤滑油濃度は体積分率で1.0%以上10%以下を満たしていれば、成品磁束密度が上昇することがわかる。
【0058】
次に、連続焼鈍による熱延板焼鈍時間、熱延板焼鈍温度が磁束密度に与える影響を調査するため、以下の様な実験を行った。表2の成分の鋼Cを溶製しスラブとし、粗熱延を行ってシートバーとした後、仕上げ熱延を実施した。
【0059】
【表2】
Figure 0004153570
【0060】
仕上熱延終了温度は900℃で一定として2.0mm厚に仕上げ、熱延終了後急冷し、500℃で巻取った。仕上熱延機のロール冷却水中に3%の潤滑油を混入し、ノズルからワークロールへ噴射した。ロール冷却水の温度は55℃に保ち、潤滑油の動粘度は280cStに保った。
この熱延コイルを連続焼鈍炉で焼鈍温度は950℃一定で焼鈍時間を変えて焼鈍を行った。また、一方で連続焼鈍による熱延板焼鈍の時間を90秒として焼鈍温度を変化させた。これを酸洗、冷延し0.35mm厚とし、脱脂した後、900℃、30秒焼鈍しエプスタイン試料を切断して磁気特性を測定した。
【0061】
連続焼鈍による熱延板焼鈍時間の製品磁束密度に対する影響を図4に示した。図4に示されるとおり、焼鈍時間が20秒未満では熱延板焼鈍による磁束密度向上効果が得られず、焼鈍時間が5分以上では鋼板表面に深いスケールが生成し酸洗不良が発生し、鋼板表層に著しい肌荒れが生じた。このため、本発明では連続焼鈍による熱延板焼鈍時間は20秒以上5分以下とする。なお焼鈍の効果、および経済性からみた好ましい連続焼鈍による熱延板焼鈍時間は30秒以上3分以下である。
【0062】
連続焼鈍による熱延板焼鈍温度の製品磁束密度に対する影響を図5に示した。図5に示されるとおり、焼鈍温度が850℃未満では連続焼鈍での熱延板焼鈍による磁束密度向上効果が得られず、また焼鈍温度が1150℃を超えると深いスケールの生成により酸洗不良が発生し、鋼板表層に著しい肌荒れが生じた。このため、本発明では連続焼鈍による熱延板焼鈍温度は850℃以上1150℃以下とする。焼鈍の効果、および酸洗性等の経済性からみた好ましい連続焼鈍による熱延板焼鈍温度は850℃以上1000℃以下である。
【0063】
本発明では熱延板焼鈍を箱焼鈍により行っても良い。その際、熱延板焼鈍温度が750℃未満であると製品磁気特性の改善に必要な焼鈍時間が著しく長くなり、不経済である。また焼鈍温度が850℃を超えると、炉の設備投資に多額の費用を要するとともに、焼鈍時にコイルが焼き付く現象が発生する。以上の理由で箱焼鈍による熱延板焼鈍を実施する場合は、焼鈍温度を750℃以上850℃以下とする。その際、箱焼鈍での熱延板焼鈍時間が5分以下であると製品磁気特性の改善に必要な焼鈍温度が著しく高くなり、炉そのものの設備投資が過大となり不経済であるので焼鈍時間は5分以上とする。また、熱延板焼鈍時間が30時間を超えると焼鈍温度が過度に高い場合と同様に、コイルの焼き付きが生じるので箱焼鈍での熱延板焼鈍時間は30時間以内とする。
【0064】
次に、熱延コイルの保有熱により自己焼鈍を行うプロセスにおいて、仕上熱間圧延時の潤滑油の動粘度およびロール冷却水中の潤滑油の濃度の成品磁気特性に対する影響を調査するため下記の様な実験を行った。表3に示す成分の鋼を溶製しスラブとし、粗熱延を行ってシートバーとした後、仕上げ熱延を実施した。仕上熱延機のロール冷却水中に4%の潤滑油を混入し、ノズルからワークロールへ噴射した。この際ロール冷却水の温度を変化させることで、潤滑油の動粘度を変化させた。
【0065】
【表3】
Figure 0004153570
【0066】
熱延終了温度は1000℃とし、水冷して860℃で巻取り、直ちに保熱カバーをかぶせてガス加熱による補助加熱を施し、コイルの保有熱により850℃1時間の自己焼鈍を施した。
これを酸洗、冷延し0.50mm厚とし、脱脂した後、鋼Dは900℃で、鋼Eは980℃で45秒焼鈍しエプスタイン試料を切断して磁気特性を測定した。
【0067】
仕上熱延時の潤滑油の動粘度に対する製品磁束密度の依存性を図6に示した。図6より、仕上熱延時の潤滑油の動粘度が200cSt以上であると成品磁束密度が上昇することがわかる。
【0068】
仕上熱延終了後、熱延板をコイルに巻き取り、自己焼鈍を行うようにしてもよい。自己焼鈍を行う際のコイルの巻取温度は、750℃未満では磁気特性の改善が不十分であるので、750℃以上とする。一方1000℃を超えるとコイルの巻きずれが発生しやすくなり、鋼板表層の酸化も激しくなるため1000℃以下とする。
【0069】
自己焼鈍の時間は、5分未満では磁気特性改善が不十分であるので、5分以上行う。また、5時間を超えると鋼板の酸化が激しくなり酸洗不良が発生しやすくなるので、5時間以下とする。焼鈍の効果、および経済性からみた好ましい自己焼鈍時間は30分から120分である。また自己焼鈍中のコイルの酸化を防止するため、水素を含有する還元性雰囲気、あるいは窒素、アルゴン等の不活性ガス雰囲気、あるいは減圧下で自己焼鈍を行ってもよい。
【0070】
次に、仕上熱延終了後一定時間の無注水を設けるプロセスにおいて、仕上熱間圧延時の潤滑油の動粘度およびロール冷却水中の潤滑油の濃度の成品磁気特性に対する影響を調査するため下記の様な実験を行った。表4に示す成分の鋼Fを溶製し仕上げ熱延を実施した。
【0071】
【表4】
Figure 0004153570
【0072】
仕上熱延終了温度は1050℃で一定とした。この時、仕上熱延機のロール冷却水中に1.5%の潤滑油を混入し、ノズルからワークロールへ噴射した。この際ロール冷却水の温度を変化させることで、潤滑油の動粘度を変化させた。また、式(4)および式(5)に基づき、無注水時間は4.0秒とし、その後冷却して680℃で巻き取った。
これを酸洗、冷延し0.50mm厚とし、脱脂した後、900℃、30秒焼鈍しエプスタイン試料を切断して磁気特性を測定した。
【0073】
仕上熱延時の潤滑油の動粘度に対する製品磁束密度の依存性を図7に示した。図7より、仕上熱延時の潤滑油の動粘度が200cSt以上であると成品磁束密度が上昇することがわかる。
【0074】
コイルの巻取温度については規定を設けていないが、高温で熱延を終了した鋼板表面に過度の酸化層が生じ、酸洗性が悪化することを防止するため、750℃以下で巻き取ることが好ましい。
【0075】
以下、熱延終了後の無注水設定時間tについて述べる。
本発明では仕上熱間圧延時の潤滑油の動粘度およびロール冷却水中の潤滑油の濃度の成品磁気特性に対する影響を調査するとともに、仕上熱延において熱延終了温度T(℃)、熱延終了後注水開始までの時間t(秒)と磁気特性との関係を発明者等は詳細に検討を行った結果、
950≦T≦1150 ・・・式(4)
9.6−8×10−3T≦t≦15.6−8×10−3T・・・式(5)
にて定められる範囲内において、酸洗性、通板速度、磁気特性を満足する良好な条件を定めることが可能となった。
【0076】
熱延終了温度T(℃)が式(4)で定められる下限の950℃を下回った場合は、磁気特性の改善が不十分である。また、熱延終了温度T(℃)を式(4)で定められる上限である1150℃超にするためには、通常の粗圧延、仕上圧延を有する熱延工程ではスラブの加熱温度を著しく高める必要があり、スラブ加熱中に再固溶した析出物が熱延中に微細に析出し、磁気特性を著しく悪化させる。以上の理由により、熱延終了温度は式(4)で定められる950℃以上1150℃以下とする。
【0077】
また、熱延終了後注水開始までの時間が式(5)で定めた時間を超えると、鋼板を冷却する時間が不足し、高温でコイルを巻き取るか、冷却を十分に施すために圧延速度を低下させねばならず、生産性が悪化する。高温でのコイル巻取りは巻きずれの発生や酸洗性の悪化等の弊害を招くので好ましくない。このため無注水時間t(秒)は式(5)で定めたように、15.6−8×10−3T以下とする。逆に、式(5)で定められる時間よりも無注水時間が短くなると磁気特性の改善が不十分である。このため、仕上熱延終了後の無注水時間t(秒)は式(5)で定めたように、9.6−8×10−3T以上とする。
【0078】
【実施例】
次に、本発明の実施例について述べる。
[実施例1]
熱延板焼鈍省略一回冷延工程法により製造されるフルプロセス材における、仕上熱間圧延時の潤滑油の動粘度および、ロール冷却水中の潤滑油の濃度の製品磁気特性に対する影響を調査するため、下記の様な実験を行った。
ここで、フルプロセス材とは、一回又は中間焼鈍をはさむ二回以上の冷延後、焼鈍を施し最終製品とする工程で製造される製品を指していう。
表5に示した成分を有する無方向性電磁鋼用スラブを通常の方法にて加熱し、粗圧延機により厚み40mmのシートバーとし、次いで仕上熱延機により2.5mm厚の熱延板とした。
【0079】
【表5】
Figure 0004153570
【0080】
鋼G、鋼Hはαγ変態を有するため、熱延仕上温度は(Ar+Ar)/2以下で700℃以上である860℃とし、水冷して650℃で巻き取った。鋼Iの熱延仕上温度は890℃とし、水冷して650℃で巻き取った。
仕上熱延機のロール冷却水中に4%の潤滑油を混入し、ノズルからワークロールへ噴射した。ロール冷却水の温度および潤滑油の種類を変更することで、潤滑油の動粘度を変化させた。
【0081】
本実施例では、高動粘度の潤滑油を使用して仕上熱延を行うため、個々のシートバーの噛み混み不良が生じやすくなるのを避け、安定して仕上熱延を行うため、粗圧延後のシートバーを先行するシートバーに溶接し、仕上熱間圧延を連続して行った。
【0082】
これらの鋼を酸洗後、鋼Gは750℃、鋼Hは830℃、鋼Iは950℃でそれぞれ30秒焼鈍を行い、エプスタイン試料を切り出して磁束密度を測定した。表6に本発明と比較例と磁気測定結果をあわせて示す。表6に示されるように仕上熱延時の潤滑油の動粘度が200cSt以上であると製品磁束密度が向上することがわかる。
【0083】
【表6】
Figure 0004153570
【0084】
[実施例2]
熱延板焼鈍省略一回冷延工程法により製造されるフルプロセス材における、仕上熱間圧延時の潤滑油の濃度が製品磁気特性に与える影響を調査するため、下記の様な実験を行った。
表5の鋼Iに示した成分を有する無方向性電磁鋼用スラブを通常の方法にて加熱し、粗圧延機により厚み40mmのシートバーとし、次いで仕上熱延機により2.5mm厚の熱延板とした。
仕上熱延機のロール冷却水の温度を40℃、50℃、70℃に調整し、異なる体積分率の潤滑油をロール冷却水中に予めエマルジョン状態で混入し、潤滑油の濃度が製品磁気特性に与える影響を調査した。このとき各温度における潤滑油の動粘度はそれぞれ400cSt、300cStであった。潤滑油を含んだロール冷却水は、ノズルからワークロールへ噴射した。
【0085】
この鋼Iを酸洗後、950℃で30秒焼鈍を行い、エプスタイン試料を切り出して磁束密度を測定した。表7に本発明と比較例と磁気測定結果をあわせて示す。表7に示されるように仕上熱延時の潤滑油の濃度が1.0%以上であると製品磁束密度が向上することがわかる。
【0086】
【表7】
Figure 0004153570
【0087】
[実施例3]
熱延板焼鈍法によるフルプロセス材およびセミプロセス材における、仕上熱間圧延時の潤滑油の動粘度およびロール冷却水中の潤滑油の濃度の製品磁気特性に対する影響を調査するため、下記の様な実験を行った。
ここで、セミプロセス材とは、一回又は中間焼鈍をはさむ二回以上の冷延後、焼鈍を施し、その後スキンパスを施した状態で最終製品とする製造法での製品を指していう。
表8に示した成分を有する無方向性電磁鋼用スラブを通常の方法にて加熱し、粗圧延機により厚み40mmのシートバーとし、次いで仕上熱延機により2.0mm厚の熱延板とした。仕上熱延終了温度は900℃とし、熱延終了後直ちに水冷して550℃で熱延板を巻き取った。
【0088】
【表8】
Figure 0004153570
【0089】
仕上熱延機のロール冷却水中に3.5%の潤滑油を混入し、ノズルからワークロールへ噴射した。ロール冷却水の温度および潤滑油の種類を変更することで、潤滑油の動粘度を変化させた。
本実施例では、高動粘度の潤滑油を使用して仕上熱延を行うため、個々のシートバーの噛み混み不良が生じやすくなるのを避け、安定して仕上熱延を行うため、粗圧延後のシートバーを先行するシートバーに溶接し、仕上熱間圧延を連続して行った。
【0090】
得られた熱延板に熱延板焼鈍を連続焼鈍炉で鋼Jは900℃、鋼Kは1000℃でそれぞれ2分間施した。その後、鋼Jについてはフルプロセス及びセミプロセスでの特性を、鋼Kについてはフルプロセスでの特性を調査した。
【0091】
鋼J、鋼Kのフルプロセス工程として、熱延板焼鈍後の熱延板に酸洗を施し、冷間圧延により0.50mmに仕上た。これを連続焼鈍炉にて鋼Jは900℃で、鋼Kは980℃でそれぞれ30秒間焼鈍した。その後、エプスタイン試料を切り出し、磁気特性を測定した。
【0092】
さらに、鋼Jのセミプロセス工程として、熱延板焼鈍、酸洗までは同一条件とし、その後冷間圧延の仕上板厚を0.55mmにし、これを連続焼鈍炉にて900℃で30秒間焼鈍した。その後、スキンパス圧延を施し0.50mmに仕上、エプスタイン試料に切断し、その後、通常は需要家において実施される750℃2時間の歪取り焼鈍を施し、磁気特性を測定した。
【0093】
表9に鋼J、鋼Kの本発明と比較例の成分と磁気測定結果をあわせて示す。表9に示されるように仕上熱延時の潤滑油の動粘度が80cSt以上、特に200cSt以上であると製品磁束密度が向上することがわかる。
【0094】
【表9】
Figure 0004153570
【0095】
削除
【0096】
削除
【0097】
削除
【0098】
削除
【0099】
削除
【0100】
[実施例5]
箱焼鈍による熱延板焼鈍・一回冷延法により製造されるフルプロセス無方向性電磁鋼板における、仕上熱間圧延時の潤滑油の動粘度およびロール冷却水中の潤滑油の濃度の製品磁気特性に対する影響を調査するため、下記の様な実験を行った。
表12に示した成分を有する無方向性電磁鋼用スラブを通常の方法にて加熱し、粗圧延機により厚み40mmのシートバーとし、次いで仕上熱延機により2.0mm厚の熱延板とした。仕上熱延終了温度は900℃とし、圧延終了後冷却して650℃で巻き取った。
【0101】
【表12】
Figure 0004153570
【0102】
仕上熱延機のロール冷却水中に4.0%の潤滑油を混入し、ノズルからワークロールへ噴射した。ロール冷却水の温度および潤滑油の種類を変更することで、潤滑油の動粘度を変化させた。
得られた熱延板に熱延板焼鈍を箱焼鈍炉で800℃、5時間施した。その後、酸洗を施し、冷間圧延により0.50mm厚に仕上た。これを連続焼鈍炉にて鋼Mは900℃で30秒間、鋼Nは980℃で30秒間焼鈍した。その後、エプスタイン試料を切り出し、磁気特性を測定した。
【0103】
表13に本発明と比較例の成分と磁気測定結果をあわせて示す。表13に示されるように、仕上熱延時の潤滑油の動粘度が200cSt以上であると製品磁束密度が向上することがわかる。
【0104】
【表13】
Figure 0004153570
【0105】
[実施例6]
自己焼鈍プロセス一回冷延工程により製造されるフルプロセス無方向性電磁鋼板における仕上熱間圧延時の潤滑油の動粘度、およびロール冷却水中の潤滑油の濃度の製品磁気特性に対する影響を調査するため、下記の様な実験を行った。 表14に示した成分を有する無方向性電磁鋼用スラブを通常の方法にて加熱し、粗圧延機により厚み50mmのシートバーとし、次いで仕上熱延機により2.5mm厚の熱延板とした。
【0106】
【表14】
Figure 0004153570
【0107】
仕上熱延機のロール冷却水中に3.0%の潤滑油を混入し、ノズルからワークロールへ噴射した。ロール冷却水の温度および潤滑油の種類を変更することで、潤滑油の動粘度を変化させた。
仕上熱延終了温度は1000℃とし、圧延終了後冷却して875℃で巻き取り、直ちにコイルを保熱炉に装入し850℃で1時間の自己焼鈍を施した。その後、酸洗を施し、冷間圧延により0.50mm厚に仕上た。これを連続焼鈍炉にて鋼Oは950℃で30秒間、鋼Pは975℃で30秒間、鋼Qは850℃で30秒間焼鈍した。その後、エプスタイン試料を切り出し、磁気特性を測定した。
【0108】
表15に本発明と比較例の成分と磁気測定結果をあわせて示す。表15に示されるように、仕上熱延時の潤滑油の動粘度が200cSt以上であると製品磁束密度が向上することがわかる。
【0109】
【表15】
Figure 0004153570
【0110】
[実施例7]
仕上熱延後一定時間の無注水時間を設け、一回冷延法により製造されるフルプロセス無方向性電磁鋼板において、仕上熱間圧延時のロール冷却水中に混入される潤滑油の動粘度の製品磁気特性に対する影響を調査するため、下記の様な実験を行った。
表16に示した成分を有する無方向性電磁鋼用スラブを通常の方法にて加熱し、粗圧延機により厚み50mmのシートバーとし、次いで仕上熱延機により2.5mm厚のシートバーとした。
【0111】
【表16】
Figure 0004153570
【0112】
仕上熱延機のロール冷却水中に3.2%の潤滑油を混入し、ノズルからワークロールへ噴射した。ロール冷却水の温度および潤滑油の種類を変更することで、潤滑油の動粘度を変化させた。
仕上熱延終了温度は1020℃とした。この場合、式(4)及び式(5)で規定される無注水時間tは1.44秒以上7.44秒以下であるので、無注水時間を4.5秒とし、640℃で巻き取った。その後、酸洗を施し、冷間圧延により0.50mm厚とした。これを連続焼鈍炉にて鋼Rは950℃で、鋼Sは980℃でそれぞれ30秒間焼鈍した。その後、エプスタイン試料を切り出し、磁気特性を測定した。
【0113】
表17に本発明と比較例の成分と磁気測定結果をあわせて示す。表17に示されるように、仕上熱延時の潤滑油の動粘度が200cSt以上であると製品磁束密度が向上することがわかる。
【0114】
【表17】
Figure 0004153570
【0115】
[実施例8]
仕上熱延後一定時間の無注水時間を設け、一回冷延法により製造されるフルプロセス無方向性電磁鋼板において、無注水時間が製品磁気特性に与える影響を調査するために以下の実験を行った。
表18に示した成分を有する無方向性電磁鋼用スラブを通常の方法にて加熱し、粗圧延機により厚み50mmのシートバーとし、次いで仕上熱延機により2.5mm厚の熱延板とした。
【0116】
【表18】
Figure 0004153570
【0117】
熱延終了温度は1050℃とし、無注水時間を変化させ、巻取温度は680℃で一定とした。この場合、式(4)および式(5)で規定される無注水時間は1.2秒以上7.2秒以下である。
仕上熱延機のロール冷却水中に3.2%の潤滑油を混入し、ノズルからワークロールへ噴射した。潤滑油の動粘度は320cStとした。その後、酸洗を施し、冷間圧延により0.50mm厚とした。これを連続焼鈍炉にて900℃で30秒間焼鈍した。その後、エプスタイン試料を切り出し、磁気特性を測定した。
【0118】
表19に熱延条件と磁気測定結果をあわせて示す。表19に示されるように、無注水時間が1.2秒以上であれば良好な磁気特性が得られていることがわかる。
【0119】
以上のように、仕上熱延時の潤滑油の動粘度よびロール冷却水中の濃度を適切に制御するとともに、仕上熱延を高温で仕上た後、熱延終了後の無注水時間を適切に制御することにより、磁束密度の値が高い無方向性電磁鋼板を得ることが可能である。
【0120】
【表19】
Figure 0004153570
【0121】
[実施例9]
仕上熱間圧延後、冷間圧延を施すことなく最終製品とする無方向性電磁鋼板製造プロセスにおける、仕上熱間圧延時の潤滑油の動粘度およびロール冷却水中の潤滑油の濃度の製品磁気特性に対する影響を調査するため下記の様な実験を行った。
表20に示した成分を有する無方向性電磁鋼用スラブを通常の方法にて加熱し、粗圧延機により厚み40mmのシートバーとし、次いで仕上熱延機により0.8mm厚の熱延板とした。
【0122】
【表20】
Figure 0004153570
【0123】
鋼U、鋼Vはαγ変態を有するため、熱延仕上温度は(Ar+Ar)/2以下で700℃以上である860℃とし、水冷して750℃で巻き取った。仕上熱延機のロール冷却水中に5%の潤滑油を混入し、ノズルからワークロールへ噴射した。ロール冷却水の温度を40℃から80℃まで変化させることで、潤滑油の動粘度を変化させた。
一方で、仕上熱延のロール冷却水中の潤滑油濃度の製品磁束密度への影響を調べるため、ロール冷却水に種々の濃度の潤滑油潤滑油をエマルジョン状に混合して実験を行った。この際、ロール冷却水と潤滑油との混合液の温度を50℃として、冷却水中の潤滑油の動粘度を350cStとした。
本実施例では、高動粘度の潤滑油を使用して仕上熱延を行うため、個々のシートバーの噛み混み不良が生じやすくなるのを避け、安定して仕上熱延を行うため、粗圧延後のシートバーを先行するシートバーに溶接し、仕上熱間圧延を連続して行った。得られた熱延板からエプスタイン試料を切り出し、磁束特性を測定した。
【0124】
表21、表22に本発明と比較例と磁気特性の測定結果をあわせて示す。表21より、仕上熱延時の潤滑油の動粘度が200cSt以上であると製品磁束密度が向上することがわかる。また表22より、ロール冷却水中の潤滑油濃度が1.0%以上であると、製品磁束密度が向上することがわかる。
【0125】
【表21】
Figure 0004153570
【0126】
【表22】
Figure 0004153570
【0127】
【発明の効果】
以上のように本願発明によれば、磁束密度が高い無方向性電磁鋼板を製造することが可能である。
【図面の簡単な説明】
【図1】 0.3%Si系成分の熱延板焼鈍省略一回冷延法における仕上熱間圧延時の潤滑油の動粘度およびロール冷却水中の潤滑油の濃度と製品磁束密度との関係を示す図表である。
【図2】 2%Si系成分の熱延板焼鈍省略一回冷延法における仕上熱間圧延時の潤滑油の動粘度およびロール冷却水中の潤滑油の濃度と製品磁束密度との関係を示す図表である。
【図3】 2%Si系成分の熱延板焼鈍一回冷延法における仕上熱間圧延時の潤滑油の動粘度およびロール冷却水中の潤滑油の濃度と製品磁束密度との関係を示す図表である。
【図4】 2%Si系成分の連続焼鈍による熱延板焼鈍一回冷延法における熱延板焼鈍時間と製品磁束密度との関係を示す図表である。
【図5】 2%Si系成分の連続焼鈍による熱延板焼鈍一回冷延法における熱延板焼鈍温度と製品磁束密度との関係を示す図表である。
【図6】 2%Siおよび3%Si系成分の熱延後自己焼鈍プロセス一回冷延法における仕上熱延時のロール冷却水中の潤滑油の動粘度と磁束密度との関係を示す図表である。
【図7】 2.5%Si成分系の仕上熱延終了後、無注水時間を設定するプロセスでの一回冷延法における仕上熱延時のロール冷却水中の潤滑油の動粘度と製品磁束密度との関係を示す図表である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a non-oriented electrical steel sheet having a high magnetic flux density, which is used as an iron core material for electrical equipment.
[0002]
[Prior art]
In recent years, in the fields of electrical machinery, especially rotating machines where non-oriented electrical steel sheets are used as iron core materials, and in the fields of medium and small transformers, global power conservation, energy conservation, and global environmental conservation such as CFC regulations Among these trends, the trend toward higher efficiency is spreading rapidly. For this reason, in order to increase the efficiency by reducing the iron loss, which is an energy loss at the time of use, demands for low iron loss electromagnetic steel sheets by customers are increasing. On the other hand, in order to reduce the size of the iron core and obtain the same output in a rotating machine, it is necessary to increase the operating magnetic flux density. For this purpose, a high magnetic flux density non-oriented electrical steel sheet is required. As described above, the downsizing of the rotating machine leads to a reduction in the weight of automobiles, trains, etc., which are mobile bodies mounted on the rotating machine, and thus has an advantage of saving energy consumed by the rotating machine. For this reason, non-oriented electrical steel sheets with low iron loss and high magnetic flux density are now strongly demanded by customers.
In addition, in the present age of entering into the world of global competition, the demand for cost reduction for non-oriented electrical steel sheets is severe, coupled with the above-mentioned trend toward higher efficiency of electrical equipment, the price is If it is the same, the actual situation is that the non-oriented electrical steel sheet having excellent magnetic properties is selected by consumers.
[0003]
By the way, in a non-oriented electrical steel sheet, conventionally, as a means for reducing iron loss, a method of increasing the content of Si, Al, or the like from the viewpoint of reducing eddy current loss due to increased electrical resistance has been taken. However, this method has a problem that a decrease in magnetic flux density is inevitable. In order to overcome such a problem, a method of mainly improving the magnetic flux density by coarsening the hot rolled plate crystal grain size has been performed.
[0004]
Conventionally, in a non-oriented electrical steel sheet having a high Si content, the growth of the crystal structure after finish hot rolling is insufficient, and in order to provide a material with high magnetic flux density and low iron loss, Therefore, it has been essential to subject the crystal structure to coarsening by subjecting it to hot rolling by some method. However, even if it is possible to improve the magnetic properties of some products by performing hot-rolled sheet annealing, it is not sufficient to meet the demands of customers for the high magnetic flux density and low iron loss materials.
[0005]
In view of such problems, as a means for improving the magnetic properties of high-Si non-oriented electrical steel sheets, Japanese Patent Application Laid-Open No. 59-74224 discloses that the Si content is 2.5% to 4.0%. In steel, in addition to the provisions for limiting S ≦ 15 ppm, O ≦ 20 ppm, and N ≦ 25 ppm, which are impurities in the single cold rolling method, the hot-rolled sheet annealing conditions are prescribed, and the cold rolling rate is regulated to 65% or more. In Japanese Patent Application Laid-Open No. 59-74225, in the second cold rolling method, in addition to the provisions of S ≦ 15 ppm, O ≦ 20 ppm, N ≦ 25 ppm, the intermediate annealing conditions are prescribed and the second cold rolling ratio is set. Each of the technologies defined as 70% or more is disclosed.
However, as in these methods, the technology centered on the purification of steel does not solve the problem peculiar to high-Si non-oriented electrical steel sheets that the magnetic flux density is not sufficiently improved even if the iron loss is improved. It was.
[0006]
Japanese Patent Application Laid-Open No. 54-76422 discloses a hot rolled sheet after finish hot rolling as a technique for increasing the magnetic flux density by coarsening the crystal structure of the non-oriented electrical steel sheet before cold rolling at a low cost. Is a self-annealing method in which the coil is annealed with the retained heat of the coil. A method for recrystallization and grain growth of a hot-rolled structure before winding on a so-called runout table is disclosed.
However, with this technique, even if the crystal grain growth of the hot-rolled structure is attempted, the problem peculiar to the high-Si non-oriented electrical steel sheet that the improvement of the magnetic flux density is still insufficient cannot be solved.
[0007]
JP-A-59-74222 discloses a technique for improving the magnetic properties of high-grade non-oriented electrical steel sheets having a high Si-based component with slow progress of recrystallization and grain growth by controlled hot rolling. A technique is disclosed in which the rolling reduction of the final rolled stand is 20% or more, and the winding temperature of the hot-rolled sheet is 700 ° C. or higher. In this prior application, the final stand reduction ratio is increased to raise the coiling temperature, thereby promoting the recrystallization and grain growth of the hot rolled structure after the completion of hot rolling, and as a result, improving the magnetic properties. . However, when the Si content in the steel sheet is high, the subsequent grain growth is insufficient, and the problem unique to the high Si non-oriented electrical steel sheet that the magnetic flux density is not sufficiently improved has not been solved.
[0008]
On the other hand, in JP-A-56-38420, in order to improve the magnetic properties of a low-grade non-oriented electrical steel sheet having transformation, finish hot rolling is performed at a temperature not higher than the intermediate temperature of the αγ2 phase region and not lower than 750 ° C. The finished controlled hot rolling technology is published. However, the present situation is that the high magnetic flux density non-oriented electrical steel sheet requested by the customer cannot be supplied only by increasing the hot rolling end temperature.
[0009]
[Problems to be solved by the invention]
As described above, in the prior art, the non-oriented electrical steel sheet having a sufficiently high magnetic flux density and low iron loss in both the low grade with a low Si content and the high grade non-oriented electrical steel sheet with a high Si content. However, it was not possible to meet the demands of the above-mentioned customers for non-oriented electrical steel sheets.
An object of the present invention is to provide a method for producing a non-oriented electrical steel sheet having a sufficiently high magnetic flux density and low iron loss.
[0010]
[Means for Solving the Problems]
The present invention is as follows.
(1) In mass%,
0.10% <Si ≦ 3.09%
0.10% ≦ Mn ≦ 1.50%
Slab containing Fe and the inevitable impurities, and hot-rolled into a hot-rolled sheet, used as a product as it is, or subjected to one or more cold rolling sandwiching intermediate annealing. Next, in the method for producing a non-oriented electrical steel sheet, which is subjected to finish annealing, an insulating film is applied, or an end product is not applied, the lubricating oil used during finish hot rolling satisfies the following formula (1), A method for producing a non-oriented electrical steel sheet, wherein the lubricating oil is mixed in roll cooling water so as to satisfy the formula (2) and used for finishing hot rolling lubrication.
200 ≦ ρ ≦ 800 Formula (1)
1.0 ≦ v ≦ 10.0 Formula (2)
Where ρ: kinematic viscosity of the lubricating oil (cSt: centistokes)
v: Volume fraction of lubricating oil mixed in roll cooling water (%)
[0011]
Delete
[0012]
Delete
[0013]
Delete
[0014]
( 2 ) mass %, Further containing 0.10% ≦ Al ≦ 1.00% (1) Description No A method for producing grain-oriented electrical steel sheets.
[0015]
Delete
[0016]
Delete
[0017]
Delete
[0018]
Delete
[0019]
Delete
[0020]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is not limited to the viewpoint of hot rolling end temperature and pass schedule management as seen in the control hot rolling performed in the prior art, but conventionally, the rolling reaction force is reduced and the work roll of the finishing hot rolling machine is reduced. By paying attention to the characteristics of the lubricating oil that has been used for the purpose of extending the service life and appropriately controlling it, the magnetic flux density of the non-oriented electrical steel sheet product is increased.
[0021]
Then, when controlling the characteristics of finish hot rolling lubricating oil as in the present invention, the sheet bar after rough rolling is joined to the preceding sheet bar before finish hot rolling, and the sheet bar is continuously subjected to finish hot rolling. By using this, finishing hot rolling can be stably performed even when a lubricant having a higher kinematic viscosity is used.
[0022]
The present invention is described in detail below.
First, the components will be described. Si is added to increase the specific resistance of the steel sheet, reduce the eddy current loss, and improve the iron loss value. If the Si content is 0.10% or less, the specific resistance cannot be obtained sufficiently, so it exceeds 0.10%. Amount Need to be added. On the other hand, Si content is 3.09 If the percentage exceeds 50%, the cracks at the time of rolling will increase significantly, making rolling difficult and increasing costs. 3.09 % Or less is required.
[0023]
Al, like Si, has the effect of increasing the specific resistance of the steel sheet and reducing eddy current loss, so it is added as necessary. When improving the iron loss value by adding Al, 0.10% or more of Al is added. On the other hand, if the Al content exceeds 1.00%, the magnetic flux density decreases and the cost increases, so the content is made 1.00% or less. In addition, even if the Al content in the steel is less than 0.10%, the effect of the present invention is not impaired at all, but in this case, the effect of improving the iron loss value by adding Al cannot be expected.
[0024]
Mn, like Al and Si, has the effect of increasing the specific resistance of the steel sheet and reducing eddy current loss. For this purpose, the Mn content is 0.10% or more. On the other hand, if the Mn content exceeds 1.50%, deformation resistance at the time of hot rolling increases and hot rolling becomes difficult, and the crystal structure after hot rolling is easily refined and the magnetic properties are deteriorated. The amount needs to be 1.50% or less.
The amount of Mn added is also extremely important from the viewpoint of securing the strength of the high-temperature sheet bar joint before hot rolling. This is because the low melting point sulfide is present at the crystal grain boundary to prevent hot embrittlement of the sheet bar joint. For this reason, it is preferable that the value of Mn / S which is the ratio of the weight concentration of Mn and S is 20 or more. Thereby, the low melting point sulfide becomes coarse, and it becomes possible to prevent breakage of the seat bar joint.
[0025]
In addition, one or more of P, B, Ni, Cr, Sb, Sn, and Cu are contained in steel for the purpose of improving the mechanical properties, magnetic properties, rust resistance of products, and other purposes. Even if it is made to contain, the effect of this invention is not impaired.
[0026]
The content of C is not particularly limited, but in order to prevent magnetic aging during use and maintain good iron loss, the C content is 0.0050% or less, more preferably 0.0020% or less. Preferably there is. On the contrary, in an application where an increase in iron loss due to magnetic aging during use does not become a problem, this value may be exceeded. Furthermore, the C content may be adjusted in the range of 100 to 300 ppm in order to ensure the hardness at the time of punching and to improve the punchability at the consumer.
[0027]
Although there is no particular limitation on the contents of S and N, these elements are partly re-dissolved during slab heating in the hot rolling process, and sulfides such as MnS and nitrides such as AlN are added during hot rolling. Form. The presence of these hinders the grain growth of the hot rolled structure and deteriorates the iron loss, so S is 0.0050%, more preferably 0.0020% or less, and N is 0.0050% or less, more preferably 0.0020. % Or less.
In particular, as described above, the S content preferably has a value of Mn / S, which is the ratio of the weight concentration of Mn and S, of 20 or more in order to ensure the strength of the sheet bar joint.
[0028]
Next, the process conditions of the present invention will be described.
The steel slab composed of the above components is melted in a converter and manufactured by continuous casting or ingot-bundling rolling. The steel slab is heated by a known method. The slab is subjected to rough rolling to form a sheet bar, which is subsequently subjected to finish hot rolling to obtain a hot rolled sheet.
[0029]
In the present invention, the kinematic viscosity of the lubricating oil used in the finish hot rolling satisfies the following formula (1), and the lubricating oil is mixed in roll cooling water so as to satisfy the formula (2). It is characterized by being used for hot rolling lubrication.
200 ≦ ρ ≦ 800 Formula (1)
1.0 ≦ v ≦ 10.0 Formula (2)
Where ρ: kinematic viscosity of the lubricating oil (cSt: centistokes)
v: Volume fraction of lubricating oil mixed in roll cooling water (%)
[0030]
At this time, since the kinematic viscosity of the lubricating oil decreases exponentially with respect to the temperature rise, it is necessary to appropriately control not only the temperature of the lubricating oil itself but also the temperature of the roll cooling water. In the present invention, it is important that the kinematic viscosity of the lubricating oil when mixed with roll cooling water and actually used for lubrication satisfies the value of the formula (1) or the formula (3). Further, v denotes the volume fraction of the lubricating oil in the mixed liquid of roll cooling water and lubricating oil that is actually used for the lubrication of the finish hot rolling.
[0031]
Here, the lubricating oil used in the present invention will be described.
Lubricating oils used in finish hot rolling are usually composed of components such as base oils, extreme pressure additives, adhesion improvers, and oiliness agents as main components. A refined mineral oil is usually used as the base oil.
[0032]
The oily agent is composed of a nonpolar hydrocarbon group and a polar group, and the hydrocarbon group bears affinity with the base oil molecule that is the main component of the lubricating oil. On the other hand, since the polar group of the oily agent has affinity with the metal and water molecules as the material to be rolled, the oily agent adsorbs to the metal and water to form an adsorption film on the metal surface. This adsorption film suppresses friction and wear between the steel sheet and the work roll when the load is low. As the oily agent, various fats and oils represented by long chain fatty acids such as oleic acid, various synthetic oils and the like are used.
[0033]
Extreme pressure additives act when the load increases. When the load increases, some metal breaks through the adsorption film and comes into direct contact with the roll, and the heat generated by frictional heat raises the roll temperature to cause further destruction of the adsorption film, causing seizure and scuffing. The extreme pressure additive is added for the purpose of preventing lubrication of the metal surface in such a lubrication state and enabling lubrication. Phosphate ester polymer, metal dithiophosphate salt, organic sulfur compound Organic halogen compounds and the like are used.
[0034]
The adhesion improver is added for the purpose of improving the adhesion of the lubricating oil to the surface of the work roll and the surface of the hot-rolled steel piece, and usually a hydrocarbon polymer or the like is used.
[0035]
Recently, in order to increase the viscosity of the lubricating oil and improve the roll life, a lubricating oil composed of a component system in which the viscosity of the extreme pressure additive is increased and the oily agent is omitted is also used.
[0036]
Examples of the lubricating oils that have been described above are Cudoll 5149, Cudoll 0B068, and Cudoll 4B313 (all trade names of Kyodo Yushi Co., Ltd.).
[0037]
However, in the present invention, the magnetic flux density of the non-oriented electrical steel sheet is improved by appropriately controlling the kinematic viscosity of the lubricating oil used during finish hot rolling and the concentration in the roll cooling water. is there. Therefore, the lubricating oil used when practicing the present invention is not limited to the one constituted by the component system described above.
[0038]
When finishing hot rolling using a lubricating oil having a high kinematic viscosity as in the present invention, a single slab is roughly rolled into one sheet bar, and when this is rolled one by one, It becomes easy for the seat bar to be bitten. In order to solve this problem, there is a method of reducing the speed when the seat bar is jammed, but the productivity is remarkably impaired. As a result of diligent studies to solve this problem, the inventors joined the leading end of the sheet bar obtained by rough rolling the slab to the trailing end of the preceding sheet bar to form a plurality of sheet bars. It has also been found that it is particularly effective to integrate the plurality of integrated sheet bars and subject them to continuous hot rolling. In other words, it is possible to prevent the biting failure by continuous hot rolling and to stably perform finish hot rolling.
[0039]
As a method of joining the preceding seat bar and the succeeding seat bar, the rear end portion of the preceding seat bar and the leading end of the succeeding seat bar are abutted and the abutting portion is welded. And a method of pressure welding after welding the butt portion. Further, welding may be performed while applying a pressing force to the butt portion. In addition, as a method of welding a butt | matching part, the method by the laser welding method, induction heating, etc. are mention | raise | lifted, for example.
[0040]
Hot rolled sheets that are continuously manufactured by finishing hot rolling are installed by placing multiple pinch rolls in front of the coiler at the time of winding, performing high-speed shearing between them, and winding the coils in order, so that the finishing heat It is possible to minimize the fluctuation of the tension applied to the hot-rolled sheet during rolling and wind it up in a good shape.
[0041]
The obtained hot-rolled sheet can be used as it is as a product by omitting cold rolling, especially for customers who place importance on low cost, or it can be pickled to obtain a product. The product may be made as it is or after light pressure is applied to improve the surface properties, and then the insulating film is applied or not applied. When producing a non-oriented electrical steel sheet by such a so-called hot final process, when the component system has an αγ transformation point, the finish hot rolling finish temperature is 800 ° C. or higher ((3 × Ar 1 +2 x Ar 3 ) / 5) It is preferable that the hot-rolled sheet is wound in a temperature range of 600 ° C. or higher and 850 ° C. or lower.
[0042]
In the case of a component-type hot final non-oriented electrical steel sheet having an αγ transformation point, if the finishing temperature of the finish hot rolling is less than 800 ° C., the high magnetic flux density intended by the present invention cannot be obtained, so the finish hot rolling is finished. The temperature is preferably 800 ° C. or higher. On the other hand, the finish hot rolling end temperature is ((3 × Ar 1 +2 x Ar 3 ) / 5) If it exceeds ° C., the γ phase present in the steel sheet after hot rolling is transformed into a fine α phase upon cooling, the crystal structure of the hot rolled sheet is refined, and the magnetic properties are greatly deteriorated. Therefore, the finish hot rolling finish temperature is ((3 × Ar 1 +2 x Ar 3 ) / 5) It is preferable that it is below ℃. Moreover, about coiling temperature, since the high magnetic flux density unidirectional electrical steel plate which this invention intends is less than 600 degreeC, it is preferable that it is 600 degreeC or more. On the other hand, if the coiling temperature exceeds 850 ° C., the oxidized layer on the surface of the coiled hot rolled sheet increases and the pickling cost increases. Therefore, the coiling is preferably performed in a temperature range of 850 ° C. or less.
[0043]
On the other hand, in the case of a component-type hot final non-oriented electrical steel sheet having no αγ transformation point, if the finishing temperature of finish hot rolling is less than 800 ° C., the high magnetic flux density intended by the present invention cannot be obtained, so the finish heat The end temperature of the rolling is preferably 800 ° C. or higher. On the other hand, if the finish hot rolling finish temperature exceeds 1100 ° C., the winding of the steel sheet becomes extremely difficult, and coil winding deviation and shape defects are likely to occur. Therefore, the finish hot rolling finish temperature is 1100 ° C. or less. Is preferred. Moreover, about coiling temperature, since the high magnetic flux density unidirectional electrical steel plate which this invention intends is less than 600 degreeC, it is preferable that it is 600 degreeC or more. On the other hand, if the coiling temperature exceeds 850 ° C., the oxidized layer on the surface of the coiled hot rolled sheet increases and the pickling cost increases.
[0044]
In addition, the hot-rolled sheet obtained by the finish hot rolling of the present invention should be cold-rolled twice or more with one time or intermediate annealing, and then subjected to finish annealing, or to further improve the magnetic properties. The purpose is to perform hot-rolled sheet annealing by continuous annealing or box annealing before the first cold rolling, or coil the coil at high temperature and perform self-annealing with the retained heat, or finish hot rolling at a high temperature and keep constant It is good also as a product by the method of setting the above non-water-filling time, cooling and winding up after that, and using for cold rolling.
[0045]
The hot-rolled sheet obtained by the above steps may be subjected to a single cold rolling step and then subjected to finish annealing, or may be further subjected to a skin pass rolling step to obtain a product. If the skin pass rolling rate is less than 2%, the effect cannot be obtained. If the skin pass rolling rate exceeds 20%, the magnetic properties deteriorate, so the range is set from 2% to 20%.
The finish annealing is performed by continuous annealing. At that time, as disclosed in JP-A-61-231120, the annealing is performed for a short time of 5 seconds to 1 minute in the temperature range of 950 ° C. to 1100 ° C. Further, finish annealing may be performed by a method such as holding at 800 ° C. to 950 ° C. for 10 seconds to 2 minutes in the subsequent stage.
[0046]
The steel sheet after cold rolling is either finished with or without an insulating coating.
[0047]
Hereinafter, the reasons for defining each process defined by the present invention will be described.
First, the process conditions of the present invention when hot-rolled sheet annealing is omitted will be described. The following experiment was conducted to investigate the influence of the kinematic viscosity of the lubricating oil and the concentration of the lubricating oil in the roll cooling water on the product magnetic flux density during the finish hot rolling. Steels having the components shown in Table 1 were melted to form slabs, subjected to rough hot rolling to form sheet bars, and then finish hot rolling was performed.
[0048]
[Table 1]
Figure 0004153570
[0049]
During finish hot rolling, tests were performed by changing the kinematic viscosity of the lubricating oil that was actually sprayed on the roll and the volume fraction of the roll cooling water, and the relationship with the product magnetic flux density was investigated in detail. Ar of component steel A with αγ transformation point 3 The point is 904 ° C and Ar 1 The point is 870 ° C. For this reason, the hot rolling finishing temperature of steel A is (Ar 3 + Ar 1 ) / 2 ° C. or lower and 700 ° C. or higher. On the other hand, the steel B of the component system having no αγ transformation point has a hot rolling end temperature of 880 ° C. Both steels A and B were finished into 2.5 mm thick hot-rolled sheets, then cooled with water and wound at 550 ° C.
[0050]
Next, these hot-rolled sheets were pickled, cold-rolled to a thickness of 0.50 mm, degreased, steel A was annealed at 750 ° C. for 30 seconds, Epstein samples were cut, and magnetic properties were measured. Steel B was pickled and cold rolled to a thickness of 0.50 mm, degreased, annealed at 950 ° C. for 30 seconds, cut an Epstein sample, and measured for magnetic properties.
[0051]
FIG. 1 shows the relationship between the kinematic viscosity of the lubricating oil during finish hot rolling, the concentration of the lubricating oil in the roll cooling water, and the product magnetic flux density, and FIG. 2 shows the experimental result of steel B. According to FIG. 1 and FIG. 2, the volume fraction of the lubricating oil with respect to the roll cooling water is 1.0%. more than It can be seen that the product magnetic flux density increases in both steel A and steel B by setting the kinematic viscosity of the lubricating oil to 200 cSt or more when the viscosity is 10% or less.
[0052]
As shown in FIG. 1 and FIG. 2, the kinematic viscosity of the lubricating oil is 200 cSt Less than However, the effect of improving the magnetic flux density of the product is insufficient. If the kinematic viscosity of the lubricating oil exceeds 800 cSt, the effect is saturated and the piping system that conveys the lubricating oil having a high kinematic viscosity is likely to be clogged, and the cooled lubricating oil adheres to the stand or roll. Since the operation must be frequently stopped for the removal, the kinematic viscosity of the lubricating oil is set to 800 cSt or less.
[0053]
Moreover, the volume fraction of the lubricating oil with respect to the roll cooling water is 1.0%. Less than Since there is no effect of improving the magnetic flux density, if it exceeds 10%, the effect is saturated and uneconomical, so the lubricating oil concentration in the roll cooling water is 1.0% in terms of volume fraction. more than 10% or less.
[0054]
As shown from the above experiment, in the finish hot rolling, the kinematic viscosity of the lubricating oil injected into the work roll is (1) It can be seen that the product magnetic flux density increases when the lubricating oil concentration in the roll cooling water is within the range defined by Equation (2).
[0055]
Next, in order to investigate the influence of the kinematic viscosity of the lubricating oil during finish hot rolling and the concentration of the lubricating oil in the roll cooling water on the product magnetic properties when hot-rolled sheet annealing is performed before cold rolling, the following is performed. Experiments were conducted. Steels having the components shown in Table 2 were melted and subjected to finish hot rolling.
During finish hot rolling, tests were performed by changing the kinematic viscosity of the lubricating oil that was actually sprayed on the roll and the volume fraction of the roll cooling water, and the relationship with the product magnetic flux density was investigated in detail. The hot-rolled sheet was finished at a finish hot-rolling temperature of 900 ° C., finished to 2.5 mm in thickness, and wound at 550 ° C.
[0056]
This hot-rolled coil was annealed at 950 ° C. for 90 seconds in a continuous annealing furnace. This was pickled, cold rolled to 0.35 mm thickness, degreased, annealed at 950 ° C. for 30 seconds, cut out an Epstein sample, and measured for magnetic properties.
[0057]
FIG. 3 shows the relationship between the kinematic viscosity of the lubricating oil during finish hot rolling of steel C, the concentration of the lubricating oil in the roll cooling water, and the product magnetic flux density. According to FIG. 3, the volume fraction of the lubricating oil with respect to the roll cooling water is 1.0%. more than It can be seen that the product magnetic flux density of Steel C increases when the lubricant viscosity is 10% or less and the kinematic viscosity of the lubricating oil is 200 cSt or more.
As shown from the above experiments, in the finish hot rolling, the lubricating oil in the roll cooling water so that the kinematic viscosity of the lubricating oil injected to the work roll satisfies the formula (1) and is defined by the formula (2). Concentration is 1.0% in volume fraction more than It can be seen that the product magnetic flux density is increased if it is less than 10%.
[0058]
Next, in order to investigate the influence of the hot rolled sheet annealing time and the hot rolled sheet annealing temperature on the magnetic flux density by continuous annealing, the following experiment was conducted. Steel C having the components shown in Table 2 was melted into a slab, subjected to rough hot rolling to form a sheet bar, and then finish hot rolling was performed.
[0059]
[Table 2]
Figure 0004153570
[0060]
The finish hot rolling finish temperature was 900 ° C. and a constant thickness of 2.0 mm, and after the hot rolling was finished, it was cooled rapidly and wound at 500 ° C. 3% lubricating oil was mixed in the roll cooling water of the finishing hot rolling machine and sprayed from the nozzle onto the work roll. The temperature of the roll cooling water was kept at 55 ° C., and the kinematic viscosity of the lubricating oil was kept at 280 cSt.
This hot-rolled coil was annealed in a continuous annealing furnace with the annealing temperature constant at 950 ° C. and changing the annealing time. On the other hand, the annealing temperature was changed by setting the time for hot-rolled sheet annealing by continuous annealing to 90 seconds. This was pickled, cold-rolled to a thickness of 0.35 mm, degreased, annealed at 900 ° C. for 30 seconds, cut an Epstein sample, and measured for magnetic properties.
[0061]
FIG. 4 shows the influence of the hot-rolled sheet annealing time by continuous annealing on the product magnetic flux density. As shown in FIG. 4, if the annealing time is less than 20 seconds, the effect of improving the magnetic flux density by hot-rolled sheet annealing cannot be obtained, and if the annealing time is 5 minutes or more, a deep scale is generated on the steel sheet surface, resulting in pickling failure. Significant skin roughness occurred on the steel sheet surface layer. For this reason, in this invention, the hot-rolled sheet annealing time by continuous annealing shall be 20 second or more and 5 minutes or less. In addition, the hot-rolled sheet annealing time by the preferable continuous annealing seen from the effect of annealing and economical efficiency is 30 second or more and 3 minutes or less.
[0062]
FIG. 5 shows the influence of the hot-rolled sheet annealing temperature by continuous annealing on the product magnetic flux density. As shown in FIG. 5, if the annealing temperature is less than 850 ° C., the effect of improving the magnetic flux density by hot-rolled sheet annealing in continuous annealing cannot be obtained, and if the annealing temperature exceeds 1150 ° C., pickling defects are caused by the generation of deep scale. It occurred and marked skin roughening occurred on the steel sheet surface layer. For this reason, in this invention, the hot-rolled sheet annealing temperature by continuous annealing shall be 850 degreeC or more and 1150 degrees C or less. The hot-rolled sheet annealing temperature by preferable continuous annealing in view of the effect of annealing and economic efficiency such as pickling is 850 ° C. or more and 1000 ° C. or less.
[0063]
In the present invention, hot-rolled sheet annealing may be performed by box annealing. At that time, if the hot-rolled sheet annealing temperature is less than 750 ° C., the annealing time required for improving the magnetic properties of the product becomes remarkably long, which is uneconomical. Further, if the annealing temperature exceeds 850 ° C., a large amount of cost is required for the capital investment of the furnace, and a phenomenon that the coil is seized during annealing occurs. For the above reasons, when performing hot-rolled sheet annealing by box annealing, the annealing temperature is set to 750 ° C. or higher and 850 ° C. or lower. At that time, if the hot-rolled sheet annealing time in the box annealing is 5 minutes or less, the annealing temperature necessary for improving the product magnetic properties becomes remarkably high, and the equipment investment of the furnace itself becomes excessive and uneconomical, so the annealing time is 5 minutes or more. Further, when the hot-rolled sheet annealing time exceeds 30 hours, coil seizure occurs as in the case where the annealing temperature is excessively high. Therefore, the hot-rolled sheet annealing time in the box annealing is set within 30 hours.
[0064]
Next, in order to investigate the influence of the kinematic viscosity of the lubricating oil during finish hot rolling and the concentration of the lubricating oil in the roll cooling water on the product magnetic properties in the process of self-annealing by the heat retained in the hot-rolled coil, the following Experiments were conducted. Steels having the components shown in Table 3 were melted to form slabs, subjected to rough hot rolling to form sheet bars, and then finish hot rolling was performed. 4% lubricating oil was mixed in the roll cooling water of the finishing hot rolling machine and sprayed from the nozzle onto the work roll. At this time, the kinematic viscosity of the lubricating oil was changed by changing the temperature of the roll cooling water.
[0065]
[Table 3]
Figure 0004153570
[0066]
The hot rolling end temperature was 1000 ° C., water-cooled, wound up at 860 ° C., immediately covered with a heat retaining cover, subjected to auxiliary heating by gas heating, and self-annealed at 850 ° C. for 1 hour with the retained heat of the coil.
This was pickled, cold-rolled to a thickness of 0.50 mm, degreased, steel D was annealed at 900 ° C. and steel E was annealed at 980 ° C. for 45 seconds, and an Epstein sample was cut to measure magnetic properties.
[0067]
FIG. 6 shows the dependence of the product magnetic flux density on the kinematic viscosity of the lubricating oil during finish hot rolling. Fig. 6 shows the kinematic viscosity of the lubricating oil during finish hot rolling. 200 It can be seen that the product magnetic flux density increases when it is greater than or equal to cSt.
[0068]
After finishing hot rolling, the hot-rolled sheet may be wound around a coil and self-annealed. If the coil winding temperature during self-annealing is less than 750 ° C., the improvement of the magnetic properties is insufficient, so it is set to 750 ° C. or higher. On the other hand, if the temperature exceeds 1000 ° C., coil winding is likely to occur, and oxidation of the steel sheet surface layer becomes violent.
[0069]
If the self-annealing time is less than 5 minutes, the improvement of the magnetic properties is insufficient, so it is performed for 5 minutes or more. Further, if it exceeds 5 hours, oxidation of the steel sheet becomes violent and pickling failure tends to occur, so it is set to 5 hours or less. The preferable self-annealing time from the viewpoint of the effect of annealing and economy is 30 minutes to 120 minutes. In order to prevent oxidation of the coil during self-annealing, self-annealing may be performed in a reducing atmosphere containing hydrogen, an inert gas atmosphere such as nitrogen or argon, or under reduced pressure.
[0070]
Next, in order to investigate the influence of the kinematic viscosity of the lubricating oil during finish hot rolling and the concentration of the lubricating oil in the roll cooling water on the product magnetic properties in the process of providing non-injection water for a certain period of time after finishing hot rolling, Various experiments were conducted. Steel F having the components shown in Table 4 was melted and finish hot rolled.
[0071]
[Table 4]
Figure 0004153570
[0072]
The finish hot rolling finish temperature was constant at 1050 ° C. At this time, 1.5% of lubricating oil was mixed in the roll cooling water of the finishing hot rolling machine, and sprayed from the nozzle to the work roll. At this time, the kinematic viscosity of the lubricating oil was changed by changing the temperature of the roll cooling water. Moreover, based on Formula (4) and Formula (5), the non-water-filling time was 4.0 second, and it cooled after that and wound up at 680 degreeC.
This was pickled, cold-rolled to a thickness of 0.50 mm, degreased, annealed at 900 ° C. for 30 seconds, cut an Epstein sample, and measured for magnetic properties.
[0073]
The dependence of the product magnetic flux density on the kinematic viscosity of the lubricating oil during finish hot rolling is shown in FIG. Fig. 7 shows the kinematic viscosity of the lubricating oil during finish hot rolling. 200 It can be seen that the product magnetic flux density increases when it is greater than or equal to cSt.
[0074]
Although there is no provision for coiling temperature, coiling should be performed at 750 ° C. or lower in order to prevent an excessive oxidation layer from being generated on the surface of the steel sheet that has been hot-rolled at a high temperature and deterioration of pickling properties. Is preferred.
[0075]
Hereinafter, the non-injection water set time t after the end of hot rolling will be described.
In the present invention, the influence of the kinematic viscosity of the lubricating oil during the finish hot rolling and the concentration of the lubricating oil in the roll cooling water on the product magnetic properties is investigated, and the hot rolling end temperature T (° C.) and the hot rolling end in the finish hot rolling. As a result of detailed studies by the inventors on the relationship between the time t (seconds) until the start of post-water injection and the magnetic properties,
950 ≦ T ≦ 1150 Formula (4)
9.6-8 × 10 -3 T ≦ t ≦ 15.6-8 × 10 -3 T ... Formula (5)
In the range determined by (1), it is possible to define favorable conditions satisfying pickling properties, sheet feeding speed, and magnetic characteristics.
[0076]
When the hot rolling end temperature T (° C.) is lower than the lower limit 950 ° C. defined by the formula (4), the improvement of the magnetic properties is insufficient. Further, in order to make the hot rolling end temperature T (° C.) exceed 1150 ° C. which is the upper limit determined by the formula (4), the heating temperature of the slab is remarkably increased in the hot rolling process having normal rough rolling and finish rolling. It is necessary, and precipitates re-dissolved during slab heating are finely precipitated during hot rolling, and the magnetic properties are remarkably deteriorated. For the above reasons, the hot rolling end temperature is set to 950 ° C. or more and 1150 ° C. or less determined by the equation (4).
[0077]
In addition, when the time from the end of hot rolling to the start of water injection exceeds the time determined by Equation (5), the time for cooling the steel sheet is insufficient, and the rolling speed is sufficient to wind the coil at a high temperature or to sufficiently cool the steel sheet. Must be reduced, and productivity deteriorates. Winding the coil at a high temperature is not preferable because it causes adverse effects such as occurrence of winding deviation and deterioration of pickling properties. For this reason, the non-water-filling time t (seconds) is 15.6-8 × 10 as defined in the equation (5). -3 T or less. On the contrary, if the non-injection time is shorter than the time determined by the equation (5), the improvement of the magnetic characteristics is insufficient. For this reason, the non-water-filling time t (seconds) after the finish hot rolling is finished is 9.6-8 × 10 as defined by the equation (5). -3 T or more.
[0078]
【Example】
Next, examples of the present invention will be described.
[Example 1]
Investigate the effect of the kinematic viscosity of the lubricating oil during finish hot rolling and the concentration of the lubricating oil in the roll cooling water on the product magnetic properties of a full-process material manufactured by the single cold rolling process method that omits hot-rolled sheet annealing. Therefore, the following experiment was conducted.
Here, a full process material refers to the product manufactured in the process of giving annealing and making it a final product after cold rolling of 2 times or more which interposes intermediate annealing.
A slab for non-oriented electrical steel having the components shown in Table 5 was heated by a normal method to form a sheet bar having a thickness of 40 mm by a rough rolling mill, and then a hot rolled sheet having a thickness of 2.5 mm by a finishing hot rolling machine. did.
[0079]
[Table 5]
Figure 0004153570
[0080]
Since Steel G and Steel H have αγ transformation, the hot rolling finishing temperature is (Ar 3 + Ar 1 ) / 2 or less and 700 ° C. or more and 860 ° C., water cooled and wound up at 650 ° C. The hot rolling finish temperature of Steel I was 890 ° C., water cooled, and wound up at 650 ° C.
4% lubricating oil was mixed in the roll cooling water of the finishing hot rolling machine and sprayed from the nozzle onto the work roll. The kinematic viscosity of the lubricating oil was changed by changing the temperature of the roll cooling water and the type of the lubricating oil.
[0081]
In this embodiment, the finish hot rolling is performed using a high kinematic viscosity lubricating oil, so that the individual seat bars tend to be poorly mixed. Become In order to stably perform finish hot rolling, the sheet bar after rough rolling was welded to the preceding sheet bar, and finish hot rolling was continuously performed.
[0082]
After pickling these steels, steel G was annealed at 750 ° C., steel H was 830 ° C., and steel I was annealed at 950 ° C. for 30 seconds, and an Epstein sample was cut out to measure the magnetic flux density. Table 6 shows the present invention, comparative examples, and magnetic measurement results together. As shown in Table 6, the kinematic viscosity of the lubricating oil during finish hot rolling 200 It turns out that a product magnetic flux density improves that it is more than cSt.
[0083]
[Table 6]
Figure 0004153570
[0084]
[Example 2]
The following experiment was conducted to investigate the effect of the concentration of lubricating oil during finish hot rolling on the product magnetic properties in a full-process material manufactured by the single cold rolling process method, omitting hot-rolled sheet annealing. .
A slab for non-oriented electrical steel having the components shown in Steel I in Table 5 is heated by a normal method to form a sheet bar having a thickness of 40 mm by a rough rolling mill, and then heated to 2.5 mm by a finishing hot rolling machine. It was a sheet.
The temperature of the roll cooling water of the finishing hot rolling machine is adjusted to 40 ° C, 50 ° C, 70 ° C, and lubricant oils with different volume fractions are mixed in advance in the state of emulsion in the roll cooling water. The effects on the At this time, the kinematic viscosity of the lubricating oil at each temperature is 400 cSt, 300 cSt there were. Roll cooling water containing lubricating oil was sprayed from the nozzle to the work roll.
[0085]
After this steel I was pickled, it was annealed at 950 ° C. for 30 seconds, an Epstein sample was cut out, and the magnetic flux density was measured. Table 7 shows the present invention, comparative examples, and magnetic measurement results together. As shown in Table 7, the concentration of lubricating oil during finish hot rolling is 1.0%. more than It can be seen that the product magnetic flux density is improved.
[0086]
[Table 7]
Figure 0004153570
[0087]
[Example 3]
In order to investigate the influence of the kinematic viscosity of lubricating oil during finish hot rolling and the concentration of lubricating oil in roll cooling water on product magnetic properties in full-process and semi-processed materials by hot-rolled sheet annealing, the following The experiment was conducted.
Here, the semi-process material refers to a product in a manufacturing method in which a final product is obtained after performing cold rolling at least once with intermediate annealing or annealing, and then applying a skin pass.
A slab for non-oriented electrical steel having the components shown in Table 8 is heated by a normal method to form a sheet bar having a thickness of 40 mm by a rough rolling mill, and then a hot rolled sheet having a thickness of 2.0 mm by a finishing hot rolling machine. did. The finish hot rolling finish temperature was 900 ° C., and immediately after the hot rolling was finished, the product was cooled with water and the hot rolled plate was wound up at 550 ° C.
[0088]
[Table 8]
Figure 0004153570
[0089]
3.5% lubricating oil was mixed in the roll cooling water of the finishing hot rolling machine and sprayed from the nozzle onto the work roll. The kinematic viscosity of the lubricating oil was changed by changing the temperature of the roll cooling water and the type of the lubricating oil.
In this embodiment, since the hot rolling is performed using a high kinematic viscosity lubricating oil, rough rolling is performed in order to avoid the tendency of individual sheet bars to become jammed and to stably perform the hot rolling. The subsequent sheet bar was welded to the preceding sheet bar, and finish hot rolling was continuously performed.
[0090]
The obtained hot-rolled sheet was subjected to hot-rolled sheet annealing in a continuous annealing furnace at 900 ° C. for steel J and 1000 ° C. for steel K for 2 minutes. Thereafter, the full process and semi-process characteristics of Steel J and the full process characteristics of Steel K were investigated.
[0091]
As a full process step for Steel J and Steel K, the hot-rolled sheet after hot-rolled sheet annealing was pickled and finished to 0.50 mm by cold rolling. In a continuous annealing furnace, steel J was annealed at 900 ° C. and steel K was annealed at 980 ° C. for 30 seconds. Thereafter, the Epstein sample was cut out and the magnetic properties were measured.
[0092]
Furthermore, as a semi-process step for steel J, the same conditions are applied until hot-rolled sheet annealing and pickling, and then the finished sheet thickness of cold rolling is 0.55 mm, and this is annealed at 900 ° C. for 30 seconds in a continuous annealing furnace. did. Thereafter, skin pass rolling was performed to finish to 0.50 mm, and the Epstein sample was cut, and then subjected to strain relief annealing at 750 ° C. for 2 hours, which is usually performed by a customer, and the magnetic properties were measured.
[0093]
Table 9 shows the components of the present invention and comparative examples of steel J and steel K, and the magnetic measurement results. As shown in Table 9, it can be seen that the product magnetic flux density is improved when the kinematic viscosity of the lubricating oil during finish hot rolling is 80 cSt or more, particularly 200 cSt or more.
[0094]
[Table 9]
Figure 0004153570
[0095]
Delete
[0096]
Delete
[0097]
Delete
[0098]
Delete
[0099]
Delete
[0100]
[Example 5]
Product magnetic properties of kinematic viscosity of lubricating oil during finish hot rolling and concentration of lubricating oil in roll cooling water in full-process non-oriented electrical steel sheet manufactured by hot-rolled sheet annealing / single cold rolling method by box annealing The following experiment was conducted to investigate the effect on the.
A slab for non-oriented electrical steel having the components shown in Table 12 was heated by a normal method to form a sheet bar having a thickness of 40 mm by a rough rolling mill, and then a hot rolled sheet having a thickness of 2.0 mm by a finishing hot rolling machine. did. The finish hot rolling finish temperature was 900 ° C., and after finishing the rolling, it was cooled and wound up at 650 ° C.
[0101]
[Table 12]
Figure 0004153570
[0102]
4.0% lubricating oil was mixed in the roll cooling water of the finishing hot rolling machine and sprayed from the nozzle onto the work roll. The kinematic viscosity of the lubricating oil was changed by changing the temperature of the roll cooling water and the type of the lubricating oil.
The obtained hot-rolled sheet was subjected to hot-rolled sheet annealing in a box annealing furnace at 800 ° C. for 5 hours. Then, pickling was performed and it finished in 0.50 mm thickness by cold rolling. In a continuous annealing furnace, steel M was annealed at 900 ° C. for 30 seconds, and steel N was annealed at 980 ° C. for 30 seconds. Thereafter, the Epstein sample was cut out and the magnetic properties were measured.
[0103]
Table 13 shows the components of the present invention and comparative examples and the magnetic measurement results. As shown in Table 13, the kinematic viscosity of the lubricating oil during finish hot rolling 200 It turns out that a product magnetic flux density improves that it is more than cSt.
[0104]
[Table 13]
Figure 0004153570
[0105]
[Example 6]
To investigate the effect of lubricant kinematic viscosity during finish hot rolling and the concentration of lubricant in roll cooling water on product magnetic properties in full-process non-oriented electrical steel sheets produced by a single cold rolling process of self-annealing process Therefore, the following experiment was conducted. A slab for non-oriented electrical steel having the components shown in Table 14 was heated by a normal method to form a sheet bar having a thickness of 50 mm by a rough rolling mill, and then a hot rolled sheet having a thickness of 2.5 mm by a finishing hot rolling machine. did.
[0106]
[Table 14]
Figure 0004153570
[0107]
A 3.0% lubricating oil was mixed in the roll cooling water of the finishing hot rolling machine and sprayed from the nozzle onto the work roll. The kinematic viscosity of the lubricating oil was changed by changing the temperature of the roll cooling water and the type of the lubricating oil.
The finish hot rolling finish temperature was 1000 ° C., and after completion of rolling, the product was cooled and wound up at 875 ° C., and the coil was immediately placed in a heat-retaining furnace and subjected to self-annealing at 850 ° C. for 1 hour. Then, pickling was performed and it finished in 0.50 mm thickness by cold rolling. In a continuous annealing furnace, steel O was annealed at 950 ° C. for 30 seconds, steel P was annealed at 975 ° C. for 30 seconds, and steel Q was annealed at 850 ° C. for 30 seconds. Thereafter, the Epstein sample was cut out and the magnetic properties were measured.
[0108]
Table 15 shows the components of the present invention and comparative examples and the magnetic measurement results. As shown in Table 15, kinematic viscosity of lubricating oil during finish hot rolling 200 It turns out that a product magnetic flux density improves that it is more than cSt.
[0109]
[Table 15]
Figure 0004153570
[0110]
[Example 7]
In a full-process non-oriented electrical steel sheet manufactured by a single cold rolling method with a non-water injection time of a certain time after finish hot rolling, the kinematic viscosity of the lubricating oil mixed in the roll cooling water during finish hot rolling In order to investigate the influence on the product magnetic properties, the following experiment was conducted.
A slab for non-oriented electrical steel having the components shown in Table 16 was heated by a normal method, and a sheet bar having a thickness of 50 mm was formed by a rough rolling mill, and then a sheet bar having a thickness of 2.5 mm was formed by a finishing hot rolling machine. .
[0111]
[Table 16]
Figure 0004153570
[0112]
3.2% lubricating oil was mixed in the roll cooling water of the finishing hot rolling machine, and sprayed from the nozzle onto the work roll. The kinematic viscosity of the lubricating oil was changed by changing the temperature of the roll cooling water and the type of the lubricating oil.
The finish hot rolling finish temperature was 1020 ° C. In this case, since the non-water-filling time t defined by the formulas (4) and (5) is 1.44 seconds or more and 7.44 seconds or less, the non-water-filling time is 4.5 seconds and winding is performed at 640 ° C. It was. Thereafter, pickling was performed, and the thickness was reduced to 0.50 mm by cold rolling. In the continuous annealing furnace, steel R was annealed at 950 ° C. and steel S was annealed at 980 ° C. for 30 seconds. Thereafter, the Epstein sample was cut out and the magnetic properties were measured.
[0113]
Table 17 shows the components of the present invention and comparative examples and the magnetic measurement results. As shown in Table 17, kinematic viscosity of lubricating oil during finish hot rolling 200 It turns out that a product magnetic flux density improves that it is more than cSt.
[0114]
[Table 17]
Figure 0004153570
[0115]
[Example 8]
In order to investigate the effect of non-water-injection time on product magnetic properties in full-process non-oriented electrical steel sheets manufactured by a single cold-rolling method with a non-injection time of a certain time after finish hot rolling, the following experiment was conducted. went.
A slab for non-oriented electrical steel having the components shown in Table 18 was heated by a normal method to form a sheet bar having a thickness of 50 mm by a rough rolling mill, and then a hot rolled sheet having a thickness of 2.5 mm by a finishing hot rolling machine. did.
[0116]
[Table 18]
Figure 0004153570
[0117]
The hot rolling end temperature was 1050 ° C., the non-water injection time was changed, and the coiling temperature was constant at 680 ° C. In this case, the non-water-filling time defined by the equations (4) and (5) is 1.2 seconds or more and 7.2 seconds or less.
3.2% lubricating oil was mixed in the roll cooling water of the finishing hot rolling machine, and sprayed from the nozzle onto the work roll. The kinematic viscosity of the lubricating oil was 320 cSt. Thereafter, pickling was performed, and the thickness was reduced to 0.50 mm by cold rolling. This was annealed at 900 ° C. for 30 seconds in a continuous annealing furnace. Thereafter, the Epstein sample was cut out and the magnetic properties were measured.
[0118]
Table 19 shows hot rolling conditions and magnetic measurement results together. As shown in Table 19, it can be seen that good magnetic properties are obtained when the non-water injection time is 1.2 seconds or longer.
[0119]
As described above, the kinematic viscosity of the lubricating oil during finish hot rolling and the concentration in the roll cooling water are appropriately controlled, and the finish hot rolling is finished at a high temperature, and then the non-injection time after the hot rolling is properly controlled. Thus, it is possible to obtain a non-oriented electrical steel sheet having a high magnetic flux density.
[0120]
[Table 19]
Figure 0004153570
[0121]
[Example 9]
Product magnetic properties of kinematic viscosity of lubricating oil during finishing hot rolling and concentration of lubricating oil in roll cooling water in the manufacturing process of non-oriented electrical steel sheet to be finished product after finishing hot rolling without cold rolling The following experiment was conducted to investigate the effect on the.
A slab for non-oriented electrical steel having the components shown in Table 20 was heated by a normal method to form a sheet bar having a thickness of 40 mm by a rough rolling mill, and then a hot rolled sheet having a thickness of 0.8 mm by a finishing hot rolling machine. did.
[0122]
[Table 20]
Figure 0004153570
[0123]
Since Steel U and Steel V have αγ transformation, the hot rolling finishing temperature is (Ar 3 + Ar 1 ) / 2 or less and 700 ° C. or more to 860 ° C., water-cooled and wound up at 750 ° C. 5% lubricating oil was mixed in the roll cooling water of the finishing hot rolling machine and sprayed from the nozzle onto the work roll. The kinematic viscosity of the lubricating oil was changed by changing the temperature of the roll cooling water from 40 ° C. to 80 ° C.
On the other hand, in order to investigate the influence of the finish hot rolling on the product magnetic flux density of the lubricating oil concentration in the roll cooling water, various concentrations of lubricating oil lubricating oil were mixed in the form of an emulsion in the roll cooling water. At this time, the temperature of the mixed liquid of the roll cooling water and the lubricating oil was set to 50 ° C., and the kinematic viscosity of the lubricating oil in the cooling water was set to 350 cSt.
In this embodiment, since the hot rolling is performed using a high kinematic viscosity lubricating oil, rough rolling is performed in order to avoid the tendency of individual sheet bars to become jammed and to stably perform the hot rolling. The subsequent sheet bar was welded to the preceding sheet bar, and finish hot rolling was continuously performed. An Epstein sample was cut out from the obtained hot-rolled sheet, and the magnetic flux characteristics were measured.
[0124]
Tables 21 and 22 collectively show the measurement results of the present invention, comparative examples, and magnetic properties. From Table 21, it can be seen that the product magnetic flux density is improved when the kinematic viscosity of the lubricating oil during finish hot rolling is 200 cSt or more. Also, from Table 22, the lubricating oil concentration in the roll cooling water is 1.0%. more than It can be seen that the product magnetic flux density is improved.
[0125]
[Table 21]
Figure 0004153570
[0126]
[Table 22]
Figure 0004153570
[0127]
【The invention's effect】
As described above, according to the present invention, it is possible to manufacture a non-oriented electrical steel sheet having a high magnetic flux density.
[Brief description of the drawings]
FIG. 1 Relationship between the kinematic viscosity of lubricating oil during finish hot rolling and the concentration of lubricating oil in roll cooling water and the product magnetic flux density in a single cold rolling method in which hot-rolled sheet annealing of 0.3% Si-based components is omitted. It is a chart which shows.
FIG. 2 shows the relationship between the kinematic viscosity of the lubricating oil during finish hot rolling and the concentration of the lubricating oil in the roll cooling water and the product magnetic flux density in the single cold rolling method in which hot-rolled sheet annealing of 2% Si-based components is omitted. It is a chart.
FIG. 3 is a chart showing the relationship between the kinematic viscosity of the lubricating oil and the concentration of the lubricating oil in the roll cooling water and the product magnetic flux density during finish hot rolling in the single cold rolling method of 2% Si-based hot-rolled sheet annealing. It is.
FIG. 4 is a chart showing the relationship between hot-rolled sheet annealing time and product magnetic flux density in a hot-rolled sheet annealing single cold rolling method by continuous annealing of 2% Si-based components.
FIG. 5 is a chart showing a relationship between a hot-rolled sheet annealing temperature and a product magnetic flux density in a single-rolling method of hot-rolled sheet annealing by continuous annealing of a 2% Si-based component.
FIG. 6 is a chart showing the relationship between the kinematic viscosity of the lubricating oil in the roll cooling water and the magnetic flux density during finish hot rolling in the single cold rolling method after hot rolling of the 2% Si and 3% Si-based components. .
FIG. 7 shows the kinematic viscosity and product magnetic flux density of the lubricant in the roll cooling water during the finish hot rolling in the single cold rolling method in the process of setting the non-injection time after finishing the finish hot rolling of the 2.5% Si component system. It is a chart which shows the relationship.

Claims (2)

質量%で、
0.10%<Si≦3.09%
0.10%≦Mn≦1.50%
を含有し、残部がFeおよび不可避的不純物からなるスラブを用い、熱間圧延し熱延板とし、そのまま製品として使用するか、あるいは一回もしくは中間焼鈍をはさむ二回以上の冷間圧延を施し次いで仕上焼鈍を施し、絶縁皮膜を施すか、あるいは施さずに最終製品とする無方向性電磁鋼板の製造方法において、仕上熱間圧延時に使用する潤滑油が下記の式(1)を満たすと共に、前記潤滑油をロール冷却水中に式(2)を満たすように混合して仕上熱間圧延の潤滑に供することを特徴とする無方向性電磁鋼板の製造方法。
200≦ρ≦800 ・・・式(1)
1.0≦v≦10.0・・・式(2)
但し、ρ:潤滑油の動粘度(cSt:センチストークス)
v:ロール冷却水中に混合された潤滑油の体積分率(%)
% By mass
0.10% <Si ≦ 3.09%
0.10% ≦ Mn ≦ 1.50%
Slab containing Fe and the inevitable impurities, and hot-rolled into a hot-rolled sheet, used as a product as it is, or subjected to one or more cold rolling sandwiching intermediate annealing. Next, in the method for producing a non-oriented electrical steel sheet, which is subjected to finish annealing, an insulating film is applied, or an end product is not applied, the lubricating oil used during finish hot rolling satisfies the following formula (1), A method for producing a non-oriented electrical steel sheet, wherein the lubricating oil is mixed in roll cooling water so as to satisfy the formula (2) and used for finishing hot rolling lubrication.
200 ≦ ρ ≦ 800 Formula (1)
1.0 ≦ v ≦ 10.0 Formula (2)
Where ρ: kinematic viscosity of the lubricating oil (cSt: centistokes)
v: Volume fraction of lubricating oil mixed in roll cooling water (%)
質量%で、
0.10%<Si≦3.09%
0.10%≦Mn≦1.50%
を含有し、さらに、
0.10%≦Al≦1.00%
を含有し、残部がFeおよび不可避的不純物からなるスラブを用いることを特徴とする請求項1に記載の無方向性電磁鋼板の製造方法。
% By mass
0.10% <Si ≦ 3.09%
0.10% ≦ Mn ≦ 1.50%
In addition,
0.10% ≦ Al ≦ 1.00%
The manufacturing method of the non-oriented electrical steel sheet according to claim 1, wherein a slab containing Fe and the balance of Fe and inevitable impurities is used.
JP10293697A 1997-04-21 1997-04-21 Method for producing non-oriented electrical steel sheet with high magnetic flux density and low iron loss Expired - Fee Related JP4153570B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10293697A JP4153570B2 (en) 1997-04-21 1997-04-21 Method for producing non-oriented electrical steel sheet with high magnetic flux density and low iron loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10293697A JP4153570B2 (en) 1997-04-21 1997-04-21 Method for producing non-oriented electrical steel sheet with high magnetic flux density and low iron loss

Publications (2)

Publication Number Publication Date
JPH10298650A JPH10298650A (en) 1998-11-10
JP4153570B2 true JP4153570B2 (en) 2008-09-24

Family

ID=14340733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10293697A Expired - Fee Related JP4153570B2 (en) 1997-04-21 1997-04-21 Method for producing non-oriented electrical steel sheet with high magnetic flux density and low iron loss

Country Status (1)

Country Link
JP (1) JP4153570B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4987190B2 (en) * 2001-01-29 2012-07-25 新日本製鐵株式会社 Method for producing non-oriented electrical steel sheet with good workability and low iron loss after processing and strain relief annealing

Also Published As

Publication number Publication date
JPH10298650A (en) 1998-11-10

Similar Documents

Publication Publication Date Title
JP3456352B2 (en) Grain-oriented electrical steel sheet with excellent iron loss characteristics and method of manufacturing the same
JP2009102739A (en) Method for producing non-oriented magnetic steel sheet
JP4153570B2 (en) Method for producing non-oriented electrical steel sheet with high magnetic flux density and low iron loss
US5342454A (en) Method of producing grain oriented silicon steel sheet having low iron loss
AU700333B2 (en) A method for producing non-oriented electrical steel sheet with high flux density and low watt loss
JP4730981B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP4091673B2 (en) Method for producing non-oriented electrical steel sheet with high magnetic flux density
KR102218470B1 (en) Non-oriented electrical steel sheet having excellent magnetic and shape properties, and method for manufacturing the same
JP3388119B2 (en) Method of manufacturing low-grade non-oriented electrical steel sheet with high magnetic flux density
JPH10294211A (en) Manufacture for non-oriented electromagnetic steel plate with high magnetic flux density, small core loss and less anisotropy
JPH10287922A (en) Stable production of nonoriented silicon steel sheet with high magnetic flux density
JPH10287923A (en) Stable production of nonoriented silicon steel sheet with high magnetic flux density
JPH1046248A (en) Production of nonoriented magnetic steel sheet high in magnetic flux density and low in core loss
JPH1036912A (en) Production of nonoriented silicon steel sheet having high magnetic flux density and low iron loss
JP3379622B2 (en) Manufacturing method of hot final non-oriented electrical steel sheet with high magnetic flux density
JP2000282173A (en) High tensile strength steel plate excellent in workability, and its production
JPH10183246A (en) Production of nonoriented silicon steel sheet high in magnetic flux density, low in core loss and excellent in surface property
JP4191806B2 (en) Method for producing non-oriented electrical steel sheet
JPH10298649A (en) Manufacture of nonoriented silicon steel sheet having high magnetic flux density and low iron loss and minimal in anisotropy
JPH1150151A (en) Production of grain oriented silicon steel sheet with extremely high magnetic flux density
JPH06184640A (en) Production of high magnetic flux density grain-oriented silicon steel sheet
JP2001098325A (en) Method of producing nonoriented silicon steel sheet high in magnetic flux density
JPH1096029A (en) Manufacture of grain-oriented silicon steel sheet having high magnetic flux density
JP3544770B2 (en) Manufacturing method of cold rolled steel sheet with excellent formability
JPH10298651A (en) Production of grain-oriented silicon steel sheet extremely high in magnetic flux density

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080704

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees